EP4157569A1 - Piece d'usure composite ceramique-metal - Google Patents
Piece d'usure composite ceramique-metalInfo
- Publication number
- EP4157569A1 EP4157569A1 EP21713432.9A EP21713432A EP4157569A1 EP 4157569 A1 EP4157569 A1 EP 4157569A1 EP 21713432 A EP21713432 A EP 21713432A EP 4157569 A1 EP4157569 A1 EP 4157569A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal
- carbides
- nitrides
- inserts
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/23—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/26—Details
- B02C13/28—Shape or construction of beater elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/02—Casting in, on, or around objects which form part of the product for making reinforced articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/06—Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/105—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/12—Metallic powder containing non-metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/004—Filling molds with powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/008—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0475—Impregnated alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
- C22C1/053—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
- C22C1/053—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
- C22C1/055—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/058—Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1005—Pretreatment of the non-metallic additives
- C22C1/1015—Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1047—Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1047—Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
- C22C1/1052—Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1057—Reactive infiltration
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1068—Making hard metals based on borides, carbides, nitrides, oxides or silicides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1073—Infiltration or casting under mechanical pressure, e.g. squeeze casting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0242—Making ferrous alloys by powder metallurgy using the impregnating technique
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0292—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C2210/00—Codes relating to different types of disintegrating devices
- B02C2210/02—Features for generally used wear parts on beaters, knives, rollers, anvils, linings and the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
- B22F2007/066—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/10—Carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/40—Carbon, graphite
Definitions
- the present invention relates to a wear part produced in a foundry. It relates more particularly to a wearing part comprising a reinforced part according to a predefined geometry with ceramic inserts previously manufactured inserted in an infiltrable structure comprising precursor reagents for the formation of ceramics during the casting by self-propagating exothermic reaction. .
- the present invention also provides a method for obtaining said wearing part with its reinforcing structure.
- the wearing parts include ejectors and anvils of vertical-axis crushers, hammers and beaters of horizontal-axis crushers, cones for crushers, tables and vertical mill rollers, armor plates and lifters for ball or bar mills.
- pumps for tar sands or drilling machines we will cite, among others, pumps for tar sands or drilling machines, mining pumps and dredging teeth.
- the composite wear parts produced by casting in a foundry comprising parts reinforced by ceramics created in situ during the casting by a self-propagating exothermic reaction initiated by the heat of the casting are well known in the state of technique.
- Document WO03 / 047791 proposes a wearing part with a series of ceramics of the carbide, nitride, borides or intermetallic alloy type formed in situ during a self-propagating exothermic reaction (SHS). The reaction is initiated by the heat of the metal matrix casting and spreads rapidly reaching temperatures above 2000 ° C.
- SHS self-propagating exothermic reaction
- This technology creates a structure with an alternation of areas with a low and high concentration of titanium carbide globules, the areas with high concentration being located at the location of the grains of reactants (here, carbon and titanium) precursors of the reaction of formation of titanium carbide.
- the present invention aims to overcome the drawbacks of the state of the art and in particular the difficulty of obtaining reinforcement zones comprising a very high concentration of ceramics (> 50% by volume for example).
- the present invention discloses a wear part comprising a reinforced part comprising a ferrous alloy reinforced with carbides, nitrides, metal borides or with intermetallic alloys where said reinforced part comprises inserts of predefined geometry, said inserts comprising particles micrometres of carbides, nitrides, metal borides or intermetallic compounds prefabricated and coated in a first metal matrix (10), said inserts being inserted in a infiltrated reinforcement structure comprising a periodic alternation of areas with a high and low concentration of micrometric particles of carbides, nitrides, metal borides or intermetallic alloys obtained from agglomerated grains comprising the reagents necessary for an exothermic self-propagating in situ synthesis triggered during the casting of the ferrous alloy, said ferrous alloy forming the second metal matrix, the latter being different from said first metal matrix.
- the metal used for the ceramic particles of the inserts is titanium, the preferred insert mainly comprising micrometric particles titanium carbide; the insert comprises a concentration of carbides, nitrides, metal borides or intermetallic elements of up to 90% by volume and at least 30%, preferably at least 40% and particularly preferably at least 50% by volume; the first metal matrix binding the ceramic particles of the insert mainly comprises nickel, nickel alloy, cobalt, cobalt alloy or a ferrous alloy different from the casting alloy constituting the second metal matrix; the insert comprises particles of carbides, nitrides, metal borides or particles of intermetallic alloys of average size D50 less than 80 ⁇ m, preferably less than 60 ⁇ m and particularly preferably less than 40 ⁇ m; the prefabricated insert and the areas where the ceramic was formed during casting have micrometric interstices comprising different metal matrices; the reinforcement structure is composed of an alternation of millimeter zones with a high ceramic concentration resulting from
- the reinforcing structure further comprises millimeter grains of alumina, zirconia or an alumina-zirconia alloy.
- the present invention also discloses a method of manufacturing a wearing part according to the invention comprising the following steps: providing a mold comprising the imprint of a wearing part with a predefined geometry an area to be reinforced; introduction and positioning in said zone to be reinforced of a compact mixture of powders, in the form of millimeter granules intended to react in a self-propagating exothermic reaction in the form of millimeter granules, precursors of carbides, nitrides, metal borides or intermetallic compounds , optionally mixed with a moderating powder at least partially surrounding one or more inserts of defined geometry prefabricated and concentrated in carbides, nitrides, metal borides or in intermetallic compounds and comprising the first metal matrix; casting a ferrous alloy in the mold, said liquid ferrous alloy initiating said self-propagating exothermic reaction leading to the formation of carbides, nitrides, metal borides or intermetallic compounds in said precursor granules; formation in the reinforced zone of the wear part
- the inserts of predefined geometry manufactured prior to the casting of said wearing part have the following characteristics; the inserts are made according to powder metallurgy; the compact mixture of powders intended to react in a self-propagating exothermic reaction in the form of millimeter granules consists of carbon, titanium, a binder and optionally a moderating powder.
- the present invention also discloses main applications in the form of an impactor, an anvil, a cone or a grinding roller.
- FIG. 1 schematically represents a wearing part according to the invention with a zone reinforced by cylindrical inserts made of prefabricated ceramic-metal composite.
- These inserts comprise micrometric particles of ceramics bound in a first metal matrix.
- These inserts are surrounded by a structure of millimeter zones periodically alternating in high and in low concentration of ceramics resulting from the SHS reaction of millimeter grains of precursor reagents infiltrated by the casting constituting the second metal matrix which triggered an exothermic reaction of formation of micrometric particles of ceramic in situ next to prefabricated ceramic inserts.
- the second metal matrix is different from the first metal matrix.
- Figure 2 schematically shows the detail of a reinforcing insert according to the invention consisting of prefabricated cylindrical ceramic-metal composite inserts fixed in a structure of millimeter grains of infiltrable precursor reagents by the casting which will trigger an exothermic reaction formation of a ceramic in situ next to the prefabricated ceramic inserts.
- FIG. 3 schematically represents a mobile crusher cone with the predefined zone to be reinforced by prefabricated ceramic-metal composite cylindrical inserts surrounded by a structure of millimeter grains of infiltrable precursor reagents.
- FIG. 4 schematically represents a crusher hammer with the predefined zone to be reinforced by prefabricated ceramic-metal composite cylindrical inserts surrounded by a structure of millimeter grains of infiltrable precursor reagents.
- FIG. 5 schematically represents a crusher beater with the predefined zone to be reinforced by prefabricated ceramic-metal composite cylindrical inserts surrounded by a structure of millimeter grains of infiltrable precursor reagents.
- FIG. 6 schematically represents an excavator tooth with the predefined zone to be reinforced by cylindrical inserts made of prefabricated ceramic-metal composite surrounded by a structure of millimeter grains of infiltrable precursor reagents.
- FIG. 7 is a photo of an actual reinforcing structure on which one distinguishes the ceramic-metal composite inserts placed in a three-dimensional structure of reactive grains which are precursors of ceramics and which will turn into ceramics during casting.
- Figure 8 shows an impactor according to the prior art after wear.
- the contour line represents the contour of the part before wear.
- Figure 9 shows an impactor according to the invention after wear.
- the contour line here also represents the part before wear.
- the inserts appear surrounded by the infiltrated three-dimensional structure. They held up better to wear and tear.
- FIG. 10 schematically represents the method of measuring the Féret diameter (with the minimum and maximum Féret diameters). These Feret diameters are used in the process in order to obtain the average size of the ceramic-metal particles (as explained below). List of reference symbols
- prefabricated metal ceramic composite insert comprising a metal matrix different from the casting metal, the insert being integrated into the infiltrable structure, the assembly being placed in the mold intended to receive the casting metal.
- prefabricated ceramic particles which may represent up to 90% of the total volume of the insert but representing at least 10% by volume, preferably at least 20 or 30%, particularly preferably 40 or 50% of the volume of the insert 'insert.
- inserts can be manufactured by any technology but are preferably manufactured by powder metallurgy.
- first metal matrix which serves as a binder for the ceramic particles of the prefabricated insert. This first metal matrix is different from the second metal matrix resulting from the casting which infiltrates the infiltrable structure.
