EP2340406B1 - Separation de liquide et de vapeur dans un cycle de refrigerant transcritique - Google Patents

Separation de liquide et de vapeur dans un cycle de refrigerant transcritique Download PDF

Info

Publication number
EP2340406B1
EP2340406B1 EP09818353.6A EP09818353A EP2340406B1 EP 2340406 B1 EP2340406 B1 EP 2340406B1 EP 09818353 A EP09818353 A EP 09818353A EP 2340406 B1 EP2340406 B1 EP 2340406B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
chamber
fluid communication
flash tank
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09818353.6A
Other languages
German (de)
English (en)
Other versions
EP2340406A4 (fr
EP2340406A2 (fr
Inventor
Jason Scarcella
Yu H. Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of EP2340406A2 publication Critical patent/EP2340406A2/fr
Publication of EP2340406A4 publication Critical patent/EP2340406A4/fr
Application granted granted Critical
Publication of EP2340406B1 publication Critical patent/EP2340406B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2109Temperatures of a separator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2113Temperatures of a suction accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid

Definitions

  • the refrigerant vapor compression system must not only have sufficient capacity to rapidly pull down the temperature of product loaded into the cargo space at ambient temperature, but also operate efficiently at low load when maintaining a stable product temperature during transport. Additionally, transport refrigerant vapor compression systems are subject to vibration and movements not experienced by stationary refrigerant vapor compression systems. Transport refrigeration systems are also subject to size restrictions due to limitations on available space not generally associated with stationary refrigerant vapor compression systems, such as air conditioners and heat pumps.
  • conventional refrigerant vapor compression systems used in transport refrigeration applications commonly operate at subcritical refrigerant pressures and typically include a compressor, a condenser, and an evaporator, and expansion device, commonly an expansion valve, disposed upstream, with respect to refrigerant flow, of the evaporator and downstream of the condenser.
  • expansion device commonly an expansion valve, disposed upstream, with respect to refrigerant flow, of the evaporator and downstream of the condenser.
  • These basic refrigerant system components are interconnected by refrigerant lines in a closed refrigerant circuit, arranged in accord with known refrigerant vapor compression cycles, and operated in the subcritical pressure range for the particular refrigerant in use.
  • Refrigerant vapor compression systems operating in the subcritical range are commonly charged with fluorocarbon refrigerants such as, but not limited to, hydrochlorofluorocarbons (HCFCs), such as R22, and more commonly hydrofluorocarbons (HFCs), such as R134a, R410A, R404A and R407C.
  • fluorocarbon refrigerants such as, but not limited to, hydrochlorofluorocarbons (HCFCs), such as R22, and more commonly hydrofluorocarbons (HFCs), such as R134a, R410A, R404A and R407C.
  • the heat rejection heat exchanger which functions as a gas cooler rather than a condenser, operates at a refrigerant temperature and pressure in excess of the refrigerant's critical point, while the evaporator operates at a refrigerant temperature and pressure in the subcritical range.
  • the difference between the refrigerant pressure within the gas cooler and refrigerant pressure within the evaporator is characteristically substantially greater than the difference between the refrigerant pressure within the condenser and the refrigerant pressure within the evaporator for a refrigerant vapor compression system operating in a subcritical cycle.
  • the refrigerant vapor compression system may be selectively operated in an economized mode to increase the capacity of the refrigerant vapor compression system.
  • a flash tank economizer is incorporated into the refrigerant circuit between the gas cooler and the evaporator.
  • the refrigerant vapor leaving the gas cooler is expanded through an expansion device, such as a thermostatic expansion valve or an electronic expansion valve, prior to entering the flash tank wherein the expanded refrigerant separates into a liquid refrigerant component and a vapor refrigerant component.
  • a transport refrigeration refrigerant vapor compression system operating in a transcritical refrigeration cycle comprising: a compression device for compressing a refrigerant vapor to a supercritical refrigerant pressure, a gas cooler operating at a supercritical refrigerant pressure, and an evaporator operating at a subcritical refrigerant pressure, said compression device, said gas cooler and said evaporator connected in refrigerant flow communication in a refrigerant circuit; a primary expansion device disposed in said refrigerant circuit between said gas cooler and said evaporator; a secondary expansion device disposed in said refrigerant circuit between said gas cooler and said primary expansion device; a flash tank disposed in the refrigerant circuit upstream with respect to refrigerant flow of said primary expansion device and downstream with respect to refrigerant flow of said secondary expansion device, said flash tank having: a shell defining an interior volume, said interior volume divided into an upper chamber, a lower chamber and a middle chamber; a
  • FIGs. 1 and 2 there are depicted therein exemplary embodiments of a refrigerant vapor compression system 100 suitable for use in a transport refrigeration system for refrigerating the air or other gaseous atmosphere within the temperature controlled cargo space 200 of a truck, trailer, container or the like for transporting perishable/frozen goods.
  • the refrigerant vapor compression system 100 is particularly adapted for operation in a transcritical cycle with a low critical temperature refrigerant, such as for example, but not limited to, carbon dioxide.
  • the refrigerant vapor compression system 100 includes a multi-step compression device 20, a refrigerant heat rejecting heat exchanger 40 and a refrigerant heat absorbing heat exchanger 50, also referred to herein as an evaporator, with refrigerant lines 2, 4 and 6 connecting the aforementioned components in refrigerant flow communication in a refrigerant circuit.
  • a primary expansion device 55 such as for example an electronic expansion valve, operatively associated with the evaporator 50 is disposed in the refrigerant circuit in refrigerant line 4 between the refrigerant heat rejection heat exchanger 40 and the evaporator 50.
  • a secondary expansion device 65 such as for example an electronic expansion valve, is disposed in the refrigerant circuit in refrigerant line 4 between the refrigerant heat rejecting heat exchanger 40 and the primary expansion device 55.
  • a flash tank 10A, 10B is disposed in refrigerant line 4 of the primary refrigerant circuit downstream with respect to refrigerant flow of the secondary expansion device 65 and upstream of the primary expansion device 55.
  • the flash tank 10A, 10B is position in the refrigerant circuit downstream with respect to refrigerant flow of the refrigerant heat rejecting heat exchanger 40 and upstream with respect to refrigerant flow of the evaporator 50.
  • the refrigerant heat rejecting heat exchanger 40 operates at a pressure above the critical point of the refrigerant and therefore functions to cool supercritical refrigerant vapor passing therethrough in heat exchange relationship with a cooling medium, such as for example, but not limited to ambient air or water, and may be also be referred to herein as a gas cooler.
  • a cooling medium such as for example, but not limited to ambient air or water
