EP2334836B1 - Materiau composite hierarchique - Google Patents

Materiau composite hierarchique Download PDF

Info

Publication number
EP2334836B1
EP2334836B1 EP09782201A EP09782201A EP2334836B1 EP 2334836 B1 EP2334836 B1 EP 2334836B1 EP 09782201 A EP09782201 A EP 09782201A EP 09782201 A EP09782201 A EP 09782201A EP 2334836 B1 EP2334836 B1 EP 2334836B1
Authority
EP
European Patent Office
Prior art keywords
titanium carbide
composite material
micrometric
granules
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09782201A
Other languages
German (de)
English (en)
Other versions
EP2334836A1 (fr
EP2334836B9 (fr
Inventor
Francesco Vescera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magotteaux International SA
Original Assignee
Magotteaux International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magotteaux International SA filed Critical Magotteaux International SA
Priority to PL09782201T priority Critical patent/PL2334836T3/pl
Publication of EP2334836A1 publication Critical patent/EP2334836A1/fr
Publication of EP2334836B1 publication Critical patent/EP2334836B1/fr
Application granted granted Critical
Publication of EP2334836B9 publication Critical patent/EP2334836B9/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1068Making hard metals based on borides, carbides, nitrides, oxides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • C22C1/1052Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the present invention relates to a hierarchical composite material having improved resistance to combined wear / impact stress.
  • the composite comprises a metal matrix of cast iron or steel, reinforced by a particular structure of titanium carbide.
  • Hierarchical composites are a family well known in the science of materials.
  • the reinforcement elements For composite wear parts made in the foundry, the reinforcement elements must be present in sufficient thickness to withstand severe and simultaneous stress in terms of wear and impact.
  • the composite wear parts reinforced with titanium carbide created in situ are one of the possibilities mentioned in this article under 2.4. Wear parts in this case are nonetheless made using exclusively powders as part of a self-propagating reaction at high temperature (SHS), where the titanium reacts exothermically with carbon to form titanium carbide in a matrix based on a ferrous alloy, also introduced in powder form.
  • SHS self-propagating reaction at high temperature
  • This type of synthesis makes it possible to obtain micrometric globular titanium carbide dispersed homogeneously within a matrix of a ferrous alloy ( Fig. 12A (c) ).
  • the article also describes very well the difficulty of controlling such a synthesis reaction.
  • the document EP 1 450 973 (Poncin ) describes a wear part reinforcement made by placing in the mold intended to receive the casting metal, an insert consisting of a mixture of powders which react with each other thanks to the heat provided by the metal during the casting at high temperature. temperature (> 1400 ° C). The reaction between the powders is initiated by the heat of the casting metal.
  • the powders of the reactive insert after reaction of the SHS type, will create a porous cluster (conglomerate) of hard particles of ceramics formed in situ; this porous mass, once formed and still at a very high temperature, will be immediately infiltrated by the casting metal.
  • the document WO 02/053316 discloses in particular a composite part obtained by SHS reaction between titanium and carbon in the presence of binders, which makes it possible to fill the pores of the skeleton constituted by titanium carbide.
  • the parts are made from powders put in compression in a mold.
  • the hot mass obtained after SHS reaction remains plastic and is compressed in its final form.
  • the ignition of the reaction does not However, it is not done by the heat of any external casting metal and, moreover, there is also no phenomenon of infiltration by an external casting metal.
  • the document EP 0 852 978 A1 and the document US5,256,368 disclose a similar technique related to the use of pressurized pressure or reaction to result in a reinforced workpiece.
  • the document GB 2,257,985 discloses a method for producing a titanium carbide reinforced alloy by powder metallurgy. This is in the form of globular microscopic particles less than 10 microns in size dispersed within the porous metal matrix.
  • the reaction conditions are chosen so as to propagate an SHS reaction front in the part to be produced.
  • the reaction is ignited by a burner and there is no infiltration by an external casting metal.
  • the document US 6,451,249 B1 discloses a reinforced composite part comprising a ceramic skeleton optionally with carbides which are bonded to each other by a metal matrix as a binder and which contains a thermite capable of reacting according to an SHS reaction to produce the heat of fusion necessary for agglomeration ceramic granules.
  • the present invention proposes to overcome the disadvantages of the state of the art and discloses a hierarchical composite material with improved wear resistance while maintaining good impact resistance. This property is obtained by a particular reinforcement structure which takes the form of a macro-microstructure comprising discrete millimetric zones concentrated in micrometric globular particles of titanium carbide.
  • the present invention also provides a hierarchical composite material having a particular titanium carbide structure obtained by a particular method.
  • the present invention further provides a method for obtaining a hierarchical composite material having a particular titanium carbide structure.
  • the present invention discloses a hierarchical composite material comprising a ferrous alloy reinforced with titanium carbides according to a defined geometry in which said reinforced portion comprises an alternating macro-microstructure of millimetric zones concentrated in micrometric globular particles of titanium carbide separated by zones. millimeters substantially free of micrometric globular particles of titanium carbide, said micrometrically concentrated micron-sized globular particles of titanium carbide forming a microstructure in which the micrometric interstices between said globular particles are also occupied by said ferrous alloy.
  • the present invention also discloses a hierarchical composite material obtained according to the process of any one of claims 11 to 13.
  • the present invention also discloses a tool or machine comprising a hierarchical composite material according to any one of claims 1 to 10 or claim 14.
  • the figure 1 shows a diagram of the macro-microstructure of reinforcement within a matrix of steel or cast iron constituting the composite.
  • the clear phase represents the metal matrix and the dark phase, concentrated zones of globular titanium carbide.
  • the photo is taken at low magnification under an optical microscope on an unpicked polished surface.
  • the figure 2 represents the limit of a concentrated zone of globular titanium carbide towards a zone generally free of globular titanium carbide at higher magnification.
  • the space between micrometric particles of titanium carbide (micrometric interstices or pores) is also infiltrated by the casting metal (steel or cast iron).
  • the photo is taken at low magnification under an optical microscope on an unpicked polished surface.
  • the figure 4 represents a binocular view of a polished, untouched surface of the macro-microstructure according to the invention with millimetric zones (in light gray) concentrated micrometric globular titanium carbide (TiC globules).
  • the shades are inverted: the dark part represents the metal matrix (steel or cast iron) filling both the space between these concentrated zones micrometric globular titanium carbide but also the spaces between the globules themselves (see Fig. 5 & 6 ).
  • the figures 5 and 6 represent SEM electron microscopic views of micrometric globular titanium carbides on polished and untouched surfaces at different magnifications. We see that in this particular case most of the globules of titanium carbide have a size less than 10 microns.
  • the figures 7 and 8 represent views of micrometric globular titanium carbides at different magnifications, but this time on fracture surfaces taken under SEM electron microscopy. It can be seen that the globules of titanium carbide are perfectly incorporated in the metal matrix. This proves that the casting metal completely infiltrates (impregnates) the pores during casting once the chemical reaction between titanium and carbon is initiated.
  • the figures 9 and 10 are spectra of analysis of Ti as well as Fe in a reinforced part according to the invention. This is a mapping of the distribution of Ti and Fe by EDX analysis, taken under the electron microscope from the fracture surface shown in FIG. figure 7 .
  • the light spots in the figure 9 show the Ti and the light spots in the figure 10 show the Fe (thus the pores filled by the casting metal).
  • the figure 11 shows, at high magnification, a surface of rupture taken by SEM electron microscope with an angular titanium carbide which formed by precipitation, in an area generally free of titanium carbide globules.
  • the figure 12 shows, at high magnification, a fracture surface taken by SEM electron microscopy with a gas bubble. We always try to limit as much as possible this kind of defect.
  • the figure 13 shows an arrangement of anvils in a vertical axis crusher which has been used to perform comparative tests between wearing parts having reinforced areas with bulky inserts and parts having reinforced areas with the macro-microstructure of the present invention. invention.
  • the figure 14 shows a schematic diagram illustrating the macro-microstructure according to the present invention already partially illustrated at the figure 3 .
  • the SHS or " s elf-propagating h igh temperature s ynthesis" reaction is a self-propagating, high-temperature synthesis reaction in which reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • the reaction between titanium powder and carbon powder to obtain titanium carbide TiC is highly exothermic. Only a little energy is needed to initiate the reaction locally. Then, the reaction will spontaneously propagate to the entire mixture of reagents thanks to the high temperatures reached. After initiation of the reaction, there is a reaction front which propagates spontaneously (self-propagated) and which makes it possible to obtain titanium carbide from titanium and carbon.
  • the titanium carbide thus obtained is said to be "obtained in situ" because it does not come from the cast ferrous alloy.
  • the reactant powder mixtures comprise carbon powder and titanium powder and are compressed into plates and then crushed to obtain granules ranging in size from 1 to 12 mm, preferably from 1 to 6 mm, and particularly preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed between 55 and 95% of the theoretical density. These granules are easy to use / handle (see Fig. 3a-h ).
  • the millimeter granules of mixed carbon and titanium powders obtained according to the diagrams of the figure 3a-h are the precursors of the titanium carbide to be created and make it easy to fill mold parts of various shapes or irregular. These granules can be held in place in the mold 15 by means of a dam 16, for example. The shaping or assembly of these granules can also be done using an adhesive.
  • the hierarchical composite according to the present invention and in particular the reinforcing macro-microstructure which may alternatively be called an alternating structure of zones concentrated in globular micrometric particles of titanium carbide separated by zones which are practically free from them, is obtained by the reaction in the mold of the granules comprising a mixture of carbon powders and titanium. This reaction is initiated by the heat of casting of the cast iron or steel used to pour the whole piece, and thus both the unreinforced part and the reinforced part (see Fig. 3rd ).