- the present invention discloses a wear part with increased resistance to wear produced in a conventional foundry. It relates more particularly to a wearing part comprising a reinforced part according to a predefined geometry with ceramic inserts at the scale of a few centimeters previously manufactured inserted into an infiltrable three-dimensional structure made up of agglomerated millimeter grains and forming a periodic alternation of millimetric grains and interstices.
- the grains contain reagents necessary for the formation of ceramics during the casting by a self-propagating exothermic reaction.
- the infiltrable structure therefore consists of an aggregate of millimeter grains of average size between 0.5 and 10 mm, preferably 0.7 to 6 mm and particularly preferably between 1 and 4 mm.
- the interstices between the grains depend on the level of compaction and the size of the grains but are of the order of a millimeter or a fraction of a millimeter.
- the millimeter grains contain a homogeneous mixture of reactive powders with, if necessary, a moderating powder and can be agglomerated / compacted between them by the use of a binder or kept in a metal container in order to geometrically delimit the reinforced zone of the part. 'wear.
- Ceramic inserts previously manufactured and intended to be held by the three-dimensional structure of agglomerated grains, for their part, have any shape, a cylindrical shape or approximately cylindrical type being however preferred.
- the size of these ceramic inserts previously manufactured in the case of a cylindrical shape is of a diameter of 3 to 50 mm, preferably 6 to 30 mm, more particularly 8 to 20 mm and a height of 5 to 300 mm, preferably 10 to 200 mm, in particular 10 to 150 mm.
- the present invention therefore describes a wear part reinforced on its side or sides most stressed by, on the one hand, a preformed ceramic (ceramic-metal composite) generally obtained by powder metallurgy comprising a first metal matrix binder micrometric particles of ceramics, and on the other hand, of a ceramic formed in situ during the casting of steel or liquid iron (the second metal matrix), the first metal matrix being completely independent of the first matrix metallic, which makes it manageable to measure.
- a preformed ceramic ceramic-metal composite
- This technique allows the convenient and robust positioning of prefabricated inserts of defined geometry and concentrated in carbides, nitrides, metal borides or intermetallic alloys and comprising a metal matrix independent of that generated by the casting.
- This metal matrix existing prior to the casting of the wear part is present from the start in the ceramic-metal composite inserts integrated in an infiltrable structure formed of agglomerated millimeter grains (padding) comprising the reagents necessary for the formation of ceramic materials necessary for a self-propagating exothermic reaction and which will be formed during the casting of the wearing part by initiation of an SHS reaction (“self-propagating high-temperature synthesis” in English: https://en.wikipedia.org/wiki/Self-propagating high-temperature synthesis ).
- Ceramic-metal composite inserts preformed such as for example a cylindrical or frustoconical insert.
- This insert can be composed for example of titanium carbides, titanium nitrides or chromium carbides with a minimum concentration of 40% by volume in a first metal matrix based on iron, manganese, nickel or cobalt for example (compositions of type DIN 1.3401, or DIN 2.4771 for example) which is "wrapped" in an infiltrable structure composed for example of an agglomerate of millimeter grains of a mixture of carbon and titanium, optionally diluted by a moderator such as powder iron or steel (for example 45CrMoV67 steel), which will be transformed during the casting of the wear part by a self-propagating exothermic reaction in TiC formed in situ.
- a moderator such as powder iron or steel (for example 45CrMoV67 steel), which will be transformed during the casting of the wear part by a self-propagating exothermic reaction in TiC formed in situ.
- This TiC formed in situ and infiltrated at least partially by the casting metal will produce a “hybrid” structure with areas of high TiC concentration at the location of the geometric inserts previously manufactured with their own metal matrix (first metal matrix based on Ni, Mn, Co, steel, Ni alloy), at least partially surrounded by a structure where the ceramics will have been formed in situ and where the interstices will have been infiltrated by the casting metal of the part. wear.
- agglomerated reactants Ti + C for example
- TiC should not be interpreted in the strict chemical sense of the term but as titanium carbide in the crystallographic sense because titanium carbide has a wide composition range going from a stoichiometric C / Ti ratio of 0 , 47 to 1.
- other ceramics such as nitrides and borides for example, the stoichiometric variations of which can be relatively wide.
- the present invention therefore makes it possible to achieve not only very high ceramic concentrations, generally greater than 40% by volume, which can range up to 90% by volume in prefabricated inserts, but also to choose the first metal matrix specific to these prefabricated inserts and therefore to be independent of the casting metal (second metal matrix) of the wearing part, which is often cast iron or chrome steel.
- the reagents used to achieve the infiltrable structure of agglomerated millimeter grains can be chosen from the group of ferroalloys, preferably FerroTi, FerroCr, FerroNb, FerroW, FerroMo, FerroB, FerroSi, FerroZr or FerroV.
- They can also belong to the group of oxides, preferably TiO 2 , FeO, Fe 2 O 3 , SiO 2 , ZrO 2 , CrO 3 , Cr2O 3 , B 2 O 3 , MoO 3 , V 2 O 5 , CuO, MgO and NiO, or from the group of metals or their alloys, preferably iron, nickel, titanium or aluminum on the one hand and, on the other hand, on the other hand, carbon, boron or nitrided compounds to form the corresponding carbides, borides or nitrides.
- oxides preferably TiO 2 , FeO, Fe 2 O 3 , SiO 2 , ZrO 2 , CrO 3 , Cr2O 3 , B 2 O 3 , MoO 3 , V 2 O 5 , CuO, MgO and NiO
- metals or their alloys preferably iron, nickel, titanium or aluminum on the one hand and, on the other hand, on the other hand, carbon, boron or nit
- the reactions which can be used for the formation of the "packaging" structure making it possible to position preformed ceramic-metal inserts in the mold for the manufacture of the wearing part are generally of the type: FeTi + C -> TiC + Fe TiO 2 + Al + C -> TiC + Al 2 O 3 Fe 2 O 3 + Al -> Al 2 O 3 + Fe Ti + C -> TiC Al + C + B 2 O 3 -> B 4 C + Al 2 O 3 MoO 3 + Al + Si -> MoSi 2 + Al 2 O 3
- These reactions can also be combined with each other.
- the reaction rate can be controlled by a moderator in the form of different additions of metals, alloys or particles not participating in the reaction (for example alumina-zirconia grains). These additions, when they are reactive, can moreover be used advantageously to modify, as required, the toughness or other properties of the structure created in situ.
- the geometric ceramic inserts previously manufactured can be made of titanium carbides, titanium nitrides, titanium carbonitrides, chromium carbides, chromium nitrides, chromium carbonitrides, niobium carbides or tungsten carbides, taken singly or in a mixture with one another.
- the present invention allows better performance of wear parts made in reinforced foundry than those of the prior art thanks to the increase localized wear resistance of the area reinforced by the presence of more wear resistant particles and / or particles of a different nature by a more suitable metal matrix. It also allows better performance of the wearing parts produced by the addition of zones of defined geometry concentrated in carbides, nitrides, metal borides or in intermetallic alloys and of a first metal matrix existing prior to the casting of said part.
- Average size of the particles of carbides, nitrides, metal borides or of the particles of intermetallic alloys is carried out using the steps following.
- a photomicrographic panorama of the polished cross section of a sample is made, so that there are at least 250 complete particles across the field of view.
- This panorama is made by stitching (the process of combining a series of digital images of different parts of a subject into a panoramic view of the whole subject in order to maintain good definition) using a program computer and an optical microscope (for example, a general image field panorama obtained by an Alicona Infinity Focus).
- an appropriate thresholding is carried out in order to segment the image into characteristics of interest (the particles) and in the background, in different levels of gray.
- a manual step of drawing the particles, the scale bar if present and the border of the image on tracing paper is added, as well. than a step of digitizing the tracing paper.
- the Féret diameter (which corresponds to the distance between two parallel tangents, placed perpendicular to the direction of measurement so that the whole of the projection of the particle is between these two tangents) is measured in all directions for each particle by image analysis software (ImageJ for example). An example is given in figure 10.
- the minimum and maximum Feret diameters of each granule in the image are determined.
- the minimum Feret diameter is the smallest diameter among the set of Feret diameters measured for a particle.
- the maximum Feret diameter is the largest diameter among the set of Feret diameters measured for a particle. Particles touching the edges of the image are ignored in the calculation.
- the average value of the minimum and maximum Feret diameters of each particle is taken as the equivalent diameter x.
- the volume distribution of the particle size q3 (x) is then calculated on the basis of spheres of diameter x.
- the average size d 50 of the pellets is the volume-weighted average size according to the ISO 9276-2: 2014 standard.
- the resistance of a reinforced part is measured. It is manufactured in a manner analogous to the process disclosed in the prior art (WO2010 / 031663).
- This prior art presents a composite impactor for impact mills comprising a ferroalloy which is reinforced on its side most exposed to wear with a three-dimensional structure of millimetric grains precursors of titanium carbide. It is carried out by self-propagating exothermic synthesis in situ. The impactor weighs 52 kg and is reinforced in a volume of approximately 0.88 dm 3 .
- This comparative example therefore presents reinforced parts of titanium carbides produced exclusively by self-propagating thermal synthesis of titanium and carbon in situ to form titanium carbide during casting.