  • the refrigerant heat rejecting heat exchanger 40 includes a finned tube heat exchanger 42, such as for example a fin and round tube heat exchange coil or a fin and mini-channel flat tube heat exchanger, through which the refrigerant passes in heat exchange relationship with ambient air being drawn through the finned tube heat exchanger 42 by the fan(s) 44 associated with the gas cooler 40.
  • a finned tube heat exchanger 42 such as for example a fin and round tube heat exchange coil or a fin and mini-channel flat tube heat exchanger, through which the refrigerant passes in heat exchange relationship with ambient air being drawn through the finned tube heat exchanger 42 by the fan(s) 44 associated with the gas cooler 40.
  • the refrigerant heat absorption heat exchanger 50 serves an evaporator wherein refrigerant liquid is passed in heat exchange relationship with a fluid to be cooled, most commonly air or an air and inerting gas mixture, drawn from and to be returned to a temperature controlled environment 200, such as the cargo box of a refrigerated transport truck, trailer or container.
  • the refrigerant heat absorbing heat exchanger 50 comprises a finned tube heat exchanger 52 through which refrigerant passes in heat exchange relationship with air drawn from and returned to the refrigerated cargo box 200 by the evaporator fan(s) 54 associated with the evaporator 50.
  • the finned tube heat exchanger 52 may comprise, for example, a fin and round tube heat exchange coil or a fin and mini-channel flat tube heat exchanger.
  • the compression device 20 functions to compress the refrigerant to a supercritical pressure and to circulate refrigerant through the primary refrigerant circuit as will be discussed in further detail hereinafter.
  • the compression device 20 may comprise a single multiple-stage refrigerant compressor, such as for example a scroll compressor, a screw compressor or a reciprocating compressor, disposed in the primary refrigerant circuit and having a first compression stage 20a and a second compression stage 20b, such as illustrated in FIG. 1 .
  • the first and second compression stages are disposed in series refrigerant flow relationship with the refrigerant leaving the first compression stage passing directly to the second compression stage for further compression.
  • the compression device 20 may comprise a pair of independent compressors 20a and 20b, connected in series refrigerant flow relationship in the primary refrigerant circuit via a refrigerant line 8 connecting the discharge outlet port of the first compressor 20a in refrigerant flow communication with the suction inlet port of the second compressor 20b, such as illustrated in FIG. 2 .
  • the compressors 20a and 20b may be scroll compressors, screw compressors, reciprocating compressors, rotary compressors or any other type of compressor or a combination of any such compressors.
  • high temperature, supercritical pressure refrigerant vapor discharged from the second compression stage or second compressor 20b of the compression device is cooled to a lower temperature as it traverses the heat exchanger 42 of the gas cooler 40 before traversing the secondary expansion device 65.
  • the supercritical pressure refrigerant vapor is expanded to a lower subcritical pressure sufficient to establish a two-phase mixture of refrigerant vapor and refrigerant liquid prior to entering the flash tank 10.
  • flash tank 10A, 10B has a shell 120 that encloses an interior volume having an upper chamber 122, a middle chamber 124 and a lower chamber 126.
  • the two-phase refrigerant flow having traversed the secondary expansion device 65 passes into the central chamber 124 through an inlet 125 opening in fluid communication with the middle chamber 124.
  • the two-phase refrigerant flow received within the middle chamber 124 separates into a vapor phase which migrates upwardly into the upper chamber 122 and a liquid phase which migrates downwardly into the lower chamber 126 of the shell 120 of the flash tank 10A, 10B.
  • the flash tank 10A, 10B also includes a first outlet 127 in fluid communication with the lower chamber 126 and a second outlet 129 in fluid communication with the upper chamber 122.
  • the liquid phase refrigerant which is typically saturated liquid, passes from the lower chamber 126 of the flash tank 10A, 10B through a first outlet 127 in fluid communication with the lower chamber 126 into refrigerant line 4 of the refrigerant circuit.
  • all of the liquid phase refrigerant passing from the lower chamber 126 of the flash tank 10A, 10B traverses the primary refrigerant circuit expansion device 55 interdisposed in refrigerant line 4 upstream with respect to refrigerant flow of the evaporator 50. As this liquid refrigerant traverses the primary expansion device 55, it expands to a lower pressure and temperature before entering the evaporator 50.
  • a refrigerant bypass line 5 may be provided to permit bypass of all or a portion of the liquid phase refrigerant passing through refrigerant line 4 from the lower chamber 126 of the flash tank around the primary expansion device 55.
  • the refrigerant bypass line 5 taps into refrigerant line 4 at a first location upstream with respect to refrigerant flow of the primary expansion device 55 and downstream with respect to refrigerant flow of the flash tank 10A, 10B and at a second location downstream with respect to refrigerant flow of the primary expansion device 55 and upstream with respect to refrigerant flow of the evaporator 50.
  • a flow control device 57 such as for example a solenoid valve having an open position and a closed position, may be interdisposed in the refrigerant bypass line 5 for selectively opening and closing the bypass flow passage to refrigerant flow therethrough.
  • the refrigerant vapor compression system 100 also includes a refrigerant vapor injection line 14 that establishes refrigerant flow communication between the upper chamber 122 of the interior volume defined within the shell 120 of the flash tank 10A, 10B via the second outlet 129 of the flash tank 10A, 10B and an intermediate stage of the compression process.
  • the refrigerant vapor compression system 100 may also include a refrigerant liquid injection line 18 that establishes refrigerant flow communication the lower chamber 126 of the interior volume defined within the shell 120 of the flash tank 10A, 10B, typically via tapping refrigerant line 4 at a location downstream with respect to refrigerant flow of the flash tank 10A, 10B and upstream with respect to refrigerant flow of the primary expansion valve 55, and between an intermediate stage of the compression process.
  • a refrigerant liquid injection line 18 that establishes refrigerant flow communication the lower chamber 126 of the interior volume defined within the shell 120 of the flash tank 10A, 10B, typically via tapping refrigerant line 4 at a location downstream with respect to refrigerant flow of the flash tank 10A, 10B and upstream with respect to refrigerant flow of the primary expansion valve 55, and between an intermediate stage of the compression process.
  • injection of refrigerant vapor or refrigeration liquid into the intermediate pressure stage of the compression process would be accomplished by injection of the refrigerant vapor or refrigerant liquid into the refrigerant passing from the first compression stage 20a into the second compression stage 20b of a single compressor.
  • injection of refrigerant vapor or refrigeration liquid into the intermediate pressure stage of the compression process would be accomplished by injection of the refrigerant vapor or refrigerant liquid into the refrigerant passing through refrigerant line 8 from the discharge outlet of the first compressor 20a to the suction inlet of the second compressor 20b.