  • the casting therefore triggers an exothermic reaction of self-propagating synthesis at high temperature of the mixture of powders of carbon and titanium compacted in the form of granules (self-propagating high-temperature synthesis - SHS) and previously placed in the mold 15.
  • the reaction then has the distinction of continuing to spread as soon as it is initiated.
  • This high temperature synthesis allows easy infiltration of all interstices millimeters and micrometres by casting or casting steel ( Fig. 3g & 3h ). By increasing the wettability, the infiltration can be done on any thickness of reinforcement. It advantageously makes it possible, after SHS reaction and infiltration by an external casting metal, to create zones with a high concentration of micrometric titanium carbide globular particles (which could also be called nodule clusters), which zones having a size of the order of a millimeter or a few millimeters, and which alternate with areas substantially free of globular titanium carbide. Areas with low carbide concentration are actually millimeter spaces or interstices 2 between the granules infiltrated by the casting metal. We call this superstructure a macro-microstructure reinforcement.
  • the zones where these granules were found show a concentrated dispersion of micrometric globular particles 4 of TiC (globules) whose micrometric interstices 3 have also been infiltrated by the casting metal.
  • the casting metal which here is cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metal matrix as that which constitutes the non-reinforced part of the hierarchical composite, which allows a total freedom of choice of the casting metal.
  • the areas with a high concentration of titanium carbide are composed of micrometric globular TiC particles in a large percentage (between about 35 and 75% by volume) and ferrous alloy infiltration.
  • micrometric globular particles are meant globally spheroidal particles which have a size ranging from ⁇ m to a few tens of ⁇ m, at most. We also call them TiC globules. The vast majority of these particles having a size less than 50 microns and even 20 microns, or even 10 microns. This globular form is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see Fig. 6 ).
  • the reinforced structure according to the present invention can be characterized under an optical or electronic microscope.
  • the macro-microstructure of reinforcement is visible visually or at low magnification.
  • globular 4 titanium carbide with a volume percentage in these areas of between about 35 and about 75%, depending on the level of compaction of the granules, can be distinguished. the origin of these areas (see tables).
  • These globular TiCs are of micrometric size (see Fig. 6 ).
  • Titanium carbide will be obtained by the reaction between the carbon powder and the titanium powder. These two powders are mixed homogeneously. Titanium carbide can be obtained by mixing 0.50 to 0.98 moles of carbon to 1 mole of titanium, the stoichiometric composition Ti + 0.98 C ⁇ TiC 0.98 being preferred.
  • the process for obtaining the granules is illustrated in Fig. 3a-3h .
  • the granules of carbon / titanium reagents are obtained by compaction between rollers 10 in order to obtain strips that are then crushed in a crusher 11.
  • the mixture of the powders is made in a mixer 8 consisting of a tank equipped with blades , to promote homogeneity.
  • the mixture then passes into a granulation apparatus through a hopper 9.
  • This machine comprises two rollers 10 through which the material is passed. Pressure is applied to these rollers 10, which compresses the material. A strip of compressed material is obtained at the outlet, which is then crushed in order to obtain the granules.
  • These granules are then sieved to the desired particle size in a sieve 13.
  • the degree of compaction of the bands depends on the applied pressure (in Pa) on the rollers (diameter 200 mm, width 30 mm). For a low level of compaction, of the order of 10 6 Pa, we obtain a density on the bands of the order of 55% of the theoretical density. After passing through the rollers 10 to compress this material, the apparent density of the granules is 3.75 x 0.55, ie 2.06 g / cm 3 .
  • the granules obtained from the raw material Ti + C are porous. This porosity varies from 5% for highly compressed granules, to 45% for slightly compressed granules.
  • the granules obtained generally have a size between 1 and 12 mm, preferably between 1 and 6 mm, and particularly preferably between 1.4 and 4 mm.
  • the granules are made as described above. To obtain a three-dimensional structure or superstructure / macro-microstructure with these granules justifying the hierarchical composite name, they are available in the areas of the mold where it is desired to reinforce the part. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container, or by any other means (dam 16).
  • the bulk density of the stack of Ti + C granules is measured according to ISO 697 and depends on the level of compaction of the bands, the granulometric distribution of the granules and the crushing mode of the bands, which influences the shape of the granules .
  • the bulk density of these Ti + C granules is generally of the order of 0.9 g / cm 3 to 2.5 g / cm 3 depending on the level of compaction of these granules and the density of the stack.
  • a compaction band is realized at 85% of the theoretical density of a mixture of C and Ti.
  • the granules are sieved to obtain a pellet size of between 1.4 and 4 mm.
  • a bulk density of the order of 2.1 g / cm 3 (35% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the mold at the location of the part to be reinforced, which thus comprises 65% by volume of porous granules.
  • a chromium cast iron (3% C, 25% Cr) was then cast at about 1500 ° C in a non-preheated sand mold.
  • the reaction between Ti and C is initiated by the heat of melting. This casting is done without a protective atmosphere.
  • a compaction band is realized at 70% of the theoretical density of a mixture of C and Ti.
  • the granules are sieved to obtain a pellet size of between 1.4 and 4 mm.
  • the granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules.
  • 55% by volume of zones with a high concentration of approximately 53% of globular titanium carbide are obtained, ie approximately 30% by global volume of TiC in the reinforced part of the piece of wear.
  • a part whose reinforced zones comprise an overall volume percentage of TiC of about 20% is intended to produce a part whose reinforced zones comprise an overall volume percentage of TiC of about 20%.
  • a band is made by compaction at 60% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved so as to obtain a granule size of 1 and 6 mm. A bulk density of the order of 1.0 g / cm 3 (55% of space between the granules + 40% of porosity in the granules) is obtained.
  • the granules are placed in the part to be reinforced, which thus comprises 45% by volume of porous granules. After reaction, 45% by volume of zones concentrated to about 45% of globular titanium carbide, or 20% by volume of TiC in the reinforced part of the wear part, are obtained in the reinforced part.
  • Example 2 it was sought to attenuate the intensity of the reaction between carbon and titanium by adding a ferrous alloy powder.
  • a wear part whose reinforced areas comprise an overall volume percentage of TiC of about 30%.
  • a band is produced by compaction at 85% of the theoretical density of a mixture by weight of 15% of C, 63% of Ti and 22% of Fe. crushing, the granules are sieved so as to obtain a granule size of between 1.4 and 4 mm.
  • a bulk density of the order of 2 g / cm 3 (45% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones are obtained with a high concentration of approximately 55% of globular titanium carbide, ie 30% by volume of total titanium carbides in the reinforced macro-microstructure of the piece of titanium. 'wear.
  • the inventor has targeted a mixture to obtain 15% by volume of iron after reaction.
  • the proportion of mixture that has been used is: 100g Ti + 24.5g C + 35.2g Fe
  • Theoretical density of the mixture 4.25 g / cm 3
  • Volumetric shrinkage during the reaction 21% ⁇ b> ⁇ u> Table 4 ⁇ / u> ⁇ /b>
  • Overall percentage of TiC obtained in the reinforced microstructure after Ti + 0.98 C + Fe reaction in the reinforced part of the wear part Compaction of the granules (% of theoretical density which is 4.25 g / cm 3 ) 55 60 65 70 75 80 85 90 95
  • Comparative tests between wearing parts having reinforced areas with fairly large inserts (150x100x30 mm) and parts having zones reinforced with the macro-microstructure of the present invention were made.
  • the grinding machine in which these tests were carried out is shown in FIG. Fig. 13 .
  • the inventor alternately disposed an anvil comprising an insert according to the state of the art surrounded on either side of a unreinforced anvil, and an anvil with a zone reinforced by a macro-microstructure according to the present invention, also framed by two unreinforced reference anvils.
  • the performance index is the ratio of the wear of the non-reinforced reference anvils to the wear of the reinforced anvil.
  • An index of 2 therefore means that the reinforced part has worn out twice as fast as the reference parts. We measure the wear in the working part (mm worn), where is the reinforcement.
  • the performance of the insert according to the state of the art is similar to that of the macro-microstructure of the invention, except for the compaction rate of 85% of the granules which shows a slightly higher performance.
  • the same performance is obtained as with 1100 g of Ti + C powder in the form of insert. Since this mixture costs around 75 Euro / kg in 2008, the advantage provided by the invention is measured.
  • the porous millimetric granules are crimped in the metal infiltration alloy. These millimetric granules are themselves composed of microscopic particles with globular tendency, TiC, also crimped in the metal alloy infiltration. This system makes it possible to obtain a composite part with a macrostructure within which there is an identical microstructure on a scale approximately a thousand times smaller.
  • this material comprises small globular particles of titanium carbide, hard and finely dispersed in a metal matrix which surrounds them, makes it possible to prevent the formation and propagation of cracks (see FIG. Fig. 4 and Fig. 6 ). There is thus a double dissipative system of cracks.
  • Cracks usually originate at the most fragile places, which are in this case the TiC particle, or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface, or in the micrometric particle of TiC, the propagation of this crack is then impeded by the infiltration alloy which surrounds this particle.
  • the toughness of the infiltration alloy is greater than that of the TiC ceramic particle. The crack needs more energy to pass from one particle to another to cross the micrometric spaces that exist between the particles.
  • the expansion coefficient of the TiC reinforcement is lower than that of the ferrous alloy matrix (TiC expansion coefficient: 7.5 ⁇ 10 -6 / K and the ferrous alloy: about 12.0 ⁇ 10 -6 / K).
  • This difference in the expansion coefficients has the consequence of generating tensions in the material during the solidification phase and also during the heat treatment. If these voltages are too great, cracks may appear in the room and lead to scrapping it.
  • a small proportion of TiC reinforcement (less than 50% by volume) is used, resulting in less stress in the part.
  • the presence of a matrix more ductile between the micrometric globular particles of TiC alternating zones of low and high concentration makes it possible to better assume any local tensions.
  • the boundary between the reinforced portion and the non-reinforced portion of the hierarchical composite is not abrupt because there is a continuity of the metal matrix between the reinforced portion and the unreinforced portion, thereby allowing the protect against a complete tearing of the reinforcement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Glass Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