- the reaction is triggered by the casting of the ferrous alloy consisting of a martensitic stainless steel of the 12CrMoV type which will also be used for the examples according to the invention.
- This wear part therefore only contains a three-dimensional structure of alternating areas of high and low concentration of titanium carbides produced in situ on the side most stressed of the wear part during casting without initially containing inserts ceramic-metal composites, of the cylinder type for example, previously formed in a metal matrix different from the ferrous alloy used for the casting. At the end of these steps, a form with a total reinforced volume of 0.88 dm 3 is produced.
- the weight loss observed during a wear test is 3.63 kg per 100 hours of operation (kg / 100h) on the composite impactor for impact crushers.
- the same conditions of use and of material to be ground will be reproduced.
- the reinforced part according to the invention comprises a reinforced zone of predefined geometry with ceramic inserts previously manufactured to the scale of a few centimeters and previously inserted into an infiltrable structure comprising the reagents necessary for the formation of ceramics during the casting by self-propagating exothermic reaction.
- This infiltrable structure consists of an aggregate of millimeter grains with an average size of about 2.5 mm containing the reagents necessary for the reaction. These grains are agglomerated in a three-dimensional structure using an organic binder of the phenolic resin type with a predefined shape in a resin mold. In this three-dimensional structure, there is a periodic alternation between grains and millimeter interstices. This configuration is shown in Figure 7.
- These grains comprise a mixture of titanium powder with an average particle size of 60 ⁇ m and a purity of 98%, graphite powder with an average particle size of 30 ⁇ m and a purity of 99% and steel powder of average particle size of 60 ⁇ m and comprising a steel powder of the 45CrMoV67 type as reaction moderating element.
- These millimeter grains are compacted with a porosity of less than 20%.
- the chemical composition of these grains is given in the following table for 100 kg of grains.
- the ceramic inserts previously manufactured have a cylindrical geometric shape. The diameter of these previously manufactured ceramic inserts is 12mm, the height is 20mm.
- a three-dimensional structure with a total volume of 0.88 dm 3 is manufactured by casting a 12CrMoV type alloy of composition: 0.15-0, 20% C; 9.00-11.00% Cr; 0.60-1.10% Mn and 0.35-0.65% Si. This constitutes the second metal matrix.
- Example 2
- Example 1 is repeated but this time, 77 ceramic inserts manufactured beforehand are positioned in a predefined manner in the resin mold which defines the reinforcement zone thanks to notches made in the resin mold and prior to the addition reactive millimeter grains intended for the self-propagating exothermic reaction which will be agglomerated using the same organic binder. At the end of these steps, a three-dimensional structure with a total volume of 0.88 dm 3 , similar to Figure 2 is manufactured.
- the ceramic inserts previously manufactured consist of 70-80% titanium carbides, 1-3% chromium carbides and a binder as a first metal matrix based on austenitic manganese steel of the DIN 1.3401 type .
- Example 3 [0057] Example 1 is repeated with 67 inserts but this time, the ceramic inserts produced beforehand comprise 75-85% of titanium carbonitrides and a binder based on an alloy of nickel and chromium of the type DIN 2.4771 as the first metal matrix.
- Example 4
- These particles consist of a mixture of titanium powder with an average particle size of 60 ⁇ m and a purity of 98%, of vanadium powder with a particle size of less than 200 mesh and of graphite powder of a particle size of less than 30 ⁇ m and of purity 99%. These particles are compacted with a porosity of less than 22%.
- the chemical composition of these particles is given in the following table.
- Example 1 is repeated with again 67 inserts of the same size but the ceramic inserts previously manufactured now comprise 70-80% of chromium carbides and a binder based on an alloy of nickel and chromium of the type DIN 2.4771 as the first metal matrix.
- SHS self-propagating exothermic synthesis
- the 67 ceramic inserts previously manufactured include 80-
- These precursor grains comprise a mixture of titanium powder with an average particle size of about 60 ⁇ m and a purity of 98%, of graphite powder with an average particle size of 30 ⁇ m and a purity of 99%. These millimetric precursor grains of approximately 2.5 mm are compacted with a porosity of less than 20%. The chemical composition of these grains is given in the following table per 100 kg of grains.
- the non-reactive grains comprise alumina-zirconia with a proportion of 60% alumina and 39% zirconia and 0.15% titanium oxide.
- the average size of these non-reactive millimeter grains is 2.1 mm.
- the ceramic inserts produced beforehand consist on average of 70-80% of titanium carbides, of 1-3% of chromium carbides and of a binder with DIN 1.3401 type austenitic manganese steel base constituting the first metal matrix.
- the proportion by weight of non-reactive grains relative to the exothermic reaction precursor grains can vary in volume between 5 and 40%, preferably between 10 and 30%, more preferably between 15 and 20%. In this specific example, it is 20% by weight.
- the table below shows the weight losses of a 52 kg impactor in new condition, the reinforced volume of which represents approximately 0.88 dm 3 .
- the weight loss is measured after 696 hours of operation and is reduced over 100 hours of operation.
- the wear performance of the various examples is a combination of the wear rate of the reinforcement surrounding the preformed insert, of the preformed insert itself as well as of the unreinforced zone of the impactor. Thus, the wear rates of these different areas were evaluated in order to explain the difference in performance of the different examples.
- the following table shows the wear rates of the different parts in kg per 100 hours of operation.
- the table shows that the rate of wear of the preformed inserts is dependent on its characteristics and the performance classification of the preformed inserts of the examples presented is as follows (from the most efficient to the least efficient): a) 75-85% of carbonitrides of titanium and a binder based on nickel alloy b) 70-80% titanium carbides, 1-3% chromium carbides and a binder of austenitic steel type. c) 70-80% chromium carbides and a nickel based binder d) 80-90% chromium carbides and a nickel based binder.
- the resistance to wear of ceramic-metal composites depends on the properties of the ceramic particles, on their proportion and their distribution, as well as on the nature of the binder used.
- Example 5 It also follows that chromium carbides are more fragile than titanium-based carbides or carbonitrides. This explains why the performance of Example 5 is lower than that of Example 4 despite a higher percentage of chromium carbides in the preformed inserts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Food Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
La présente invention se rapporte à une pièce d'usure réalisée en fonderie avec une partie renforcée comprenant un alliage ferreux renforcé avec des carbures, nitrures, borures métalliques ou en alliages intermétalliques pour laquelle ladite partie renforcée comprend des inserts de carbures, nitrures, borures métalliques ou des composés intermétalliques préalablement fabriqués de géométrie définie insérés dans une structure infiltrable de grains agglomérés comprenant les réactifs nécessaires à la formation de carbures, nitrures, borures métalliques ou intermétalliques selon une réaction thermique auto-propagée in situ déclenchée lors de la coulée de l'alliage ferreux.
Description
PIECE D'USURE COMPOSITE CERAMIQUE-METAL
Objet de l'invention
[0001] La présente invention se rapporte à une pièce d'usure réalisée en fonderie. Elle se rapporte plus particulièrement à une pièce d'usure comportant une partie renforcée selon une géométrie prédéfinie avec des inserts en céramiques préalablement fabriqués insérés dans une structure infiltrable comportant des réactifs précurseurs à la formation de céramiques lors de la coulée par réaction exothermique auto-propagée.
[0002] La présente invention propose également un procédé pour l'obtention de ladite pièce d'usure avec sa structure de renforcement.
Etat de la technique
[0003] Les installations d'extraction et de fragmentation des minerais et en particulier le matériel de broyage et de concassage sont soumis à de nombreuses contraintes de résistance au choc et à la résistance à l'abrasion.
[0004] Dans le domaine du traitement des agrégats, du ciment et des minerais, les pièces d'usure comportent les éjecteurs et enclumes de concasseurs à axe vertical, les marteaux et battoirs de concasseurs à axe horizontal, les cônes pour concasseurs, les tables et galets de broyeurs verticaux, les plaques de blindage et releveurs de broyeurs à boulets ou à barres. Concernant les installations d'extraction minières, nous citerons, entre autres, les pompes pour sables bitumeux ou machines de forage, les pompes de mines et les dents de dragage.
[0005] Les pièces d'usure composites réalisées par coulée en fonderie comportant des parties renforcées par des céramiques crées in situ lors de la coulée par une réaction exothermique auto-propagée et initiée par la chaleur de la coulée sont bien connues de l'état de la technique.
[0006] Le document WO03/047791 propose une pièce d'usure avec une série de céramiques de type carbures, nitrures, borures ou alliages intermétalliques formées in situ lors d'une réaction exothermique auto-propagée (SHS). La réaction est initiée par la chaleur de la coulée de la matrice métallique et se propage rapidement en atteignant des températures supérieures à 2000°C.
[0007] Les documents WO2010/031660 ; WO2010/0311661; WO2010/031663 et WO 2010/031662 proposent des pièces d'usure avec du carbure de titane formé in situ
par réaction exothermique auto-propagée. Il s'agit d'une structure à renforcement hiérarchique où les réactifs sont agglomérés avec une colle inorganique sous forme de grains millimétriques assemblés en « gâteau » (padding) pour former une structure géométrique infiltrable lors de la réaction exothermique auto-propagée et initiée par la coulée. Cette technologie crée une structure avec une alternance de zones à faible et à forte concentration en globules de carbure de titane, les zones à forte concentration se situant à l'endroit des grains de réactifs (ici, carbone et titane) précurseurs de la réaction de formation du carbure de titane.
