EP3915699A1 - Pièce d'usure composite céramique-métal - Google Patents

Pièce d'usure composite céramique-métal Download PDF

Info

Publication number
EP3915699A1
EP3915699A1 EP20177457.7A EP20177457A EP3915699A1 EP 3915699 A1 EP3915699 A1 EP 3915699A1 EP 20177457 A EP20177457 A EP 20177457A EP 3915699 A1 EP3915699 A1 EP 3915699A1
Authority
EP
European Patent Office
Prior art keywords
carbides
metal
inserts
nitrides
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20177457.7A
Other languages
German (de)
English (en)
Inventor
Guy Berton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magotteaux International SA
Original Assignee
Magotteaux International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magotteaux International SA filed Critical Magotteaux International SA
Priority to EP20177457.7A priority Critical patent/EP3915699A1/fr
Priority to PE2022002629A priority patent/PE20230979A1/es
Priority to CA3184352A priority patent/CA3184352A1/fr
Priority to CN202180038712.0A priority patent/CN115867401A/zh
Priority to PCT/EP2021/057813 priority patent/WO2021239294A1/fr
Priority to AU2021278197A priority patent/AU2021278197A1/en
Priority to BR112022023649A priority patent/BR112022023649A2/pt
Priority to US18/000,073 priority patent/US20230211412A1/en
Priority to EP21713432.9A priority patent/EP4157569A1/fr
Publication of EP3915699A1 publication Critical patent/EP3915699A1/fr
Priority to CL2022003198A priority patent/CL2022003198A1/es
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/02Casting in, on, or around objects which form part of the product for making reinforced articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • C22C1/1052Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1057Reactive infiltration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1068Making hard metals based on borides, carbides, nitrides, oxides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1073Infiltration or casting under mechanical pressure, e.g. squeeze casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2210/00Codes relating to different types of disintegrating devices
    • B02C2210/02Features for generally used wear parts on beaters, knives, rollers, anvils, linings and the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/066Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite

Definitions

  • the present invention relates to a wear part produced in a foundry. It relates more particularly to a wearing part comprising a reinforced part according to a predefined geometry with ceramic inserts previously manufactured inserted in an infiltrable structure comprising precursor reagents for the formation of ceramics during the casting by self-propagating exothermic reaction. .
  • the present invention also provides a method for obtaining said wearing part with its reinforcing structure.
  • the ore extraction and fragmentation facilities and in particular the grinding and crushing equipment are subject to numerous constraints in terms of impact resistance and abrasion resistance.
  • wearing parts include ejectors and anvils of vertical-axis crushers, hammers and beaters of horizontal-axis crushers, cones for crushers, tables and rollers. Vertical mills, armor plates and lifters for ball or bar mills.
  • pumps for tar sands or drilling machines we will cite, among others, pumps for tar sands or drilling machines, mining pumps and dredging teeth.
  • the composite wear parts produced by casting in a foundry comprising parts reinforced by ceramics created in situ during the casting by a self-propagating exothermic reaction initiated by the heat of the casting are well known in the state of the art. .
  • the document WO03 / 047791 offers a wear part with a series of ceramics such as carbides, nitrides, borides or intermetallic alloys formed in situ during a self-propagating exothermic reaction (SHS).
  • SHS self-propagating exothermic reaction
  • the documents WO2010 / 031660 ; WO2010 / 0311661 ; WO2010 / 031663 and WO 2010/031662 offer wear parts with titanium carbide formed in situ by self-propagating exothermic reaction. It is a hierarchically reinforced structure where the reactants are agglomerated with an inorganic glue in the form of millimeter grains assembled in a "cake" (padding) to form an infiltrable geometric structure during the exothermic reaction self-propagated and initiated by casting.
  • This technology creates a structure with an alternation of areas with a low and high concentration of titanium carbide globules, the areas with high concentration being located at the location of the grains of reactants (here, carbon and titanium) precursors of the reaction of formation of titanium carbide.
  • the present invention aims to overcome the drawbacks of the state of the art and in particular the difficulty of obtaining reinforcement zones comprising a very high concentration of ceramics (> 50% by volume for example). It also aims to integrate areas with a high concentration of ceramics in the form of inserts of predefined geometry within an infiltrable structure of ceramic precursor reagents making it possible at the same time to ensure the adequate maintenance of the reinforced parts in the mold during casting of the wearing part.
  • the present invention discloses a wear part comprising a reinforced part comprising a ferrous alloy reinforced with carbides, nitrides, metal borides or with intermetallic alloys where said reinforced part comprises inserts of predefined geometry, said inserts comprising micrometric particles of carbides , metal nitrides, borides or intermetallic compounds prefabricated and coated in a first metal matrix (10), said inserts being inserted in a infiltrated reinforcement structure comprising a periodic alternation of areas with a high and low concentration of micrometric particles of carbides, nitrides, metal borides or intermetallic alloys obtained from agglomerated grains comprising the reagents necessary for an exothermic synthesis self-propagated in situ triggered during the casting of the ferrous alloy, said ferrous alloy forming the second metal matrix, the latter being different from said first metal matrix.
  • the present invention also discloses main applications in the form of an impactor, an anvil, a cone or a grinding roller.
  • the present invention discloses a wear part with increased resistance to wear produced in a conventional foundry. It relates more particularly to a wearing part comprising a reinforced part according to a predefined geometry with ceramic inserts at the scale of a few centimeters previously manufactured inserted into an infiltrable three-dimensional structure made up of agglomerated millimeter grains and forming a periodic alternation of grains and millimeter interstices.
  • the grains contain reagents necessary for the formation of ceramics during the casting by a self-propagating exothermic reaction.
  • the infiltrable structure therefore consists of an aggregate of millimeter grains of average size between 0.5 and 10 mm, preferably 0.7 to 6 mm and particularly preferably between 1 and 4 mm.
  • the interstices between the grains depend on the level of compaction and the size of the grains but are of the order of a millimeter or a fraction of a millimeter.
  • the millimeter grains contain a homogeneous mixture of reactive powders with, if necessary, a moderating powder and can be agglomerated / compacted between them by the use of a binder or kept in a metal container in order to geometrically delimit the reinforced zone of the part. 'wear.
  • the ceramic inserts previously manufactured and intended to be held by the three-dimensional structure of agglomerated grains, for their part, have any shape, a cylindrical shape or of approximately cylindrical type being however preferred.
  • the size of these ceramic inserts previously manufactured in the case of a cylindrical shape is of a diameter of 3 to 50 mm, preferably 6 to 30 mm, more particularly 8 to 20 mm and a height of 5 to 300 mm, preferably 10 to 200 mm, in particular 10 to 150 mm.
  • the present invention therefore describes a wear part reinforced on its side or sides most stressed by, on the one hand, a preformed ceramic (ceramic-metal composite) generally obtained by powder metallurgy comprising a first metal matrix binding the micrometric particles. of ceramics, and on the other hand, of a ceramic formed in situ during the casting of steel or liquid iron (the second metal matrix), the first metal matrix being completely independent of the first metal matrix, this which makes it manageable to measure.
  • a preformed ceramic ceramic-metal composite
  • This technique allows the convenient and robust positioning of prefabricated inserts of defined geometry and concentrated in carbides, nitrides, metal borides or intermetallic alloys and comprising a metal matrix independent of that generated by the casting.
  • This metal matrix existing prior to the casting of the wear part is present from the start in the ceramic-metal composite inserts integrated in an infiltrable structure formed of agglomerated millimeter grains (padding) comprising the reagents necessary for the formation of ceramic materials necessary for a self-propagating exothermic reaction and which will be formed during the casting of the wearing part by initiation of an SHS reaction (“self-propagating high-temperature synthesis” in English: https://en.wikipedia.org/wiki/Self-propagating high-temperature synthesis ).
  • preformed ceramic-metal composite inserts are used here partially, for example a cylindrical or frustoconical insert.
  • This insert can be composed for example of titanium carbides, titanium nitrides or chromium carbides with a minimum concentration of 40% by volume in a first metal matrix based on iron, manganese, nickel or cobalt for example (compositions of type DIN 1.3401, or DIN 2.4771 for example) which is "wrapped" in an infiltrable structure composed for example of an agglomerate of millimeter grains of a mixture of carbon and titanium, optionally diluted by a moderator such as powder iron or steel (for example 45CrMoV67 steel), which will be transformed during the casting of the wearing part by self-propagating exothermic reaction in TiC formed in situ.
  • a moderator such as powder iron or steel (for example 45CrMoV67 steel), which will be transformed during the casting of the wearing part by self-propagating exothermic reaction in TiC formed in situ.
  • This TiC formed in situ and infiltrated at least partially by the casting metal will produce a “hybrid” structure with areas of high TiC concentration at the location of the geometric inserts previously fabricated with their own metal matrix (first metal matrix based on Ni, Mn, Co, steel, Ni alloy), at least partially surrounded by a structure where the ceramics will have been formed in situ and where the interstices will have been infiltrated by the casting metal of the part. wear.
  • agglomerated reactants Ti + C for example
  • TiC should not be interpreted in the strict chemical sense of the term but as titanium carbide in the crystallographic sense because titanium carbide has a wide composition range from a stoichiometric C / Ti ratio of 0.47 to 1.
  • other ceramics such as nitrides and borides for example, the stoichiometric variations of which can be relatively wide.
  • the present invention therefore makes it possible to achieve not only very high ceramic concentrations, generally greater than 40% by volume, which can range up to 90% by volume in prefabricated inserts, but also to choose the first metal matrix specific to these. prefabricated inserts and therefore to be independent of the casting metal (second metal matrix) of the wearing part, which is often cast iron or chrome steel.
  • the reagents used to produce the infiltrable structure of agglomerated millimeter grains can be chosen from the group of ferroalloys, preferably FerroTi, FerroCr, FerroNb, FerroW, FerroMo, FerroB, FerroSi, FerroZr or FerroV.
  • They can also belong to the group of oxides, preferably TiO 2 , FeO, Fe 2 O 3 , SiO 2 , ZrO 2 , CrO 3 , Cr 2 O 3 , B 2 O 3 , MoO 3 , V 2 O 5 , CuO , MgO and NiO, or from the group of metals or their alloys, preferably iron, nickel, titanium or aluminum on the one hand and on the other hand, on the other hand, carbon, boron or nitrided compounds for forming the corresponding carbides, borides or nitrides.
  • oxides preferably TiO 2 , FeO, Fe 2 O 3 , SiO 2 , ZrO 2 , CrO 3 , Cr 2 O 3 , B 2 O 3 , MoO 3 , V 2 O 5 , CuO , MgO and NiO
  • metals or their alloys preferably iron, nickel, titanium or aluminum on the one hand and on the other hand, on the other hand, carbon, boron or n
  • the geometric ceramic inserts previously manufactured can be made of titanium carbides, titanium nitrides, titanium carbonitrides, chromium carbides, chromium nitrides, chromium carbonitrides, carbides of niobium or tungsten carbides, taken singly or as a mixture with one another.
  • the present invention allows better performance of wear parts produced in reinforced foundry than those of the prior art thanks to the increase localized wear resistance of the area reinforced by the presence of more wear resistant particles and / or particles of a different nature by a more suitable metal matrix. It also allows better performance of the wearing parts produced by the addition of zones of defined geometry concentrated in carbides, nitrides, metal borides or in intermetallic alloys and of a first metal matrix existing prior to the casting of said part.
  • the resistance of a reinforced part is measured. It is manufactured in a manner analogous to the process disclosed in the prior art ( WO2010 / 031663 ).
  • This prior art presents a composite impactor for impact mills comprising a ferroalloy which is reinforced on its side most exposed to wear with a three-dimensional structure of millimetric grains precursors of titanium carbide. It is carried out by self-propagating exothermic synthesis in situ. The impactor weighs 52 kg and is reinforced in a volume of approximately 0.88 dm 3 .
  • This comparative example therefore presents reinforced parts of titanium carbides produced exclusively by self-propagating thermal synthesis of titanium and carbon in situ to form titanium carbide during casting.
  • the reaction is triggered by the casting of the ferrous alloy consisting of a martensitic stainless steel of the 12CrMoV type which will also be used for the examples according to the invention.
  • This wear part therefore only contains a three-dimensional structure of alternating areas of high and low concentration of titanium carbides produced in situ on the side most stressed of the wear part during casting without initially containing ceramic composite inserts.
  • metal of the cylinder type for example, previously formed in a metal matrix different from the ferrous alloy used for the casting.
  • a form with a total reinforced volume of 0.88 dm 3 is produced.
  • the weight loss observed during a wear test is 3.63 kg per 100 hours of operation (kg / 100h) on the composite impactor for impact crushers.
  • the same conditions of use and of material to be ground will be reproduced.
  • the reinforced part according to the invention comprises a reinforced zone of predefined geometry with ceramic inserts previously manufactured at the scale of a few centimeters and previously inserted into an infiltrable structure comprising the reagents necessary for the formation of ceramics during reaction casting. self-propagating exothermic.
  • This infiltrable structure consists of an aggregate of millimeter grains with an average size of about 2.5 mm containing the reagents necessary for the reaction. These grains are agglomerated in a three-dimensional structure using an organic binder of the phenolic resin type with a predefined shape in a resin mold. In this three-dimensional structure, there is a periodic alternation between grains and millimeter interstices. This configuration is shown in the figure 7 .
  • These grains comprise a mixture of titanium powder with an average particle size of 60 ⁇ m and a purity of 98%, graphite powder with an average particle size of 30 ⁇ m and a purity of 99% and steel powder with an average particle size of 60 ⁇ m and comprising a steel powder of 45CrMoV67 type as reaction moderator. These millimeter grains are compacted with a porosity of less than 20%.
  • the chemical composition of these grains is given in the following table for 100 kg of grains. Titanium Carbon Moderator 45 CrMoV steel 6 7 63.82 kg 14.70 kg 21.48 kg
  • the ceramic inserts previously manufactured have a cylindrical geometric shape.
  • the diameter of these previously manufactured ceramic inserts is 12mm, the height is 20mm.
  • They consist of 70-80% titanium carbides, 1-3% chromium carbides and a binder based on austenitic manganese steel type DIN 1.3401. This binder constitutes the first metal matrix.
  • a three-dimensional structure with a total volume of 0.88 dm 3 is produced by casting a 12CrMoV type alloy of composition: 0.15-0.20% C; 9.00-11.00% Cr; 0.60-1.10% Mn and 0.35-0.65% Si. This constitutes the second metal matrix.
  • Example 1 is repeated but this time, 77 ceramic inserts manufactured beforehand are positioned in a predefined manner in the resin mold which defines the reinforcement zone thanks to notches made in the resin mold and prior to the addition of the millimeter grains. reagents intended for the self-propagating exothermic reaction which will be agglomerated thanks to the same organic binder. At the end of these steps, a three-dimensional structure with a total volume of 0.88 dm 3 , similar to the figure 2 is manufactured.
  • the ceramic inserts previously manufactured consist of 70-80% titanium carbides, 1-3% chromium carbides and a binder as a first metal matrix based on austenitic manganese steel type DIN 1.3401.
  • Example 1 is repeated with 67 inserts but this time, the ceramic inserts previously manufactured contain 75-85% titanium carbonitrides and a binder based on a nickel and chromium alloy of the DIN 2.4771 type as the first metal matrix. .
  • Ex. 3 (67 preformed inserts) alloy of titanium carbides and nitrides (75-85%) surrounded by precursor reagents in titanium grains + carbon with steel moderator 45 CrMoV 6 7 Weight loss per 100 hours (kg / 100h) 1.95 Coefficient of superiority compared to the comparative example 1.86
  • These particles consist of a mixture of titanium powder with an average particle size of 60 ⁇ m and a purity of 98%, vanadium powder with a particle size less than 200 mesh and graphite powder with a particle size less than 30 ⁇ m and a purity of 99% . These particles are compacted with a porosity of less than 22%.
  • the chemical composition of these particles is given in the following table. Titanium Carbon Vanadium 67.01 kg 31.23 kg 71.32 kg
  • Example 1 is repeated with again 67 inserts of the same size but the ceramic inserts previously manufactured now contain 70-80% of chromium carbides and a binder based on a nickel and chromium alloy of type DIN 2.4771 as first metal matrix.
  • Ex. 4 (67 preformed inserts) Chromium carbide inserts (70-80%) surrounded by precursor reagents in titanium + carbon + vanadium grains Weight loss per 100 hours (kg / 100h) 2.23 Coefficient of superiority compared to the comparative example 1.63
  • These particles consist of a mixture of titanium powder with a particle size of approximately 60 ⁇ m and a purity of 98%, boron carbide powder with a particle size less than 150 mesh and graphite powder with an average particle size of 30 ⁇ m and purity 99%.
  • the 67 ceramic inserts previously manufactured contain 80-90% chromium carbides and a binder based on an alloy of nickel and chromium type 2.4771 as the first metal matrix.
  • Chromium carbide inserts (80-90%) surrounded by precursor reagents in titanium + carbon grains mixed with boron carbide Weight loss per 100 hours (kg / 100h) 2.72 Coefficient of superiority compared to the comparative example 1.33
  • SHS self-propagating exothermic synthesis
  • These precursor grains comprise a mixture of titanium powder with an average particle size of approximately 60 ⁇ m and a purity of 98%, of graphite powder with an average particle size of 30 ⁇ m and a purity of 99%. These millimetric precursor grains of approximately 2.5 mm are compacted with a porosity of less than 20%.
  • the chemical composition of these grains is given in the following table per 100 kg of grains. Titanium Carbon Alumina-zirconia / titanium oxide 60/39 / 0.15 and as moderator 63.95 kg 16.05 kg 20.00 kg
  • the non-reactive grains comprise alumina-zirconia with a proportion of 60% alumina and 39% zirconia and 0.15% titanium oxide.
  • the average size of these non-reactive millimeter grains is 2.1 mm.
  • Previously manufactured ceramic inserts consist on average of 70-80% titanium carbides, 1-3% chromium carbides and a binder with DIN 1.3401 type austenitic manganese steel base constituting the first metal matrix.
  • the proportion by weight of non-reactive grains relative to the precursor grains of the exothermic reaction can vary in volume between 5 and 40%, preferably between 10 and 30%, more preferably between 15 and 20%. In this specific example, it is 20% by weight.
  • the table below shows the weight losses of a 52 kg impactor in new condition, the reinforced volume of which represents approximately 0.88 dm 3 .
  • the weight loss is measured after 696 hours of operation and is reduced over 100 hours of operation.
  • Titanium + carbon + moderating steel powder 45 CrMoV 67 - - 3.63 - 1 Titanium + carbon + moderating steel powder 45 CrMoV 67 alloy of titanium and chromium carbides (70-80%) 67 2.02 80 2 Titanium + carbon + moderating steel powder 45 CrMoV 67 alloy of titanium and chromium carbides (70-80%) 77 2.06 76 3 Titanium + carbon + moderating steel powder 45 CrMoV 67 alloy of carbides and titanium nitride (75-85%) 67 1.95 86 4 Titanium + carbon + Vanadium Chromium carbides (70-80%) 67 2.23 63 5 Titanium + carbon + boron carbide Chromium carbides (80-90%) 67 2.72 33 6 Titanium + carbon + non-reactive grains containing alumina - zirconia alloy of titanium and chromium carbides (70-80%) 67 2.82 29
  • the wear performance of the various examples is a combination of the wear rate of the reinforcement surrounding the preformed insert, of the preformed insert itself as well as of the unreinforced area of the impactor. Thus, the wear rates of these different areas were evaluated in order to explain the difference in performance of the different examples.
  • the wear resistance of ceramic-metal composites depends on the properties of the ceramic particles, their proportion and their distribution as well as the nature of the binder used.
  • Example 5 It also follows that chromium carbides are more fragile than titanium-based carbides or carbonitrides. This explains why the performance of Example 5 is lower than that of Example 4 despite a higher percentage of chromium carbides in the preformed inserts.