    Objet de l'invention
  • La présente invention se rapporte à un matériau composite hiérarchique présentant une résistance améliorée à la sollicitation combinée usure/impact. Le composite comporte une matrice métallique en fonte ou en acier, renforcée par une structure particulière de carbure de titane.
  • Description
  • Les composites hiérarchiques sont une famille bien connue dans la science des matériaux. Pour les pièces d'usure composites réalisées en fonderie, les éléments de renfort doivent être présents sur une épaisseur suffisante afin de résister à des sollicitations importantes et simultanées en termes d'usure et d'impact.
  • Les pièces d'usure composites renforcées par du carbure de titane sont bien connues de l'homme de métier et leur réalisation par différentes voies d'accès est décrite dans l'article récapitulatif « A review on the various synthesis routes of TiC reinforced ferrous based composites » publié dans Journal of Material Science 37 (2002), pp. 3881-3892.
  • Les pièces d'usure composites renforcées par du carbure de titane créé in situ sont une des possibilités mentionnées dans cet article au point 2.4. Les pièces d'usure dans ce cas sont néanmoins réalisées en utilisant exclusivement des poudres dans le cadre d'une réaction de synthèse auto-propagée à haute température (SHS), où le titane réagit de manière exothermique avec le carbone pour former du carbure de titane au sein d'une matrice à base d'un alliage ferreux, également introduit sous forme de poudre. Ce type de synthèse permet d'obtenir du carbure de titane globulaire micrométrique dispersé de manière homogène au sein d'une matrice d'un alliage ferreux (Fig. 12A (c)). L'article décrit également très bien la difficulté de maîtriser une telle réaction de synthèse.
  • Le document EP 1 450 973 (Poncin ) décrit un renforcement de pièce d'usure réalisé en plaçant dans le moule destiné à recevoir le métal de coulée, un insert constitué d'un mélange de poudres qui réagissent entre elles grâce à la chaleur apportée par le métal lors de la coulée à haute température (> 1400°C). La réaction entre les poudres est initiée par la chaleur du métal de coulée. Les poudres de l'insert réactif, après réaction de type SHS, vont créer un amas poreux (conglomérat) de particules dures de céramiques formées in situ ; cet amas poreux, une fois formé et encore à très haute température, sera immédiatement infiltré par le métal de coulée. La réaction entre les poudres est exothermique et auto-propagée, ce qui permet une synthèse du carbure dans le moule à haute température et augmente considérablement la mouillabilité de l'amas poreux vis-à-vis du métal d'infiltration. Cette technologie, bien que beaucoup plus économique que la métallurgie des poudres, reste encore assez onéreuse.
  • Le document WO 02/053316 (Lintunen ) divulgue notamment une pièce composite obtenue par réaction SHS entre le titane et le carbone en présence de liants, ce qui permet de remplir les pores du squelette constitué par le carbure de titane. Les pièces sont réalisées à partir de poudres mises en compression dans un moule. La masse chaude obtenue après réaction SHS reste plastique et est comprimée dans sa forme définitive. L'allumage de la réaction ne se fait cependant pas par la chaleur d'un quelconque métal de coulée extérieur et par ailleurs il n'y a pas non plus de phénomène d'infiltration par un métal de coulée extérieur. Le document EP 0 852 978 A1 et le document US 5,256,368 divulguent une technique analogue liée à l'utilisation d'une pression ou d'une réaction sous pression pour aboutir à une pièce renforcée.
  • Le document GB 2 257 985 (Davies ) divulgue une méthode pour la réalisation d'un alliage renforcé au carbure de titane par métallurgie des poudres. Celui-ci se présente sous la forme de particules microscopiques globulaires de taille inférieure à 10 µm dispersées au sein de la matrice métallique poreuse. Les conditions de réaction sont choisies de manière à propager un front de réaction SHS dans la pièce à réaliser. La réaction est allumée par un brûleur et il n'y a pas d'infiltration par un métal de coulée extérieur.
  • Le document US 6,099,664 (Davies ) divulgue une pièce composite comportant du borure de titane et éventuellement du carbure de titane. Le mélange de poudres, comportant du ferrotitane eutectique, est chauffé par un brûleur de manière à former des réactions exothermiques du bore et du titane. Ici, un front de réaction se propage à travers la pièce.
  • Le document US 6,451,249 B1 divulgue une pièce composite renforcée comportant un squelette de céramique avec éventuellement des carbures qui sont liés entre eux par une matrice métallique en tant que liant et qui contient une thermite capable de réagir selon une réaction SHS pour produire la chaleur de fusion nécessaire à l'agglomération des granulés de céramique.
  • Les documents WO 93/03192 et US 4,909,842 divulguent également une méthode pour la réalisation d'un alliage comportant des particules de carbure de titane finement dispersées au sein d'une matrice métallique. Il s'agit là encore d'une technique de métallurgie des poudres et non pas d'une technique d'infiltration par une coulée en fonderie.
  • Le document US 2005/045252 divulgue un composite hiérarchique avec une structure hiérarchique périodique et tridimensionnelle de phases métalliques dures et ductiles arrangées en bandes.
  • D'autres techniques sont également bien connues de l'homme de métier, comme par exemple l'ajout de particules dures dans le métal liquide, dans le four de fusion, ou encore des techniques de rechargement ou de renforcements par des inserts. Toutes ces techniques présentent cependant divers inconvénients ne permettant pas de réaliser un composite hiérarchique renforcé avec du carbure de titane pratiquement sans limitation d'épaisseur et présentant une bonne résistance aux chocs et à l'écaillage et ce, de manière très économique.
  • Buts de l'invention
  • La présente invention se propose de remédier aux inconvénients de l'état de la technique et divulgue un matériau composite hiérarchique avec une résistance améliorée à l'usure tout en maintenant une bonne résistance aux chocs. Cette propriété est obtenue par une structure de renforcement particulière qui prend la forme d'une macro-microstructure comportant des zones millimétriques discrètes concentrées en particules globulaires micrométriques de carbure de titane.
  • La présente invention propose également un matériau composite hiérarchique comportant une structure particulière de carbure de titane obtenue par un procédé particulier.
  • La présente invention propose en outre un procédé pour l'obtention d'un matériau composite hiérarchique comportant une structure particulière de carbure de titane.
  • Résumé de l'invention
  • La présente invention divulgue un matériau composite hiérarchique comportant un alliage ferreux renforcé avec des carbures de titane selon une géométrie définie dans lequel, ladite partie renforcée comporte une macro-microstructure alternée de zones millimétriques concentrées en particules globulaires micrométriques de carbure de titane séparées par des zones millimétriques essentiellement exemptes de particules globulaires micrométriques de carbure de titane, lesdites zones concentrées en particules globulaires micrométriques de carbure de titane formant une microstructure dans laquelle les interstices micrométriques entre lesdites particules globulaires sont également occupés par ledit alliage ferreux.
  • Selon des modes particuliers de l'invention, le matériau composite hiérarchique comporte au moins une ou une combinaison appropriée des caractéristiques suivantes :
    • lesdites zones millimétriques concentrées ont une concentration en carbures de titane supérieure à 36.9 % en volume ;
    • ladite partie renforcée a une teneur globale de carbure de titane entre 16.6 et 50.5 % en volume ;
    • les particules micrométriques globulaires de carbure de titane ont une taille inférieure à 50µm ;
    • la majeure partie des particules micrométriques globulaires de carbure de titane a une taille inférieure à 20 µm ;
    • lesdites zones concentrées en particules globulaires de carbure de titane comportent 36.9 à 72.2 % en volume de carbure de titane ;
    • lesdites zones millimétriques concentrées en carbure de titane ont une dimension variant de 1 à 12 mm ;
    • lesdites zones millimétriques concentrées en carbure de titane ont une dimension variant de 1 à 6 mm ;
    • lesdites zones concentrées en carbure de titane ont une dimension variant de 1.4 à 4 mm ;
    • ledit composite est une pièce d'usure.
  • La présente invention divulgue également un procédé de fabrication du matériau composite hiérarchique selon l'une quelconque des revendications 1 à 10 comportant les étapes suivantes :
    • mise à disposition d'un moule comportant l'empreinte du matériau composite hiérarchique avec une géométrie de renforcement prédéfinie ;
    • introduction, dans la partie de l'empreinte destinée à former la partie renforcée, d'un mélange de poudres compactées comportant du carbone et du titane sous forme de granulés millimétriques précurseurs du carbure de titane ;
    • coulée d'un alliage ferreux dans le moule, la chaleur de ladite coulée déclenchant une réaction exothermique de synthèse auto-propagée de carbure de titane à haute température (SHS) au sein desdits granulés précurseurs ;
    • formation, au sein de la partie renforcée du matériau composite hiérarchique d'une macro-microstructure alternée de zones millimétriques concentrées en particules globulaires micrométriques de carbure de titane à l'emplacement desdits granulés précurseurs, lesdites zones étant séparées entre elles par des zones millimétriques essentiellement exemptes de particules globulaires micrométriques de carbure de titane, lesdites particules globulaires étant également séparées au sein desdites zones millimétriques concentrées de carbure de titane par des interstices micrométriques ;
    • infiltration des interstices millimétriques et micrométriques par ledit alliage ferreux de coulée à haute température, consécutive à la formation de particules microscopiques globulaires de carbure de titane.
  • Selon des modes particuliers de l'invention, le procédé comporte au moins une ou une combinaison appropriée des caractéristiques suivantes :
    • le mélange de poudres compactées de titane et de carbone comporte une poudre d'un alliage ferreux ;
    • ledit carbone est du graphite.
  • La présente invention divulgue également un matériau composite hiérarchique obtenu selon le procédé de l'une quelconque des revendications 11 à 13.
  • Enfin, la présente invention divulgue également un outil ou une machine comportant un matériau composite hiérarchique selon l'une quelconque des revendications 1 à 10 ou selon la revendication 14.
  • Brève description des figures
  • La figure 1 montre un schéma de la macro-microstructure de renforcement au sein d'une matrice d'acier ou de fonte constituant le composite. La phase claire représente la matrice métallique et la phase foncée, des zones concentrées en carbure de titane globulaire. La photo est prise à faible grossissement au microscope optique sur une surface polie non attaquée.
  • La figure 2 représente la limite d'une zone concentrée en carbure de titane globulaire vers une zone globalement exempte de carbure de titane globulaire à plus fort grossissement. On remarque également la continuité de la matrice métallique sur l'ensemble de la pièce. L'espace entre les particules micrométriques de carbure de titane (interstices micrométriques ou pores) est également infiltré par le métal de coulée (acier ou fonte). La photo est prise à faible grossissement au microscope optique sur une surface polie non attaquée.
  • La figure 3a-3h représente le procédé de fabrication du composite hiérarchique selon l'invention.
    • l'étape 3a montre le dispositif de mélange des poudres de titane et de carbone ;