[0008] La maîtrise des réactions de formation de céramiques in situ qui se produisent aux alentours de 2500°C est difficile, raison pour laquelle on utilise souvent des « modérateurs » comme les poudres de fer pour que la réaction soit moins violente et donc mieux maîtrisée, ce qui a cependant comme inconvénient que les concentrations en céramiques sont diluées et altèrent la dureté de l'ensemble. Les concentrations en carbures, nitrures et borures ainsi qu'en alliages intermétalliques sont donc limitées par ce phénomène.
[0009] Lors de la coulée, le maintien des poudres de réactifs sous forme de grains millimétriques ou des inserts compactés selon une géométrie prédéfinie peut également être problématique ce qui peut engendrer un déplacement non désiré des parties renforcées.
Buts de l'invention
[0010] La présente invention vise à surmonter les inconvénients de l'état de la technique et notamment la difficulté d'obtention de zones de renfort comportant une très forte concentration de céramiques (>50 % en volume par exemple).
Elle vise également à intégrer des zones à forte concentration en céramiques sous forme d'inserts de géométrie prédéfinie au sein d'une structure infiltrable de réactifs précurseurs de céramiques permettant en même temps d'assurer le maintien adéquat des parties renforcées dans le moule lors de la coulée de la pièce d'usure.
Résumé de l'invention
[0011] La présente invention divulgue une pièce d'usure comportant une partie renforcée comprenant un alliage ferreux renforcé avec des carbures, nitrures, borures métalliques ou par des alliages intermétalliques où ladite partie renforcée comprend des inserts de géométrie prédéfinie, lesdits inserts comportant des particules micrométriques de carbures, nitrures, borures métalliques ou de composés intermétalliques préfabriqués et enrobés dans une première matrice métallique (10), lesdits inserts étant insérés dans une
structure de renfort infiltrée comportant une alternance périodique de zones à forte et à faible concentration de particules micrométriques de carbures, nitrures, borures métalliques ou alliages intermétalliques issues de grains agglomérés comprenant les réactifs nécessaires à une synthèse exothermique auto-propagée in situ déclenchée lors de la coulée de l'alliage ferreux, ledit alliage ferreux formant la seconde matrice métallique, celle-ci étant différente de ladite première matrice métallique.
[0012] Les modes d'exécution préférés de l'invention comportent au moins une, ou une combinaison quelconque appropriée des caractéristiques suivantes : le métal utilisé pour les particules de céramiques des inserts est le titane, l'insert préféré comportant majoritairement des particules micrométriques de carbure de titane ; l'insert comporte une concentration en carbures, nitrures, borures métalliques ou en éléments intermétalliques jusqu'à 90 % en volume et au moins 30%, de préférence au moins 40% et de manière particulièrement préférée au moins 50 % en volume ; la première matrice métallique liant les particules céramiques de l'insert comporte majoritairement du nickel, de l'alliage de nickel, du cobalt, de l'alliage de cobalt ou un alliage ferreux différent de l'alliage de coulée constituant la seconde matrice métallique ; l'insert comporte des particules de carbures, nitrures, borures métalliques ou des particules d'alliages intermétalliques de taille moyenne D50 inférieure à 80 μm, de préférence inférieure à 60 μm et de manière particulièrement préférée inférieure à 40 μm ; l'insert préfabriqué et les zones où la céramique a été formée lors de la coulée comportent des interstices micrométriques comportant des matrices métalliques différentes ; la structure de renfort est composée d'une alternance de zones millimétriques à forte concentration en céramique issues des agglomérats de réactifs ayant réagis et de zones millimétriques à très faible concentration en céramique formant les interstices millimétriques infiltrés par la seconde matrice métallique, le métal de coulée ;
- la structure de renfort comporte en outre des grains millimétriques d'alumine, de zircone ou d'un alliage d'alumine-zircone.
[0013] La présente invention divulgue également une méthode de fabrication d'une pièce d'usure selon l'invention comprenant les étapes suivantes : mise à disposition d'un moule comprenant l'empreinte d'une pièce d'usure avec une géométrie prédéfinie d'une zone à renforcer ;
introduction et positionnement dans ladite zone à renforcer d'un mélange compact de poudres, sous forme de granulés millimétriques destinés à réagir dans une réaction exothermique auto-propagée sous la forme de granulés millimétriques, précurseurs de carbures, nitrures, borures métalliques ou de composés intermétalliques, éventuellement mélangés à une poudre modératrice entourant au moins partiellement un ou plusieurs inserts de géométrie définie préfabriqués et concentrés en carbures, nitrures, borures métalliques ou en composés intermétalliques et comportant la première matrice métallique ; coulée d'un alliage ferreux dans le moule, ledit alliage ferreux liquide initiant ladite réaction exothermique auto-propagée conduisant à la formation de carbures, nitrures, borures métalliques ou de composés intermétalliques dans lesdits granulés précurseurs; formation dans la zone renforcée de la pièce d'usure d'une macro microstructure alternée de zones millimétriques périodiques respectivement concentrées et pauvres en carbures, nitrures, borures métalliques ou en éléments intermétalliques infiltrés par la seconde matrice métallique issue de la coulée, l'ensemble entourant au moins partiellement la ou les inserts.
[0014] Selon des modes préférés de la méthode selon l'invention les inserts de géométrie prédéfinie fabriqués préalablement à la coulée de ladite pièce d'usure ont les caractéristiques suivantes ; les inserts sont fabriqués selon la métallurgie des poudres ; le mélange compact de poudres destinées à réagir dans une réaction exothermique auto-propagée sous la forme de granulés millimétriques est constitué de carbone, de titane, d'un liant et optionnellement d'une poudre modératrice.
[0015] La présente invention divulgue également des applications principales sous forme d'un impacteur, une enclume, un cône ou un galet de broyage.
Brève description des figures [0016] La figure 1 représente schématiquement une pièce d'usure selon l'invention avec une zone renforcée par des inserts cylindriques en composite céramique- métal préfabriqués. Ces inserts comportent des particules micrométriques de céramiques liées dans une première matrice métallique. Ces inserts sont entourés d'une structure de zones millimétriques périodiquement alternées en forte et en faible concentration en céramiques issues de la réaction SHS de grains millimétriques de réactifs précurseurs infiltrés par la coulée constituant la seconde matrice métallique qui a déclenché une réaction exothermique de formation de particules micrométriques de céramique in situ à côté des
inserts de céramiques préfabriqués. La seconde matrice métallique est différente de la première matrice métallique.
[0017] La figure 2 représente schématiquement le détail d'un insert de renforcement selon l'invention constitué d'inserts cylindriques en composite céramique-métal préfabriqués fixés dans une structure de grains millimétriques de réactifs précurseurs infiltrables par la coulée qui déclenchera une réaction exothermique de formation d'une céramique in situ à côté des inserts de céramiques préfabriqués.
[0018] La figure 3 représente schématiquement un cône mobile de concasseur avec la zone prédéfinie à renforcer par des inserts cylindriques en composite céramique- métal préfabriqués entourés d'une structure de grains millimétriques de réactifs précurseurs infiltrables.
[0019] La figure 4 représente schématiquement un marteau de concasseur avec la zone prédéfinie à renforcer par des inserts cylindriques en composite céramique- métal préfabriqués entourés d'une structure de grains millimétriques de réactifs précurseurs infiltrables.
[0020] La figure 5 représente schématiquement un battoir de concasseur avec la zone prédéfinie à renforcer par des inserts cylindriques en composite céramique-métal préfabriqués entourés d'une structure de grains millimétriques de réactifs précurseurs infiltrables.
[0021] La figure 6 représente schématiquement une dent d'excavatrice avec la zone prédéfinie à renforcer par des inserts cylindriques en composite céramique-métal préfabriqués entourés d'une structure de grains millimétriques de réactifs précurseurs infiltrables.
[0022] La figure 7 est une photo d'une structure de renfort réelle sur laquelle on distingue les inserts composites céramique-métal placés dans une structure tridimensionnelle de grains réactifs précurseurs de céramiques et qui se transformeront en céramiques lors de la coulée.
[0023] La figure 8 représente un impacteur selon l'art antérieur après usure. La ligne de contour représente le contour de la pièce avant usure.
[0024] La figure 9 représente un impacteur selon l'invention après usure. La ligne de contour représente ici aussi la pièce avant usure. On voit apparaître les inserts entourés de la structure tridimensionnelle infiltrée. Ils ont mieux résisté à l'usure.
[0025] La figure 10 représente schématiquement la méthode de mesure du diamètre de Féret (avec les diamètres de Féret minimum et maximum). Ces diamètres de Féret sont utilisés dans le procédé afin d'obtenir la taille moyenne des particules céramique- métal (comme expliqué ci-dessous).
Liste des symboles de référence
1 : pièce d'usure composite renforcée par une composition en céramiques aux endroits les plus exposés à l'usure.