Abstract

La présente invention se rapporte à une pièce d'usure réalisée en fonderie avec une partie renforcée comprenant un alliage ferreux renforcé avec des carbures, nitrures, borures métalliques ou en alliages intermétalliques pour laquelle ladite partie renforcée comprend des inserts de carbures, nitrures, borures métalliques ou des composés intermétalliques préalablement fabriqués de géométrie définie insérés dans une structure infiltrable de grains agglomérés comprenant les réactifs nécessaires à la formation de carbures, nitrures, borures métalliques ou intermétalliques selon une réaction thermique auto-propagée in situ déclenchée lors de la coulée de l'alliage ferreux.

Description

    Objet de l'invention
  • La présente invention se rapporte à une pièce d'usure réalisée en fonderie. Elle se rapporte plus particulièrement à une pièce d'usure comportant une partie renforcée selon une géométrie prédéfinie avec des inserts en céramiques préalablement fabriqués insérés dans une structure infiltrable comportant des réactifs précurseurs à la formation de céramiques lors de la coulée par réaction exothermique auto-propagée.
  • La présente invention propose également un procédé pour l'obtention de ladite pièce d'usure avec sa structure de renforcement.
  • Etat de la technique
  • Les installations d'extraction et de fragmentation des minerais et en particulier le matériel de broyage et de concassage sont soumis à de nombreuses contraintes de résistance au choc et à la résistance à l'abrasion.
  • Dans le domaine du traitement des agrégats, du ciment et des minerais, les pièces d'usure comportent les éjecteurs et enclumes de concasseurs à axe vertical, les marteaux et battoirs de concasseurs à axe horizontal, les cônes pour concasseurs, les tables et galets de broyeurs verticaux, les plaques de blindage et releveurs de broyeurs à boulets ou à barres. Concernant les installations d'extraction minières, nous citerons, entre autres, les pompes pour sables bitumeux ou machines de forage, les pompes de mines et les dents de dragage.
  • Les pièces d'usure composites réalisées par coulée en fonderie comportant des parties renforcées par des céramiques crées in situ lors de la coulée par une réaction exothermique auto-propagée et initiée par la chaleur de la coulée sont bien connues de l'état de la technique.
  • Le document WO03/047791 propose une pièce d'usure avec une série de céramiques de type carbures, nitrures, borures ou alliages intermétalliques formées in situ lors d'une réaction exothermique auto-propagée (SHS). La réaction est initiée par la chaleur de la coulée de la matrice métallique et se propage rapidement en atteignant des températures supérieures à 2000°C.
  • Les documents WO2010/031660 ; WO2010/0311661 ; WO2010/031663 et WO 2010/031662 proposent des pièces d'usure avec du carbure de titane formé in situ par réaction exothermique auto-propagée. Il s'agit d'une structure à renforcement hiérarchique où les réactifs sont agglomérés avec une colle inorganique sous forme de grains millimétriques assemblés en « gâteau » (padding) pour former une structure géométrique infiltrable lors de la réaction exothermique auto-propagée et initiée par la coulée. Cette technologie crée une structure avec une alternance de zones à faible et à forte concentration en globules de carbure de titane, les zones à forte concentration se situant à l'endroit des grains de réactifs (ici, carbone et titane) précurseurs de la réaction de formation du carbure de titane.
  • La maitrise des réactions de formation de céramiques in situ qui se produisent aux alentours de 2500°C est difficile, raison pour laquelle on utilise souvent des « modérateurs » comme les poudres de fer pour que la réaction soit moins violente et donc mieux maitrisée, ce qui a cependant comme inconvénient que les concentrations en céramiques sont diluées et altèrent la dureté de l'ensemble. Les concentrations en carbures, nitrures et borures ainsi qu'en alliages intermétalliques sont donc limitées par ce phénomène.
  • Lors de la coulée, le maintien des poudres de réactifs sous forme de grains millimétriques ou des inserts compactés selon une géométrie prédéfinie peut également être problématique ce qui peut engendrer un déplacement non désiré des parties renforcées.
  • Buts de l'invention
  • La présente invention vise à surmonter les inconvénients de l'état de la technique et notamment la difficulté d'obtention de zones de renfort comportant une très forte concentration de céramiques (>50 % en volume par exemple).
    Elle vise également à intégrer des zones à forte concentration en céramiques sous forme d'inserts de géométrie prédéfinie au sein d'une structure infiltrable de réactifs précurseurs de céramiques permettant en même temps d'assurer le maintien adéquat des parties renforcées dans le moule lors de la coulée de la pièce d'usure.
  • Résumé de l'invention
  • La présente invention divulgue une pièce d'usure comportant une partie renforcée comprenant un alliage ferreux renforcé avec des carbures, nitrures, borures métalliques ou par des alliages intermétalliques où ladite partie renforcée comprend des inserts de géométrie prédéfinie, lesdits inserts comportant des particules micrométriques de carbures, nitrures, borures métalliques ou de composés intermétalliques préfabriqués et enrobés dans une première matrice métallique (10), lesdits inserts étant insérés dans une structure de renfort infiltrée comportant une alternance périodique de zones à forte et à faible concentration de particules micrométriques de carbures, nitrures, borures métalliques ou alliages intermétalliques issues de grains agglomérés comprenant les réactifs nécessaires à une synthèse exothermique auto-propagée in situ déclenchée lors de la coulée de l'alliage ferreux, ledit alliage ferreux formant la seconde matrice métallique, celle-ci étant différente de ladite première matrice métallique.
  • Les modes d'exécution préférés de l'invention comportent au moins une, ou une combinaison quelconque appropriée des caractéristiques suivantes :
    • le métal utilisé pour les particules de céramiques des inserts est le titane, l'insert préféré comportant majoritairement des particules micrométriques de carbure de titane ;
    • l'insert comporte une concentration en carbures, nitrures, borures métalliques ou en éléments intermétalliques jusqu'à 90 % en volume et au moins 30%, de préférence au moins 40% et de manière particulièrement préférée au moins 50 % en volume ;
    • la première matrice métallique liant les particules céramiques de l'insert comporte majoritairement du nickel, de l'alliage de nickel, du cobalt, de l'alliage de cobalt ou un alliage ferreux différent de l'alliage de coulée constituant la seconde matrice métallique ;
    • l'insert comporte des particules de carbures, nitrures, borures métalliques ou des particules d'alliages intermétalliques de taille moyenne D50 inférieure à 80 µm, de préférence inférieure à 60 µm et de manière particulièrement préférée inférieure à 40 µm ;
    • l'insert préfabriqué et les zones où la céramique a été formée lors de la coulée comportent des interstices micrométriques comportant des matrices métalliques différentes ;
    • la structure de renfort est composée d'une alternance de zones millimétriques à forte concentration en céramique issues des agglomérats de réactifs ayant réagis et de zones millimétriques à très faible concentration en céramique formant les interstices millimétriques infiltrés par la seconde matrice métallique, le métal de coulée ;
    • la structure de renfort comporte en outre des grains millimétriques d'alumine, de zircone ou d'un alliage d'alumine-zircone.
  • La présente invention divulgue également une méthode de fabrication d'une pièce d'usure selon l'invention comprenant les étapes suivantes :
    • mise à disposition d'un moule comprenant l'empreinte d'une pièce d'usure avec une géométrie prédéfinie d'une zone à renforcer ;
    • introduction et positionnement dans ladite zone à renforcer d'un mélange compact de poudres, sous forme de granulés millimétriques destinés à réagir dans une réaction exothermique auto-propagée sous la forme de granulés millimétriques, précurseurs de carbures, nitrures, borures métalliques ou de composés intermétalliques, éventuellement mélangés à une poudre modératrice entourant au moins partiellement un ou plusieurs inserts de géométrie définie préfabriqués et concentrés en carbures, nitrures, borures métalliques ou en composés intermétalliques et comportant la première matrice métallique ;
    • coulée d'un alliage ferreux dans le moule, ledit alliage ferreux liquide initiant ladite réaction exothermique auto-propagée conduisant à la formation de carbures, nitrures, borures métalliques ou de composés intermétalliques dans lesdits granulés précurseurs;
    • formation dans la zone renforcée de la pièce d'usure d'une macro-microstructure alternée de zones millimétriques périodiques respectivement concentrées et pauvres en carbures, nitrures, borures métalliques ou en éléments intermétalliques infiltrés par la seconde matrice métallique issue de la coulée, l'ensemble entourant au moins partiellement la ou les inserts.
  • Selon des modes préférés de la méthode selon l'invention les inserts de géométrie prédéfinie fabriqués préalablement à la coulée de ladite pièce d'usure ont les caractéristiques suivantes ;
    • les inserts sont fabriqués selon la métallurgie des poudres ;
    • le mélange compact de poudres destinées à réagir dans une réaction exothermique auto-propagée sous la forme de granulés millimétriques est constitué de carbone, de titane, d'un liant et optionnellement d'une poudre modératrice.
  • La présente invention divulgue également des applications principales sous forme d'un impacteur, une enclume, un cône ou un galet de broyage.
  • Brève description des figures
