EP2339278B1 - Verwendung einer Vorrichtung zur Anreicherung von Kupfer oder Nickel - Google Patents

Verwendung einer Vorrichtung zur Anreicherung von Kupfer oder Nickel Download PDF

Info

Publication number
EP2339278B1
EP2339278B1 EP09015674.6A EP09015674A EP2339278B1 EP 2339278 B1 EP2339278 B1 EP 2339278B1 EP 09015674 A EP09015674 A EP 09015674A EP 2339278 B1 EP2339278 B1 EP 2339278B1
Authority
EP
European Patent Office
Prior art keywords
vertical
boiler section
section
temperature
vertical boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09015674.6A
Other languages
English (en)
French (fr)
Other versions
EP2339278A1 (de
Inventor
Hans-Jürgen Dr.-Ing. Schrag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oschatz GmbH
Original Assignee
Oschatz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oschatz GmbH filed Critical Oschatz GmbH
Priority to EP09015674.6A priority Critical patent/EP2339278B1/de
Publication of EP2339278A1 publication Critical patent/EP2339278A1/de
Application granted granted Critical
Publication of EP2339278B1 publication Critical patent/EP2339278B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0047Smelting or converting flash smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/025Obtaining nickel or cobalt by dry processes with formation of a matte or by matte refining or converting into nickel or cobalt, e.g. by the Oxford process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/26Arrangements of heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat

Definitions

  • the invention relates to a use of a device for obtaining or enrichment of copper or nickel, with a Schwebetationzofen and connected to the Schwebeschmelzofen waste heat boiler for the removal and cooling of exhaust gases from the Schwebeschmelzofen.
  • Such devices are basically known from practice. Relatively revealed US Pat. No. 4,475,947 such a Schwebefmelzofen for the production of copper.
  • the levitation melting furnace is used for levitation melting of copper concentrates or nickel concentrates.
  • Such a levitation melting furnace generally has a reaction shaft, a riser shaft and a hearth connecting the reaction shaft to the riser shaft.
  • a copper-containing or nickel-containing melt is added.
  • a horizontally arranged waste heat boiler is connected to the vertical riser shaft of the Schweehmmelzofens.
  • the exhaust gas or process gas from the Schwebefmelzofen thus first flows through the riser vertically upwards, is then deflected by 90 ° and then flows through the horizontally oriented waste heat boiler.
  • This horizontal waste heat boiler has on its walls by a cooling medium flow throughderohe to cool the exhaust gas.
  • the first part of the horizontal waste heat boiler consists of a chamber in which the cooling or the heat transfer takes place essentially by radiation (radiation part of the waste heat boiler). In this part of the radiation, the exhaust gas is cooled to a temperature of about 650 ° C to 750 ° C.
  • the waste heat boiler has downstream of this chamber to a second chamber in which the cooling or the heat transfer by convection takes place (convection part of the waste heat boiler).
  • the exhaust gas After flowing through this convection part, the exhaust gas has a temperature of about 350 ° C.
  • This known device has the disadvantage that it easily in the horizontal heat recovery boiler to unwanted deposits from the Exhaust gas in the transition riser / waste heat boiler on the cooling surfaces comes. However, such deposits significantly impair the heat transfer at the cooling surfaces.
  • the cooling surfaces in the lower region of the first horizontal chamber (radiation part) are hardly affected by the exhaust gas and therefore these cooling surfaces have only a small proportion of the cooling of the exhaust gas.
  • this waste heat boiler of the known device so only a relatively poor utilization of the cooling surfaces takes place. For better flow and utilization of the cooling surfaces already a flow obstacle in the form of a partition wall was installed in such waste heat boiler. These measures are relatively expensive. As a result, effective cooling of the exhaust gas is possible only with relatively large cooling surfaces in the known device. However, these cause disadvantageously high material and manufacturing costs.
  • the invention is based on the technical problem of effectively avoiding or minimizing the disadvantages explained above.
  • the invention teaches a use of a device for the recovery or enrichment of copper or nickel, with a Schwebetationzofen and connected to the Schweehmmelz furnace waste heat boiler for the removal and cooling of exhaust gases or process gases from the Schwebefmelzofen,
  • the levitation melting furnace comprises a reaction shaft, a vertical riser and a hearth connecting the reaction shaft with the riser for receiving a copper-containing or nickel-containing melt
  • the waste heat boiler has a first vertically oriented or substantially vertically oriented boiler section connected to the riser.
  • This boiler section becomes hereinafter also referred to briefly as the first vertical boiler section, the first vertical boiler section 6 being designed with the proviso that the exhaust gas or process gas is cooled to a temperature of 800 to 1000 ° C, wherein a second vertical boiler section 10 to the first vertical boiler section 6 is connected and wherein the second vertical boiler section 10 is vertically flowed through by the exhaust gas, wherein the second vertical boiler section 10 is designed with the proviso that the exhaust gas is cooled therein to a temperature of 620 to 780 ° C.
  • reaction shaft and riser shaft are oriented vertically and the hearth forms a horizontal connection of reaction shaft and riser shaft.
  • copper concentrate or nickel concentrate is introduced into the reaction shaft and reacted with oxygen. Impurities such as sulfur and the like are separated in intermediates.
  • the copper-containing or nickel-containing melt is absorbed. The exhaust gases or process gases from this process are extracted via the vertical riser shaft.
  • a (first) vertically arranged boiler section of the waste heat boiler is connected to the vertical riser shaft.
  • the hot exhaust gas or process gas rises vertically in the vertical riser shaft and then continues vertically upwards in the (first) vertically arranged boiler section.
  • the first vertically oriented boiler section forms, as it were, the vertical extension of the vertical riser shaft.
  • the first vertical boiler section is designed with the proviso that the exhaust gas to a temperature of 800 ° C to 1000 ° C, preferably to a Temperature of 850 ° C to 950 ° C is cooled.
  • the exhaust gas in the first vertical boiler section in particular to a temperature of about 900 ° C can be cooled.
  • the temperatures indicated above are the temperature of the exhaust gas in the upper region of the first vertical boiler section, in particular before or in the region of a preferably provided and subsequently explained diversion or horizontal deflection of the exhaust gas. It is within the scope of the invention that the cooling of the exhaust gas or the heat transfer in the first vertical boiler section takes place at least substantially by thermal radiation. In that regard, the first vertical boiler section expediently forms the first radiation part of the waste heat boiler.
  • the cooling of the exhaust gas in the first vertical boiler section is recommended carried out by means of a cooling medium flowed through the cooling tubes on the inner walls of the boiler section.
  • the cooling tubes form the walls or inner walls of the first vertical boiler section.
  • boiling water is preferably used as the cooling medium.
  • a second vertical boiler section is connected to the first vertical boiler section, wherein the second vertical boiler section is flowed through by the exhaust gas vertically downwards.
  • the second vertical boiler section also means that this second boiler section is oriented or arranged substantially vertically.
  • the cooling of the exhaust gas takes place in the second vertical boiler section by means of cooling medium through which a cooling medium flows, which form the wall of the second vertical boiler section.
  • the second vertical boiler section has a rectangular, in particular a square inner cross-section.
  • the second vertical boiler section is designed according to the invention with the proviso that the exhaust gas therein to a temperature of 620 to 780 ° C, preferably to a temperature of 500 to 800 ° C and preferably to a temperature of 650 to 750 ° C is cooled.
  • This is the temperature of the exhaust gas in the lower region of the second vertical boiler section, in particular in front of or in the region of a preferably provided and subsequently explained diversion of the exhaust gas.
  • the cooling of the exhaust gas or the heat transfer takes place in the second vertical boiler section expediently at least substantially via radiation.
  • the second vertical boiler section then forms, as it were, the second radiation part of the waste heat boiler according to the invention.
  • the hot exhaust gas or process gas passing from the riser shaft into the first vertically oriented boiler section has a temperature of 1100 ° C. to 1500 ° C., in particular a temperature of 1200 ° C. to 1400 ° C.
  • this hot exhaust gas is cooled.
  • cooling tubes through which a cooling medium flows are arranged on the inner walls of the waste heat boiler, or that the inner walls of the waste heat boiler are formed by cooling tubes through which a cooling medium flows.
  • the cooling medium is preferably boiling water.
  • the boiling water has expediently a temperature higher 200 ° C.
  • the first vertical boiler section has a height of 30 to 50m, preferably a height of 35 to 45m and more preferably a height of about 40m. Height means the vertical extent of the boiler section in the longitudinal direction.
  • An embodiment of the invention has proven particularly is characterized in that the first vertical boiler section a Internal cross-sectional area of 8 to 16m 2, preferably from 10 to 14m 2, and preferably from 11 to 13m. 2
  • the vertical boiler section has, for example, an internal cross-sectional area of 12 m 2 or about 12 m 2 .
  • Internal cross-sectional area means, moreover, the cross-sectional area formed by the inner walls of the boiler section.
  • the above-specified internal cross-sectional areas have proven particularly effective in terms of effective cooling of the exhaust gas.
  • the inner cross section of the first vertical boiler section is rectangular.
  • a plurality of injection nozzles for injecting an oxygen-containing gas into the interior of the first boiler section is provided in the lower region of the first vertical boiler section.
  • the injection nozzles are arranged in the boiler wall and preferably in opposite areas of the boiler wall.
  • the injected oxygen-containing gas is in particular air.
  • the oxygen-containing gas or the air is used as a post-combustion gas to promote the oxidation reactions.
  • the invention is based here on the finding that due to the inventive design of the device or the waste heat boiler optimum mixing and optimal afterburning takes place.
  • the exhaust gas or process gas flows vertically upwards in the vertical riser shaft of the levitation melting furnace and then vertically upward through the first vertical boiler section.
  • an interchangeable vertical intermediate piece is interposed between the vertical riser shaft of the floating melting furnace and the first vertical boiler section.
  • Vertical intermediate piece here means a transition part between the vertical riser and the first vertical boiler section, which is flowed through by the exhaust gas (also) vertically upwards.
  • the vertical intermediate piece is designed with the proviso that the spatter at least substantially act on the inner walls or cooling surfaces of the vertical intermediate piece.
  • the invention continues to be based on the finding that such a vertical intermediate piece is easier to replace than the first vertical boiler portion acted upon by melt injectors.
  • the vertical spacer has a height of 1.5 to 8m, preferably from 2 to 7.5 m, and preferably a height of 2 to 6 m. Height refers to the vertical extent of the vertical intermediate piece in the installed state. It is within the scope of the invention that the vertical intermediate piece is cooled by a separate cooling circuit. This cooling circuit is expediently interchangeable independently of the cooling circuit of the first vertical Kesselab-section and thus independently of the first vertical boiler section.
  • the vertical spacer has a rectangular inner cross-section.
  • the first vertical boiler section is connected to the second vertical boiler section via a horizontal deflection section of the waste heat boiler.
  • Horizontal deflection section here means that the exhaust gas flows through at least a portion of this deflection section horizontally or substantially horizontally. That in the first In the region of the deflection, the cooled exhaust gas of the vertical boiler section preferably has a temperature of 800 to 1000 ° C. and preferably a temperature of 850 to 950 ° C.
  • a preferred embodiment of the invention is characterized in that in the lower region of the second vertical boiler section a horizontal boiler section is connected to the second vertical boiler section and that the exhaust gas is deflected from the second vertical boiler section into the horizontal boiler section.
  • Horizontal boiler section means in particular also that the boiler section can be arranged substantially horizontally.
  • the exhaust gas to be cooled thus flows vertically downwards in the second vertical boiler section and is then deflected by 90 ° or by approximately 90 ° into the horizontal boiler section.
  • the exhaust gas expediently has a temperature of 620 to 780 ° C, preferably a temperature of 640 to 760 ° C and preferably a temperature of 650 to 750 ° C.
  • the exhaust gas in the horizontal boiler section is further cooled.
  • the cooling of the exhaust gas is realized by means of cooling medium through which cooling medium flows. These cooling pipes form the wall of the horizontal boiler section.
  • the cooling of the exhaust gas or the heat transfer in the horizontal boiler section is at least substantially by convection. Therefore, it is the horizontal boiler section as it were the convection part of the waste heat boiler according to the invention.
  • the horizontal boiler section is designed with the proviso that a cooling of the exhaust gas to a temperature of 200 to 500 ° C, preferably to a temperature of 250 to 450 ° C and preferably to a temperature of 300 to 400 ° C. takes place.
  • the exhaust gas is cooled in particular to a temperature of 350 ° C or to a temperature of about 350 ° C.
  • the invention is based on the finding that with the inventive use of the device and in particular with the waste heat boiler according to the invention disadvantageous deposits from the exhaust gas on the cooling surfaces can be largely avoided or minimized.
  • disadvantageous deposits from the exhaust gas on the cooling surfaces can be largely avoided or minimized.
  • the invention is in particular also based on the finding that the deflection of the exhaust gas provided in a preferred embodiment is only effected at a substantially lower temperature (for example 900 ° C.) than in the known devices and thus the risk of deposits is avoided or can be minimized.
  • the cooling surfaces in the waste heat boiler in particular the cooling surfaces in the first vertical boiler section can be dimensioned smaller with the same temperature reduction.
  • the invention allows over the known devices, a saving of cooling surfaces and, accordingly, a saving of material and manufacturing costs. This also means a reduction in the plant operating costs, since current consumers such as pumps can be sized smaller.
  • the device according to the invention can also be realized with a lower construction volume with the same efficiency compared to the known devices. It should be emphasized in particular that the advantages explained above are achieved in particular with devices that with a Schwebefmelzofen work to recover or for the enrichment of copper or nickel.
  • the figures show a device for enrichment of copper or nickel with a Schwebetationzofen 1 and connected to the Schwebeschmelzofen 1 waste heat boiler 2 for the removal and cooling of exhaust gases from the Schwebefmelzofen 1.
  • the Schwebefmelzofen 1 comprises in a conventional manner a vertically oriented reaction shaft 3, a vertically oriented riser 4 and the reaction shaft 3 with the riser 4 connecting hearth 5 on.
  • Copper concentrate or nickel concentrate is introduced into the reaction shaft 3, and the concentrate falling or floating in the reaction shaft is reacted with oxygen. By-products such as sulfur are separated. In the received in the hearth 5 melt copper or nickel is enriched. The resulting in this process exhaust gases and process gases escape via the vertical riser 4 in the waste heat boiler 2 and are cooled there.
  • the wall of the waste heat boiler not shown in detail by a cooling medium flowed through cooling tubes. As a cooling medium boiling water is expediently used.
  • the waste heat boiler 2 has a first vertically oriented boiler section 6 connected to the vertical riser shaft 4.
  • This first vertically oriented boiler section 6 forms as it were a vertical extension of the vertical riser 4.
  • the hot exhaust gas or process gas flows vertically upwards in the vertical riser 4 and enters the first vertically oriented boiler section at a temperature of up to about 1400 ° C 6 on.
  • the exhaust gas is cooled in particular to a temperature of about 900 ° C. It is the temperature of the exhaust gas in the upper region 7 before or in the region of the deflection of the exhaust gas in the horizontal deflection section 8.
  • the height h of the first vertical boiler section 6 may be 40m in the embodiment.
  • the inner cross-sectional area of this first vertical boiler section 6 is approximately 12 m 2 in the exemplary embodiment. This inner cross section of the first vertical boiler section 6 is square in the exemplary embodiment.
  • an interchangeable vertical intermediate piece 9 is interposed between the vertical riser 4 of the floating furnace 1 and the first vertical boiler section 6 of the waste heat boiler 2.
  • This intermediate piece 9 may in the embodiment have a vertical height z of 3 to 5m.
  • the interchangeable vertical intermediate piece 9 is cooled in a manner not shown by a cooling circuit, which is independent of the cooling circuit or of the cooling circuits of the waste heat boiler 2 and the first vertical boiler section 6. For this reason, the vertical intermediate piece 9 is independently or separately exchangeable from the first vertical boiler section 6.
  • the vertical spacer 9 has a square cross-section.
  • the exhaust gas rises vertically in the first vertical boiler section 6 and is then deflected via the horizontal deflection section 8 into the second vertical boiler section 10.
  • the exhaust gas flows following the horizontal deflection section 8 via an obliquely arranged boiler section 11 in the second vertical boiler section 10.
  • the exhaust gas flows vertically downwards and is in particular to a temperature of about 650 ° C. cooled to 750 ° C. This is the temperature of the exhaust gas before or in the region of the deflection in the horizontal boiler section 12.
  • the exhaust gas is then cooled to a temperature of about 350 ° C.
  • the first vertical boiler section 6 is therefore also referred to as the first radiation part and the second vertical boiler section 10 as the second radiation part of the waste heat boiler 2.
  • the cooling of the exhaust gas or the heat transfer takes place at least substantially by convection.
  • This horizontal boiler section 12 is therefore also referred to as the convection part of the waste heat boiler 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

  • Die Erfindung betrifft eine Verwendung einer Vorrichtung zur Gewinnung bzw. zur Anreicherung von Kupfer oder Nickel, mit einem Schwebeschmelzofen und einem an den Schwebeschmelzofen angeschlossenen Abhitzekessel zur Abführung und zur Kühlung von Abgasen aus dem Schwebeschmelzofen.
  • Derartige Vorrichtungen sind aus der Praxis grundsätzlich bekannt. Beziehungsweise offenbart US-A 4 475 947 so einen Schwebeschmelzofen zur Erzeugung von Kupfer. Der Schwebeschmelzofen dient zum Schwebeschmelzen von Kupferkonzentraten oder Nickelkonzentraten. Ein solcher Schwebeschmelzofen weist in der Regel einen Reaktionsschacht, einen Steigschacht und einen den Reaktionsschacht mit dem Steigschacht verbindenden Herd auf. In dem Herd ist eine kupferhaltige oder nickelhaltige Schmelze aufgenommen. Bei diesen bekannten Vorrichtungen ist an den vertikalen Steigschacht des Schwebeschmelzofens ein horizontal angeordneter Abhitzekessel angeschlossen. Das Abgas bzw. Prozessgas aus dem Schwebeschmelzofen durchströmt also zunächst den Steigschacht vertikal nach oben, wird dann um 90° umgelenkt und durchströmt anschließend den horizontal orientierten Abhitzekessel. Dieser horizontale Abhitzekessel weist an seinen Wänden von einem Kühlmedium durchströmte Kühlrohe zur Abkühlung des Abgases auf. Der erste Teil des horizontalen Abhitzekessels besteht aus einer Kammer, in der die Abkühlung bzw. der Wärmeübergang im Wesentlichen durch Strahlung erfolgt (Strahlungsteil des Abhitzekessels). In diesem Strahlungsteil wird das Abgas auf eine Temperatur von ca. 650°C bis 750°C abgekühlt. Der Abhitzekessel weist stromabwärts dieser Kammer eine zweite Kammer auf, in der die Abkühlung bzw. der Wärmeübergang durch Konvektion erfolgt (Konvektionsteil des Abhitzekessels). Nach Durchströmen dieses Konvektionsteils hat das Abgas eine Temperatur von ca. 350°C. Diese bekannte Vorrichtung hat den Nachteil, dass es in dem horizontalen Abhitzekessel leicht zu unerwünschten Ablagerungen aus dem Abgas in dem Übergang Steigschacht / Abhitzekessel an den Kühlflächen kommt. Solche Ablagerungen verschlechtern aber den Wärmeübergang an den Kühlflächen maßgeblich. Außerdem werden insbesondere die Kühlflächen im unteren Bereich der ersten horizontalen Kammer (Strahlungsteil) kaum vom Abgas angeströmt und deshalb haben diese Kühlflächen nur einen geringen Anteil an der Abkühlung des Abgases. In diesem Abhitzekessel der bekannten Vorrichtung erfolgt also nur eine relativ schlechte Ausnutzung der Kühlflächen. Zur besseren Anströmung und Ausnutzung der Kühlflächen wurde bereits ein Strömungshindernis in Form einer Trennwand in solche Abhitzekessel eingebaut. Diese Maßnahmen sind aber relativ aufwendig. Im Ergebnis ist bei der bekannten Vorrichtung eine effektive Abkühlung des Abgases nur mit verhältnismäßig großen Kühlflächen möglich. Diese bedingen jedoch nachteilhaft hohe Material- und Herstellungskosten.
  • Demgegenüber liegt der Erfindung das technische Problem zugrunde, die vorstehend erläuterten Nachteile wirksam zu vermeiden bzw. zu minimieren.
  • Zur Lösung dieses technischen Problems lehrt die Erfindung eine Verwendung einer Vorrichtung zur Gewinnung bzw. zur Anreicherung von Kupfer oder Nickel, mit einem Schwebeschmelzofen und einem an den Schwebeschmelz-ofen angeschlossenen Abhitzekessel zur Abführung und Abkühlung von Abgasen bzw. Prozessgasen aus dem Schwebeschmelzofen,
  • wobei der Schwebeschmelzofen einen Reaktionsschacht, einen vertikalen Steigschacht und einen den Reaktionsschacht mit dem Steigschacht verbindenden Herd zur Aufnahme einer kupferhaltigen oder nickelhaltigen Schmelze aufweist und wobei der Abhitzekessel einen ersten an den Steigschacht angeschlossenen vertikal orientierten bzw. im Wesentlichen vertikal orientierten Kesselabschnitt aufweist. Dieser Kesselabschnitt wird nachfolgend auch kurz als erster vertikaler Kesselabschnitt bezeichnet, wobei der erste vertikale Kesselabschnitt 6 mit der Maßgabe ausgelegt ist, dass das Abgas bzw. Prozessgas auf eine Temperatur von 800 bis 1000°C abgekühlt wird, wobei ein zweiter vertikaler Kesselabschnitt 10 an den ersten vertikalen Kesselabschnitt 6 angeschlossen ist und wobei der zweite vertikale Kesselabschnitt 10 von dem Abgas vertikal nach unten durchströmt wird, wobei der zweite vertikale Kesselabschnitt 10 mit der Maßgabe ausgelegt ist, dass das Abgas darin auf eine Temperatur von 620 bis 780°C abgekühlt wird.
  • Für die erfindungsgemäße Vorrichtung wird ein an sich üblicher Schwebe-schmelzofen mit Reaktionsschacht, Steigschacht und Herd eingesetzt. Vorzugsweise sind dabei Reaktionsschacht und Steigschacht vertikal orientiert und der Herd bildet eine horizontale Verbindung von Reaktionsschacht und Steigschacht. Es liegt im Rahmen der Erfindung, dass in dem Reaktionsschacht Kupferkonzentrat oder Nickelkonzentrat eingebracht und mit Sauerstoff zur Reaktion gebracht wird. Verunreinigungen wie Schwefel und dergleichen werden in Zwischenprodukten abgetrennt. Im Herd wird die kupferhaltige oder nickelhaltige Schmelze aufgenommen. Die Abgase bzw. Prozessgase aus diesem Prozess werden über den vertikalen Steigschacht abgesaugt.
  • Erfindungsgemäß ist an den vertikalen Steigschacht ein (erster) vertikal angeordneter Kesselabschnitt des Abhitzekessels angeschlossen. Das heiße Abgas bzw. Prozessgas steigt im vertikalen Steigschacht vertikal nach oben und anschließend weiter im (ersten) vertikal angeordneten Kesselabschnitt vertikal nach oben. Der erste vertikal orientierte Kesselabschnitt bildet gleichsam die vertikale Verlängerung des vertikalen Steigschachtes.
  • Der erste vertikale Kesselabschnitt ist mit der Maßgabe ausgelegt, dass das Abgas auf eine Temperatur von 800°C bis 1000°C, bevorzugt auf eine Temperatur von 850°C bis 950°C abkühlbar ist. Das Abgas ist in dem ersten vertikalen Kesselabschnitt insbesondere auf eine Temperatur von ca. 900°C abkühlbar. Bei den vorstehend angegebenen Temperaturen handelt es sich um die Temperatur des Abgases im oberen Bereich des ersten vertikalen Kessel-abschnittes, insbesondere vor bzw. im Bereich einer vorzugsweise vorgesehenen und nachfolgend noch erläuterten Umlenkung bzw. horizontalen Umlenkung des Abgases. Es liegt im Rahmen der Erfindung, dass die Abkühlung des Abgases bzw. der Wärmeübergang im ersten vertikalen Kesselabschnitt zumindest im Wesentlichen durch Wärmestrahlung erfolgt. Insoweit bildet der erste vertikale Kesselabschnitt zweckmäßigerweise den ersten Strahlungsteil des Abhitzekessels. Die Abkühlung des Abgases in dem ersten vertikalen Kesselabschnitt erfolgt empfohlenermaßen mittels von einem Kühlmedium durchströmten Kühlrohren an den Innenwänden des Kessel-abschnittes. Zweckmäßigerweise bilden die Kühlrohre die Wände bzw. Innenwände des ersten vertikalen Kesselabschnittes. Wie oben bereits dargelegt wird bevorzugt Siedewasser als Kühlmedium eingesetzt.
  • Ein zweiter vertikaler Kesselabschnitt ist an den ersten vertikalen Kessel-abschnitt angeschlossen ist, wobei der zweite vertikale Kesselabschnitt von dem Abgas vertikal nach unten durchströmt wird. Zweiter vertikaler Kesselabschnitt meint insbesondere auch, dass dieser zweite Kesselabschnitt im Wesentlichen vertikal orientiert bzw. angeordnet ist. Zweckmäßigerweise erfolgt die Abkühlung des Abgases in dem zweiten vertikalen Kesselabschnitt mittels von einem Kühlmedium durchströmten Kühlrohren, die die Wand des zweiten vertikalen Kesselabschnittes bilden. Empfohlenermaßen weist der zweite vertikale Kesselabschnitt einen rechteckigen, insbesondere einen quadratischen Innenquerschnitt auf.
  • Der zweite vertikale Kesselabschnitt ist erfindungsgemäß mit der Maßgabe ausgelegt, dass das Abgas darin auf eine Temperatur von 620 bis 780°C, vorzugsweise auf eine Temperatur von 500 bis 800°C und bevorzugt auf eine Temperatur von 650 bis 750°C abkühlbar ist. Dabei handelt es sich um die Temperatur des Abgases im unteren Bereich des zweiten vertikalen Kesselabschnittes, insbesondere vor bzw. im Bereich einer vorzugsweise vorgesehenen und nachfolgend noch erläuterten Umlenkung des Abgases. Die Abkühlung des Abgases bzw. der Wärmeübergang erfolgt im zweiten vertikalen Kesselabschnitt zweckmäßigerweise zumindest im Wesentlichen über Strahlung. Der zweite vertikale Kesselabschnitt bildet dann gleichsam den zweiten Strahlungsteil des erfindungsgemäßen Abhitzekessels.
  • Es liegt im Rahmen der Erfindung, dass das aus dem Steigschacht in den ersten vertikal orientierten Kesselabschnitt übergehende heiße Abgas bzw. Prozessgas eine Temperatur von 1100°C bis 1500°C, insbesondere eine Temperatur von 1200°C bis 1400°C aufweist. In dem Abhitzekessel wird dieses heiße Abgas abgekühlt. Es empfiehlt sich, dass an den Innenwänden des Abhitzekessels von einem Kühlmedium durchströmte Kühlrohre angeordnet sind, bzw. dass die Innenwände des Abhitzekessels von Kühlrohren gebildet werden, die von einem Kühlmedium durchströmt werden. Bei dem Kühlmedium handelt es sich vorzugsweise um Siedewasser. Das Siedewasser hat zweckmäßigerweise eine Temperatur höher 200°C.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung weist der erste vertikale Kesselabschnitt eine Höhe von 30 bis 50m, vorzugsweise eine Höhe von 35 bis 45m und besonders bevorzugt eine Höhe von etwa 40m auf. Höhe meint dabei die vertikale Erstreckung des Kesselabschnittes in Längs-richtung. - Eine Ausführungsform der Erfindung die sich besonders bewährt hat ist dadurch gekennzeichnet, dass der erste vertikale Kesselabschnitt eine Innenquerschnittsfläche von 8 bis 16m2, vorzugweise von 10 bis 14m2 und bevorzugt von 11 bis 13m2 aufweist. Der vertikale Kesselabschnitt weist beispielsweise eine Innenquerschnittsfläche von 12m2 bzw. von etwa 12m2 auf. Innenquerschnittsfläche meint im Übrigen die Querschnittsfläche, die von den Innenwänden des Kesselabschnittes gebildet wird. Die vorstehend spezifizierten Innenquerschnittsflächen haben sich im Hinblick auf eine effektive Abkühlung des Abgases besonders bewährt. - Es liegt im Rahmen der Erfindung, dass der Innenquerschnitt des ersten vertikalen Kesselabschnittes rechteckig ausgebildet ist.
  • Gemäß einer empfohlenen Ausführungsvariante der Erfindung ist im unteren Bereich des ersten vertikalen Kesselabschnittes eine Mehrzahl von Einblas-düsen zur Einblasung eines sauerstoffhaltigen Gases in den Innenraum des ersten Kesselabschnittes vorgesehen. Zweckmäßigerweise sind die Einblas-düsen in der Kesselwandung angeordnet und vorzugweise in gegenüberliegenden Bereichen der Kesselwandung. Bei dem eingeblasenen sauerstoff-haltigen Gas handelt es sich insbesondere um Luft. Das sauerstoffhaltige Gas bzw. die Luft wird als Nachverbrennungsgas zur Förderung der Oxidations-reaktionen eingesetzt. Der Erfindung liegt hier die Erkenntnis zugrunde, dass aufgrund der erfindungsgemäßen Ausbildung der Vorrichtung bzw. des Abhitze-kessels eine optimale Durchmischung und eine optimale Nachverbrennung stattfindet.
  • Wie oben bereits beschrieben, strömt das Abgas bzw. Prozessgas in dem vertikalen Steigschacht des Schwebeschmelzofens vertikal aufwärts und dann durch den ersten vertikalen Kesselabschnitt vertikal aufwärts. Nach besonders bevorzugter Ausführungsform der Erfindung ist zwischen dem vertikalen Steigschacht des Schwebeschmelzofens und dem ersten vertikalen Kessel-abschnitt ein auswechselbares vertikales Zwischenstück zwischengeschaltet. Vertikales Zwischenstück meint hier ein Übergangsteil zwischen dem vertikalen Steigschacht und dem ersten vertikalen Kesselabschnitt, das von dem Abgas (ebenfalls) vertikal nach oben durchströmt wird. Der Erfindung liegt die Erkenntnis zugrunde, dass beim Betrieb der Vorrichtung Spritzer bzw. Schmelzespritzer aus dem im Herd des Schwebeschmelzofens aufgenommenen Schmelzebad durch den vertikalen Steigschacht nach oben gelangen können. Diese Schmelzespritzer können an den Kühlflächen nachteil-hafte Ablagerungen bilden, die den Wärmeübergang maßgeblich verschlechtern. Zweckmäßigerweise ist das vertikale Zwischenstück mit der Maßgabe ausgelegt, dass die Spritzer zumindest im Wesentlichen die Innenwandungen bzw. Kühlflächen des vertikalen Zwischenstückes beaufschlagen. Der Erfindung liegt insoweit weiterhin die Erkenntnis zugrunde, dass ein solches vertikales Zwischenstück einfacher auswechselbar ist, als der mit Schmelzespritzern beaufschlagte erste vertikale Kesselabschnitt. Empfohlenermaßen weist das vertikale Zwischenstück eine Höhe von 1,5 bis 8m, vorzugweise von 2 bis 7,5 m und bevorzugt eine Höhe von 2 bis 6 m auf. Höhe bezieht sich dabei auf die vertikale Erstreckung des vertikalen Zwischenstücks im eingebauten Zustand. Es liegt im Rahmen der Erfindung, dass das vertikale Zwischenstück von einem separaten Kühlkreislauf gekühlt wird. Dieser Kühlkreislauf ist zweckmäßigerweise unabhängig von dem Kühlkreislauf des ersten vertikalen Kesselab-schnittes und somit unabhängig vom ersten vertikalen Kesselabschnitt austauschbar. Vorzugweise hat das vertikale Zwischenstück einen rechteckigen Innenquerschnitt.
  • Zweckmäßigerweise ist der erste vertikale Kesselabschnitt über einen horizontalen Umlenkungsabschnitt des Abhitzekessels an den zweiten vertikalen Kesselabschnitt angeschlossen. Horizontaler Umlenkungsabschnitt meint hier, dass das Abgas zumindest einen Bereich dieses Umlenkungsabschnittes horizontal bzw. im Wesentlichen horizontal durchströmt. Das in dem ersten vertikalen Kesselabschnitt abgekühlte Abgas weist im Bereich der Umlenkung vorzugsweise eine Temperatur von 800 bis 1000°C und bevorzugt eine Temperatur von 850 bis 950°C auf.
  • Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass im unteren Bereich des zweiten vertikalen Kesselabschnittes ein horizontaler Kesselabschnitt an den zweiten vertikalen Kesselabschnitt angeschlossen ist und dass das Abgas von dem zweiten vertikalen Kesselabschnitt in den horizontalen Kesselabschnitt umgelenkt wird. Horizontaler Kesselabschnitt meint hier insbesondere auch, dass der Kesselabschnitt im Wesentlichen horizontal angeordnet sein kann. Das abzukühlende Abgas strömt also im zweiten vertikalen Kesselabschnitt vertikal nach unten und wird dann um 90° bzw. um etwa 90° in den horizontalen Kesselabschnitt umgelenkt. Bei dieser Umlenkung weist das Abgas zweckmäßigerweise eine Temperatur von 620 bis 780°C auf, vorzugsweise eine Temperatur von 640 bis 760°C und bevorzugt eine Temperatur von 650 bis 750°C. Es liegt im Rahmen der Erfindung, dass das Abgas in dem horizontalen Kesselabschnitt weiter abgekühlt wird. Zweckmäßigerweise wird die Abkühlung des Abgases mittels von einem Kühlmedium durchströmter Kühlrohre verwirklicht. Diese Kühlrohre bilden die Wand des horizontalen Kesselabschnittes. Es liegt fernerhin im Rahmen der Erfindung, dass die Abkühlung des Abgases bzw. der Wärmeübergang in dem horizontalen Kesselabschnitt zumindest im Wesentlichen durch Konvektion erfolgt. Von daher handelt es sich bei dem horizontalen Kesselabschnitt gleichsam um den Konvektionsteil des erfindungsgemäßen Abhitzekessels. Es empfiehlt sich, dass der horizontale Kesselabschnitt mit der Maßgabe ausgelegt ist, dass eine Abkühlung des Abgases auf eine Temperatur von 200 bis 500°C, vorzugsweise auf eine Temperatur von 250 bis 450°C und bevorzugt auf eine Temperatur von 300 bis 400°C stattfindet. Das Abgas wird insbesondere auf eine Temperatur von 350°C bzw. auf eine Temperatur von ca. 350°C abgekühlt.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass mit der erfindungsgemäßen Verwendung der Vorrichtung und insbesondere mit dem erfindungsgemäßen Abhitzekessel nachteilhafte Ablagerungen aus dem Abgas auf den Kühlflächen weitgehend vermieden bzw. minimiert werden können. Somit kann im Gegensatz zu den eingangs beschriebenen aus dem Stand der Technik bekannten Vorrichtungen quasi an allen Kühlflächen, insbesondere im ersten vertikalen Kesselabschnitt aber auch in den anderen Kesselabschnitten ein optimaler Wärmeübergang sichergestellt werden. Der Erfindung liegt insbesondere auch die Erkenntnis zugrunde, dass die nach bevorzugter Ausführungsform vorgesehene Umlenkung des Abgases in einen horizontalen Umlenkungsabschnitt erst bei einer wesentlich geringeren Temperatur (beispielsweise 900°C) stattfindet, als bei den bekannten Vorrichtungen und dadurch die Gefahr von Ablagerungen vermieden bzw. minimiert werden kann. Weiterhin werden bei der erfindungsgemäßen Vorrichtung bzw. bei dem erfindungsgemäßen Abhitzekessel quasi alle Kühlflächen gleichmäßig angeströmt bzw. genutzt und somit ergibt sich im Rahmen der Erfindung eine optimale Ausnutzung der Kühlflächen. Deshalb können im Vergleich zu den bekannten Vorrichtungen die Kühlflächen im Abhitzekessel, insbesondere die Kühlflächen in dem ersten vertikalen Kesselabschnitt bei gleichem Temperaturabbau geringer bemessen sein. Mit anderen Worten ermöglicht die Erfindung gegenüber den bekannten Vorrichtungen eine Einsparung von Kühlflächen und dementsprechend eine Einsparung von Material- und Herstellungskosten. Auch bedeutet dies eine Verringerung der Anlagenbe-triebskosten, da Stromverbraucher wie z.B. Pumpen kleiner dimensioniert werden können. Die erfindungsgemäße Vorrichtung kann auch im Vergleich zu den bekannten Vorrichtungen bei gleicher Effizienz mit einem geringeren Bauvolumen realisiert sein. Hervorzuheben ist insbesondere, dass die vorstehend erläuterten Vorteile speziell bei Vorrichtungen erreicht werden, die mit einem Schwebeschmelzofen zur Gewinnung bzw. zur Anreicherung von Kupfer oder Nickel arbeiten.
  • Nachfolgend wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:
  • Fig. 1
    einen Schnitt durch eine erfindungsgemäße Vorrichtung und
    Fig. 2
    einen Schnitt B-B durch den Gegenstand gemäß Fig. 1.
  • Die Figuren zeigen eine Vorrichtung zur Anreicherung von Kupfer oder Nickel mit einem Schwebeschmelzofen 1 und einem an den Schwebeschmelzofen 1 angeschlossenen Abhitzekessel 2 zur Abführung und Abkühlung von Abgasen aus dem Schwebeschmelzofen 1. Der Schwebeschmelzofen 1 weist in an sich bekannter Weise einen vertikal orientierten Reaktionsschacht 3, einen vertikal orientierten Steigschacht 4 und einen den Reaktionsschacht 3 mit dem Steigschacht 4 verbindenden Herd 5 auf.
  • In den Reaktionsschacht 3 wird Kupferkonzentrat oder Nickelkonzentrat eingeführt und das in dem Reaktionsschacht herabfallende bzw. schwebende Konzentrat wird mit Sauerstoff zur Reaktion gebracht. Nebenprodukte wie Schwefel werden dabei abgetrennt. In der im Herd 5 aufgenommenen Schmelze wird Kupfer oder Nickel angereichert. Die bei diesem Prozess entstehenden Abgase bzw. Prozessgase entweichen über den vertikalen Steigschacht 4 in den Abhitzekessel 2 und werden dort abgekühlt. Dazu weist die Wand des Abhitzekessels nicht näher dargestellte von einem Kühlmedium durchströmte Kühlrohre auf. Als Kühlmedium wird dabei zweckmäßigerweise Siedewasser eingesetzt.
  • Erfindungsgemäß weist der Abhitzekessel 2 einen ersten an den vertikalen Steigschacht 4 angeschlossenen vertikal orientierten Kesselabschnitt 6 auf. Dieser erste vertikal orientierte Kesselabschnitt 6 bildet gleichsam eine vertikale Verlängerung des vertikalen Steigschachtes 4. Das heiße Abgas bzw. Prozessgas strömt in dem vertikalen Steigschacht 4 vertikal nach oben und tritt mit einer Temperatur von bis zu ca. 1400°C in den ersten vertikal orientierten Kesselabschnitt 6 ein. In diesem ersten vertikalen Kesselabschnitt 6 wird das Abgas insbesondere auf eine Temperatur von ca. 900°C abgekühlt. Dabei handelt es sich um die Temperatur des Abgases im oberen Bereich 7 vor der bzw. im Bereich der Umlenkung des Abgases in den horizontalen Umlenkungs-abschnitt 8. Die Höhe h des ersten vertikalen Kesselabschnittes 6 mag im Ausführungsbeispiel 40m betragen. Die Innenquerschnittsfläche dieses ersten vertikalen Kesselabschnittes 6 beträgt im Ausführungsbeispiel ca. 12 m2. Dieser Innenquerschnitt des ersten vertikalen Kesselabschnittes 6 ist im Aus-führungsbeispiel quadratisch ausgebildet.
  • Nach besonders bevorzugter Ausführungsform und im Ausführungsbeispiel nach den Figuren ist zwischen dem vertikalen Steigschacht 4 des Schwebe-schmelzofens 1 und dem ersten vertikalen Kesselabschnitt 6 des Abhitze-kessels 2 ein auswechselbares vertikales Zwischenstück 9 zwischengeschaltet. Dieses Zwischenstück 9 mag im Ausführungsbeispiel eine vertikale Höhe z von 3 bis 5m aufweisen. Das austauschbare vertikale Zwischenstück 9 wird in nicht näher dargestellter Weise von einem Kühlkreislauf gekühlt, der von dem Kühlkreislauf bzw. von den Kühlkreisläufen des Abhitzekessels 2 bzw. des ersten vertikalen Kesselabschnittes 6 unabhängig ist. Aus diesem Grund ist das vertikale Zwischenstück 9 unabhängig bzw. separat von dem ersten vertikalen Kesselabschnitt 6 austauschbar. Zweckmäßigerweise hat auch das vertikale Zwischenstück 9 einen quadratischen Querschnitt.
  • Das Abgas steigt im ersten vertikalen Kesselabschnitt 6 vertikal aufwärts und wird dann über den horizontalen Umlenkungsabschnitt 8 in den zweiten vertikalen Kesselabschnitt 10 umgelenkt. Im Ausführungsbeispiel strömt das Abgas dabei im Anschluss an den horizontalen Umlenkungsabschnitt 8 über einen schräg angeordneten Kesselabschnitt 11 in den zweiten vertikalen Kesselabschnitt 10. In dem zweiten vertikalen Kesselabschnitt 10 strömt das Abgas vertikal abwärts und wird dabei insbesondere auf eine Temperatur von ca. 650°C bis 750°C abgekühlt. Hierbei handelt es sich um die Temperatur des Abgases vor bzw. im Bereich der Umlenkung in den horizontalen Kessel-abschnitt 12. In dem horizontalen Kesselabschnitt 12 wird das Abgas dann auf eine Temperatur von ca. 350°C abgekühlt.
  • Sowohl im ersten vertikalen Kesselabschnitt 6 als auch im zweiten vertikalen Kesselabschnitt 10 erfolgt die Abkühlung des Abgases bzw. der Wärmeübergang zumindest im Wesentlichen durch Strahlung. Der erste vertikale Kesselabschnitt 6 wird deshalb auch als erster Strahlungsteil und der zweite vertikale Kesselabschnitt 10 als zweiter Strahlungsteil des Abhitzekessels 2 bezeichnet. In dem horizontalen Kesselabschnitt 12 erfolgt die Abkühlung des Abgases bzw. der Wärmeübergang zumindest im Wesentlichen durch Konvektion. Dieser horizontale Kesselabschnitt 12 wird deshalb auch als Konvektionsteil des Abhitzekessels 2 bezeichnet.