2 : structure de renfort de géométrie prédéfinie infiltrée par le métal de coulée, la structure comportant, avant infiltration, de réactifs nécessaires à la formation d'une céramique à base de carbures, nitrures, borures de métal ou d'alliages intermétalliques par réaction exothermique auto-propagée.
3 : insert en composite céramique métal préfabriqué comportant une matrice métallique différente du métal de coulée, l'insert étant intégré à la structure infiltrable, l'ensemble étant placé dans le moule destiné à recevoir le métal de coulée.
4 : détail de structure de renfort montrant une zone à faible concentration en particules de céramiques formées.
5 : détail de structure de renfort montrant une zone à forte concentration en particules de céramiques formées.
6 : métal de coulée.
7 : particules globulaires de carbures, nitrures, borures métalliques ou éléments intermétalliques formés in situ lors de la coulée par réaction exothermique auto-propagée. Réaction initiée par la chaleur de la coulée.
8 : interstices micrométriques entre les particules de céramique infiltrés par le métal de coulée de la pièce d'usure (acier ou fonte) ou partiellement composés de métal modérateur.
9 : particules de céramique préfabriqués pouvant représenter jusqu'à 90 % du volume total de l'insert mais représentant au moins 10 % en volume, de préférence au moins 20 ou 30 %, de manière particulièrement préférée 40 ou 50 % du volume de l'insert. Ces inserts peuvent être fabriqués par n'importe quelle technologie mais le sont de préférence par métallurgie des poudres.
10 : première matrice métallique qui sert de liant aux particules de céramiques de l'insert préfabriqué. Cette première matrice métallique est différente de la seconde matrice métallique issue de la coulée qui infiltre la structure infiltrable.
11: schéma d'un cône mobile d'un concasseur comportant une structure renforcée selon l'invention.
12: schéma d'un marteau d'un concasseur comportant une structure renforcée selon l'invention.
13: schéma d'un battoir d'un concasseur comportant une structure renforcée selon l'invention.
14: schéma d'une dent d'excavatrice comportant une structure renforcée selon l'invention.
Description détaillée de l'invention [0026] La présente invention divulgue une pièce d'usure avec une résistance accrue à l'usure réalisée en fonderie conventionnelle. Elle se rapporte plus particulièrement à une pièce d'usure comportant une partie renforcée selon une géométrie prédéfinie avec des inserts en céramiques à l'échelle de quelques centimètres préalablement fabriqués insérés dans une structure tridimensionnelle infiltrable constituée de grains millimétriques agglomérés et formant une alternance périodique de grains et d'interstices millimétriques. Les grains comportent des réactifs nécessaires à la formation de céramiques lors de la coulée par réaction exothermique auto-propagée.
[0027] La structure infiltrable est donc constituée d'un agrégat de grains millimétriques de taille moyenne entre 0.5 et 10 mm, de préférence 0.7 à 6 mm et de manière particulièrement préférée entre 1 et 4 mm. Les interstices entre les grains dépendent du niveau de compactage et de la taille des grains mais sont de l'ordre du millimètre ou d'une fraction de millimètre. Les grains millimétriques contiennent un mélange homogène de poudres réactives avec si nécessaire une poudre modératrice et peuvent être agglomérés/compactés entre eux par l'utilisation d'un liant ou bien maintenues dans un conteneur métallique afin de délimiter géométriquement la zone renforcée de la pièce d'usure.
[0028] Les inserts en céramiques préalablement fabriqués et destinés à être maintenus par la structure tridimensionnelle de grains agglomérés ont quant à eux une forme quelconque, une forme cylindrique ou de type approximativement cylindrique étant cependant préférée. La taille de ces inserts en céramiques préalablement fabriqués dans le cas d'une forme cylindrique est d'un diamètre de 3 à 50 mm, de préférence de 6 à 30 mm, plus particulièrement de 8 à 20 mm et d'une hauteur de 5 à 300 mm, de préférence de 10 à 200 mm, en particulier de 10 à 150 mm.
[0029] La présente invention décrit donc une pièce d'usure renforcée sur son ou ses côtés les plus sollicités par, d'une part, une céramique préformée (composite céramique-métal) généralement obtenue par métallurgie des poudres comportant une première matrice métallique liant les particules micrométriques de céramiques, et d'autre part, d'une céramique formée in situ lors de la coulée de l'acier ou de la fonte liquide (la seconde matrice métallique), la première matrice métallique étant complètement indépendante de la première matrice métallique, ce qui la rend gérable sur mesure.
[0030] Cette technique permet le positionnement commode et robuste d'inserts préfabriqués de géométrie définie et concentrés en carbures, nitrures, borures métalliques ou en alliages intermétalliques et comportant une matrice métallique indépendante de celle générée par la coulée. Cette matrice métallique existant antérieurement à la coulée de la
pièce d'usure est présente dès le départ dans les inserts composites céramique-métal intégrés dans une structure infiltrable formée de grains millimétriques agglomérés (padding) comportant les réactifs nécessaires à la formation de matières céramiques nécessaires à une réaction exothermique auto-propagée et qui seront formés lors de la coulée de la pièce d'usure par initiation d'une réaction SHS (« self-propagating high-temperature synthesis » en anglais : https://en.wikipedia.org/wiki/Self-propagating high-temperature synthesis).
[0031] Contrairement à ce qui est pratiqué dans l'art antérieur, on utilise ici partiellement des inserts en composite céramique-métal préformés comme par exemple un insert cylindrique ou tronconique. Cet insert peut être composé par exemple de carbures de titane, de nitrures de titane ou de carbures de chrome avec une concentration minimum de 40 % en volume dans une première matrice métallique à base de fer, manganèse, nickel ou cobalt par exemple (compositions de type DIN 1.3401 , ou DIN 2.4771 par exemple) que l'on « emballe » dans une structure infiltrable composée par exemple d'un agglomérat de grains millimétriques d'un mélange de carbone et de titane, éventuellement dilué par un modérateur comme de la poudre de fer ou d'acier (par exemple acier 45CrMoV67), qui se transformera lors de la coulée de la pièce d'usure par réaction exothermique auto-propagée en TiC formé in situ. Ce TiC formé in situ et infiltré au moins partiellement par le métal de coulée (seconde matrice métallique) produira une structure « hybride » avec des zones à haute concentration de TiC à l'emplacement des inserts géométriques préalablement fabriqués avec leur propre matrice métallique (première matrice métallique à base de Ni, Mn, Co, acier, alliage de Ni), au moins partiellement entourés par une structure où les céramiques auront été formées in situ et où les interstices auront été infiltrés par le métal de coulée de la pièce d'usure. Il s'agit donc ici d'une zone renforcée par des inserts céramique-métal préfabriqués entourés d'une alternance périodique de zones millimétriques à forte et faible concentration en céramiques issues de la structure de grains de réactifs agglomérés (Ti + C par exemple) qui ont été transformés lors de la coulée en carbure de titane par réaction SHS.
[0032] L'expression TiC ne doit pas être interprétée au sens chimique stricte du terme mais en tant que carbure de titane au sens cristallographique car le carbure de titane possède une large plage de composition allant d'un rapport stoechiométrique C/Ti de 0,47 à 1. Il en va de même pour les autres céramiques telles que les nitrures et borures par exemple, dont les variations stoechiométriques peuvent être relativement larges.