  • the refrigerant vapor compression system 100 may also include a compressor unload refrigerant line 16 that establishes refrigerant flow communication between an intermediate pressure stage of the compression device and the suction pressure portion of the refrigerant circuit, i.e. refrigerant line 6 extending between the outlet of the evaporator 50 and the suction inlet of the first stage 20a of the compression device 20, as depicted in the FIG. 1 embodiment, or the suction inlet of the first compressor 20a, as depicted in the FIG. 2 embodiment.
  • a compressor unload refrigerant line 16 that establishes refrigerant flow communication between an intermediate pressure stage of the compression device and the suction pressure portion of the refrigerant circuit, i.e. refrigerant line 6 extending between the outlet of the evaporator 50 and the suction inlet of the first stage 20a of the compression device 20, as depicted in the FIG. 1 embodiment, or the suction inlet of the first compressor 20a, as depicted in the FIG. 2 embodiment.
  • Each of the refrigerant vapor injection line 14 and the refrigerant liquid injection line 18 may open in refrigerant flow communication with the compressor unload refrigerant line 16, whereby the compressor unload refrigerant line 16 forms a downstream portion of both the refrigerant vapor injection line 14 and the refrigerant liquid injection line 18.
  • refrigerant vapor may pass through the refrigerant vapor injection line 14 to be selectively injected either into an intermediate stage of the compression process or into the suction pressure portion of the refrigerant circuit.
  • refrigerant liquid may pass through the refrigerant liquid injection line 18 to be selectively injected either into an intermediate stage of the compression process or into the suction pressure portion of the refrigerant circuit.
  • all or a portion of the refrigerant discharging from the first stage 20a or the first compressor 20a may be passed through the compressor unload refrigerant line 16 to the suction pressure portion of the refrigerant circuit.
  • the refrigerant vapor compression system 100 may further include a control system including a controller 70.
  • the controller 70 may comprise a microprocessor controller such as, by way of example, but not limitation, a MicroLinkTM controller available from Carrier Corporation of Syracuse, N.Y., USA.
  • the controller 70 is configured to operate the refrigeration unit to maintain a predetermined thermal environment within the enclosed interior volume 200, i.e. the cargo box, wherein the product being transported is stored.
  • the controller 70 maintains the predetermined environment by selectively controlling the operation of the compressor 20, the condenser fan(s) 34 associated with the condenser heat exchanger coil 32, the evaporator fan(s) 44 associated with the evaporator heat exchanger coil 42, and a plurality of refrigerant flow control devices operatively associated with the control 70.
  • the plurality of flow control devices operatively associated with the controller 70 may include a flow control device 53 interdisposed in refrigerant line 18 for controlling the flow of liquid refrigerant passing therethrough from the lower chamber 126 of the flash tank 10A, 10B, and a flow control device 73 interdisposed in refrigerant line 14 for controlling the flow of vapor phase refrigerant therethrough from the upper chamber 122 of the flask tank 10A, 10B.
  • the plurality of flow control devices operatively associated with the controller 70 may also include a flow control device 93 interdisposed in the refrigerant line 16 for controlling the flow of refrigerant therethrough to a suction portion of the refrigerant circuit.
  • Each of the aforementioned flow control devices 53, 73, 93 may comprise a flow control valve selectively positionable between an open position wherein refrigerant flow may pass through the refrigerant line in which the flow control valve is interdisposed and a closed position wherein refrigerant flow is blocked through the refrigerant line in which the flow control valve is interdisposed.
  • each of the flow control valves 53, 73, 93 may comprise a two-position solenoid valve of the type selectively positionable between a first open position and a second closed position.
  • the plurality of flow control devices operatively associated with the controller 70 may also include the primary expansion valve 55, the secondary expansion valve 65, and the flow control device 57. In operation, the controller 70 may selectively open and close various of these flow control devices operatively associated therewith for selectively directing refrigerant flow through the primary refrigerant circuit, as well as refrigerant lines 5, 14, 16 and 18, as desired.
  • the controller 70 also monitors operating parameters at various points in the refrigeration system through a plurality of sensors disposed at selected locations throughout the system 100.
  • the sensors include, among others not specifically shown: an ambient air temperature sensor 90 which inputs into the controller 70 a variable resistance value indicative of the ambient air temperature in front of the condenser 30; a return air temperature sensor 92 which inputs into the controller 70 a variable resistance value indicative of the temperature of the air leaving the evaporator 50 to return to the cargo box 200; a box air temperature sensor 94 which inputs into the controller 70 a variable resistance value indicative of the temperature of the air within the cargo box 200, i.e.
  • a flash tank temperature sensor 101 which inputs into the controller 70 a variable resistance value indicative of the refrigerant temperature entering the flash tank 10A, 10B; a flask tank pressure sensor 102 which inputs a variable voltage indicative of the refrigerant pressure entering the flash tank 10A, 10B; a compressor suction temperature sensor 103 which inputs into the controller 70 a variable resistance value indicative of the refrigerant suction temperature; a compressor suction pressure sensor 104 which inputs into the controller 70 a variable voltage indicative of the refrigerant suction pressure; a compressor discharge temperature sensor 105 which inputs into the controller 70 a variable resistance value indicative of the compressor discharge refrigerant temperature; a compressor discharge pressure sensor 106 which inputs into the controller 70 a variable voltage indicative of the compressor discharge refrigerant pressure; a gas cooler temperature sensor 107 which inputs into the controller 70 a variable resistance value indicative of the refrigerant temperature having traversed the gas cooler 40; a gas cooler pressure sensor 108 which inputs a variable voltage indicative of
  • the pressure sensors 102, 104, 106, 108 may be conventional pressure sensors, such as for example, pressure transducers, and the temperature sensors 90, 92, 94, 101, 103, 105, 107 may be conventional temperature sensors, such as for example, thermocouples or thermistors.
  • the aforementioned sensors are merely examples of some of the various sensors that may be associated with the system 100, and are not meant to limit the type of sensors or transducers that may be provided.
  • the refrigerant vapor compression system 100 may be operated in selected operating modes depending upon load requirements and ambient conditions, such as for example, but not limited to, a box temperature pull down mode, a deep frozen box temperature maintenance mode, and a refrigerated product box temperature maintenance mode.
  • the controller 100 determines the desired mode of operation based upon ambient conditions, box conditions, and various sensed system controls and then positions the various flow control valves accordingly.
  • a flash tank 10A, 10B is disposed in refrigerant line 4 of the refrigerant circuit upstream with respect to refrigerant flow of the primary expansion device 55 and downstream with respect to refrigerant flow of the secondary expansion device 65.
  • the flash tank 10A, 10A includes a shell 120 defining an interior volume having an upper chamber 124, a lower chamber 126 and a middle chamber 122.
  • the shell 120 has a generally cylindrical central portion 120-1 extending between an upper end cap 120-2 and a lower end cap 120-3.
  • the upper and lower end caps 120-2, 120-3 are attached in such a manner, for example by welding or brazing or the like, as to form a sealed enclosure defining the interior volume of the flash tank.
  • the flash tank 10A, 10B further includes an inlet port 125, a first outlet port 127 and a second outlet port 129.
  • the inlet port 125 is in fluid communication with the middle chamber 124 for receiving the refrigerant flow having traversed the secondary expansion device.
  • the inlet port 125 may be defined by the outlet opening of a tube 160 that penetrates through the shell 120 and is in fluid communication at its inlet end with refrigerant line 4 on the upstream side (with respect to refrigerant flow) of the flash tank.
  • the second outlet port 129 is in fluid communication with the upper chamber 122 for discharging a gas phase of the refrigerant flow from the flash tank 10A, 10B.
  • the second outlet port 129 may be defined by the inlet opening of a tube 162 that penetrates through the shell 120 and is in fluid flow communication at its outlet end with refrigerant line 14.
  • the first outlet port 127 is in fluid communication with the lower chamber 126 for discharging a liquid phase of the refrigerant flow from the flash tank 10A, 10B into the refrigerant circuit.
  • the first outlet port 127 may be defined by the inlet opening of a tube 164 that penetrates through the shell 120 and is in fluid flow communication at its outlet end with refrigerant line 4 on the downstream side (with respect to refrigerant flow) of the flash tank.
  • the flash tank 10A includes a lower plate 130 and an upper plate 140 disposed in spaced relationship within the interior volume defined by the shell 120.
  • Each of the plates 130, 140 extends across the interior volume and sealingly abuts the inner wall of the generally cylindrical central portion 120-1 of the shell 120 thereby sectioning the interior volume of the shell 120 into three separate chambers: the middle chamber 124 between the two spaced apart plates 130, 140; the upper chamber 122 between the upper plate 140 and the upper end cap 120-2; and the lower chamber 126 between the lower plate 130 and the lower end cap 120-3.
  • a first fluid passage 142 is provided in and extends through the upper plate 140 thereby establishing fluid communication between the middle chamber 124 and the upper chamber 122
  • a second fluid passage 132 is provided in and extends through the lower plate 130 thereby establishing fluid communication between the middle chamber 124 and the lower chamber 126.
  • the two-phase flow separates due the density differential existing between the liquid phase and the vapor phase.
  • the vapor phase refrigerant passes upwardly through the first fluid passage 142 to enter the upper chamber 122.
  • the liquid phase refrigerant passes downwardly through the second fluid passage 132 to enter the lower chamber 126.
  • the outlet portion of the inlet tube 160 may be fluted whereby the two phase refrigerant flow passing through the inlet port 125 decelerates as it enters the middle chamber 124.
  • the resulting deceleration enhances separation of the vapor and liquid phases thereby reducing carryover of liquid refrigerant in the vapor phase refrigerant flow passing upwardly through the first passage 142 and the carry under of vapor phase refrigerant in the liquid phase refrigerant flow passing downwardly through the second fluid flow passage 132.
  • the first fluid passage 142 and the second fluid passage 132 may be located diametrically opposite each other to further reduce the potential for carryover.
  • the outlet end of the inlet tube 160 may extend into the middle chamber 122 sufficiently that the inlet port 125 is juxtaposed opposite the upper surface of the lower plate 130 and the first fluid passage 142 in the upper plate 140 may be located vertically above the fluted portion of the inlet tube 160 as illustrated in FIG. 3 .
  • the inlet tube 160 may be arranged such that the two-phase refrigerant flow passing into the middle chamber 124 through the inlet 125 enters tangentially along the inner wall of the generally cylindrical central member 120-1 of the shell 120. Due to the density differential between the vapor phase and the liquid phase, the vapor phase refrigerant in the entering two-phase flow will tend to flow generally upwardly through the continuous spiral passage defined by the helical spiral member 150, while the liquid phase of the two-phase flow will tend to flow generally downwardly through the continuous spiral passage defined by the helical spiral member 150.
  • the central support tube 152 that supports the helical spiral member 150 also defines an elongated conduit 155 that extends along the central vertical axis of the shell 120 thereby establishing fluid communication between the upper chamber 122 and the lower chamber 126.
  • the upper equalization hole 154 provides fluid communication between the upper chamber 122 and the conduit 155
  • the lower equalization hole 156 provides fluid communication between the lower chamber 126 and the conduit 155.
  • the fluid path established between the upper equalization hole 154 and the lower equalization hole 156 via the conduit 155 permits the fluid level in the conduit 155 defined within the support tube 152 to be equal to the fluid level within the continuous helical passage defined between the outer wall of the central support tube 152 and the inner wall of the central portion 120-1 of the shell 120. This fluid path also provides for a relatively stagnant refrigerant flow within the conduit 155 which enhances the opportunity for improved phase separation.
  • the refrigerant vapor compression system is subject to vibration and movement due to the travel along roads, rail and sea. Consequently, refrigerant is the flash tank 10A, 10B would be subject to sloshing, which tends to increase intermixing if the vapor and liquid phases of the refrigerant within the flash tank.
  • the presence of the plates 130, 140 or the helical spiral member 150 serve to lessen the degree of sloshing resulting from vibration and movement of the transport refrigeration system.
  • the flash tanks 10A, 10B include internal components that substantially improve separation of the liquid phase and the vapor phase introduced into in the flash tank, thereby maximizing the enthalpy difference of the refrigerant across the evaporator which allows for limiting the size of system components while optimizing the coefficient of performance, COP, and energy efficiency rating, EER, of the system. Additionally, the improved quality of the refrigerant vapor withdrawn from the upper chamber of the flask tank 10A, 10B and injected into the intermediate-stage of the compression process, results in increased capacity of the refrigeration system. It is to be understood that the embodiment of the flash tank 10B may be used in either the Figure 1 embodiment or the Figure 2 embodiment of the refrigerant vapor compression system 100.
  • the refrigerant vapor compression system may also be operated in a subcritical cycle, rather than in a transcritical cycle as described hereinbefore.
  • the present invention has been particularly shown and described with reference to the exemplary embodiments as illustrated in the drawings, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the scope of the invention, which is defined by the claims.

Claims (7)

  1. Système de compression de vapeur de réfrigérant pour transports réfrigérés (100) fonctionnant dans un cycle de réfrigérant transcritique comprenant :
    un dispositif de compression (20) pour la compression d'une vapeur de réfrigérant à une pression de réfrigérant surcritique, un refroidisseur de gaz (40) fonctionnant à une pression de réfrigérant surcritique, et un évaporateur (50) fonctionnant à une pression de réfrigérant surcritique, ledit dispositif de compression (20), ledit refroidisseur de gaz (40) et ledit évaporateur (50) étant connectés en communication d'écoulement de réfrigérant dans un circuit de réfrigérant ;
    un détendeur primaire (55) disposé dans ledit circuit de réfrigérant entre ledit refroidisseur de gaz (40) et ledit évaporateur (50) ;
    un détendeur secondaire (65) disposé dans ledit circuit de réfrigérant entre ledit refroidisseur de gaz (40) et ledit détendeur primaire (55) ;
    un réservoir de décompression (10B) disposé dans le circuit de réfrigérant en amont par rapport à l'écoulement de réfrigérant dudit détendeur primaire (55) et en aval par rapport à l'écoulement de réfrigérant dudit détendeur secondaire (65), ledit réservoir de décompression ayant :
    une enveloppe (120) définissant un volume intérieur, ledit volume intérieur étant divisé en une chambre supérieure (122), une chambre inférieure (126) et une chambre intermédiaire (124) ;
    un premier passage de fluide établissant une communication fluidique entre la chambre intermédiaire (124) et la chambre supérieure (122) ;
    un second passage de fluide établissant une communication fluidique entre la chambre intermédiaire (124) et la chambre inférieure (126) ;
    un orifice d'entrée (125) en communication fluidique avec la chambre intermédiaire (124) pour recevoir l'écoulement de réfrigérant ayant traversé le second détendeur (65) ;
    un premier orifice de sortie (127) en communication fluidique avec la chambre supérieure (122) pour décharger une phase vapeur de l'écoulement de réfrigérant à partir dudit séparateur du réservoir de décompression (10B) ; et
    un second orifice de sortie (129) en communication fluidique avec la chambre inférieure (126) pour décharger une phase liquide de l'écoulement de réfrigérant à partir dudit réservoir de décompression (10B) dans le circuit de réfrigérant,
    caractérisé en ce que ledit réservoir de décompression (10B) comprend en outre :
    un tube de soutien allongé (152) s'étendant le long d'un axe vertical central de ladite enveloppe (120), ledit tube de soutien définissant un conduit (155) établissant une communication fluidique entre ladite chambre inférieure (126) et ladite chambre supérieure (122) ;
    un élément spiralé hélicoïdal (150) s'étendant autour dudit tube de soutien vertical (152) et définissant un passage d'écoulement de fluide spiralé continu, une première partie dudit passage hélicoïdal continu formant le premier passage de fluide établissant une communication fluidique entre la chambre intermédiaire (124) et la chambre supérieure (122) et une seconde partie dudit passage hélicoïdal continu formant le second passage de fluide établissant une communication fluidique entre la chambre intermédiaire (124) et la chambre inférieure (126) ;
    un trou d'égalisation supérieur (154) passant à travers ledit tube de soutien (152) et situé à proximité d'une extrémité supérieure dudit tube de soutien, ledit trou d'égalisation supérieur (154) établissant une communication fluidique entre une région supérieure dudit conduit (155) et une région supérieure dudit passage hélicoïdal continu ; et
    un trou d'égalisation inférieur (156) passant à travers ledit tube de soutien (152) et situé à proximité d'une extrémité inférieure dudit tube de soutien, ledit trou d'égalisation inférieur (156) établissant une communication fluidique entre une région inférieure dudit conduit (155) et une région inférieure dudit passage hélicoïdal continu.
  2. Système de compression de vapeur de réfrigérant pour transports réfrigérés selon la revendication 1 comprenant en outre : une conduite d'injection vapeur de réfrigérant (14) établissant une communication d'écoulement de réfrigérant entre le premier orifice de sortie (127) en communication fluidique avec la chambre supérieure (122) dudit réservoir de décompression (10B) et un étage de pression intermédiaire dudit dispositif de compression (20).
  3. Système de compression de vapeur de réfrigérant pour transports réfrigérés selon la revendication 1 comprenant en outre : une conduite d'injection liquide de réfrigérant (18) établissant une communication d'écoulement de réfrigérant entre le second orifice de sortie (129) en communication fluidique avec la chambre inférieure (126) dudit réservoir de décompression et un étage de pression intermédiaire dudit dispositif de compression (20).
  4. Système de compression de vapeur de réfrigérant pour transports réfrigérés selon la revendication 1 dans lequel le réfrigérant comprend du dioxyde de carbone.
  5. Système de compression de vapeur de réfrigérant pour transports réfrigérés selon la revendication 1 dans lequel ledit dispositif de compression (20) comprend un seul compresseur ayant au moins un premier étage de compression à une pression relativement inférieure (20a) et un second étage de compression à une pression relativement supérieure (20b).
  6. Système de compression de vapeur de réfrigérant pour transports réfrigérés selon la revendication 1 dans lequel ledit dispositif de compression (20) comprend un premier compresseur (20a) et un second compresseur (20b) disposés dans ledit circuit de réfrigérant en relation d'écoulement de réfrigérant en série avec une sortie de décharge dudit premier compresseur (20a) dans une communication d'écoulement de réfrigérant avec une entrée d'aspiration dudit second compresseur (20b).
  7. Système de compression de vapeur de réfrigérant pour transports réfrigérés selon la revendication 1, dans lequel le réservoir de décompression comprend un tube d'entrée (160) pénétrant ladite enveloppe (120) et ayant une sortie définissant ledit orifice d'entrée pour diriger un écoulement entrant d'un fluide à phase liquide et phase vapeur mélangées pour passer de manière circonférentielle le long d'une paroi intérieure de ladite enveloppe.
EP09818353.6A 2008-10-01 2009-09-29 Separation de liquide et de vapeur dans un cycle de refrigerant transcritique Active EP2340406B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10179208P 2008-10-01 2008-10-01
PCT/US2009/058732 WO2010039682A2 (fr) 2008-10-01 2009-09-29 Séparation de liquide et de vapeur dans un cycle de réfrigérant transcritique

Publications (3)

Publication Number Publication Date
EP2340406A2 EP2340406A2 (fr) 2011-07-06
EP2340406A4 EP2340406A4 (fr) 2014-11-19
EP2340406B1 true EP2340406B1 (fr) 2018-10-31

Family

ID=42074150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09818353.6A Active EP2340406B1 (fr) 2008-10-01 2009-09-29 Separation de liquide et de vapeur dans un cycle de refrigerant transcritique

Country Status (6)

Country Link
US (1) US20110174014A1 (fr)
EP (1) EP2340406B1 (fr)
JP (1) JP5539996B2 (fr)
CN (1) CN102232167B (fr)
DK (1) DK2340406T3 (fr)
WO (1) WO2010039682A2 (fr)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037021A2 (fr) * 2010-09-14 2012-03-22 Johnson Controls Technology Company Compresseur ayant un système de gestion d'huile
DE102012101041A1 (de) 2012-02-09 2013-08-14 Viessmann Werke Gmbh & Co Kg Wärmepumpenvorrichtung
CN103388940B (zh) * 2012-05-08 2015-05-20 珠海格力电器股份有限公司 双向闪蒸器及包括该闪蒸器的空调
WO2014047401A1 (fr) 2012-09-20 2014-03-27 Thermo King Corporation Système de transport réfrigéré électrique
US9829242B2 (en) * 2012-12-28 2017-11-28 Daikin Industries, Ltd. Refrigeration device
US20150001849A1 (en) * 2013-03-07 2015-01-01 Regal Beloit America, Inc. Energy Recovery Apparatus for a Refrigeration System
WO2014160459A1 (fr) 2013-03-13 2014-10-02 Bergstrom, Inc. Système de climatisation utilisant une ventilation à récupération de chaleur pour une commande d'alimentation en air frais et de climatisation
US9353980B2 (en) * 2013-05-02 2016-05-31 Emerson Climate Technologies, Inc. Climate-control system having multiple compressors
JP6125325B2 (ja) * 2013-05-20 2017-05-10 サンデンホールディングス株式会社 車両用空気調和装置
ITVI20130257A1 (it) * 2013-10-18 2015-04-19 Carel Ind Spa Metodo di azionamento di una macchina frigorifera dotata di apparato economizzatore
US9546807B2 (en) * 2013-12-17 2017-01-17 Lennox Industries Inc. Managing high pressure events in air conditioners
WO2015105845A1 (fr) 2014-01-08 2015-07-16 Carrier Corporation Commande adaptative de système de réfrigération de transport à compartiments multiples
JP2015148406A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 冷凍装置
JP2015148407A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 冷凍装置
JP6264688B2 (ja) * 2014-02-10 2018-01-24 パナソニックIpマネジメント株式会社 冷凍装置
CN104848612B (zh) * 2014-02-18 2017-06-06 美的集团股份有限公司 闪蒸器及空调
FR3020130B1 (fr) * 2014-04-16 2019-03-22 Valeo Systemes Thermiques Circuit de fluide frigorigene
US20150300710A1 (en) * 2014-04-22 2015-10-22 General Electric Company Phase separator for a sealed system
DE102014214656A1 (de) * 2014-07-25 2016-01-28 Konvekta Ag Kompressionskälteanlage und Verfahren zum Betrieb einer Kompressionskälteanlage
KR101591191B1 (ko) * 2014-08-14 2016-02-02 엘지전자 주식회사 공기 조화기 및 그 제어방법
US20160047595A1 (en) * 2014-08-18 2016-02-18 Paul Mueller Company Systems and Methods for Operating a Refrigeration System
ES2688804T3 (es) * 2014-09-09 2018-11-07 8 Rivers Capital, Llc Producción de dióxido de carbono líquido de baja presión procedente de un sistema de producción de energía y método
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
EP3023712A1 (fr) * 2014-11-19 2016-05-25 Danfoss A/S Procédé pour commander un système de compression de vapeur avec un récepteur
US9783024B2 (en) 2015-03-09 2017-10-10 Bergstrom Inc. System and method for remotely managing climate control systems of a fleet of vehicles
CN104879970B (zh) * 2015-06-03 2017-12-12 中国科学院广州能源研究所 一种变空间变结构的双离心分离闪蒸器
DE102015112439A1 (de) * 2015-07-29 2017-02-02 Bitzer Kühlmaschinenbau Gmbh Kälteanlage
JP6555584B2 (ja) * 2015-09-11 2019-08-07 パナソニックIpマネジメント株式会社 冷凍装置
CN106871501A (zh) * 2015-12-10 2017-06-20 开利公司 一种经济器及具有其的制冷系统
CN105371548B (zh) * 2015-12-11 2017-11-21 珠海格力电器股份有限公司 双级压缩机的补气增焓控制方法、设备和装置
US10543737B2 (en) 2015-12-28 2020-01-28 Thermo King Corporation Cascade heat transfer system
US9874384B2 (en) 2016-01-13 2018-01-23 Bergstrom, Inc. Refrigeration system with superheating, sub-cooling and refrigerant charge level control
US10589598B2 (en) 2016-03-09 2020-03-17 Bergstrom, Inc. Integrated condenser and compressor system
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US10081226B2 (en) 2016-08-22 2018-09-25 Bergstrom Inc. Parallel compressors climate system
US10562372B2 (en) 2016-09-02 2020-02-18 Bergstrom, Inc. Systems and methods for starting-up a vehicular air-conditioning system
US10675948B2 (en) 2016-09-29 2020-06-09 Bergstrom, Inc. Systems and methods for controlling a vehicle HVAC system
US10369863B2 (en) * 2016-09-30 2019-08-06 Bergstrom, Inc. Refrigerant liquid-gas separator with electronics cooling
US10724772B2 (en) * 2016-09-30 2020-07-28 Bergstrom, Inc. Refrigerant liquid-gas separator having an integrated check valve
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US11448441B2 (en) 2017-07-27 2022-09-20 Bergstrom, Inc. Refrigerant system for cooling electronics
CN107990584B (zh) * 2017-11-23 2019-03-01 西安交通大学 一种跨临界二氧化碳热泵式制冷系统
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US11022382B2 (en) 2018-03-08 2021-06-01 Johnson Controls Technology Company System and method for heat exchanger of an HVAC and R system
WO2019185121A1 (fr) * 2018-03-27 2019-10-03 Bitzer Kühlmaschinenbau Gmbh Système frigorifique
US11420496B2 (en) 2018-04-02 2022-08-23 Bergstrom, Inc. Integrated vehicular system for conditioning air and heating water
WO2019222394A1 (fr) 2018-05-15 2019-11-21 Emerson Climate Technologies, Inc. Système de climatisation avec boucle de mise à la terre
US11346583B2 (en) * 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
EP3628942B1 (fr) 2018-09-25 2021-01-27 Danfoss A/S Procédé permettant de commander un système de compression de vapeur à une pression d'aspiration réduite
EP3628940B1 (fr) 2018-09-25 2022-04-20 Danfoss A/S Procédé pour commander un système de compression de vapeur sur la base de flux estimé
WO2020076333A1 (fr) * 2018-10-11 2020-04-16 Custom Controls Company Dispositif de régulation de la puissance frigorifique
US10753657B2 (en) 2018-10-11 2020-08-25 Custom Controls Company, a Texas corporation Refrigeration capacity control device
CN109341132B (zh) * 2018-11-15 2023-06-30 珠海格力电器股份有限公司 热泵系统及其控制方法
CN109282538A (zh) * 2018-11-26 2019-01-29 珠海格力电器股份有限公司 气液分离器及二次节流制冷循环系统
CN109737651A (zh) * 2019-01-28 2019-05-10 广州迅奥汽车电子检测设备有限公司 汽车空调工质改良型回收处理装置及方法
CN111692784B (zh) * 2019-03-15 2021-05-28 浙江三花智能控制股份有限公司 气液分离装置
CN110207418A (zh) * 2019-06-25 2019-09-06 珠海格力电器股份有限公司 一种具有双蒸发温度的热泵系统及控制方法
CA3081986A1 (fr) 2019-07-15 2021-01-15 Climate Master, Inc. Systeme de conditionnement d`air a regulation de puissance et production d`eau chaude controlee
EP4048963A1 (fr) * 2019-10-24 2022-08-31 Johnson Controls Tyco IP Holdings LLP Réservoir de détente centrifuge
US20210239366A1 (en) * 2020-02-05 2021-08-05 Carrier Corporation Refrigerant vapor compression system with multiple flash tanks
US11397030B2 (en) * 2020-07-10 2022-07-26 Energy Recovery, Inc. Low energy consumption refrigeration system with a rotary pressure exchanger replacing the bulk flow compressor and the high pressure expansion valve
US11421918B2 (en) * 2020-07-10 2022-08-23 Energy Recovery, Inc. Refrigeration system with high speed rotary pressure exchanger
FR3126346A1 (fr) * 2021-08-26 2023-03-03 Valeo Systemes Thermiques Systeme de conditionnement thermique pour vehicule automobile
CN115200268A (zh) * 2022-06-10 2022-10-18 智己汽车科技有限公司 一种换热循环系统、空调及车辆

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084523A (en) * 1962-01-30 1963-04-09 Refrigeration Research Refrigeration component
US4100762A (en) * 1976-11-02 1978-07-18 Sundstrand Corporation Integrated controls assembly
US4232533A (en) * 1979-06-29 1980-11-11 The Trane Company Multi-stage economizer
US4466253A (en) * 1982-12-23 1984-08-21 General Electric Company Flow control at flash tank of open cycle vapor compression heat pumps
JPS6243280U (fr) * 1985-09-04 1987-03-16
US4678588A (en) * 1986-02-03 1987-07-07 Shortt William C Continuous flow centrifugal separation
JPH0255062U (fr) * 1988-10-14 1990-04-20
JP3183529B2 (ja) * 1991-06-27 2001-07-09 三菱電機株式会社 気液分離器
US5191776A (en) * 1991-11-04 1993-03-09 General Electric Company Household refrigerator with improved circuit
US5271245A (en) * 1992-08-20 1993-12-21 Ac&R Components, Inc. Two-stage helical oil separator
JPH06235571A (ja) * 1993-02-10 1994-08-23 Hitachi Ltd 冷凍装置の油分離器
US5360554A (en) * 1994-02-07 1994-11-01 Parhelion, Inc. Phase separation by gas evolution
JP3118365B2 (ja) * 1994-03-08 2000-12-18 東海ゴム工業株式会社 オイルミストの分離回収装置及びその製造方法
US5596882A (en) * 1995-03-13 1997-01-28 Eaton Corporation Receiver for refrigerant and method of making same
US5848537A (en) * 1997-08-22 1998-12-15 Carrier Corporation Variable refrigerant, intrastage compression heat pump
JPH11304269A (ja) * 1998-04-23 1999-11-05 Nippon Soken Inc 冷凍サイクル
JP3552937B2 (ja) * 1999-01-12 2004-08-11 松下電器産業株式会社 空気調和機の受液器
KR20020024497A (ko) * 2000-09-25 2002-03-30 김영호 저 압축부하형 냉방장치
US6385980B1 (en) 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
CA2339859A1 (fr) * 2001-02-05 2002-08-05 Glen F. Perry Systeme et produit de transport de gaz naturel
AU2002951538A0 (en) * 2002-09-20 2002-10-03 Permo-Drive Research And Development Pty Ltd Regenerative drive system for trailers
KR100511288B1 (ko) * 2003-11-14 2005-08-31 엘지전자 주식회사 4대의 압축기를 구비한 공기조화기의 실외기
JP4363997B2 (ja) * 2004-01-27 2009-11-11 三洋電機株式会社 冷凍装置
US6941769B1 (en) * 2004-04-08 2005-09-13 York International Corporation Flash tank economizer refrigeration systems
US20060000174A1 (en) * 2004-06-30 2006-01-05 Vinylex Corporation Concrete expansion joint
US7137270B2 (en) * 2004-07-14 2006-11-21 Carrier Corporation Flash tank for heat pump in heating and cooling modes of operation
US7272948B2 (en) * 2004-09-16 2007-09-25 Carrier Corporation Heat pump with reheat and economizer functions
DE102004050409A1 (de) * 2004-10-15 2006-04-27 Valeo Klimasysteme Gmbh Akkumulator mit internem Wärmetauscher für eine Klimaanlage
KR100569833B1 (ko) * 2005-01-07 2006-04-11 한국에너지기술연구원 냉온열제조시스템을 갖는 2단 압축 히트펌프 시스템의플래시탱크
EP1686330A2 (fr) 2005-01-31 2006-08-02 Sanyo Electric Co., Ltd. Appareil réfrigérant, réfrigérateur, compresseur et séparateur gaz-liquide
JP2006343064A (ja) * 2005-06-10 2006-12-21 Denso Corp 冷凍サイクル用気液分離器
JP4810138B2 (ja) * 2005-06-30 2011-11-09 株式会社東芝 水素製造装置
JP2007147227A (ja) * 2005-11-30 2007-06-14 Daikin Ind Ltd 冷凍装置
JP2007162988A (ja) * 2005-12-12 2007-06-28 Sanden Corp 蒸気圧縮式冷凍サイクル
JP2007212071A (ja) * 2006-02-10 2007-08-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
CN101535732B (zh) * 2006-02-15 2012-06-27 Lg电子株式会社 空调系统及其控制方法
US20070251256A1 (en) * 2006-03-20 2007-11-01 Pham Hung M Flash tank design and control for heat pumps
US7891201B1 (en) * 2006-09-29 2011-02-22 Carrier Corporation Refrigerant vapor compression system with flash tank receiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DK2340406T3 (en) 2018-12-17
JP2012504747A (ja) 2012-02-23
CN102232167A (zh) 2011-11-02
CN102232167B (zh) 2013-08-14
US20110174014A1 (en) 2011-07-21
JP5539996B2 (ja) 2014-07-02
WO2010039682A2 (fr) 2010-04-08
WO2010039682A3 (fr) 2010-07-01
EP2340406A4 (fr) 2014-11-19
EP2340406A2 (fr) 2011-07-06

Similar Documents

Publication Publication Date Title
EP2340406B1 (fr) Separation de liquide et de vapeur dans un cycle de refrigerant transcritique
US9415335B2 (en) Liquid vapor phase separation apparatus
EP2147264B1 (fr) Système de compression de vapeur de réfrigérant
US8671703B2 (en) Refrigerant vapor compression system with flash tank economizer
EP2526351B1 (fr) Stockage frigorifique dans un système à compression de vapeur de réfrigérant
US8561425B2 (en) Refrigerant vapor compression system with dual economizer circuits
US20100132399A1 (en) Transcritical refrigerant vapor compression system with charge management
EP2417406B1 (fr) Système de compression de vapeur de frigorigène avec dérivation de gaz chaud
EP2257748B1 (fr) Système de compression de vapeur de réfrigérant
US8528359B2 (en) Economized refrigeration cycle with expander
US20110041523A1 (en) Charge management in refrigerant vapor compression systems
JP7315592B2 (ja) 冷媒蒸気圧縮システム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110418

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20141016

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 41/06 20060101ALI20141010BHEP

Ipc: F25B 45/00 20060101ALI20141010BHEP

Ipc: F25B 43/00 20060101AFI20141010BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/00 20060101ALI20180312BHEP

Ipc: F25B 1/10 20060101ALI20180312BHEP

Ipc: F25B 43/00 20060101AFI20180312BHEP

INTG Intention to grant announced

Effective date: 20180404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20180905

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1059878

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009055411

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20181210

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1059878

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009055411

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190929

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190929

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20220818

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230823

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 15

Ref country code: DE

Payment date: 20230822

Year of fee payment: 15

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230930