    • La figure 1 représente schématiquement une pièce d'usure selon l'invention avec une zone renforcée par des inserts cylindriques en composite céramique-métal préfabriqués. Ces inserts comportent des particules micrométriques de céramiques liées dans une première matrice métallique. Ces inserts sont entourés d'une structure de zones millimétriques périodiquement alternées en forte et en faible concentration en céramiques issues de la réaction SHS de grains millimétriques de réactifs précurseurs infiltrés par la coulée constituant la seconde matrice métallique qui a déclenché une réaction exothermique de formation de particules micrométriques de céramique in situ à côté des inserts de céramiques préfabriqués. La seconde matrice métallique est différente de la première matrice métallique.
    • La figure 2 représente schématiquement le détail d'un insert de renforcement selon l'invention constitué d'inserts cylindriques en composite céramique-métal préfabriqués fixés dans une structure de grains millimétriques de réactifs précurseurs infiltrables par la coulée qui déclenchera une réaction exothermique de formation d'une céramique in situ à côté des inserts de céramiques préfabriqués.
    • La figure 3 représente schématiquement un cône mobile de concasseur avec la zone prédéfinie à renforcer par des inserts cylindriques en composite céramique-métal préfabriqués entourés d'une structure de grains millimétriques de réactifs précurseurs infiltrables.
    • La figure 4 représente schématiquement un marteau de concasseur avec la zone prédéfinie à renforcer par des inserts cylindriques en composite céramique-métal préfabriqués entourés d'une structure de grains millimétriques de réactifs précurseurs infiltrables.
    • La figure 5 représente schématiquement un battoir de concasseur avec la zone prédéfinie à renforcer par des inserts cylindriques en composite céramique-métal préfabriqués entourés d'une structure de grains millimétriques de réactifs précurseurs infiltrables.
    • La figure 6 représente schématiquement une dent d'excavatrice avec la zone prédéfinie à renforcer par des inserts cylindriques en composite céramique-métal préfabriqués entourés d'une structure de grains millimétriques de réactifs précurseurs infiltrables.
    • La figure 7 est une photo d'une structure de renfort réelle sur laquelle on distingue les inserts composites céramique-métal placés dans une structure tridimensionnelle de grains réactifs précurseurs de céramiques et qui se transformeront en céramiques lors de la coulée.
    • La figure 8 représente un impacteur selon l'art antérieur après usure. La ligne de contour représente le contour de la pièce avant usure.
    • La figure 9 représente un impacteur selon l'invention après usure. La ligne de contour représente ici aussi la pièce avant usure. On voit apparaître les inserts entourés de la structure tridimensionnelle infiltrée. Ils ont mieux résisté à l'usure.
    Liste des symboles de référence
    • 1 : pièce d'usure composite renforcée par une composition en céramiques aux endroits les plus exposés à l'usure.
    • 2 : structure de renfort de géométrie prédéfinie infiltrée par le métal de coulée, la structure comportant, avant infiltration, de réactifs nécessaires à la formation d'une céramique à base de carbures, nitrures, borures de métal ou d'alliages intermétalliques par réaction exothermique auto-propagée.
    • 3 : insert en composite céramique métal préfabriqué comportant une matrice métallique différente du métal de coulée, l'insert étant intégré à la structure infiltrable, l'ensemble étant placé dans le moule destiné à recevoir le métal de coulée.
    • 4 : détail de structure de renfort montrant une zone à faible concentration en particules de céramiques formées.
    • 5 : détail de structure de renfort montrant une zone à forte concentration en particules de céramiques formées.
    • 6 : métal de coulée.
    • 7 : particules globulaires de carbures, nitrures, borures métalliques ou éléments intermétalliques formés in situ lors de la coulée par réaction exothermique auto-propagée. Réaction initiée par la chaleur de la coulée.
    • 8 : interstices micrométriques entre les particules de céramique infiltrés par le métal de coulée de la pièce d'usure (acier ou fonte) ou partiellement composés de métal modérateur.
    • 9 : particules de céramique préfabriqués pouvant représenter jusqu'à 90 % du volume total de l'insert mais représentant au moins 10 % en volume, de préférence au moins 20 ou 30 %, de manière particulièrement préférée 40 ou 50 % du volume de l'insert. Ces inserts peuvent être fabriqués par n'importe quelle technologie mais le sont de préférence par métallurgie des poudres.
    • 10 : première matrice métallique qui sert de liant aux particules de céramiques de l'insert préfabriqué. Cette première matrice métallique est différente de la seconde matrice métallique issue de la coulée qui infiltre la structure infiltrable.
    • 11: schéma d'un cône mobile d'un concasseur comportant une structure renforcée selon l'invention.
    • 12: schéma d'un marteau d'un concasseur comportant une structure renforcée selon l'invention.
    • 13: schéma d'un battoir d'un concasseur comportant une structure renforcée selon l'invention.
    • 14: schéma d'une dent d'excavatrice comportant une structure renforcée selon l'invention.
    Description détaillée de l'invention
  • La présente invention divulgue une pièce d'usure avec une résistance accrue à l'usure réalisée en fonderie conventionnelle. Elle se rapporte plus particulièrement à une pièce d'usure comportant une partie renforcée selon une géométrie prédéfinie avec des inserts en céramiques à l'échelle de quelques centimètres préalablement fabriqués insérés dans une structure tridimensionnelle infiltrable constituée de grains millimétriques agglomérés et formant une alternance périodique de grains et d'interstices millimétriques. Les grains comportent des réactifs nécessaires à la formation de céramiques lors de la coulée par réaction exothermique auto-propagée.
  • La structure infiltrable est donc constituée d'un agrégat de grains millimétriques de taille moyenne entre 0.5 et 10 mm, de préférence 0.7 à 6 mm et de manière particulièrement préférée entre 1 et 4 mm. Les interstices entre les grains dépendent du niveau de compactage et de la taille des grains mais sont de l'ordre du millimètre ou d'une fraction de millimètre. Les grains millimétriques contiennent un mélange homogène de poudres réactives avec si nécessaire une poudre modératrice et peuvent être agglomérés/compactés entre eux par l'utilisation d'un liant ou bien maintenues dans un conteneur métallique afin de délimiter géométriquement la zone renforcée de la pièce d'usure.
  • Les inserts en céramiques préalablement fabriqués et destinés à être maintenus par la structure tridimensionnelle de grains agglomérés ont quant à eux une forme quelconque, une forme cylindrique ou de type approximativement cylindrique étant cependant préférée. La taille de ces inserts en céramiques préalablement fabriqués dans le cas d'une forme cylindrique est d'un diamètre de 3 à 50 mm, de préférence de 6 à 30 mm, plus particulièrement de 8 à 20 mm et d'une hauteur de 5 à 300 mm, de préférence de 10 à 200 mm, en particulier de 10 à 150 mm.
  • La présente invention décrit donc une pièce d'usure renforcée sur son ou ses côtés les plus sollicités par, d'une part, une céramique préformée (composite céramique-métal) généralement obtenue par métallurgie des poudres comportant une première matrice métallique liant les particules micrométriques de céramiques, et d'autre part, d'une céramique formée in situ lors de la coulée de l'acier ou de la fonte liquide (la seconde matrice métallique), la première matrice métallique étant complètement indépendante de la première matrice métallique, ce qui la rend gérable sur mesure.
  • Cette technique permet le positionnement commode et robuste d'inserts préfabriqués de géométrie définie et concentrés en carbures, nitrures, borures métalliques ou en alliages intermétalliques et comportant une matrice métallique indépendante de celle générée par la coulée. Cette matrice métallique existant antérieurement à la coulée de la pièce d'usure est présente dès le départ dans les inserts composites céramique-métal intégrés dans une structure infiltrable formée de grains millimétriques agglomérés (padding) comportant les réactifs nécessaires à la formation de matières céramiques nécessaires à une réaction exothermique auto-propagée et qui seront formés lors de la coulée de la pièce d'usure par initiation d'une réaction SHS (« self-propagating high-temperature synthesis » en anglais : https://en.wikipedia.org/wiki/Self-propagating high-temperature synthesis).
  • Contrairement à ce qui est pratiqué dans l'art antérieur, on utilise ici partiellement des inserts en composite céramique-métal préformés comme par exemple un insert cylindrique ou tronconique. Cet insert peut être composé par exemple de carbures de titane, de nitrures de titane ou de carbures de chrome avec une concentration minimum de 40 % en volume dans une première matrice métallique à base de fer, manganèse, nickel ou cobalt par exemple (compositions de type DIN 1.3401, ou DIN 2.4771 par exemple) que l'on « emballe » dans une structure infiltrable composée par exemple d'un agglomérat de grains millimétriques d'un mélange de carbone et de titane, éventuellement dilué par un modérateur comme de la poudre de fer ou d'acier (par exemple acier 45CrMoV67), qui se transformera lors de la coulée de la pièce d'usure par réaction exothermique auto-propagée en TiC formé in situ. Ce TiC formé in situ et infiltré au moins partiellement par le métal de coulée (seconde matrice métallique) produira une structure « hybride » avec des zones à haute concentration de TiC à l'emplacement des inserts géométriques préalablement fabriqués avec leur propre matrice métallique (première matrice métallique à base de Ni, Mn, Co, acier, alliage de Ni), au moins partiellement entourés par une structure où les céramiques auront été formées in situ et où les interstices auront été infiltrés par le métal de coulée de la pièce d'usure. Il s'agit donc ici d'une zone renforcée par des inserts céramique-métal préfabriqués entourés d'une alternance périodique de zones millimétriques à forte et faible concentration en céramiques issues de la structure de grains de réactifs agglomérés (Ti + C par exemple) qui ont été transformés lors de la coulée en carbure de titane par réaction SHS.
  • L'expression TiC ne doit pas être interprétée au sens chimique stricte du terme mais en tant que carbure de titane au sens cristallographique car le carbure de titane possède une large plage de composition allant d'un rapport stœchiométrique C/Ti de 0,47 à 1. Il en va de même pour les autres céramiques telles que les nitrures et borures par exemple, dont les variations stœchiométriques peuvent être relativement larges.
  • La présente invention permet donc d'atteindre non seulement de très hautes concentrations en céramiques, généralement supérieures à 40 % en volume, pouvant aller jusqu'à 90 % en volume dans les inserts préfabriqués, mais également de choisir la première matrice métallique propre à ces inserts préfabriqués et donc d'être indépendant du métal de coulée (seconde matrice métallique) de la pièce d'usure, qui est souvent de la fonte ou de l'acier au chrome.
  • Les réactifs utilisés pour réaliser la structure infiltrable de grains millimétriques agglomérés peuvent être choisis parmi le groupe des ferroalliages, de préférence le FerroTi, FerroCr, FerroNb, FerroW, FerroMo, FerroB, FerroSi, FerroZr ou le FerroV. Ils peuvent aussi appartenir au groupe des oxydes, de préférence le TiO2, FeO, Fe2O3, SiO2, ZrO2,CrO3, Cr2O3,B2O3, MoO3, V2O5, CuO, MgO et NiO, ou au groupe des métaux ou leurs alliages, de préférence, le fer, le nickel, le titane ou l'aluminium d'une part et par ailleurs, en contrepartie, le carbone, le bore ou les composés nitrurés pour former les carbures, borures ou nitrures correspondants.
  • A titre d'exemple non limitatif, les réactions auxquelles on peut avoir recours pour la formation de la structure « d'emballage » permettant de positionner des inserts céramique-métal préformés dans le moule pour la fabrication de la pièce d'usure sont généralement du type:
    • FeTi + C -> TiC + Fe
    • TiO2 + Al + C -> TiC + Al2O3
    • Fe2O3 + Al -> Al2O3 + Fe
    • Ti + C -> TiC
    • Al + C + B2O3 -> B4C + Al2O3
    • MoO3 + Al + Si -> MoSi2 + Al2O3
    • Ces réactions peuvent également être combinées entre elles.
  • Comme évoqué plus haut, la vitesse de réaction pourra être contrôlée par un modérateur sous forme de différents ajouts de métaux, alliages ou particules ne participant pas à la réaction (par exemple des grains d'alumine-zircone). Ces ajouts, lorsqu'ils sont réactifs, peuvent d'ailleurs être utilisés avantageusement pour modifier, selon les besoins, la ténacité ou d'autres propriétés de la structure créée in situ. Ceci est représenté par les réactions illustratives suivantes :
    • Fe2O3 + 2AI + xAl2O3 -> (1+x) Al2O3 + 2Fe
    • Ti + C + Ni -> TiC + Ni
  • A titre d'exemple non limitatif, les inserts en céramiques géométriques préalablement fabriqués peuvent être constitués de carbures de titane, de nitrures de titane, de carbonitrures de titane, de carbures de chrome, de nitrures de chrome, de carbonitrures de chrome, de carbures de niobium ou de carbures de tungstène, pris isolément ou en mélange entre eux.
  • La présente invention permet une meilleure performance des pièces d'usure réalisées en fonderie renforcées que celles de l'art antérieur grâce à l'augmentation localisée de la résistance à l'usure de la zone renforcée par la présence de plus de particules résistant à l'usure et/ou de particules de nature différente par une matrice métallique plus adaptée. Elle permet également une meilleure performance des pièces d'usure réalisées par l'ajout de zones de géométrie définie concentrées en carbures, nitrures, borures métalliques ou en alliages intermétalliques et d'une première matrice métallique existant antérieurement à la coulée de ladite pièce d'usure, en évitant l'usure préférentielle de l'alliage ferreux de la pièce d'usure autour de ces zones grâce à la structure faisant alterner à l'échelle millimétrique des zones denses en fines particules globulaires micrométriques de carbures métalliques par exemple formés in situ par un procédé SHS avec des zones qui en sont pratiquement exemptes au sein de la matrice métallique de la pièce au voisinage de ces dites zones, c'est-à-dire dans la structure « d'emballage » des inserts céramiques préfabriqués, tout en en améliorant l'union de ces inserts avec l'alliage ferreux de la pièce d'usure renforcée.
  • Exemples Exemple comparatif
  • Dans cet exemple, la résistance d'une pièce renforcée est mesurée. Elle est fabriquée de manière analogue au procédé divulgué dans l'art antérieur ( WO2010/031663 ). Cet art antérieur présente un impacteur composite pour broyeurs à percussion comprenant un ferro-alliage qui est renforcé sur son côté le plus exposé à l'usure avec une structure tridimensionnelle de grains millimétriques précurseurs de carbure de titane. Elle est réalisée par synthèse exothermique auto-propagée in situ. L'impacteur pèse 52 kg et est renforcé dans un volume d'environ 0,88 dm3.
  • Pour évaluer l'usure, on mesure la perte de poids de l'impacteur dans son intégralité. C'est le seul moyen de déterminer en pratique l'usure qui dépend d'une série de facteurs et notamment de la géométrie de positionnent du renfort dans l'impacteur. Bien qu'étant majoritairement usé du côté du renfort, l'impacteur est également partiellement usé en dehors de ce renfort en fonction de ce positionnement. La comparaison des usures respectives entre l'impacteur selon l'art antérieur et l'impacteur selon l'invention est illustrée aux figures 8 et 9.
  • Dans la structure tridimensionnelle du renfort selon l'art antérieur, il y a une alternance périodique entre des grains et des interstices millimétriques. Ces grains comportent un mélange de poudre de titane de granulométrie moyenne de 60 µm et de pureté de 98% minimale, de poudre de graphite de granulométrie inférieure à 30 µm et de pureté d'environ 99% et de poudre d'acier de granulométrie inférieure à 60 µm en tant qu'élément modérateur de réaction. Ces grains millimétriques d'environ 2,5 mm de diamètre sont compactés avec une porosité inférieure à 20%. La composition chimique de ces grains est donnée au tableau suivant pour 100 kg de grains.
    Titane Carbone Modérateur
    Acier 45 CrMoV 6 7
    63,82 kg 14,70 kg 21,48 kg
  • Cet exemple comparatif présente donc des parties renforcées de carbures de titane réalisés exclusivement par synthèse thermique auto-propagée du titane et du carbone in situ pour former du carbure de titane lors de la coulée. La réaction est déclenchée par la coulée de l'alliage ferreux constitué d'un acier martensitique inoxydable de type 12CrMoV qui sera également utilisé pour les exemples selon l'invention.
  • Cette pièce d'usure contient donc uniquement une structure tridimensionnelle de zones alternées de forte et faible concentration en carbures de titane réalisés in situ du côté le plus sollicité de la pièce d'usure lors de la coulée sans contenir au départ des inserts composites céramique-métal, de type cylindre par exemple, préalablement formés dans une matrice métallique différente de l'alliage ferreux utilisé pour la coulée. Au terme de ces étapes, une forme d'un volume total renforcé de 0, 88 dm3 est fabriquée. La perte en poids constatée lors d'un test d'usure est de 3,63 kg par 100 heures de fonctionnement (kg/100h) sur l'impacteur composite pour broyeurs à percussion. Pour les exemples selon l'invention, les mêmes conditions d'utilisation et de matière à broyer seront reproduites.
  • Exemples selon l'invention Exemple 1 :
  • La pièce renforcée selon l'invention comporte une zone renforcée de géométrie prédéfinie avec des inserts en céramiques préalablement fabriqués à l'échelle de quelques centimètres et préalablement insérés dans une structure infiltrable comportant des réactifs nécessaires à la formation de céramiques lors de la coulée par réaction exothermique auto-propagée. Cette structure infiltrable est constituée d'un agrégat de grains millimétriques d'une taille moyenne d'environ 2,5 mm contenant les réactifs nécessaires à la réaction. Ces grains sont agglomérés dans une structure tridimensionnelle à l'aide d'un liant organique de type résine phénolique avec une forme prédéfinie dans un moule en résine. Dans cette structure tridimensionnelle, il y a une alternance périodique entre des grains et des interstices millimétriques. Cette configuration est représentée à la figure 7.
  • Ces grains comportent un mélange de poudre de titane d'une granulométrie moyenne de 60 µm et de pureté de 98%, de poudre de graphite de granulométrie moyenne de 30 µm et de pureté de 99% et de poudre d'acier de granulométrie moyenne de 60 µm et comprenant une poudre d'acier de type 45CrMoV67 en tant qu'élément modérateur de réaction. Ces grains millimétriques sont compactés avec une porosité inférieure à 20%. La composition chimique de ces grains est donnée au tableau suivant pour 100 kg de grains
    Titane Carbone Modérateur
    Acier 45 CrMoV 6 7
    63,82 kg 14,70 kg 21,48 kg
  • Les inserts en céramiques préalablement fabriqués ont une forme géométrique cylindrique. Le diamètre de ces inserts céramiques préalablement fabriqués est de 12mm, la hauteur est de 20mm. Ils sont constitués de 70-80% de carbures de titane, de 1-3% de carbures de chrome et d'un liant à base d'acier austénitique au manganèse de type DIN 1.3401. Ce liant constitue la première matrice métallique.
  • On positionne 67 inserts céramiques préalablement fabriqués verticalement de façon prédéfinie dans le moule en résine qui définit la zone de renforcement grâce à des encoches pratiquées dans le moule en résine et préalablement à l'ajout des grains millimétriques réactifs destinés à la réaction exothermique auto-propagée qui seront agglomérés grâce au liant organique.
  • Au terme de ces étapes, une structure tridimensionnelle d'un volume total de 0,88 dm3, semblable à la figure 2, est fabriquée par coulée d'un alliage de type 12CrMoV de composition : 0,15-0,20% C ; 9,00-11,00% Cr ; 0,60-1,10% Mn et 0,35-0,65% Si. Celui-ci constitue la seconde matrice métallique.
    Ex 1 (67 inserts préformés) alliage carbures de titane et de chrome (70-80%) entourés des réactifs précurseurs en grains de titane + carbone avec modérateur poudre d'acier 45 CrMoV 6 7
    Perte en poids par 100 heures (kg/100h) 2,02
    Coefficient de supériorité par rapport à l'exemple comparatif 1,80
  • Exemple 2 :
  • L'exemple 1 est répété mais cette fois, 77 inserts céramiques préalablement fabriqués sont positionnés de façon prédéfinie dans le moule en résine qui définit la zone de renforcement grâce à des encoches pratiquées dans le moule en résine et préalablement à l'ajout des grains millimétriques réactifs destinés à la réaction exothermique auto-propagée qui seront agglomérés grâce au même liant organique. Au terme de ces étapes, une structure tridimensionnelle d'un volume total de 0,88 dm3, semblable à la figure 2 est fabriquée.
  • Les inserts céramiques préalablement fabriqués sont constitués de 70-80% de carbures de titane, de 1-3% de carbures de chrome et d'un liant comme première matrice métallique à base d'acier austénitique au manganèse de type DIN 1.3401.
    Ex. 2 (77 inserts préformés) alliage carbures de titane et de chrome (70-80%) entourés des réactifs précurseurs en grains de titane + carbone avec modérateur acier 45 CrMoV 6 7
    Perte en poids par 100 heures (kg/100h) 2,06
    Coefficient de supériorité par rapport à l'exemple comparatif 1,76
  • Exemple 3 :
  • On répète l'exemple 1 avec 67 inserts mais cette fois, les inserts céramiques préalablement fabriqués comportent de 75-85% de carbonitrures de titane et un liant à base d'un alliage de nickel et de chrome de type DIN 2.4771 comme première matrice métallique.
    Ex.3 (67 inserts préformés) alliage de carbures et de nitrures de titane (75-85%) entourés des réactifs précurseurs en grains de titane + carbone avec modérateur acier 45 CrMoV 6 7
    Perte en poids par 100 heures (kg/100h) 1,95
    Coefficient de supériorité par rapport à l'exemple comparatif 1,86
  • Exemple 4 :
  • Il s'agit d'un exemple avec un système de grains précurseurs d'une synthèse exothermique auto-propagée (SHS) : Ti+V+C.
  • Ces particules sont constituées d'un mélange de poudre de titane de granulométrie moyenne de 60 µm et de pureté de 98%, de poudre de vanadium de granulométrie inférieure à 200 meshs et de poudre de graphite de granulométrie inférieure à 30µm et de pureté 99%. Ces particules sont compactées avec une porosité inférieure à 22%. La composition chimique de ces particules est donnée au tableau suivant.
    Titane Carbone Vanadium
    67,01 kg 31,23 kg 71,32 kg
  • L'exemple 1 est répété avec à nouveau 67 inserts de même taille mais les inserts céramiques préalablement fabriqués comportent désormais de 70-80% de carbures de chrome et un liant à base d'un alliage de nickel et de chrome de type DIN 2.4771 comme première matrice métallique.
    Ex. 4 (67 inserts préformés) Inserts en carbures de chrome (70-80%) entourés des réactifs précurseurs en grains de titane + carbone + vanadium
    Perte en poids par 100 heures (kg/100h) 2,23
    Coefficient de supériorité par rapport à l'exemple comparatif 1,63
  • Exemple 5 :
  • Il s'agit d'un exemple avec un système de grains précurseurs d'une synthèse exothermique auto-propagée (SHS) : Ti+V+B4C.
  • Ces particules sont constituées d'un mélange de poudre de titane de granulométrie d'environ 60 µm et de pureté de 98%, de poudre de carbures de bore de granulométrie inférieure à 150 meshs et de poudre de graphite de granulométrie moyenne de 30µm et de pureté 99%.
  • Ces particules sont compactées avec une porosité inférieure à 22%. La composition chimique de ces particules est donnée au tableau suivant.
    Titane Carbone Carbure de bore
    20,10 kg 16,01 kg 7,736 kg
  • Les 67 inserts céramiques préalablement fabriqués comportent de 80-90% de carbures de chrome et un liant à base d'un alliage de nickel et de chrome de type 2.4771 comme première matrice métallique.
    Ex. 5 (67 inserts préformés) Inserts carbures de chrome (80-90%) entourés des réactifs précurseurs en grains de titane + carbone mélangés à du carbure de bore
    Perte en poids par 100 heures (kg/100h) 2,72
    Coefficient de supériorité par rapport à l'exemple comparatif 1,33
  • Exemple 6 :
  • Il s'agit d'un exemple avec un système de grains précurseurs d'une synthèse exothermique auto-propagée (SHS) : Ti+C entourés par des grains non réactifs d'alumine-zircone afin de modérer la réaction exothermique auto-propagée.
  • Ces grains précurseurs comportent un mélange de poudre de titane de granulométrie moyenne d'environ 60 µm et de pureté de 98%, de poudre de graphite de granulométrie moyenne de 30 µm et de pureté 99%. Ces grains précurseurs millimétriques d'environ 2,5 mm sont compactés avec une porosité inférieure à 20%. La composition chimique de ces grains est donnée au tableau suivant pour 100 kg de grains.
    Titane Carbone Alumine-zircone/ oxyde de titane 60/39/0.15 et tant que modérateur
    63,95 kg 16,05 kg 20,00 kg
  • Les grains non réactifs comportent de l'alumine-zircone avec une proportion de 60% d'alumine et de 39% de zircone et 0,15 % d'oxyde de titane.
  • La taille moyenne de ces grains millimétriques non réactifs est de 2,1 mm.
  • Les inserts céramiques préalablement fabriqués sont constitués en moyenne de 70-80% de carbures de titane, de 1-3% de carbures de chrome et d'un liant à base d'acier austénitique au manganèse de type DIN 1.3401 constituant la première matrice métallique.
  • La proportion en poids de grains non réactifs par rapport aux grains précurseurs de réaction exothermique peut varier en volume entre 5 et 40%, préférentiellement entre 10 et 30%, plus préférentiellement entre 15 et 20%. Dans cet exemple précis, il est de 20 % en poids.
    Ex 6 (67 inserts préformés) alliage carbures de titane et de chrome (70-80%) entourés des réactifs précurseurs en grains de titane + carbone et de grains non réactifs comportant de l'alumine-zircone
    Perte en poids par 100 heures (kg/100h) 2,82
    Coefficient de supériorité par rapport à l'exemple comparatif 1,29
  • Tableau récapitulatif et interprétation des résultats
  • Le tableau ci-dessous reprend les pertes de poids d'un impacteur de 52 kg à l'état neuf, dont le volume renforcé représente environ 0,88 dm3. La perte de poids est mesurée après 696 heures de fonctionnement et est ramenée sur 100 heures de fonctionnement.
    Ex Renfort entourant l'insert préformé Insert préformé Nombre d'inserts préformés Usure de l'impacteur composite (kg/100h) Gain %
    C. Titane + carbone + poudre acier modératrice 45 CrMoV 67 - - 3,63 -
    1 Titane + carbone + poudre acier modératrice 45 CrMoV 67 alliage carbures de titane et de chrome (70-80%) 67 2,02 80
    2 Titane + carbone + poudre acier modératrice 45 CrMoV 67 alliage carbures de titane et de chrome (70-80%) 77 2,06 76
    3 Titane + carbone + poudre acier modératrice 45 CrMoV 67 alliage de carbures et de nitrure de titane (75-85%) 67 1,95 86
    4 Titane + carbone + Vanadium Carbures de chrome (70-80%) 67 2,23 63
    5 Titane + carbone + carbure de bore Carbures de chrome (80-90%) 67 2,72 33
    6 Titane + carbone + grains non réactifs comportant de l'alumine - zircone alliage carbures de titane et de chrome (70-80%) 67 2,82 29
  • Interprétation des résultats.
  • La performance à l'usure des différents exemples est une combinaison du taux d'usure du renfort entourant l'insert préformé, de l'insert préformé lui-même ainsi que de la zone non renforcée de l'impacteur. Ainsi, les taux d'usure de ces différentes zones ont été évalués afin d'expliquer la différence de performance des différents exemples.
  • Le tableau suivant reprend les taux d'usure des différentes parties en kg par 100 heures de fonctionnement.
    Ex Inserts préformés (Kg/100H) Renfort entourant les inserts préformés (Kg/100H) Zone non renforcée de l'impacteur (Kg/100H)
    Comp. 2,77
    1 0, 19 0,33 1,50
    2 0, 19 0,31 1,56
    3 0, 16 0,34 1,45
    4 0,33 0,39 1,51
    5 0,36 0,42 1,94
    6 0,23 0,61 1,98
  • Le tableau montre que le taux d'usure des inserts préformés est dépendant de ses caractéristiques et le classement de performance des inserts préformés des exemples présentés est le suivant (du plus performant au moins performant):
    1. a) 75-85% de carbonitrures de titane et d'un liant à base d'alliage de nickel
    2. b) 70-80% de carbures de titane, de 1-3% de carbures de chrome et d'un liant de type acier austénitique.
    3. c) 70-80% de carbures de chrome et d'un liant à base de nickel
    4. d) 80-90% de carbures de chrome et d'un liant à base de nickel.
  • En effet la résistance à l'usure des composites céramique-métal dépend des propriétés des particules de céramique, de leur proportion et de leur distribution ainsi que de la nature du liant utilisé.
    Figure imgb0001
  • Sans prétendre à une explication scientifiquement rigoureuse, il est généralement admis qu'il existe un lien entre la performance des différents composites céramique-métal utilisés comme inserts préformés et le module d'élasticité des particules dures des constituants. En effet, il est connu que plus le module d'élasticité des particules augmente, plus leur résistance aux chocs augmente car leur déformation à contraintes équivalentes diminue. Cette relation est illustrée sur la figure suivante :
    Figure imgb0002
  • Il en découle également que les carbures de chrome sont plus fragiles que les carbures ou carbonitrures à base de titane. Ceci explique que la performance de l'exemple 5 est inférieure à celle de l'exemple 4 malgré un pourcentage supérieur de carbures de chrome dans les inserts préformés.

Claims (12)

  1. Pièce d'usure (1) comportant une partie renforcée (2) comprenant un alliage ferreux renforcé avec des carbures, nitrures, borures métalliques ou par des alliages intermétalliques où ladite partie renforcée (2) comprend des inserts (3) de géométrie prédéfinie, lesdits inserts (3) comportant des particules micrométriques de carbures, nitrures, borures métalliques ou de composés intermétalliques préfabriqués et enrobés dans une première matrice métallique (10), lesdits inserts (3) étant insérés dans une structure de renfort (2) infiltrée comportant une alternance périodique de zones à forte et à faible concentration (4,5) de particules micrométriques (7) de carbures, nitrures, borures métalliques ou alliages intermétalliques issues de grains agglomérés (5) comprenant les réactifs nécessaires à une synthèse exothermique auto-propagée in situ déclenchée lors de la coulée de l'alliage ferreux, ledit alliage ferreux formant la seconde matrice métallique (6), celle-ci étant différente de ladite première matrice métallique (10).
  2. Pièce d'usure (1) selon la revendication 1 pour laquelle le métal (10) utilisé pour les particules de céramiques des inserts (3) est le titane, l'insert (3) préféré comportant majoritairement des particules micrométriques de carbures de titane.
  3. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle l'insert (3) comporte une concentration en carbures, nitrures, borures métalliques ou en éléments intermétalliques jusqu'à 90 % en volume et au moins 30%, de préférence au moins 40% et de manière particulièrement préférée au moins 50 % en volume.
  4. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle la première matrice métallique (10) liant les particules céramiques de l'insert (3) comporte majoritairement du nickel, de l'alliage de nickel, du cobalt, de l'alliage de cobalt ou un alliage ferreux différent de l'alliage de coulée constituant la seconde matrice métallique (6).
  5. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle l'insert (3) comporte des particules (9) de carbures, nitrures, borures métalliques ou des particules d'alliages intermétalliques de taille moyenne D50 inférieure à 80 µm, de préférence inférieure à 60 µm et de manière particulièrement préférée inférieure à 40 µm.
  6. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle l'insert (3) et les zones où la céramique a été formée lors de la coulée (5) comportent des interstices micrométriques (8,10) comportant des matrices métalliques différentes (6,10).
  7. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle la structure de renfort (2) est composée d'une alternance de zones millimétriques à forte concentration en céramique (5) issues des agglomérats de réactifs ayant réagis et de zones millimétriques à très faible concentration en céramiques (4) formant les interstices millimétriques infiltrés par la seconde matrice métallique, le métal de coulée (6).
  8. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle la structure de renfort (2) comporte en outre des grains millimétriques d'alumine, de zircone ou d'un alliage d'alumine-zircone.
  9. Méthode de fabrication d'une pièce d'usure (1) selon l'une quelconque des revendications précédentes comprenant les étapes suivantes :
    - mise à disposition d'un moule comprenant l'empreinte d'une pièce d'usure (1) avec une géométrie prédéfinie d'une zone à renforcer (2) ;
    - introduction et positionnement dans ladite zone à renforcer (2) d'un mélange compact de poudres, sous forme de granulés millimétriques destinés à réagir dans une réaction exothermique auto-propagée sous la forme de granulés millimétriques, précurseurs de carbures, nitrures, borures métalliques ou de composés intermétalliques, éventuellement mélangés à une poudre modératrice entourant au moins partiellement un ou plusieurs inserts (3) de géométrie définie préfabriqués et concentrés en carbures, nitrures, borures métalliques ou en composés intermétalliques et comportant la première matrice métallique (10),
    - coulée d'un alliage ferreux (6) dans le moule, ledit alliage ferreux liquide initiant ladite réaction exothermique auto-propagée conduisant à la formation de carbures, nitrures, borures métalliques ou de composés intermétalliques dans lesdits granulés précurseurs;
    - formation dans la zone renforcée de la pièce d'usure d'une macro-microstructure alternée de zones millimétriques périodiques respectivement concentrées et pauvres en carbures, nitrures, borures métalliques ou en éléments intermétalliques infiltrés par la seconde matrice métallique (6) issue de la coulée, l'ensemble entourant au moins partiellement la ou les inserts (3);
  10. Méthode de fabrication d'une pièce d'usure (1) selon la revendication 9 dans laquelle les inserts de géométrie prédéfinie (3) fabriqués préalablement à la coulée de ladite pièce d'usure le sont par métallurgie des poudres.
  11. Méthode selon la revendication 9 dans laquelle le mélange compact de poudres destinées à réagir dans une réaction exothermique auto-propagée sous la forme de granulés millimétriques est constitué de carbone, de titane, d'un liant et optionnellement d'une poudre modératrice.
  12. Pièce d'usure (1) selon l'une quelconque des revendications 1 à 7 réalisée sous forme d'un impacteur, une enclume, un cône ou un galet de broyage.
EP20177457.7A 2020-05-29 2020-05-29 Pièce d'usure composite céramique-métal Withdrawn EP3915699A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP20177457.7A EP3915699A1 (fr) 2020-05-29 2020-05-29 Pièce d'usure composite céramique-métal
AU2021278197A AU2021278197A1 (en) 2020-05-29 2021-03-25 Ceramic-metal composite wear part
CA3184352A CA3184352A1 (fr) 2020-05-29 2021-03-25 Piece d'usure composite ceramique-metal
CN202180038712.0A CN115867401A (zh) 2020-05-29 2021-03-25 陶瓷-金属复合磨损部件
PCT/EP2021/057813 WO2021239294A1 (fr) 2020-05-29 2021-03-25 Piece d'usure composite ceramique-metal
PE2022002629A PE20230979A1 (es) 2020-05-29 2021-03-25 Pieza de desgaste compuesta de ceramica y metal
BR112022023649A BR112022023649A2 (pt) 2020-05-29 2021-03-25 Peça de desgaste e método para fabricar uma peça de desgaste
US18/000,073 US20230211412A1 (en) 2020-05-29 2021-03-25 Ceramic-metal composite wear part
EP21713432.9A EP4157569A1 (fr) 2020-05-29 2021-03-25 Piece d'usure composite ceramique-metal
CL2022003198A CL2022003198A1 (es) 2020-05-29 2022-11-16 Pieza de desgaste compuesta de cerámica y metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20177457.7A EP3915699A1 (fr) 2020-05-29 2020-05-29 Pièce d'usure composite céramique-métal

Publications (1)

Publication Number Publication Date
EP3915699A1 true EP3915699A1 (fr) 2021-12-01

Family

ID=70968768

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20177457.7A Withdrawn EP3915699A1 (fr) 2020-05-29 2020-05-29 Pièce d'usure composite céramique-métal
EP21713432.9A Pending EP4157569A1 (fr) 2020-05-29 2021-03-25 Piece d'usure composite ceramique-metal

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21713432.9A Pending EP4157569A1 (fr) 2020-05-29 2021-03-25 Piece d'usure composite ceramique-metal

Country Status (9)

Country Link
US (1) US20230211412A1 (fr)
EP (2) EP3915699A1 (fr)
CN (1) CN115867401A (fr)
AU (1) AU2021278197A1 (fr)
BR (1) BR112022023649A2 (fr)
CA (1) CA3184352A1 (fr)
CL (1) CL2022003198A1 (fr)
PE (1) PE20230979A1 (fr)
WO (1) WO2021239294A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155008A1 (fr) * 2021-09-23 2023-03-29 Magotteaux International S.A. Composant d'usure composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769589A (zh) * 2022-04-21 2022-07-22 昆明理工大学 一种金属基耐磨复合材料预制体的成型方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047791A1 (fr) 2001-12-04 2003-06-12 DE PODHRADSZKY Natasha Pieces de fonderie avec une resistance accrue a l'usure
US20030213861A1 (en) * 2002-05-15 2003-11-20 Condon Gary J. Crusher wear components
WO2010031660A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Dent composite pour le travail du sol ou des roches
WO2010031662A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Materiau composite hierarchique
WO2010031663A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Impacteur composite pour concasseurs à percussion
WO2010031661A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Cône de broyage pour concasseur a compression
WO2011008439A2 (fr) * 2009-07-14 2011-01-20 Tdy Industries, Inc. Rouleau renforcé et procédé de fabrication associé
US20110287238A1 (en) * 2010-05-20 2011-11-24 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
WO2014125034A1 (fr) * 2013-02-18 2014-08-21 Amincem S.A. Composite à matrice métallique utile comme pièces d'usure dans les industries du ciment et de l'extraction minière
CN108348995A (zh) * 2015-11-12 2018-07-31 伊诺科有限责任公司 用于制造铸造嵌件的粉末组合物、铸造嵌件以及在铸件中获得局部复合区的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026940A1 (fr) 2007-08-24 2009-03-05 Max Planck Gesellschaft zur Förderung der Wissenschaften e.V. Utilisation de composés dérivés du cycloheximide pour le traitement ou la prévention en particulier d'ischémies et de maladies cardiaques

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047791A1 (fr) 2001-12-04 2003-06-12 DE PODHRADSZKY Natasha Pieces de fonderie avec une resistance accrue a l'usure
US20030213861A1 (en) * 2002-05-15 2003-11-20 Condon Gary J. Crusher wear components
WO2010031660A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Dent composite pour le travail du sol ou des roches
WO2010031662A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Materiau composite hierarchique
WO2010031663A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Impacteur composite pour concasseurs à percussion
WO2010031661A1 (fr) 2008-09-19 2010-03-25 Magotteaux International S.A. Cône de broyage pour concasseur a compression
EP2334836A1 (fr) * 2008-09-19 2011-06-22 Magotteaux International SA Materiau composite hierarchique
WO2011008439A2 (fr) * 2009-07-14 2011-01-20 Tdy Industries, Inc. Rouleau renforcé et procédé de fabrication associé
US20110287238A1 (en) * 2010-05-20 2011-11-24 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
WO2014125034A1 (fr) * 2013-02-18 2014-08-21 Amincem S.A. Composite à matrice métallique utile comme pièces d'usure dans les industries du ciment et de l'extraction minière
CN108348995A (zh) * 2015-11-12 2018-07-31 伊诺科有限责任公司 用于制造铸造嵌件的粉末组合物、铸造嵌件以及在铸件中获得局部复合区的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155008A1 (fr) * 2021-09-23 2023-03-29 Magotteaux International S.A. Composant d'usure composite

Also Published As

Publication number Publication date
EP4157569A1 (fr) 2023-04-05
WO2021239294A1 (fr) 2021-12-02
CL2022003198A1 (es) 2023-01-13
CA3184352A1 (fr) 2021-12-02
US20230211412A1 (en) 2023-07-06
CN115867401A (zh) 2023-03-28
BR112022023649A2 (pt) 2022-12-20
AU2021278197A1 (en) 2022-12-01
PE20230979A1 (es) 2023-06-19

Similar Documents

Publication Publication Date Title
EP1450973B1 (fr) Pieces de fonderie avec une resistance accrue a l'usure
BE1018127A3 (fr) Dent composite pour le travail du sol ou des roches.
BE1018129A3 (fr) Impacteur composite pour concasseurs a percussion.
BE1018130A3 (fr) Materiau composite hierarchique.
BE1018128A3 (fr) Cone de broyage pour concasseur a compression.
EP3915699A1 (fr) Pièce d'usure composite céramique-métal
WO2007114524A1 (fr) Particule resistant a l'usure et element structurel resistant a l'usure
FR2963792A1 (fr) Compositions de carbure cemente a liant a base d'alliage cobalt-silicium
US20210131076A1 (en) Composite tooth with frustoconical insert
FR2504426A1 (fr) Piece coulee comportant des parties compactes, resistantes a l'usure et procede de fabrication d'une telle piece
EP3915684A1 (fr) Pièce d'usure composite
CN115835924A (zh) 具有局部复合磨损区的破碎或磨损件
EP3969206B1 (fr) Piece d'usure composite
WO2005123306A1 (fr) Procede pour la fabrication de materiaux composites et materiau composite fabrique par le procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20201027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220602