[0033] La présente invention permet donc d'atteindre non seulement de très hautes concentrations en céramiques, généralement supérieures à 40 % en volume, pouvant aller jusqu'à 90 % en volume dans les inserts préfabriqués, mais également de choisir la première matrice métallique propre à ces inserts préfabriqués et donc d'être indépendant du
métal de coulée (seconde matrice métallique) de la pièce d'usure, qui est souvent de la fonte ou de l'acier au chrome. [0034] Les réactifs utilisés pour réaliser la structure infiltrable de grains millimétriques agglomérés peuvent être choisis parmi le groupe des ferroalliages, de préférence le FerroTi, FerroCr, FerroNb, FerroW, FerroMo, FerroB, FerroSi, FerroZr ou le FerroV. Ils peuvent aussi appartenir au groupe des oxydes, de préférence le TiO2, FeO, Fe2O3, SiO2, ZrO2,CrO3, Cr2O3,B2O3, MoO3, V2O5,CuO, MgO et NiO, ou au groupe des métaux ou leurs alliages, de préférence, le fer, le nickel, le titane ou l'aluminium d'une part et par ailleurs, en contrepartie, le carbone, le bore ou les composés nitrurés pour former les carbures, borures ou nitrures correspondants. [0035] A titre d'exemple non limitatif, les réactions auxquelles on peut avoir recours pour la formation de la structure « d'emballage » permettant de positionner des inserts céramique-métal préformés dans le moule pour la fabrication de la pièce d'usure sont généralement du type: FeTi + C -> TiC + Fe TiO2 + Al + C -> TiC + Al2O3 Fe2O3 + Al -> Al2O3 + Fe Ti + C -> TiC Al + C + B2O3 -> B4C + Al2O3 MoO3 + Al + Si -> MoSi2 + Al2O3 Ces réactions peuvent également être combinées entre elles. [0036] Comme évoqué plus haut, la vitesse de réaction pourra être contrôlée par un modérateur sous forme de différents ajouts de métaux, alliages ou particules ne participant pas à la réaction (par exemple des grains d'alumine-zircone). Ces ajouts, lorsqu'ils sont réactifs, peuvent d'ailleurs être utilisés avantageusement pour modifier, selon les besoins, la ténacité ou d'autres propriétés de la structure créée in situ. Ceci est représenté par les réactions illustratives suivantes : Fe2O3 + 2Al + xAl2O3 -> (1+x) Al2O3 + 2Fe Ti + C + Ni -> TiC + Ni [0037] A titre d'exemple non limitatif, les inserts en céramiques géométriques préalablement fabriqués peuvent être constitués de carbures de titane, de nitrures de titane, de carbonitrures de titane, de carbures de chrome, de nitrures de chrome, de carbonitrures de chrome, de carbures de niobium ou de carbures de tungstène, pris isolément ou en mélange entre eux. [0038] La présente invention permet une meilleure performance des pièces d'usure réalisées en fonderie renforcées que celles de l'art antérieur grâce à l'augmentation
localisée de la résistance à l'usure de la zone renforcée par la présence de plus de particules résistant à l'usure et/ou de particules de nature différente par une matrice métallique plus adaptée. Elle permet également une meilleure performance des pièces d'usure réalisées par l'ajout de zones de géométrie définie concentrées en carbures, nitrures, borures métalliques ou en alliages intermétalliques et d'une première matrice métallique existant antérieurement à la coulée de ladite pièce d'usure, en évitant l'usure préférentielle de l'alliage ferreux de la pièce d'usure autour de ces zones grâce à la structure faisant alterner à l'échelle millimétrique des zones denses en fines particules globulaires micrométriques de carbures métalliques par exemple formés in situ par un procédé SHS avec des zones qui en sont pratiquement exemptes au sein de la matrice métallique de la pièce au voisinage de ces dites zones, c'est-à-dire dans la structure « d'emballage » des inserts céramiques préfabriqués, tout en en améliorant l'union de ces inserts avec l'alliage ferreux de la pièce d'usure renforcée.
Méthode de mesure
Taille moyenne des particules de carbures, nitrures, borures métalliques ou des particules d'alliages intermétalliques [0039] Le calcul de la taille moyenne d50 des particules de carbures, nitrures, borures métalliques ou des particules d'alliages intermétalliques se fait grâce aux étapes suivantes.
[0040] Premièrement, un panorama photomicrographique de la section transversale polie d'un échantillon est réalisé, de sorte qu'il y ait au moins 250 particules complètes à travers le champ de vision. Ce panorama est réalisé par couture (processus de combinaison d'une série d'images numériques de différentes parties d'un sujet en une vue panoramique de l'ensemble du sujet afin de conserver une bonne définition) à l'aide d'un programme informatique et d'un microscope optique (par exemple, un panorama de champ d'image général obtenu par une Alicona Infinité Focus).
[0041] Ensuite, un seuillage approprié est réalisé afin de segmenter l'image en caractéristiques d'intérêt (les particules) et en arrière-plan, en différents niveaux de gris.
Si le seuillage est incohérent en raison d'une mauvaise qualité d'image, on ajoute une étape manuelle de dessin des particules, de la barre d'échelle si elle est présente et de la bordure de l'image sur un papier calque, ainsi qu'une étape de numérisation du papier calque.
[0042] Le diamètre de Féret (qui correspond à la distance entre deux tangentes parallèles, placées perpendiculairement à la direction de mesure de telle sorte que l'ensemble de la projection de la particule soit comprise entre ces deux tangentes) est
mesuré dans toutes les directions pour chaque particule par un logiciel d'analyse d'image (ImageJ par exemple). Un exemple est donné dans la figure 10.
[0043] Ensuite, les diamètres minimum et maximum de Féret de chaque granulé de l'image sont déterminés. Le diamètre minimum de Féret est le diamètre le plus petit parmi l'ensemble des diamètres de Féret mesurés pour une particule. Le diamètre maximum de Féret est le diamètre le plus grand parmi l'ensemble des diamètres de Féret mesurés pour une particule. Les particules touchant les bords de l'image sont ignorées du calcul.
[0044] La valeur moyenne des diamètres de Féret minimum et maximum de chaque particule est prise comme diamètre équivalent x. La distribution volumique des taille de particules q3 (x) est ensuite calculée sur la base de sphères de diamètre x.
La taille moyenne d50 des granulés est la taille moyenne pondérée en volume selon la
norme ISO 9276-2: 2014.
Exemples
Exemple comparatif
[0045] Dans cet exemple, la résistance d'une pièce renforcée est mesurée. Elle est fabriquée de manière analogue au procédé divulgué dans l'art antérieur (WO2010/031663). Cet art antérieur présente un impacteur composite pour broyeurs à percussion comprenant un ferro-alliage qui est renforcé sur son côté le plus exposé à l'usure avec une structure tridimensionnelle de grains millimétriques précurseurs de carbure de titane. Elle est réalisée par synthèse exothermique auto-propagée in situ. L'impacteur pèse 52 kg et est renforcé dans un volume d'environ 0,88 dm3.
[0046] Pour évaluer l'usure, on mesure la perte de poids de l'impacteur dans son intégralité. C'est le seul moyen de déterminer en pratique l'usure qui dépend d'une série de facteurs et notamment de la géométrie de positionnent du renfort dans l'impacteur. Bien qu'étant majoritairement usé du côté du renfort, l'impacteur est également partiellement usé en dehors de ce renfort en fonction de ce positionnement. La comparaison des usures respectives entre l'impacteur selon l'art antérieur et l'impacteur selon l'invention est illustrée aux figures 8 et 9.
[0047] Dans la structure tridimensionnelle du renfort selon l'art antérieur, il y a une alternance périodique entre des grains et des interstices millimétriques. Ces grains comportent un mélange de poudre de titane de granulométrie moyenne de 60 μm et de pureté de 98% minimale, de poudre de graphite de granulométrie inférieure à 30 μm et de pureté d'environ 99% et de poudre d'acier de granulométrie inférieure à 60 μm en tant qu'élément modérateur de réaction. Ces grains millimétriques d'environ 2,5 mm de diamètre
sont compactés avec une porosité inférieure à 20%. La composition chimique de ces grains est donnée au tableau suivant pour 100 kg de grains.
[0048] Cet exemple comparatif présente donc des parties renforcées de carbures de titane réalisés exclusivement par synthèse thermique auto-propagée du titane et du carbone in situ pour former du carbure de titane lors de la coulée. La réaction est déclenchée par la coulée de l'alliage ferreux constitué d'un acier martensitique inoxydable de type 12CrMoV qui sera également utilisé pour les exemples selon l'invention.
[0049] Cette pièce d'usure contient donc uniquement une structure tridimensionnelle de zones alternées de forte et faible concentration en carbures de titane réalisés in situ du côté le plus sollicité de la pièce d'usure lors de la coulée sans contenir au départ des inserts composites céramique-métal, de type cylindre par exemple, préalablement formés dans une matrice métallique différente de l'alliage ferreux utilisé pour la coulée. Au terme de ces étapes, une forme d'un volume total renforcé de 0, 88 dm3 est fabriquée. La perte en poids constatée lors d'un test d'usure est de 3,63 kg par 100 heures de fonctionnement (kg/100h) sur l'impacteur composite pour broyeurs à percussion. Pour les exemples selon l'invention, les mêmes conditions d'utilisation et de matière à broyer seront reproduites.
Exemples selon l'invention
Exemple 1 :
[0050] La pièce renforcée selon l'invention comporte une zone renforcée de géométrie prédéfinie avec des inserts en céramiques préalablement fabriqués à l'échelle de quelques centimètres et préalablement insérés dans une structure infiltrable comportant des réactifs nécessaires à la formation de céramiques lors de la coulée par réaction exothermique auto-propagée. Cette structure infiltrable est constituée d'un agrégat de grains millimétriques d'une taille moyenne d'environ 2,5 mm contenant les réactifs nécessaires à la réaction. Ces grains sont agglomérés dans une structure tridimensionnelle à l'aide d'un liant organique de type résine phénolique avec une forme prédéfinie dans un moule en résine. Dans cette structure tridimensionnelle, il y a une alternance périodique entre des grains et des interstices millimétriques. Cette configuration est représentée à la figure 7.
[0051] Ces grains comportent un mélange de poudre de titane d'une granulométrie moyenne de 60 μm et de pureté de 98%, de poudre de graphite de granulométrie moyenne de 30 μm et de pureté de 99% et de poudre d'acier de granulométrie moyenne de 60 μm et comprenant une poudre d'acier de type 45CrMoV67 en tant qu'élément modérateur de réaction. Ces grains millimétriques sont compactés avec une porosité inférieure à 20%. La composition chimique de ces grains est donnée au tableau suivant pour 100 kg de grains
[0052] Les inserts en céramiques préalablement fabriqués ont une forme géométrique cylindrique. Le diamètre de ces inserts céramiques préalablement fabriqués est de 12mm, la hauteur est de 20mm. Ils sont constitués de 70-80% de carbures de titane, de 1-3% de carbures de chrome et d'un liant à base d'acier austénitique au manganèse de type DIN 1.3401. Ce liant constitue la première matrice métallique. [0053] On positionne 67 inserts céramiques préalablement fabriqués verticalement de façon prédéfinie dans le moule en résine qui définit la zone de renforcement grâce à des encoches pratiquées dans le moule en résine et préalablement à l'ajout des grains millimétriques réactifs destinés à la réaction exothermique auto-propagée qui seront agglomérés grâce au liant organique. [0054] Au terme de ces étapes, une structure tridimensionnelle d'un volume total de 0,88 dm3, semblable à la figure 2, est fabriquée par coulée d'un alliage de type 12CrMoV de composition : 0,15-0,20% C ; 9,00-11,00% Cr ; 0,60-1,10% Mn et 0,35-0,65% Si. Celui-ci constitue la seconde matrice métallique.