Claims (12)

  1. Verwendung einer Vorrichtung mit einem Schwebeschmelzofen (1), mit einem an den Schwebeschmelzofen (1) angeschlossenen Abhitzekessel (2) zur Abführung und Abkühlung von Abgasen aus dem Schwebeschmelzofen (1) zur Gewinnung bzw. zur Anreicherung von Kupfer oder Nickel,
    wobei der Schwebeschmelzofen (1) einen Reaktionsschacht (3), einen vertikalen Steigschacht (4) und einen den Reaktionsschacht (3) mit dem Steigschacht (4) verbindenden Herd (5) zur Aufnahme einer kupferhaltigen oder nickelhaltigen Schmelze aufweist,
    wobei der Abhitzekessel (2) einen ersten an den Steigschacht (4) angeschlossenen vertikal orientierten bzw. im Wesentlichen vertikal orientierten Kesselabschnitt (6) aufweist,
    wobei der erste vertikale Kesselabschnitt (6) mit der Maßgabe ausgelegt ist, dass das Abgas bzw. Prozessgas auf eine Temperatur von 800 bis 1000 °C abgekühlt wird,
    wobei ein zweiter vertikaler Kesselabschnitt (10) an den ersten vertikalen Kesselabschnitt (6) angeschlossen ist und wobei der zweite vertikale Kesselabschnitt (10) von dem Abgas vertikal nach unten durchströmt wird,
    wobei der zweite vertikale Kesselabschnitt (10) mit der Maßgabe ausgelegt ist, dass das Abgas darin auf eine Temperatur von 620 bis 780°C abgekühlt wird.
  2. Verwendung einer Vorrichtung nach Anspruch 1, wobei der erste vertikale Kesselabschnitt (6) eine Höhe h von 30 bis 50m, vorzugsweise von 35 bis 45m aufweist.
  3. Verwendung einer Vorrichtung nach einem der Ansprüche 1 oder 2, wobei der erste vertikale Kesselabschnitt (5) eine Innenquerschnittsfläche von 8 bis 16m2, vorzugsweise von 10 bis 14m2 und bevorzugt von 11 bis 13m2 aufweist.
  4. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 3, wobei der Innenquerschnitt des ersten vertikalen Kesselabschnittes (6) rechteckig ausgebildet ist.
  5. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 4, wobei im unteren Bereich des ersten vertikalen Kesselabschnittes (6) eine Mehrzahl von Einblasdüsen zur Einblasung eines sauerstoffhaltigen Gases in den Innenraum des Kesselabschnittes (6) vorgesehen ist.
  6. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 5, wobei zwischen dem Steigschacht (4) des Schwebeschmelzofens (1) und dem ersten vertikalen Kesselabschnitt (6) ein auswechselbares vertikales Zwischenstück (9) zwischengeschaltet ist.
  7. Verwendung einer Vorrichtung nach Anspruch 6, wobei das vertikale Zwischenstück (9) eine Höhe von 1,5 bis 8m, vorzugsweise eine Höhe von 2 bis 7,5m und bevorzugt eine Höhe von 2 bis 6m aufweist.
  8. Verwendung einer Vorrichtung nach einem der Ansprüche 6 oder 7, wobei das vertikale Zwischenstück (9) von einem von der Kühlung des ersten vertikalen Kesselabschnittes (6) unabhängigen Kühlkreislauf gekühlt wird.
  9. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 10, wobei der zweite vertikale Kesselabschnitt (10) mit der Maßgabe ausgelegt ist, dass das Abgas darin auf eine Temperatur von 640 bis 760°C abkühlbar ist.
  10. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 9, wobei der erste vertikale Kesselabschnitt (6) über einen horizontalen Umlenkungsabschnitt (8) an den zweiten vertikalen Kesselabschnitt (10) angeschlossen ist.
  11. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 10, wobei im unteren Bereich des zweiten vertikalen Kesselabschnittes (10) ein horizontaler Kesselabschnitt (12) an den zweiten vertikalen Kesselabschnitt (10) angeschlossen ist und wobei das Abgas von dem zweiten vertikalen Kesselabschnitt (10) in den horizontalen Kesselabschnitt (12) umgelenkt wird.
  12. Verwendung einer Vorrichtung nach Anspruch 11, wobei der horizontale Kesselabschnitt (12) mit der Maßgabe ausgelegt ist, dass eine Abkühlung des Abgases auf eine Temperatur von 200 bis 500°C, vorzugsweise auf eine Temperatur von 250 bis 450°C und bevorzugt auf eine Temperatur von 300 bis 400°C stattfindet.
EP09015674.6A 2009-12-18 2009-12-18 Verwendung einer Vorrichtung zur Anreicherung von Kupfer oder Nickel Not-in-force EP2339278B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09015674.6A EP2339278B1 (de) 2009-12-18 2009-12-18 Verwendung einer Vorrichtung zur Anreicherung von Kupfer oder Nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09015674.6A EP2339278B1 (de) 2009-12-18 2009-12-18 Verwendung einer Vorrichtung zur Anreicherung von Kupfer oder Nickel

Publications (2)

Publication Number Publication Date
EP2339278A1 EP2339278A1 (de) 2011-06-29
EP2339278B1 true EP2339278B1 (de) 2017-02-15

Family

ID=42102651

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09015674.6A Not-in-force EP2339278B1 (de) 2009-12-18 2009-12-18 Verwendung einer Vorrichtung zur Anreicherung von Kupfer oder Nickel

Country Status (1)

Country Link
EP (1) EP2339278B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3904764B1 (de) * 2020-04-29 2023-11-15 Christof Global Impact Limited Kesselsystem zur behandlung von abgasen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI65632C (fi) * 1982-10-13 1985-11-19 Outokumpu Oy Metod foer att aotervinna vaerme av dammhaltiga gaser alstradevid suspensionssmaeltning av sulfidiska koncentrat och an orning foer denna
FI74738C (fi) * 1986-05-09 1988-03-10 Outokumpu Oy Foerfarande och anordning foer att minska stoftagglomerater vid behandling av gaser av smaeltningsugnen.
JPH108156A (ja) * 1996-06-18 1998-01-13 Nikko Kinzoku Kk 銅製錬用自溶炉、製銅装置及び廃熱回収方法
JP5157061B2 (ja) * 2005-11-18 2013-03-06 三菱マテリアル株式会社 アップテーク及び金属精錬炉
EP1818610A1 (de) * 2006-01-31 2007-08-15 Oschatz Gmbh Abhitzekessel mit Gasumlenkwänden
FI120158B (fi) * 2007-12-17 2009-07-15 Outotec Oyj Menetelmä ja laitteisto suspensiosulatusuunin poistokaasujen käsittelemiseksi

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2339278A1 (de) 2011-06-29

Similar Documents

Publication Publication Date Title
EP0638525B1 (de) Verfahren zum Schmelzen von Glas in einem Wannenofen und Wannenofen hierfür
DE69815755T2 (de) Reduktion von NOx-Emissionen bei Glasschmelzöfen
DE102004034322B4 (de) Rostplatte
DE2639977C3 (de) Verfahrem zum Schmelzen von Glas in einer brennerbeheizten Wanne und Glasschmelzofen zur Durchführung des Verfahrens
DE2914728A1 (de) Glasspinnvorrichtung
EP0237604A1 (de) Energiesparendes Verfahren zum Schmelzen von Glas
EP2339278B1 (de) Verwendung einer Vorrichtung zur Anreicherung von Kupfer oder Nickel
EP1772692A1 (de) Vorrichtung zur Abkühlung von Abgasen
DE1208045B (de) Ofen zum Verarbeiten von Glas oder aehnlichen Produkten
DE102011083407B4 (de) Restgasbrenner
DE202019100870U1 (de) Schmelzwanne und Glasschmelzanlage
EP3904764B1 (de) Kesselsystem zur behandlung von abgasen
DE2103050C3 (de) Sauerstoff Blaslanze fur ein Stahlschmelzaggregat
DE3231867A1 (de) Zweikreislanze zum frischen von metallschmelzen
DE4411177C2 (de) Vorrichtung zur Erhöhung der Effizienz eines Abwärmekessels
EP0052647A1 (de) Hubbalkenofen mit aufsatzstücken
DE202011110195U1 (de) Regenerativkammer für eine Glasschmelzanlage
DE3322464A1 (de) Duesenstock
DE889435C (de) Verfahren und Vorrichtung zur Beheizung waagerechter Kammeroefen
DE1601245C (de)
AT230920B (de) Flüssigkeitsgekühlte Sauerstoffblaseinrichtung zum Stahlfrischen, insbesondere in Siemens-Martin-Öfen
DE10258903A1 (de) Tunnelrohrboden für Wärmetauscher
DE1496043C (de) Verfahren zur Herstellung von Glas
AT43509B (de) Gliederkessel.
DE2707759C3 (de) Verfahren zur Reduktion und Erwärmung von Metallschmelzen durch Aufblasen von Gasen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110804

17Q First examination report despatched

Effective date: 20111201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160727

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 868149

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013641

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170515

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013641

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009013641

Country of ref document: DE

Representative=s name: ANDREJEWSKI HONKE PATENT- UND RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009013641

Country of ref document: DE

Representative=s name: ANDREJEWSKI - HONKE PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009013641

Country of ref document: DE

Owner name: OSCHATZ ENERGY AND ENVIRONMENT GMBH, DE

Free format text: FORMER OWNER: OSCHATZ GMBH, 45143 ESSEN, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171218

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 868149

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221222

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009013641

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240702