    • l'étape 3b montre la compaction des poudres entre deux rouleaux suivie d'un concassage et d'un tamisage avec recyclage des particules trop fines ;
    • la figure 3c montre un moule de sable dans lequel on a placé un barrage pour contenir les granulés de poudre compactée à l'endroit du renforcement du composite hiérarchique ;
    • la figure 3d montre un agrandissement de la zone de renforcement dans laquelle se trouvent les granulés compactés comportant les réactifs précurseurs du TiC ;
    • l'étape 3e montre la coulée de l'alliage ferreux dans le moule ;
    • la figure 3f montre le composite hiérarchique résultant de la coulée ;
    • la figure 3g montre un agrandissement des zones à forte concentration en particules micrométriques (globules) de TiC - ce schéma représente les mêmes zones que dans la figure 4 ;
    • la figure 3h montre un agrandissement au sein d'une même zone à forte concentration en globules de TiC - les globules micrométriques sont individuellement entourés par le métal de coulée.
  • La figure 4 représente une vue au binoculaire d'une surface polie, non attaquée, de la macro-microstructure selon invention avec des zones millimétriques (en gris clair) concentrées en carbure de titane globulaire micrométrique (globules de TiC). Les teintes sont inversées: la partie sombre représente la matrice métallique (acier ou fonte) remplissant à la fois l'espace entre ces zones concentrées en carbure de titane globulaire micrométrique mais aussi les espaces entre les globules eux-mêmes (voir Fig. 5 & 6).
  • Les figures 5 et 6 représentent des vues prises au microscope électronique SEM, de carbures de titane globulaires micrométriques sur des surfaces polies et non attaquées à des grossissements différents. On voit que dans ce cas particulier la plupart des globules de carbure de titane ont une taille inférieure à 10 µm.
  • Les figures 7 et 8 représentent des vues de carbures de titane globulaires micrométriques à des grossissements différents, mais cette fois sur des surfaces de rupture prises au microscope électronique SEM. On voit que les globules de carbure de titane sont parfaitement incorporés dans la matrice métallique. Ceci prouve que le métal de coulée infiltre (imprègne) complètement les pores lors de la coulée une fois que la réaction chimique entre le titane et le carbone est initiée.
  • Les figures 9 et 10 sont des spectres d'analyse du Ti ainsi que du Fe dans une pièce renforcée selon l'invention. Il s'agit d'un « mapping » de répartition du Ti et du Fe par analyse EDX, prise au microscope électronique à partir de la surface de rupture montrée à la figure 7. Les taches claires dans la figure 9 montrent le Ti et les taches claires dans la figure 10 montrent le Fe (donc les pores remplis par le métal de coulée).
  • La figure 11 montre, à fort grossissement, une surface de rupture prise au microscope électronique SEM avec un carbure de titane angulaire qui s'est formé par précipitation, dans une zone globalement exempte en globules de carbure de titane.
  • La figure 12 montre, à fort grossissement, une surface de rupture prise au microscope électronique SEM avec une bulle de gaz. On tente toujours de limiter au maximum ce genre de défaut.
  • La figure 13 montre un agencement d'enclumes dans un concasseur à axe vertical qui a été utilisé pour effectuer des essais comparatifs entre des pièces d'usure comportant des zones renforcées avec des inserts volumineux et des pièces comportant des zones renforcées avec la macro-microstructure de la présente invention.
  • La figure 14 montre un schéma de principe illustrant la macro-microstructure selon la présente invention déjà partiellement illustrée à la figure 3.
  • Légende
    1. 1. zones millimétriques concentrées en particules globulaires micrométriques de carbure de titane (globules)
    2. 2. interstices millimétriques remplis par l'alliage de coulée globalement exempts de particules globulaires micrométriques de carbure de titane
    3. 3. interstices micrométriques entre les globules de TiC également infiltrés par l'alliage de coulée
    4. 4. carbure de titane globulaire micrométrique dans les zones concentrées en carbure de titane
    5. 5. carbure de titane anguleux précipité dans les interstices globalement exempts de particules globulaires micrométriques de carbure de titane
    6. 6. défauts de gaz
    7. 7. enclume
    8. 8. mélangeur de poudres de Ti et de C
    9. 9. trémie
    10. 10. rouleau
    11. 11. concasseur
    12. 12. grille de sortie
    13. 13. tamis
    14. 14. recyclage des particules trop fines vers la trémie
    15. 15. moule de sable
    16. 16. barrage contenant les granulés compactés de mélange Ti/C
    17. 17. poche de coulée
    18. 18. composite hiérarchique
    Description détaillée de l'invention
  • En science des matériaux, on appelle réaction SHS ou « self-propagating high temperature synthesis », une réaction de synthèse à haute température auto-propagée où l'on atteint des températures de réaction généralement supérieures à 1500°C, voire 2000°C. Par exemple, la réaction entre de la poudre de titane et de la poudre de carbone pour obtenir le carbure de titane TiC est fortement exothermique. On a uniquement besoin d'un peu d'énergie pour initier localement la réaction. Ensuite, la réaction se propagera spontanément à la totalité du mélange des réactifs grâce aux hautes températures atteintes. Après initiation de la réaction, il y a un front de réaction qui se propage ainsi spontanément (auto-propagée) et qui permet l'obtention du carbure de titane à partir du titane et du carbone. Le carbure de titane ainsi obtenu est dit « obtenu in situ » car il ne provient pas de l'alliage ferreux coulé.
  • Les mélanges de poudres de réactif comportent de la poudre de carbone et de la poudre de titane et sont comprimés en plaques et ensuite concassés afin d'obtenir des granulés dont la taille varie entre 1 et 12 mm, de préférence de 1 à 6 mm, et de manière particulièrement préférée entre 1.4 et 4 mm. Ces granulés ne sont pas compactés à 100 %. On les comprime généralement entre 55 et 95 % de la densité théorique. Ces granulés sont d'une utilisation/manipulation aisée (voir Fig. 3a-h).
  • Les granulés millimétriques de poudres de carbone et de titane mélangées, obtenus selon les schémas de la figure 3a-h, constituent les précurseurs du carbure de titane à créer et permettent de remplir facilement des parties de moules de formes diverses ou irrégulières. Ces granulés peuvent être maintenus en place dans le moule 15 à l'aide d'un barrage 16, par exemple. La mise en forme ou l'assemblage de ces granulés peut également se faire à l'aide d'une colle.
  • Le composite hiérarchique selon la présente invention, et en particulier la macro-microstructure de renforcement que l'on peut encore appeler structure alternée de zones concentrées en particules micrométriques globulaires de carbure de titane séparées par des zones qui en sont pratiquement exemptes, est obtenue par la réaction dans le moule 15 des granulés comportant un mélange de poudres de carbone et de titane. Cette réaction est initiée par la chaleur de la coulée de la fonte ou de l'acier utilisés pour couler toute la pièce, et donc à la fois la partie non-renforcée et la partie renforcée (voir Fig. 3e). La coulée déclenche donc une réaction exothermique de synthèse auto-propagée à haute température du mélange de poudres de carbone et de titane compactées sous forme de granulés (self-propagating high-temperature synthesis - SHS) et préalablement placées dans le moule 15. La réaction a alors la particularité de continuer à se propager dès qu'elle est initiée.
  • Cette synthèse à haute température (SHS) permet une infiltration aisée de tous les interstices millimétriques et micrométriques par la fonte ou l'acier de coulée (Fig. 3g & 3h). En augmentant la mouillabilité, l'infiltration peut se faire sur n'importe quelle épaisseur de renforcement. Elle permet avantageusement de créer, après réaction SHS et infiltration par un métal de coulée extérieur, des zones à forte concentration de particules globulaires de carbure de titane micrométrique (que l'on pourrait encore appeler des clusters de nodules), lesquelles zones ayant une taille de l'ordre du millimètre ou de quelques millimètres, et qui alternent avec des zones substantiellement exemptes en carbure de titane globulaire. Les zones à faible concentration en carbure représentent en réalité les espaces ou interstices millimétriques 2 entre les granulés infiltrés par le métal de coulée. Nous appelons cette superstructure une macro-microstructure de renforcement.
  • Une fois que ces granulés précurseurs de TiC ont réagi selon une réaction SHS, les zones où se trouvaient ces granulés montrent une dispersion concentrée de particules globulaires micrométriques 4 de TiC (globules) dont les interstices micrométriques 3 ont également été infiltrés par le métal de coulée, qui est ici de la fonte ou de l'acier. Il est important de remarquer que les interstices millimétriques et micrométriques sont infiltrés par la même matrice métallique que celle qui constitue la partie non renforcée du composite hiérarchique, ce qui permet une liberté totale de choix du métal de coulée. Dans le composite finalement obtenu, les zones à forte concentration de carbure de titane sont composées de particules globulaires micrométriques de TiC en pourcentage important (entre environ 35 et 75 % en volume) et de l'alliage ferreux d'infiltration.
  • Par particules globulaires micrométriques, il faut entendre des particules globalement sphéroïdales qui ont une taille allant du µm à quelques dizaines de µm, tout au plus. Nous les appelons également des globules de TiC. La grande majorité de ces particules ayant une taille inférieure à 50 µm et même à 20 µm, voire à 10 µm. Cette forme globulaire est caractéristique d'une méthode d'obtention du carbure de titane par synthèse auto-propagée SHS (voir Fig. 6).
  • La structure renforcée selon la présente invention peut être caractérisée au microscope optique ou électronique. On y distingue, visuellement ou à faible grossissement, la macro-microstructure de renforcement. A fort grossissement, on distingue dans les zones à forte concentration en carbure de titane, le carbure de titane de forme globulaire 4 avec un pourcentage volumique, dans ces zones, entre environ 35 et environ 75 %, dépendant du niveau de compaction des granulés à l'origine de ces zones (voir tableaux). Ces TiC globulaires sont de taille micrométrique (voir Fig. 6).
  • Dans les interstices entre les zones à forte concentration de carbure de titane, on constate également dans certains cas un faible pourcentage de TiC (< 5% vol) de forme anguleuse 5 formé par précipitation (voir Fig. 11). Ceux-ci proviennent d'une mise en solution dans le métal liquide d'une faible partie de carbure globulaire, formé lors de la réaction SHS. La dimension de ce carbure anguleux est également micrométrique. La formation de ce carbure de TiC anguleux n'est pas souhaitée mais est une conséquence du procédé de fabrication.
  • Dans la pièce d'usure selon l'invention, la proportion volumique de renforcement en TiC dépend de trois facteurs:
    • de la porosité micrométrique présente dans les granulés de mélange de poudres de titane et de carbone,
    • des interstices millimétriques présents entre les granulés de Ti + C,
    • de la porosité provenant de la contraction volumétrique lors de la formation du TiC, à partir de Ti + C.
    Mélange pour la fabrication des granulés (version Ti + C)
  • Le carbure de titane sera obtenu par la réaction entre la poudre de carbone et la poudre de titane. Ces deux poudres sont mélangées de manière homogène. Le carbure de titane peut être obtenu en mélangeant de 0.50 à 0.98 mole de carbone à 1 mole de titane, la composition stoechiométrique Ti + 0.98 C → TiC0.98 étant préférée.
  • Obtention des granulés (version Ti + C)
  • Le procédé d'obtention des granulés est illustré à la Fig. 3a-3h. Les granulés de réactifs carbone/titane sont obtenus par compaction entre des rouleaux 10 afin d'obtenir des bandes que l'on concasse ensuite dans un concasseur 11. Le mélange des poudres est fait dans un mélangeur 8 constitué d'une cuve munie de pales, afin de favoriser l'homogénéité. Le mélange passe ensuite dans un appareil de granulation par une trémie 9. Cette machine comprend deux rouleaux 10 au travers desquels on fait passer la matière. Une pression est appliquée sur ces rouleaux 10, ce qui permet de comprimer la matière. On obtient à la sortie une bande de matière comprimée qui est ensuite concassée afin d'obtenir les granulés. Ces granulés sont ensuite tamisés à la granulométrie souhaitée dans un tamis 13. Un paramètre important est la pression appliquée sur les rouleaux ; au plus cette pression est élevée, au plus la bande, et donc les granulés seront comprimés. On peut ainsi faire varier la densité des bandes et par conséquent des granulés, entre 55 et 95 % de la densité théorique qui est de 3.75 g/cm3 pour le mélange stoechiométrique de titane et de carbone. La densité apparente (tenant compte de la porosité) se situe alors entre 2.06 et 3.56 g/cm3.
  • Le degré de compaction des bandes dépend de la pression appliquée (en Pa) sur les rouleaux (diamètre 200 mm, largeur 30 mm) . Pour un bas niveau de compaction, de l'ordre de 106 Pa, on obtient une densité sur les bandes de l'ordre de 55 % de la densité théorique. Après le passage à travers les rouleaux 10 pour comprimer cette matière, la densité apparente des granulés est de 3.75 x 0.55, soit 2.06 g/cm3.
  • Pour un haut niveau de compaction, de l'ordre de 25.106 Pa, on obtient une densité sur les bandes de 90 % de la densité théorique, soit une densité apparente de 3.38 g/cm3. En pratique on peut aller jusqu'à 95 % de la densité théorique.
  • Par conséquent, les granulés obtenus à partir de la matière première Ti + C sont poreux. Cette porosité varie de 5 % pour les granulés très fortement comprimés, à 45 % pour les granulés faiblement comprimés.
  • Outre le niveau de compaction, il est également possible de régler la répartition granulométrique des granulés ainsi que leur forme lors de l'opération de concassage des bandes et de tamisage des granulés de Ti+C. On recycle à volonté les fractions granulométriques non désirées (voir Fig. 3b). Les granulés obtenus ont globalement une taille entre 1 et 12 mm, de préférence entre 1 et 6 mm, et de manière particulièrement préférée entre 1.4 et 4 mm.
  • Réalisation de la zone de renfort dans le composite hiérarchique selon invention
  • Les granulés sont réalisés comme exposé ci-dessus. Pour obtenir une structure tridimensionnelle ou superstructure/macro-microstructure avec ces granulés justifiant l'appellation composite hiérarchique, on les dispose dans les zones du moule où l'on souhaite renforcer la pièce. Ceci est réalisé en agglomérant les granulés soit au moyen d'une colle, soit en les confinant dans un récipient, ou par tout autre moyen (barrage 16).
    La densité en vrac de l'empilement des granulés de Ti + C est mesurée selon la norme ISO 697 et dépend du niveau de compaction des bandes, de la répartition granulométrique des granulés et du mode de concassage des bandes, qui influence la forme des granulés.
    La densité en vrac de ces granulés de Ti + C est généralement de l'ordre de 0.9 g/cm3 à 2.5 g/cm3 en fonction du niveau de compaction de ces granulés et de la densité de l'empilement.
  • Avant réaction, on a donc un empilement de granulés poreux composés d'un mélange de poudre de titane et de poudre de carbone.
  • Lors de la réaction Ti + C → TiC, il se produit une contraction volumétrique de l'ordre de 24 % quand on passe des réactifs au produit (contraction venant de la différence de densité entre les réactifs et les produits). Ainsi, la densité théorique du mélange Ti + C est de 3.75 g/cm3 et la densité théorique du TiC est de 4.93 g/cm3. Dans le produit final, après la réaction d'obtention du TiC, le métal de coulée infiltrera :
    • la porosité microscopique présente dans les espaces à forte concentration en carbure de titane, dépendant du niveau de compaction initial de ces granulés ;
    • les espaces millimétriques entre les zones à forte concentration en carbure de titane, dépendant de l'empilement initial des granulés (densité en vrac) ;
    • la porosité venant de la contraction volumétrique lors de la réaction entre Ti + C pour obtenir le TiC.
    Exemples
  • Dans les exemples qui suivent, on a utilisé les matières premières suivantes :
    • titane, H.C. STARCK, Amperit 155.066, moins de 200 mesh,
    • carbone graphite GK Kropfmuhl, UF4, > 99.5 %, moins de 15 µm,
    • Fe, sous la forme Acier HSS M2, moins de 25 µm,
    • proportions :
      • Ti + C 100 g Ti - 24.5 g C
      • Ti + C + Fe 100 g Ti - 24.5 g C - 35.2 g Fe Mélange 15 min dans mélangeur Lindor, sous argon.
    La granulation, a été effectuée avec un granulateur Sahut-Conreur.
    Pour les mélanges Ti+C+Fe et Ti+C, la compacité des granulés a été obtenue de la façon suivante :
    Pression rouleaux (105Pa) Compacité moyenne (% de la densité théorique)
    10 55
    25 68
    50 75
    100 81
    150 85
    200 88
    250 95
    Le renforcement a été effectué en plaçant des granulés dans un container métallique de 100x30x150 mm, qui est ensuite placé dans le moule à l'endroit de la pièce que l'on souhaite renforcer. Ensuite on coule l'acier ou la fonte dans ce moule. Exemple 1
  • Dans cet exemple, on vise à réaliser une pièce dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 42 %. A cette fin, on réalisme une bande par compaction à 85 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1,4 et 4 mm. on obtient une densité en vrac de l'ordre de 2.1 g/cm3 (35 % d'espace entre les granulés + 15 % de porosité dans les granulés).
  • On dispose les granulés dans le moule à l'endroit de la partie à renforcer qui comporte ainsi 65 % en volume de granulés poreux. On coule ensuite une fonte au chrome (3 % C, 25 % Cr) à environ 1500°C dans un moule en sable non préchauffé. La réaction entre le Ti et le C est initiée par la chaleur de la fonte. Cette coulée se fait sans atmosphère de protection. Après réaction, on obtient dans la partie renforcée 65 % en volume de zones avec une forte concentration d'environ 65 % en carbure de titane globulaire, soit 42 % en volume global de TiC dans la partie renforcée de la pièce d'usure.
  • Exemple 2
  • Dans cet exemple, on vise à réaliser une pièce dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 30 %. A cette fin, on réalisme une bande par compaction à 70 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 1.4 g/cm3 (45 % d'espace entre les granulés + 30 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 55 % en volume de granulés poreux. Après réaction, on obtient, dans la partie renforcée, 55 % en volume de zones avec une forte concentration d'environ 53 % en carbure de titane globulaire, soit environ 30 % en volume global de TiC dans la partie renforcée de la pièce d'usure.
  • Exemple 3
  • Dans cet exemple, on vise à réaliser une pièce dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 20 %. A cette fin, on réalise une bande par compaction à 60 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située 1 et 6 mm. On obtient une densité en vrac de l'ordre de 1.0 g/cm3 (55 % d'espace entre les granulés + 40 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 45 % en volume de granulés poreux. Après réaction, on obtient dans la partie renforcée 45 % en volume de zones concentrées à environ 45 % en carbure de titane globulaire, soit 20 % en volume global de TiC dans la partie renforcée de la pièce d'usure.
  • Exemple 4
  • Dans cet exemple, on a cherché à atténuer l'intensité de la réaction entre le carbone et le titane en y ajoutant un alliage ferreux en poudre. Comme dans l'exemple 2, on vise à réaliser une pièce d'usure dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 30 %. A cette fin, on réalise une bande par compaction à 85 % de la densité théorique d'un mélange en poids de 15 % de C, 63 % de Ti et 22 % de Fe. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 2 g/cm3 (45 % d'espace entre les granulés + 15 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 55 % en volume de granulés poreux. Après réaction, on obtient dans la partie renforcée 55 % en volume de zones avec une forte concentration d'environ 55 % en carbure de titane globulaire, soit 30 % en volume de carbures de titane global dans la macro-microstructure renforcée de la pièce d'usure.
  • Les tableaux suivants montrent les nombreuses combinaisons possibles. Tableau 1 (Ti + 0.98 C) [0059] Pourcentage global de TiC obtenu dans la macro-microstructure renforcée après réaction Ti + 0.98 C dans la partie renforcée de la pièce d'usure
    Compaction des granulés
    (% de la densité théorique qui est de 3,75 g/cm3)
    55 60 65 70 75 80 85 90 95
    Remplissage de la partie renforcée de la pièce (% vol.) 70 29.3 31.9 134.6 37.2 39.9 42.6 145,2 47.9 50.5
    65 272 29.6 32.1 34.6 37.1 39.5 42.0 44.5 46.9
    55 23.0 25.1 27.2 29.3 31.4 33.4 35.5 37.6 39.7
    45 18.8 20.5 22.2 123.9 26.7 27.4 29.1 30.8 32.5
    Ce tableau montre qu'avec un niveau de compaction allant de 55 à 95 % pour les bandes et donc les granulés, on peut pratiquer des niveaux de remplissage en granulés dans la partie renforcée allant de 45 à 70 % en volume (rapport entre le volume total des granulés et le volume de leur confinement). Ainsi, pour obtenir une concentration globale en TiC dans la partie renforcée d'environ 29 % vol. (en lettres grasses dans le tableau), on peut procéder à différentes combinaisons comme par exemple 60 % de compaction et 65 % de remplissage, ou 70 % de compaction et 55 % de remplissage, ou encore 85 % de compaction et 45 % de remplissage. Pour obtenir des niveaux de remplissage en granulés dans la partie renforcée allant jusqu'à 70 % en volume, on est obligé d'appliquer une vibration pour tasser les granulés. Dans ce cas, la norme ISO 697 pour la mesure du taux de remplissage n'est plus applicable et on mesure la quantité de matière dans un volume donné. Tableau 2
    Relation entre le niveau de compaction, la densité théorique et le pourcentage de TiC obtenu après réaction dans le granulé
    Compaction des granulés 55 60 65 70 75 80 85 90 95
    Densité en g/cm3 2.06 2.25 2.44 2.63 2.81 3.00 3.19 3.38 3.56
    TiC obtenu après réaction (et contraction) en %vol. dans les granulés 41.8 45.6 49.4 53.2 57.0 60.8 64.6 68.4 72.2
    Ici nous avons représenté la densité des granulés en fonction de leur niveau de compaction et on en a déduit le pourcentage volumique de TiC obtenu après réaction et donc contraction d'environ 24 % vol. Des granulés compactés à 95 % de leur densité théorique permettent donc d'obtenir après réaction, une concentration de 72.2 % vol. en TiC. Tableau 3
    Densité en vrac de l'empilement des granulés
    Compaction 55 60 65 70 75 80 85 90 95
    Remplissage de la partie renforcée de la pièce en % vol 70 1.4 1.6 1.7 1.8 2 2.1 2.2 2.4 2.5
    65 1.3* 1.5 1.6 1.7 1.8 2.0 2.1 2.2 2.3
    55 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 2.0
    45 0.9 1.0 1.1 1.2 1.3 1.4 1.4 1.5 1.6
    (*) Densité en vrac (1.3) = densité théorique (3.75 g/cm3)) x 0.65 (remplissage) x 0.55 (compaction)
    En pratique, ces tableaux servent d'abaques à l'utilisateur de cette technologie, qui se fixe un pourcentage global de TiC à réaliser dans la partie renforcée de la pièce et qui en fonction de cela détermine le niveau de remplissage et la compaction des granulés qu'il va utiliser. Les mêmes tableaux ont été réalisés pour un mélange de poudres Ti + C + Fe.
  • Ti + 0.98 C + Fe
  • Ici, l'inventeur a visé un mélange permettant d'obtenir 15% en volume de fer après réaction. La proportion de mélange qui a été utilisée est de :

            100g Ti + 24.5g C + 35.2g Fe

    Nous entendons par poudre de fer : fer pur ou alliage de fer.
    Densité théorique du mélange : 4.25 g/cm3
    Retrait volumétrique lors de la réaction : 21 % Tableau 4
    Pourcentage global de TiC obtenu dans la macro-microstructure renforcée après réaction Ti + 0.98 C + Fe dans la partie renforcée de la pièce d'usure
    Compaction des granulés (% de la densité théorique qui est de 4.25 g/cm3) 55 60 65 70 75 80 85 90 95
    Remplissage de la partie renforcée de la pièce (% vol) 70 25.9 28.2 30.6 32.9 35.5 37.6 40.0 42.3 44.7
    65 24.0 26.2 28.4 30.6 32.7 34.9 37.1 39.3 41.5
    55 20.3 22.2 24.0 25.9 27.7 29.5 31.4 33.2 35.1
    45 16.6 18.1 19.6 21.2 22.7 24.2 25.7 27.2 28.7
    A nouveau, pour obtenir une concentration globale en TiC dans la partie renforcée d'environ 26 % vol (en lettres grasses dans le tableau), on peut procéder à différentes combinaisons comme par exemple 55 % de compaction et 70 % de remplissage, ou 60 % de compaction et 65 % de remplissage, ou 70 % de compaction et 55 % de remplissage, ou encore 85 % de compaction et 45 % de remplissage. Tableau 5 [0064] Relation entre le niveau de compaction, la densité théorique et le pourcentage de TiC, obtenue après réaction dans le granulé en tenant compte de la présence de fer
    Compaction des granulés 55 60 65 70 75 80 85 90 95
    Densité en g/cm3 2.34 2.55 2.76 2.98 3.19 3.40 3.61 3.83 4.04
    TiC obtenu après réaction (et contraction) en %vol. dans les granulés 36.9 40.3 43.6 47.0 50.4 53.7 57.1 60.4 63.8
    Tableau 6 [0065] Densité en vrac de l'empilement des granulés (Ti + C + Fe)
    Compaction 55 60 65 70 75 80 85 90 95
    Remplissage de la partie renforcée de la pièce en % vol. 70 1.6 1.8 1.9 2.1 2.2 2.4 2.5 2.7 2.8
    65 1.5* 1.7 1.8 1.9 2.1 2.2 2.3 2.5 2.6
    55 1.3 1.4 1.5 1.6 1.8 1.9 2.0 2.1 2.2
    45 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
    (*) Densité en vrac (1.5) = densité théorique (4.25) x 0.65 (remplissage) x 0.55 (compaction)
  • Test comparatif avec EP 1450973
  • Des essais comparatifs entre des pièces d'usure comportant des zones renforcées avec des inserts assez volumineux (150x100x30 mm) et des pièces comportant des zones renforcées avec la macro-microstructure de la présente invention ont été réalisés. La machine de broyage dans laquelle ces tests ont été réalisés est représentée à la Fig. 13. Dans cette machine, l'inventeur a disposé alternativement une enclume comportant un insert selon l'état de la technique entourée de part et d'autre d'une enclume non renforcée, et une enclume avec une zone renforcée par une macro-microstructure selon la présente invention, elle aussi encadrée par deux enclumes de référence non renforcées.
  • Un indice de performance a été défini par rapport à une enclume non renforcée et par rapport à un type de roche donné. Même si l'extrapolation vers d'autres types de roche n'est pas toujours aisée, nous avons néanmoins tenté une approche quantitative quant à l'usure observée.
  • Indice de performance (IP)
  • Insert de 150x100x30 mm (état de la technique) Zone renforcée de 150x100x30 mm (selon l'invention)
    Ti+C (1100g) Ti+C+Fe (1240g) Granulés* Ti + C Granulés* Ti+C+Fe(900g)
    630g 765g 810g
    Compaction 65 % 70% 80% 85% 85%
    IP Essai 1 2.1 2.5
    IP Essai 2 2.2 2.2 2.3 2.4 2.4 2.3
    IP Essai 3 2.4 2.4 2.7
    IP Essai 4 2.1 2.1 2.4
    IP Essai 5 2.4 2.4
    *Taille des granulés 1.4 et 4 mm
  • L'indice de performance est le ratio de l'usure des enclumes de référence non renforcées par rapport à l'usure de l'enclume renforcée. Un indice de 2 signifie donc que la pièce renforcée s'est usée deux fois moins vite que les pièces de référence. On mesure l'usure dans la partie travaillante (mm usés), là où se trouve le renforcement.
  • Les performances de l'insert selon l'état de la technique sont semblables à celles de la macro-microstructure de l'invention, sauf pour le taux de compactage de 85 % des granulés qui montre une performance légèrement supérieure. Si l'on compare cependant les quantités de matière utilisées pour équiper la zone de renfort, on constate qu'avec 765 g de poudre de Ti + C, on obtient la même performance qu'avec 1100 g de poudre Ti + C sous forme d'insert. Dans la mesure où ce mélange coûte aux alentours de 75 Euro/kg en 2008, on mesure l'avantage que procure l'invention.
  • Globalement, on gagne selon les cas entre 20 et 40 % en masse du renforcement par rapport à un insert du type de ceux décrits dans EP 1450973 .
    Ainsi, si l'on considère un rapport de 4 entre la densité de l'alliage ferreux (± 7.6) et la densité en vrac du renforcement (± 1.9), l'ajout de 5 % en masse de renforcement correspond à un renforcement dans la pièce finale de 20 % en volume. Une quantité très faible de matière de renforcement est donc disposée de manière très efficace.
  • Avantages
  • La présente invention présente les avantages suivants par rapport à l'état de la technique en général:
    • utilisation de moins de matière pour un même niveau de renforcement ;
    • meilleure résistance au choc ;
    • résistance à l'usure équivalente, voire meilleure ;
    • plus de flexibilité dans les paramètres de mise en oeuvre (plus de flexibilité pour les applications) ;
    • moins de défauts de fabrication, en particulier
      • moins de défauts de gaz,
      • susceptibilité moindre à la crique lors de la fabrication,
      • meilleur maintien du renforcement dans la pièce se traduisant par un pourcentage de rebut moindre ;
    • infiltration aisée du renforcement, de part l'exothermicité de la réaction, ce qui permet :
      • de réaliser un renforcement d'épaisseur importante,
      • de placer le renforcement en surface,
      • de renforcer des parois minces ;
    • renforcement localisé, limité aux endroits souhaités;
    • surface saine du carbure formé, ce qui entraîne une bonne liaison avec le métal de coulée ;
    • pas d'application de pression lors de la coulée ;
    • pas d'atmosphère de protection particulière ;
    • pas de post-traitement de compaction.
    Meilleure résistance aux chocs
  • Dans le procédé selon l'invention, les granulés millimétriques poreux sont sertis dans l'alliage métallique d'infiltration. Ces granulés millimétriques sont eux-mêmes composés de particules microscopiques, à tendance globulaire, de TiC, également sertis dans l'alliage métallique d'infiltration. Ce système permet d'obtenir une pièce composite avec une macrostructure au sein de laquelle il y a une microstructure identique à une échelle environ mille fois plus petite.
  • Le fait que ce matériau comporte des petites particules globulaires de carbure de titane, dures et finement dispersées dans une matrice métallique qui les entoure, permet d'éviter la formation et la propagation des fissures (voir Fig. 4 et Fig. 6). On a ainsi un double système dissipatif des fissures.
  • Les fissures prennent généralement naissance aux endroits les plus fragiles, qui sont dans ce cas la particule de TiC, ou l'interface entre cette particule et l'alliage métallique d'infiltration. Si une fissure prend naissance à l'interface, ou dans la particule micrométrique de TiC, la propagation de cette fissure est entravée ensuite par l'alliage d'infiltration qui entoure cette particule. La ténacité de l'alliage d'infiltration est supérieure à celle de la particule céramique TiC. La fissure a besoin de plus d'énergie pour passer d'une particule à l'autre pour franchir les espaces micrométriques qui existent entre les particules.
  • Une autre raison pour expliquer la meilleure résistance aux chocs est une mise en oeuvre plus rationnelle de carbure de titane pour réaliser un renforcement adéquat.
  • Résistance à l'usure (comportement en service)
  • Il est important de souligner que cette meilleure résistance aux chocs ne se fait pas au détriment de la résistance à l'usure. Dans cette technique, les particules dures sont particulièrement bien intégrées dans l'alliage métallique d'infiltration. Dans les applications soumises à des chocs violents, un phénomène d'écaillage de la partie renforcée est peu probable.
  • Flexibilité maximale pour les paramètres de mise en oeuvre
  • Outre le niveau de compaction des granulés, on peut faire varier deux paramètres qui sont la fraction granulométrique et la forme des granulés, et donc leur densité en vrac. Par contre dans une technique de renforcement par insert on ne peut faire varier que le niveau de compaction de celui-ci dans une plage limitée. Au niveau de la forme que l'on souhaite donner au renforcement, compte tenu du design de la pièce et de l'endroit que l'on souhaite renforcer, l'utilisation de granulés permet davantage de possibilités et d'adaptation.
  • Avantages au niveau de la fabrication
  • L'utilisation comme renforcement d'un empilement de granulés poreux présente certains avantages au niveau de la fabrication :
    • moins de dégagement gazeux,
    • moindre susceptibilité à la crique,
    • meilleure localisation du renforcement dans la pièce.
    La réaction entre le Ti et le C est fortement exothermique. L'élévation de température provoque un dégazage des réactifs, c'est-à-dire des matières volatiles comprises dans les réactifs (H2O dans le carbone, H2, N2 dans le titane). Au plus la température de réaction est élevée, au plus ce dégagement est important. La technique par granulés permet de limiter la température, de limiter le volume gazeux et permet une évacuation plus facile des gaz et ainsi de limiter les défauts de gaz (voir Fig. 12 avec bulle de gaz indésirable). Faible susceptibilité à la crique lors de la fabrication de la pièce d'usure selon l'invention
  • Le coefficient de dilatation du renforcement TiC est plus faible que celui de la matrice en alliage ferreux (coefficient de dilatation du TiC : 7.5 10-6/K et de l'alliage ferreux : environ 12.0 10-6/K). Cette différence dans les coefficients de dilatation a pour conséquence de générer des tensions dans le matériau pendant la phase de solidification et aussi lors du traitement thermique. Si ces tensions sont trop importantes, des criques peuvent apparaître dans la pièce et conduire au rebut de celle-ci. Dans la présente invention, on utilise une faible proportion de renforcement TiC (moins de 50 % en volume), ce qui entraîne moins de tensions dans la pièce. De plus, la présence d'une matrice plus ductile entre les particules globulaires micrométriques de TiC en zones alternées de faible et de forte concentration permet de mieux assumer d'éventuelles tensions locales.
  • Excellent maintien du renforcement dans la pièce
  • Dans la présente invention, la frontière entre la partie renforcée et la partie non renforcée du composite hiérarchique n'est pas abrupte puisqu'il y a une continuité de la matrice métallique entre la partie renforcée et la partie non renforcée, ce qui permet de la protéger contre un arrachage complet du renforcement.

Claims (15)

  1. Matériau composite hiérarchique comportant un alliage ferreux renforcé avec des carbures de titane selon une géométrie définie dans lequel, ladite partie renforcée comporte une macro-microstructure alternée de zones millimétriques (1) concentrées en particules globulaires micrométriques de carbure de titane (4) séparées par des zones millimétriques (2) essentiellement exemptes de particules globulaires micrométriques de carbure de titane (4), lesdites zones concentrées en particules globulaires micrométriques de carbure de titane (4) formant une microstructure dans laquelle les interstices micrométriques (3) entre lesdites particules globulaires (4) sont également occupés par ledit alliage ferreux.
  2. Matériau composite selon la revendication 1, dans lequel lesdites zones millimétriques concentrées ont une concentration en carbure de titane (4) supérieure à 36.9 % en volume.
  3. Matériau composite selon la revendication 1, dans lequel ladite partie renforcée a une teneur globale de carbure de titane entre 16.6 et 50.5 % en volume.
  4. Matériau composite selon l'une quelconque des revendication 1 ou 2, dans lequel les particules micrométriques globulaires de carbure de titane (4) ont une taille inférieure à 50µm.
  5. Matériau composite selon l'une quelconque des revendications précédentes, dans lequel la majeure partie des particules micrométriques globulaires de carbure de titane (4) a une taille inférieure à 20 µm.
  6. Matériau composite selon l'une quelconque des revendications précédentes, dans lequel lesdites zones concentrées en particules globulaires de carbure de titane (1) comportent 36.9 à 72.2 % en volume de carbure de titane.
  7. Matériau composite selon l'une quelconque des revendications précédentes, dans lequel lesdites zones millimétriques concentrées en carbure de titane (1) ont une dimension variant de 1 à 12 mm.
  8. Matériau composite selon l'une quelconque des revendications précédentes, dans lequel lesdites zones millimétriques concentrées en carbure de titane (1) ont une dimension variant de 1 à 6 mm.
  9. Matériau composite selon l'une quelconque des revendications précédentes, dans lequel lesdites zones concentrées en carbure de titane (1) ont une dimension variant de 1.4 à 4 mm.
  10. Matériau composite selon l'une quelconque des revendications précédentes, dans lequel ledit composite est une pièce d'usure.
  11. Procédé de fabrication par coulée du matériau composite hiérarchique selon l'une quelconque des revendications 1 à 10, comportant les étapes suivantes :
    - mise à disposition d'un moule comportant l'empreinte du matériau composite hiérarchique avec une géométrie de renforcement prédéfinie;
    - introduction, dans la partie de l'empreinte destinée à former la partie renforcée, d'un mélange de poudres compactées comportant du carbone et du titane sous forme de granulés millimétriques précurseurs du carbure de titane;
    - coulée d'un alliage ferreux dans le moule, la chaleur de ladite coulée déclenchant une réaction exothermique de synthèse auto-propagée de carbure de titane à haute température (SHS) au sein desdits granulés précurseurs;
    - formation, au sein de la partie renforcée du matériau composite hiérarchique d'une macro-microstructure alternée de zones millimétriques concentrées (1) en particules globulaires micrométriques de carbure de titane (4) à l'emplacement desdits granulés précurseurs, lesdites zones étant séparées entre elles par des zones millimétriques (2) essentiellement exemptes de particules globulaires micrométriques de carbure de titane (4), lesdites particules globulaires (4) étant également séparées au sein desdites zones millimétriques concentrées (1) de carbure de titane par des interstices micrométriques (3);
    - infiltration des interstices millimétriques (2) et micrométriques (3) par ledit alliage ferreux de coulée à haute température, consécutive à la formation de particules microscopiques globulaires de carbure de titane (4).
  12. Procédé de fabrication selon la revendication 11, dans lequel le mélange de poudres compactées de titane et de carbone comporte une poudre d'un alliage ferreux.
  13. Procédé de fabrication selon la revendication 11, dans lequel ledit carbone est du graphite.
  14. Matériau composite hiérarchique obtenu selon le procédé de l'une quelconque des revendications 11 à 13.
  15. Outil ou machine comportant un matériau composite hiérarchique selon l'une quelconque des revendications 1 à 10 ou selon la revendication 14.
EP09782201.9A 2008-09-19 2009-08-26 Materiau composite hierarchique Active EP2334836B9 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09782201T PL2334836T3 (pl) 2008-09-19 2009-08-26 Materiał kompozytowy o strukturze hierarchicznej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2008/0521A BE1018130A3 (fr) 2008-09-19 2008-09-19 Materiau composite hierarchique.
PCT/EP2009/060980 WO2010031662A1 (fr) 2008-09-19 2009-08-26 Materiau composite hierarchique

Publications (3)

Publication Number Publication Date
EP2334836A1 EP2334836A1 (fr) 2011-06-22
EP2334836B1 true EP2334836B1 (fr) 2012-03-14
EP2334836B9 EP2334836B9 (fr) 2013-08-07

Family

ID=40651349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782201.9A Active EP2334836B9 (fr) 2008-09-19 2009-08-26 Materiau composite hierarchique

Country Status (20)

Country Link
US (1) US8999518B2 (fr)
EP (1) EP2334836B9 (fr)
JP (1) JP5484468B2 (fr)
KR (1) KR101614180B1 (fr)
CN (1) CN102187002B (fr)
AT (1) ATE549427T1 (fr)
AU (1) AU2009294781B2 (fr)
BE (1) BE1018130A3 (fr)
BR (1) BRPI0913538B1 (fr)
CA (1) CA2735912C (fr)
CL (1) CL2011000577A1 (fr)
DK (1) DK2334836T3 (fr)
EG (1) EG26641A (fr)
ES (1) ES2383782T3 (fr)
MX (1) MX2011003029A (fr)
MY (1) MY156696A (fr)
PL (1) PL2334836T3 (fr)
PT (1) PT2334836E (fr)
WO (1) WO2010031662A1 (fr)
ZA (1) ZA201101791B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115867401A (zh) * 2020-05-29 2023-03-28 马格托国际股份有限公司 陶瓷-金属复合磨损部件

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20086088A (fi) * 2008-11-18 2010-05-19 Metso Minerals Inc Menetelmä komposiittimateriaalin valmistamiseksi, sekä menetelmällä valmistetun komposiittimateriaalin käyttö
LU92152B1 (en) * 2013-02-18 2014-08-19 Amincem S A Metal matrix composite useful as wear parts for cement and mining industries
US11045813B2 (en) * 2013-10-28 2021-06-29 Postle Industries, Inc. Hammermill system, hammer and method
WO2015103670A1 (fr) * 2014-01-09 2015-07-16 Bradken Uk Limited Élément d'usure incorporant des particules résistant à l'usure et son procédé de fabrication
CN106536774B (zh) * 2014-04-30 2019-01-15 欧瑞康美科(美国)公司 碳化钛覆盖层及制造方法
PL414755A1 (pl) * 2015-11-12 2017-05-22 Innerco Spółka Z Ograniczoną Odpowiedzialnością Sposób wytwarzania lokalnych stref kompozytowych w odlewach i wkładka odlewnicza
BR112018009390B1 (pt) * 2015-11-12 2021-12-07 Innerco Sp. Z O.O. Composições de pós para a fabricação de insertos de lingote, inserto de lingote, e, método para obter zonas compósitas locais em lingotes
NL1041689B1 (en) 2016-01-25 2017-07-31 Petrus Josephus Andreas Van Der Zanden Johannes Acceleration unit for impact crusher.
EP3563951A1 (fr) 2018-05-04 2019-11-06 Magotteaux International S.A. Dent composite avec insert tronconique
BE1027444B1 (fr) 2020-02-11 2021-02-10 Magotteaux Int Piece d'usure composite
EP3885061A1 (fr) * 2020-03-27 2021-09-29 Magotteaux International S.A. Composant d'usure composite
EP4259362A1 (fr) 2020-12-10 2023-10-18 Magotteaux International S.A. Pièce d'usure composite hiérarchique à armature structurale
EP4155008A1 (fr) 2021-09-23 2023-03-29 Magotteaux International S.A. Composant d'usure composite
IT202100024641A1 (it) 2021-09-27 2023-03-27 Torino Politecnico Materiali gerarchici tridimensionali porosi comprendenti una struttura reticolare con inserti flottanti all’interno delle porosità

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909842A (en) * 1988-10-21 1990-03-20 The United States Of America As Represented By The United States Department Of Energy Grained composite materials prepared by combustion synthesis under mechanical pressure
JP2596106B2 (ja) 1988-12-27 1997-04-02 住友重機械鋳鍛株式会社 複合掘削ツース
US5066546A (en) 1989-03-23 1991-11-19 Kennametal Inc. Wear-resistant steel castings
GB2257985A (en) * 1991-07-26 1993-01-27 London Scandinavian Metall Metal matrix alloys.
BR9307499A (pt) * 1992-11-19 1999-06-01 Sheffield Forgemasters Processo de fabricar metal ferroso para construções produto metálico ferroso para construções processo para fabricar rolo laminador e processo para fabricar produto fundido rotativo
US5720830A (en) * 1992-11-19 1998-02-24 Sheffield Forgemasters Limited Engineering ferrous metals and method of making thereof
GB2274467A (en) 1993-01-26 1994-07-27 London Scandinavian Metall Metal matrix alloys
US6203897B1 (en) * 1993-09-24 2001-03-20 The Ishizuka Research Institute, Ltd. Sintered composites containing superabrasive particles
US5755299A (en) * 1995-08-03 1998-05-26 Dresser Industries, Inc. Hardfacing with coated diamond particles
WO1997011803A1 (fr) 1995-09-27 1997-04-03 The Ishizuka Research Institute, Ltd. Materiau composite granuleux extremement abrasif
US6818315B2 (en) * 2000-12-20 2004-11-16 Valtion Teknillinen Tutkimuskeskus Method for the manufacture of a metal matrix composite, and a metal matrix composite
US6780458B2 (en) * 2001-08-01 2004-08-24 Siemens Westinghouse Power Corporation Wear and erosion resistant alloys applied by cold spray technique
JP4222944B2 (ja) * 2001-12-04 2009-02-12 マゴット アンテルナショナル エス.アー. 強化された摩耗抵抗性を持つ鋳造部品
JP2005068546A (ja) * 2003-08-26 2005-03-17 Toru Yamazaki 3次元周期性階層構造をもつ複合合金とその製造方法
US20070099014A1 (en) * 2005-11-03 2007-05-03 Sulzer Metco (Us), Inc. Method for applying a low coefficient of friction coating
BE1018129A3 (fr) * 2008-09-19 2010-05-04 Magotteaux Int Impacteur composite pour concasseurs a percussion.
BE1018128A3 (fr) * 2008-09-19 2010-05-04 Magotteaux Int Cone de broyage pour concasseur a compression.
BE1018127A3 (fr) * 2008-09-19 2010-05-04 Magotteaux Int Dent composite pour le travail du sol ou des roches.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115867401A (zh) * 2020-05-29 2023-03-28 马格托国际股份有限公司 陶瓷-金属复合磨损部件

Also Published As

Publication number Publication date
US8999518B2 (en) 2015-04-07
PT2334836E (pt) 2012-07-23
BRPI0913538B1 (pt) 2019-12-17
MX2011003029A (es) 2011-04-14
CL2011000577A1 (es) 2011-08-26
KR101614180B1 (ko) 2016-04-20
WO2010031662A1 (fr) 2010-03-25
CN102187002A (zh) 2011-09-14
AU2009294781A1 (en) 2010-03-25
PL2334836T3 (pl) 2012-08-31
ES2383782T9 (es) 2013-11-05
JP5484468B2 (ja) 2014-05-07
BE1018130A3 (fr) 2010-05-04
DK2334836T3 (da) 2012-07-02
MY156696A (en) 2016-03-15
AU2009294781B2 (en) 2013-06-13
ZA201101791B (en) 2012-08-29
KR20110059720A (ko) 2011-06-03
EP2334836A1 (fr) 2011-06-22
CA2735912C (fr) 2016-03-29
JP2012502802A (ja) 2012-02-02
ES2383782T3 (es) 2012-06-26
BRPI0913538A2 (pt) 2015-12-15
US20110229715A1 (en) 2011-09-22
CA2735912A1 (fr) 2010-03-25
ATE549427T1 (de) 2012-03-15
EG26641A (en) 2014-04-16
CN102187002B (zh) 2013-06-05
EP2334836B9 (fr) 2013-08-07

Similar Documents

Publication Publication Date Title
EP2334836B1 (fr) Materiau composite hierarchique
EP2323770B1 (fr) Impacteur composite pour concasseurs à percussion
BE1018127A3 (fr) Dent composite pour le travail du sol ou des roches.
EP2326738B9 (fr) Cône de broyage pour concasseur a compression
EP1450973B1 (fr) Pieces de fonderie avec une resistance accrue a l&#39;usure
WO2019211268A1 (fr) Dent composite avec insert tronconique
CN113784810A (zh) 复合材料磨损部件
EP4157569A1 (fr) Piece d&#39;usure composite ceramique-metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009005933

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0001050000

Ipc: C22C0033020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/05 20060101ALI20110817BHEP

Ipc: C22C 29/06 20060101ALI20110817BHEP

Ipc: C22C 33/02 20060101AFI20110817BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 549427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009005933

Country of ref document: DE

Effective date: 20120510

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CRONIN INTELLECTUAL PROPERTY

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2383782

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120626

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20120401337

Country of ref document: GR

Effective date: 20120713

Ref country code: SK

Ref legal event code: T3

Ref document number: E 11880

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009005933

Country of ref document: DE

Effective date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: SK

Ref legal event code: T4

Ref document number: E 11880

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: CHEMIN DE LA VUARPILLIERE 29, 1260 NYON (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230731

Year of fee payment: 15

Ref country code: RO

Payment date: 20230811

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240723

Year of fee payment: 16

Ref country code: FI

Payment date: 20240724

Year of fee payment: 16

Ref country code: IE

Payment date: 20240725

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240725

Year of fee payment: 16

Ref country code: DK

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 16

Ref country code: PT

Payment date: 20240725

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240902

Year of fee payment: 16

Ref country code: CH

Payment date: 20240901

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240725

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20240726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240723

Year of fee payment: 16

Ref country code: SE

Payment date: 20240723

Year of fee payment: 16