Exemple 2 :
[0055] L'exemple 1 est répété mais cette fois, 77 inserts céramiques préalablement fabriqués sont positionnés de façon prédéfinie dans le moule en résine qui définit la zone de renforcement grâce à des encoches pratiquées dans le moule en résine et préalablement à l'ajout des grains millimétriques réactifs destinés à la réaction exothermique auto-propagée qui seront agglomérés grâce au même liant organique. Au terme de ces étapes, une structure tridimensionnelle d'un volume total de 0,88 dm3, semblable à la figure 2 est fabriquée.
[0056] Les inserts céramiques préalablement fabriqués sont constitués de 70- 80% de carbures de titane, de 1-3% de carbures de chrome et d'un liant comme première matrice métallique à base d'acier austénitique au manganèse de type DIN 1.3401.
Exemple 3 : [0057] On répète l'exemple 1 avec 67 inserts mais cette fois, les inserts céramiques préalablement fabriqués comportent de 75-85% de carbonitrures de titane et un liant à base d'un alliage de nickel et de chrome de type DIN 2.4771 comme première matrice métallique.
Exemple 4 :
[0058] Il s'agit d'un exemple avec un système de grains précurseurs d'une synthèse exothermique auto-propagée (SHS) : Ti+V+C.
[0059] Ces particules sont constituées d'un mélange de poudre de titane de granulométrie moyenne de 60 μm et de pureté de 98%, de poudre de vanadium de granulométrie inférieure à 200 meshs et de poudre de graphite de granulométrie inférieure à 30μm et de pureté 99%. Ces particules sont compactées avec une porosité inférieure à 22%. La composition chimique de ces particules est donnée au tableau suivant.
[0060] L'exemple 1 est répété avec à nouveau 67 inserts de même taille mais les inserts céramiques préalablement fabriqués comportent désormais de 70-80% de carbures de chrome et un liant à base d'un alliage de nickel et de chrome de type DIN 2.4771 comme première matrice métallique.
Exemple 5 :
[0061] Il s'agit d'un exemple avec un système de grains précurseurs d'une synthèse exothermique auto-propagée (SHS) : Ti+V+B4C. [0062] Ces particules sont constituées d'un mélange de poudre de titane de granulométrie d'environ 60 μm et de pureté de 98%, de poudre de carbures de bore de granulométrie inférieure à 150 meshs et de poudre de graphite de granulométrie moyenne de 30μm et de pureté 99%.
[0063] Ces particules sont compactées avec une porosité inférieure à 22%. La composition chimique de ces particules est donnée au tableau suivant.
[0064] Les 67 inserts céramiques préalablement fabriqués comportent de 80-
90% de carbures de chrome et un liant à base d'un alliage de nickel et de chrome de type 2.4771 comme première matrice métallique.
Exemple 6 :
[0065] Il s'agit d'un exemple avec un système de grains précurseurs d'une synthèse exothermique auto-propagée (SHS) : Ti+C entourés par des grains non réactifs d'alumine-zircone afin de modérer la réaction exothermique auto-propagée.
[0066] Ces grains précurseurs comportent un mélange de poudre de titane de granulométrie moyenne d'environ 60 μm et de pureté de 98%, de poudre de graphite de granulométrie moyenne de 30 μm et de pureté 99%. Ces grains précurseurs millimétriques d'environ 2,5 mm sont compactés avec une porosité inférieure à 20%. La composition chimique de ces grains est donnée au tableau suivant pour 100 kg de grains.
[0067] Les grains non réactifs comportent de l'alumine-zircone avec une proportion de 60% d'alumine et de 39% de zircone et 0,15 % d'oxyde de titane.
[0068] La taille moyenne de ces grains millimétriques non réactifs est de 2,1 mm.
[0069] Les inserts céramiques préalablement fabriqués sont constitués en moyenne de 70-80% de carbures de titane, de 1-3% de carbures de chrome et d'un liant à
base d'acier austénitique au manganèse de type DIN 1.3401 constituant la première matrice métallique.
[0070] La proportion en poids de grains non réactifs par rapport aux grains précurseurs de réaction exothermique peut varier en volume entre 5 et 40%, préférentiellement entre 10 et 30%, plus préférentiellement entre 15 et 20%. Dans cet exemple précis, il est de 20 % en poids.
Tableau récapitulatif et interprétation des résultats [0071] Le tableau ci-dessous reprend les pertes de poids d'un impacteur de 52 kg à l'état neuf, dont le volume renforcé représente environ 0,88 dm3. La perte de poids est mesurée après 696 heures de fonctionnement et est ramenée sur 100 heures de fonctionnement.
Interprétation des résultats.
[0072] La performance à l'usure des différents exemples est une combinaison du taux d'usure du renfort entourant l'insert préformé, de l'insert préformé lui-même ainsi que de la zone non renforcée de l'impacteur. Ainsi, les taux d'usure de ces différentes zones ont été évalués afin d'expliquer la différence de performance des différents exemples.
[0073] Le tableau suivant reprend les taux d'usure des différentes parties en kg par 100 heures de fonctionnement.
[0074] Le tableau montre que le taux d'usure des inserts préformés est dépendant de ses caractéristiques et le classement de performance des inserts préformés des exemples présentés est le suivant (du plus performant au moins performant): a) 75-85% de carbonitrures de titane et d'un liant à base d'alliage de nickel b) 70-80% de carbures de titane, de 1-3% de carbures de chrome et d'un liant de type acier austénitique. c) 70-80% de carbures de chrome et d'un liant à base de nickel d) 80-90% de carbures de chrome et d'un liant à base de nickel. [0075] En effet la résistance à l'usure des composites céramique-métal dépend des propriétés des particules de céramique, de leur proportion et de leur distribution ainsi que de la nature du liant utilisé.
[0076] Sans prétendre à une explication scientifiquement rigoureuse, il est généralement admis qu'il existe un lien entre la performance des différents composites céramique-métal utilisés comme inserts préformés et le module d'élasticité des particules dures des constituants. En effet, il est connu que plus le module d'élasticité des particules augmente, plus leur résistance aux chocs augmente car leur déformation à contraintes équivalentes diminue. Cette relation est illustrée sur la figure suivante :
[0077] Il en découle également que les carbures de chrome sont plus fragiles que les carbures ou carbonitrures à base de titane. Ceci explique que la performance de l'exemple 5 est inférieure à celle de l'exemple 4 malgré un pourcentage supérieur de carbures de chrome dans les inserts préformés.
Claims
1 . Pièce d'usure (1) comportant une partie renforcée (2) comprenant un alliage ferreux renforcé avec des carbures, nitrures, borures métalliques ou par des alliages intermétalliques où ladite partie renforcée (2) comprend des inserts (3) de géométrie prédéfinie, lesdits inserts (3) comportant des particules micrométriques de carbures, nitrures, borures métalliques ou de composés intermétalliques préfabriqués et enrobés dans une première matrice métallique (10), lesdits inserts (3) étant insérés dans une structure de renfort (2) faisant alterner des zones à forte concentration (5) de particules globulaires micrométriques (7) de carbures, nitrures, borures métalliques ou alliages intermétalliques et des zones en étant pratiquement exemptes (4), ledit alliage ferreux formant la seconde matrice métallique (6), celle-ci étant différente de ladite première matrice métallique (10).
2. Pièce d'usure (1) selon la revendication 1 pour laquelle le métal (10) utilisé pour les particules de céramiques des inserts (3) est le titane, l'insert (3) préféré comportant majoritairement des particules micrométriques de carbures de titane.
3. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle l'insert (3) comporte une concentration en carbures, nitrures, borures métalliques ou en éléments intermétalliques jusqu'à 90 % en volume et au moins 30%, de préférence au moins 40% et de manière particulièrement préférée au moins 50 % en volume.
4 . Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle la première matrice métallique (10) liant les particules céramiques de l'insert (3) comporte majoritairement du nickel, de l'alliage de nickel, du cobalt, de l'alliage de cobalt ou un alliage ferreux différent de l'alliage de coulée constituant la seconde matrice métallique (6).
5. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle l'insert (3) comporte des particules (9) de carbures, nitrures, borures métalliques ou des particules d'alliages intermétalliques de taille moyenne D50 inférieure à 80 μm, de préférence inférieure à 60 μm et de manière particulièrement préférée inférieure à 40 μm.
6. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle l'insert (3) et les zones où la céramique a été formée lors de la coulée (5) comportent des interstices micrométriques (8,10) comportant des matrices métalliques différentes (6,10).
7. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle la structure de renfort (2) est composée d'une alternance de zones millimétriques à forte concentration en céramique (5) issues des agglomérats de
réactifs ayant réagis et de zones millimétriques à très faible concentration en céramiques (4) formant les interstices millimétriques infiltrés par la seconde matrice métallique, le métal de coulée (6).
8. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle la structure de renfort (2) comporte en outre des grains millimétriques d'alumine, de zircone ou d'un alliage d'alumine-zircone.
9. Pièce d'usure (1) selon l'une quelconque des revendications 1 à 7 réalisée sous forme d'un impacteur, une enclume, un cône ou un galet de broyage.
10. Méthode de fabrication d'une pièce d'usure (1) selon l'une quelconque des revendications précédentes comprenant les étapes suivantes : mise à disposition d'un moule comprenant l'empreinte d'une pièce d'usure (1) avec une géométrie prédéfinie d'une zone à renforcer (2) ; introduction et positionnement dans ladite zone à renforcer (2) d'un mélange compact de poudres, sous forme de granulés millimétriques destinés à réagir dans une réaction exothermique auto-propagée sous la forme de granulés millimétriques, précurseurs de carbures, nitrures, borures métalliques ou de composés intermétalliques, éventuellement mélangés à une poudre modératrice entourant au moins partiellement un ou plusieurs inserts (3) de géométrie définie préfabriqués et concentrés en carbures, nitrures, borures métalliques ou en composés intermétalliques et comportant la première matrice métallique (10),
- coulée d'un alliage ferreux (6) dans le moule, ledit alliage ferreux liquide initiant ladite réaction exothermique auto-propagée conduisant à la formation de carbures, nitrures, borures métalliques ou de composés intermétalliques dans lesdits granulés précurseurs;
- formation dans la zone renforcée de la pièce d'usure d'une macro- microstructure alternée de zones millimétriques périodiques respectivement concentrées et pauvres en carbures, nitrures, borures métalliques ou en éléments intermétalliques infiltrés par la seconde matrice métallique (6) issue de la coulée, l'ensemble entourant au moins partiellement la ou les inserts (3);
11. Méthode de fabrication d'une pièce d'usure (1) selon la revendication 10 dans laquelle les inserts de géométrie prédéfinie (3) fabriqués préalablement à la coulée de ladite pièce d'usure le sont par métallurgie des poudres.
12. Méthode selon la revendication 10 dans laquelle le mélange compact de poudres destinées à réagir dans une réaction exothermique auto-propagée sous la forme de granulés millimétriques est constitué de carbone, de titane, d'un liant et optionnellement d'une poudre modératrice.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20177457.7A EP3915699A1 (fr) | 2020-05-29 | 2020-05-29 | Pièce d'usure composite céramique-métal |
PCT/EP2021/057813 WO2021239294A1 (fr) | 2020-05-29 | 2021-03-25 | Piece d'usure composite ceramique-metal |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4157569A1 true EP4157569A1 (fr) | 2023-04-05 |
Family
ID=70968768
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20177457.7A Withdrawn EP3915699A1 (fr) | 2020-05-29 | 2020-05-29 | Pièce d'usure composite céramique-métal |
EP21713432.9A Pending EP4157569A1 (fr) | 2020-05-29 | 2021-03-25 | Piece d'usure composite ceramique-metal |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20177457.7A Withdrawn EP3915699A1 (fr) | 2020-05-29 | 2020-05-29 | Pièce d'usure composite céramique-métal |
Country Status (10)
Country | Link |
---|---|
US (1) | US20230211412A1 (fr) |
EP (2) | EP3915699A1 (fr) |
CN (1) | CN115867401A (fr) |
AU (1) | AU2021278197A1 (fr) |
BR (1) | BR112022023649A2 (fr) |
CA (1) | CA3184352A1 (fr) |
CL (1) | CL2022003198A1 (fr) |
PE (1) | PE20230979A1 (fr) |
WO (1) | WO2021239294A1 (fr) |
ZA (1) | ZA202212080B (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4155008A1 (fr) * | 2021-09-23 | 2023-03-29 | Magotteaux International S.A. | Composant d'usure composite |
CN114769589A (zh) * | 2022-04-21 | 2022-07-22 | 昆明理工大学 | 一种金属基耐磨复合材料预制体的成型方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2468352C (fr) | 2001-12-04 | 2010-06-15 | Claude Poncin | Pieces de fonderie avec une resistance accrue a l'usure |
US20030213861A1 (en) * | 2002-05-15 | 2003-11-20 | Condon Gary J. | Crusher wear components |
EP2190430A1 (fr) | 2007-08-24 | 2010-06-02 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Utilisation de composés dérivés du cycloheximide pour le traitement ou la prévention en particulier d'ischémies et de maladies cardiaques |
BE1018127A3 (fr) | 2008-09-19 | 2010-05-04 | Magotteaux Int | Dent composite pour le travail du sol ou des roches. |
BE1018129A3 (fr) | 2008-09-19 | 2010-05-04 | Magotteaux Int | Impacteur composite pour concasseurs a percussion. |
BE1018130A3 (fr) * | 2008-09-19 | 2010-05-04 | Magotteaux Int | Materiau composite hierarchique. |
BE1018128A3 (fr) | 2008-09-19 | 2010-05-04 | Magotteaux Int | Cone de broyage pour concasseur a compression. |
US8308096B2 (en) * | 2009-07-14 | 2012-11-13 | TDY Industries, LLC | Reinforced roll and method of making same |
CN101905185B (zh) * | 2010-04-12 | 2012-05-16 | 吉林大学 | 一种破碎机用原位陶瓷局部增强复合材料锤头及制备方法 |
RU2012155100A (ru) * | 2010-05-20 | 2014-06-27 | Бейкер Хьюз Инкорпорейтед | Способ формирования по меньшей мере части бурильного инструмента и сформированное посредством него изделие |
LU92152B1 (en) * | 2013-02-18 | 2014-08-19 | Amincem S A | Metal matrix composite useful as wear parts for cement and mining industries |
PL414755A1 (pl) * | 2015-11-12 | 2017-05-22 | Innerco Spółka Z Ograniczoną Odpowiedzialnością | Sposób wytwarzania lokalnych stref kompozytowych w odlewach i wkładka odlewnicza |
-
2020
- 2020-05-29 EP EP20177457.7A patent/EP3915699A1/fr not_active Withdrawn
-
2021
- 2021-03-25 EP EP21713432.9A patent/EP4157569A1/fr active Pending
- 2021-03-25 CN CN202180038712.0A patent/CN115867401A/zh active Pending
- 2021-03-25 BR BR112022023649A patent/BR112022023649A2/pt unknown
- 2021-03-25 US US18/000,073 patent/US20230211412A1/en active Pending
- 2021-03-25 AU AU2021278197A patent/AU2021278197A1/en active Pending
- 2021-03-25 WO PCT/EP2021/057813 patent/WO2021239294A1/fr unknown
- 2021-03-25 PE PE2022002629A patent/PE20230979A1/es unknown
- 2021-03-25 CA CA3184352A patent/CA3184352A1/fr active Pending
-
2022
- 2022-11-04 ZA ZA2022/12080A patent/ZA202212080B/en unknown
- 2022-11-16 CL CL2022003198A patent/CL2022003198A1/es unknown
Also Published As
Publication number | Publication date |
---|---|
CA3184352A1 (fr) | 2021-12-02 |
ZA202212080B (en) | 2024-04-24 |
WO2021239294A1 (fr) | 2021-12-02 |
CL2022003198A1 (es) | 2023-01-13 |
PE20230979A1 (es) | 2023-06-19 |
CN115867401A (zh) | 2023-03-28 |
AU2021278197A1 (en) | 2022-12-01 |
BR112022023649A2 (pt) | 2022-12-20 |
EP3915699A1 (fr) | 2021-12-01 |
US20230211412A1 (en) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BE1018129A3 (fr) | Impacteur composite pour concasseurs a percussion. | |
EP2329052B1 (fr) | Dent composite pour le travail du sol ou des roches | |
BE1018130A3 (fr) | Materiau composite hierarchique. | |
BE1018128A3 (fr) | Cone de broyage pour concasseur a compression. | |
EP1450973B1 (fr) | Pieces de fonderie avec une resistance accrue a l'usure | |
EP4157569A1 (fr) | Piece d'usure composite ceramique-metal | |
FR2963792A1 (fr) | Compositions de carbure cemente a liant a base d'alliage cobalt-silicium | |
WO2019211268A1 (fr) | Dent composite avec insert tronconique | |
CN113784810A (zh) | 复合材料磨损部件 | |
CN112292223B (zh) | 金刚石接合体和金刚石接合体的制造方法 | |
EP3969206B1 (fr) | Piece d'usure composite | |
JP2024518384A (ja) | 焼結炭化物体の製造方法 | |
EP4157538A1 (fr) | Piece d'usure composite | |
JP2024536825A (ja) | 複合摩耗部品 | |
JP2024518385A (ja) | 結合相が強化された焼結炭化物材料の製造方法 | |
WO2024217935A1 (fr) | Galet de broyage composite monobloc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221027 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |