EP2329052B1 - Dent composite pour le travail du sol ou des roches - Google Patents

Dent composite pour le travail du sol ou des roches Download PDF

Info

Publication number
EP2329052B1
EP2329052B1 EP09782199A EP09782199A EP2329052B1 EP 2329052 B1 EP2329052 B1 EP 2329052B1 EP 09782199 A EP09782199 A EP 09782199A EP 09782199 A EP09782199 A EP 09782199A EP 2329052 B1 EP2329052 B1 EP 2329052B1
Authority
EP
European Patent Office
Prior art keywords
titanium carbide
tooth
micrometric
granules
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09782199A
Other languages
German (de)
English (en)
Other versions
EP2329052A1 (fr
Inventor
Guy Berton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magotteaux International SA
Original Assignee
Magotteaux International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magotteaux International SA filed Critical Magotteaux International SA
Priority to PL09782199T priority Critical patent/PL2329052T3/pl
Publication of EP2329052A1 publication Critical patent/EP2329052A1/fr
Application granted granted Critical
Publication of EP2329052B1 publication Critical patent/EP2329052B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/285Teeth characterised by the material used
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2866Small metalwork for digging elements, e.g. teeth scraper bits for rotating digging elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/01Main component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/05Compulsory alloy component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a composite tooth intended to equip a machine for working the soil or rocks. It relates in particular to a tooth comprising a metal matrix reinforced by particles of titanium carbide.
  • teeth is to be interpreted broadly and includes any element of any size, having a pointed or flattened shape, intended in particular for working the soil, the bottom of rivers or seas, rocks, on the surface or in the mines.
  • the document EP 1 450 973 B1 describes a reinforcement of wearing parts made by placing in the mold intended to receive the casting metal, an insert consisting of reactive powders which react with each other thanks to the heat provided by the metal during the casting at very high temperature (> 1400 ° C). After reaction of SHS type, the powders of the reactive insert will create a relatively uniform porous cluster (conglomerate) of hard particles; once formed, this porous mass will be immediately infiltrated by the casting metal at high temperature. The reaction of the powders is exothermic and self-propagating, which allows a synthesis of the carbides at high temperature and considerably increases the wettability of the porous mass by the infiltration metal.
  • the present invention discloses a composite tooth for a tillage or rock tillage tool, particularly for excavating or dredging tools, with improved wear resistance while maintaining good impact resistance.
  • This property is obtained by a composite reinforcement structure specifically designed for this application, a material that alternates on a millimeter scale dense zones in fine micrometric globular particles of metal carbides with zones that are practically free of them within the metallic matrix. of the tooth.
  • the present invention also provides a method for obtaining said reinforcing structure.
  • the present invention discloses a composite tooth for tillage or rock, said tooth comprising a ferrous alloy reinforced at least in part with titanium carbide in a defined geometry, wherein said reinforced portion comprises an alternating macro-microstructure of zones millimeters millimeter areas concentrated in micrometric globular particles of titanium carbide separated by millimetric areas substantially free of micrometric globular particles of titanium carbide, said micrometrically concentrated micrometric micrometric particles of micrometric titanium carbide particles in which the micrometric interstices between said globular particles are also occupied by said ferrous alloy.
  • the present invention also discloses a composite tooth obtained according to the method of any one of claims 11 to 13.
  • FIGS. 1a and 1b show a three-dimensional view of teeth without reinforcement according to the state of the art.
  • FIGS. 1c to 1h show a three-dimensional view of teeth with reinforcement according to the invention.
  • the figure 2 shows illustrative examples of tools on which the teeth according to the invention are mounted. Excavation and drilling tools.
  • the figure 4 represents a binocular view of a polished, unengaged surface of a section of the reinforced portion of the tooth according to the invention with millimetric areas (in light gray) concentrated micrometric globular titanium carbide (TiC globules).
  • the dark part represents the metal matrix (steel or cast iron) filling at the same time the space between these concentrated zones in micrometric globular titanium carbide but also the spaces between the globules themselves. (See figures 5 and 6 ).
  • the figures 5 and 6 represent SEM electron microscopic views of micrometric globular titanium carbide on polished and untouched surfaces at different magnifications. We see that in this particular case most of the globules of titanium carbide have a size less than 10 microns.
  • the figure 7 represents a view of micrometric globular titanium carbide on a fracture surface taken by SEM electron microscope. It can be seen that the globules of titanium carbide are perfectly incorporated in the metal matrix. This proves that the casting metal completely infiltrates (impregnates) the pores during casting once the chemical reaction between titanium and carbon is initiated.
  • the SHS or " s elf-propagating h igh temperature s ynthesis" reaction is a self-propagating, high-temperature synthesis reaction in which reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • the reaction between titanium powder and carbon powder to obtain titanium carbide TiC is highly exothermic. Only a little energy is needed to initiate the reaction locally. Then, the reaction will spontaneously propagate to the entire mixture of reagents thanks to the high temperatures reached. After initiation of the reaction, one has a reaction front which is propagated spontaneously (self-propagated) and which makes it possible to obtain titanium carbide from titanium and carbon.
  • the titanium carbide thus obtained is said to be "obtained in situ" because it does not come from the cast ferrous alloy.
  • the reactant powder mixtures comprise carbon powder and titanium powder and are compressed into plates and then crushed to obtain granules ranging in size from 1 to 12 mm, preferably from 1 to 6 mm, and particularly preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed between 55 and 95% of the theoretical density. These granules allow easy use / handling (see Fig. 3a-3h).
  • These millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of FIG. 3a-3h constitute the precursors of the titanium carbide to be created and make it possible to easily fill mold parts of various or irregular shapes. These granules can be held in place in the mold 15 by means of a dam 16, for example. The shaping or assembly of these granules can also be done using an adhesive.
  • the composite tooth for tillage or rocks according to the present invention has a reinforcing macro-microstructure which can also be called an alternating structure of zones concentrated in micrometric globular particles of titanium carbide separated by zones which are practically free.
  • a reinforcing macro-microstructure which can also be called an alternating structure of zones concentrated in micrometric globular particles of titanium carbide separated by zones which are practically free.
  • Such a structure is obtained by the reaction in the mold of the granules comprising a mixture of powders of carbon and titanium. This reaction is initiated by the heat of casting of the cast iron or steel used to sink any the piece and therefore both the unreinforced and the reinforced part (see Fig. 3rd ).
  • the casting therefore triggers an exothermic reaction of self-propagating synthesis at high temperature of the mixture of powders of carbon and titanium compacted in the form of granules (self-propagating high-temperature synthesis - SHS) and previously placed in the mold 15.
  • the reaction then has the distinction of continuing to spread as soon as it is initiated.
  • This high temperature synthesis allows easy infiltration of all millimetric and micrometric interstices by cast iron or casting steel ( Fig. 3g & 3h ). By increasing the wettability, the infiltration can be done on any thickness or depth of reinforcement of the tooth. It advantageously makes it possible, after SHS reaction and infiltration by an external casting metal, to create one or more reinforcement zones on the tooth comprising a high concentration of micrometric globular particles of titanium carbide (which could also be called clusters of nodules), which areas have a size of the order of a millimeter or a few millimeters, and which alternate with areas substantially free of globular titanium carbide.
  • the zones of reinforcement where these granules were found show a concentrated dispersion of micrometric globular particles 4 of TiC carbide (globules) whose micrometric interstices 3 have also been infiltrated by the casting metal. which is here cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metallic matrix as that which constitutes the unreinforced part of the tooth; this allows a total freedom of choice of the casting metal.
  • the reinforcement zones with a high concentration of titanium carbide are composed of globular micrometer particles of TiC in a large percentage (between approximately 35 and approximately 70% by volume) and of the ferrous infiltration alloy.
  • Micrometric globular particles are understood to mean globally spheroidal particles having a size ranging from a few ⁇ m to a few tens of ⁇ m at the most, the vast majority of these particles having a size of less than 50 ⁇ m, and even 20 ⁇ m, or even less than 10 ⁇ m.
  • TiC globules This globular form is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see Fig. 6 ).
  • the process for obtaining the granules is illustrated in FIG. 3a-3h.
  • the granules of carbon / titanium reagents are obtained by compaction between rollers 10 in order to obtain strips that are then crushed in a crusher 11.
  • the mixture of the powders is made in a mixer 8 consisting of a tank equipped with blades , to promote homogeneity.
  • the mixture then passes into a granulation apparatus through a hopper 9.
  • This machine comprises two rollers 10, through which the material is passed. Pressure is applied to these rollers 10, which compresses the material. A strip of compressed material is obtained at the outlet, which is then crushed in order to obtain the granules.
  • These granules are then sieved to the desired particle size in a sieve 13.
  • the degree of compaction of the bands depends on the applied pressure (in Pa) on the rollers (diameter 200 mm, width 30 mm). For a low level of compaction, of the order of 10 6 Pa, we obtain a density on the bands of the order of 55% of the theoretical density. After passing through the rollers 10 to compress this material, the apparent density of the granules is 3.75 x 0.55, ie 2.06 g / cm 3 .
  • the granules obtained from the raw material Ti + C are porous. This porosity varies from 5% for highly compressed granules, to 45% for slightly compressed granules.
  • the granules obtained generally have a size between 1 and 12 mm, preferably between 1 and 6 mm, and particularly preferably between 1.4 and 4 mm.
  • the granules are made as described above. To obtain a three-dimensional structure or superstructure / macro-microstructure with these granules, they are placed in the areas of the mold where it is desired to reinforce the workpiece. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container, or by any other means (dam 16).
  • the bulk density of the stack of Ti + C granules is measured according to ISO 697 and depends on the level of compaction of the bands, the granulometric distribution of the granules and the crushing mode of the bands, which influences the shape of the granules .
  • the bulk density of these Ti + C granules is generally of the order of 0.9 g / cm 3 to 2.5 g / cm 3 depending on the level of compaction of these granules and the density of the stack.
  • a tooth whose reinforced zones comprise an overall volume percentage of TiC of about 42%.
  • a band is produced by compaction at 85% of the density theoretical of a mixture of C and Ti. After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 2.1 g / cm 3 (35% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the mold at the location of the part to be reinforced, which thus comprises 65% by volume of porous granules.
  • a chromium cast iron (3% C, 25% Cr) was then cast at about 1500 ° C in a non-preheated sand mold.
  • the reaction between Ti and C is initiated by the heat of melting. This casting is done without a protective atmosphere.
  • 65% by volume of zones with a high concentration of approximately 65% of globular titanium carbide, ie 42% by global volume of TiC in the reinforced part of the tooth, are obtained in the reinforced part.
  • a tooth whose reinforced zones comprise an overall Tic volume percentage of approximately 30%.
  • a 70% compaction band of the theoretical density of a mixture of C and Ti After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 1.4 g / cm 3 (45% of space between the granules + 30% of porosity in the granules) is obtained.
  • the granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones with a high concentration of approximately 53% of globular titanium carbide are obtained, ie approximately 30% by total volume of TiC in the reinforced part of the tooth.
  • a tooth whose reinforced areas comprise an overall volume percentage of TiC of about 20%.
  • a band is made by compaction at 60% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved so as to obtain a granule size of 1 and 6 mm. A bulk density of the order of 1.0 g / cm 3 (55% of space between the granules + 40% of porosity in the granules) is obtained. The granules are placed in the part to be reinforced, which thus comprises 45% by volume of porous granules. After reaction, 45% by volume of zones concentrated to about 45% of globular titanium carbide, or 20% by volume of TiC in the reinforced portion of the tooth, are obtained in the reinforced portion.
  • Example 2 it was sought to attenuate the intensity of the reaction between carbon and titanium by adding a ferrous alloy powder.
  • a ferrous alloy powder As in Example 2, it is intended to make a tooth whose reinforced areas comprise an overall volume percentage of TiC of about 30%.
  • a compaction band is produced at 85% of the theoretical density of a mixture by weight of 15% of C, 63% of Ti and 22% of Fe.
  • the granules After crushing, the granules are sieved to obtain a granule size between 1.4 and 4 mm. A bulk density of the order of 2 g / cm 3 (45% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the reinforced part, which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones with a high concentration are obtained. approximately 55% of globular titanium carbide, ie 30% by volume of global titanium carbide in the reinforced macro-microstructure of the tooth.
  • millimetric granules which are crimped into the metal infiltration alloy. These millimetric granules are themselves composed of microscopic particles of globular TiC also crimped in the metal alloy infiltration. This system makes it possible to obtain a tooth with a reinforcement zone comprising a macrostructure within which there is an identical microstructure on a scale approximately a thousand times smaller.
  • the reinforcement zone of the tooth comprises small globular particles of titanium carbide, hard and finely dispersed in a metal matrix which surrounds them, makes it possible to avoid the formation and crack propagation (see Fig. 4 & 6 ). There is thus a double dissipative system of cracks.
  • Cracks generally originate at the most fragile places, which in this case are the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric particle of TiC, the propagation of this crack is then impeded by the infiltration alloy which surrounds this particle. The toughness of the infiltration alloy is greater than that of the TiC ceramic particle. The crack needs more energy to pass from one particle to another, to cross the micrometric spaces that exist between the particles.
  • the coefficient of expansion of the TiC reinforcement is lower than that of the ferrous alloy matrix (TiC expansion coefficient: 7.5 ⁇ 10 -6 / K and the ferrous alloy: about 12.0 ⁇ 10 -5 / K).
  • This difference in the expansion coefficients has the consequence of generating tensions in the material during the solidification phase and also during the heat treatment. If these voltages are too great, cracks may appear in the room and lead to scrapping it.
  • a small proportion of TiC reinforcement (less than 50% by volume) is used, resulting in less stress in the part.
  • the presence of a more ductile matrix between the micrometric globular particles of TiC in alternating zones of low and high concentration makes it possible to better manage any local voltages.
  • the boundary between the reinforced portion and the unreinforced portion of the tooth is not abrupt because there is a continuity of the metal matrix between the reinforced portion and the unreinforced portion, which allows the protect against a complete tearing of the reinforcement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Silicon Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Dental Preparations (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Soil Working Implements (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Earth Drilling (AREA)

Description

    Objet de l'invention
  • La présente invention se rapporte à une dent composite destinée à équiper une machine pour le travail du sol ou des roches. Elle se rapporte en particulier à une dent comportant une matrice métallique renforcée par des particules de carbure de titane.
  • Définition
  • L'expression « dent » est à interpréter au sens large et comporte tout élément de toute dimension, présentant une forme pointue ou aplatie, destiné notamment à travailler le sol, le fond des cours d'eau ou des mers, les roches, en surface ou dans les mines.
  • Etat de la technique
  • Peu de moyens sont connus pour modifier la dureté et la résistance à l'impact d'un alliage de fonderie en profondeur "dans la masse". Les moyens connus concernent généralement des modifications en surface de faible profondeur (quelques mm). Pour les dents réalisées en fonderie, les éléments de renfort doivent être présents en profondeur afin de résister à des sollicitations localisées importantes et simultanées en termes de contraintes mécaniques, d'usure et d'impact, et aussi parce qu'une dent est utilisée sur une grande partie de sa longueur.
  • Il est connu de recharger des dents avec des carbures métalliques (Technosphère® - Technogenia) par soudage oxyacétylénique. Un tel rechargement permet de déposer une couche de carbure de quelques millimètres d'épaisseur à la surface d'une dent. Un tel renfort n'est cependant pas intégré à la matrice métallique de la dent et ne garantit pas la même performance qu'une dent où un renfort de carbure est entièrement incorporé dans la masse de la matrice métallique.
  • Le document EP 1 450 973 B1 décrit un renforcement de pièces d'usure réalisé en plaçant dans le moule destiné à recevoir le métal de coulée, un insert constitué de poudres réactives qui réagissent entre elles grâce à la chaleur apportée par le métal lors de la coulée à très haute température (> 1400°C). Après réaction de type SHS, les poudres de l'insert réactif vont créer un amas poreux relativement uniforme (conglomérat) de particules dures; une fois formé, cet amas poreux sera immédiatement infiltré par le métal de coulée à haute température. La réaction des poudres est exothermique et auto-propagée, ce qui permet une synthèse des carbures à haute température et augmente considérablement la mouillabilité de l'amas poreux par le métal d'infiltration.
  • Le document US 5,081,774 divulgue différentes manières de disposer dans une dent de forme plate des inserts en fonte au chrome destinés à en augmenter la performance. Mais on sait que les limites d'une telle technique sont d'une part la massiveté du renfort qui a tendance à fragiliser la pièce et d'autre part, la liaison (soudure) insuffisante entre les inserts et le métal de base de la pièce.
  • Le document US 5,337,801 (Materkowski ) divulgue une autre méthode pour déposer des particules dures de carbure de tungstène à la surface travaillante des dents. Il s'agit dans ce cas de préparer d'abord des inserts en acier contenant des particules dures; ces inserts sont ensuite disposés dans le moule puis sont incorporés dans le métal de base coulé pour réaliser la pièce. Cette procédure est longue et coûteuse, n'exclut pas une possible réaction entre le carbure de tungstène et le métal des inserts et ne garantit pas toujours une soudure parfaite des particules dures au métal de base.
  • Buts de l'invention
  • La présente invention divulgue une dent composite pour un outil de travail du sol ou de la roche, en particulier pour des outils d'excavation ou de dragage, avec une résistance améliorée contre l'usure tout en maintenant une bonne résistance aux chocs. Cette propriété est obtenue par une structure composite de renforcement spécifiquement conçue pour cette application, matériau qui fait alterner à l'échelle millimétrique des zones denses en fines particules globulaires micrométriques de carbures métalliques avec des zones qui en sont pratiquement exemptes au sein de la matrice métallique de la dent.
  • La présente invention propose également un procédé pour l'obtention de ladite structure de renforcement.
  • Résumé de l'invention
  • La présente invention divulgue une dent composite pour le travail du sol ou des roches, ladite dent comportant un alliage ferreux renforcé au moins en partie avec du carbure de titane selon une géométrie définie, dans laquelle ladite partie renforcée comporte une macro-microstructure alternée de zones millimétriques de zones millimétriques concentrées en particules globulaires micrométriques de carbure de titane séparées par des zones millimétriques essentiellement exemptes de particules globulaires micrométriques de carbure de titane, lesdites zones concentrées en particules globulaires micrométriques de carbure de titane formant une microstructure dans laquelle les interstices micrométriques entre lesdites particules globulaires sont également occupés par ledit alliage ferreux.
  • Selon des modes particuliers de l'invention, la dent composite comporte au moins une ou une combinaison appropriée des caractéristiques suivantes :
    • lesdites zones millimétriques concentrées ont une concentration en carbures de titane supérieure à 36.9 % en volume ;
    • ladite partie renforcée a une teneur globale de carbure de titane entre 16.6 et 50.5 % en volume ;
    • les particules micrométriques globulaires de carbure de titane ont une taille inférieure à 50µm ;
    • la majeure partie des particules micrométriques globulaires de carbure de titane a une taille inférieure à 20 µm ;
    • lesdites zones concentrées en particules globulaires de carbure de titane comportent 36.9 à 72.2 % en volume de carbure de titane ;
    • lesdites zones millimétriques concentrées en carbure de titane ont une dimension variant de 1 à 12 mm ;
    • lesdites zones millimétriques concentrées en carbure de titane ont une dimension variant de 1 à 6 mm ;
    • lesdites zones concentrées en carbure de titane ont une dimension variant de 1.4 à 4 mm ;
  • La présente invention divulgue également un procédé de fabrication de la dent composite selon l'une quelconque des revendications 1 à 9 comportant les étapes suivantes :
    • mise à disposition d'un moule comportant l'empreinte de la dent avec une géométrie de renforcement prédéfinie ;
    • introduction, dans la partie de l'empreinte de la dent destinée à former la partie renforcée (5), d'un mélange de poudres compactées comportant du carbone et du titane sous forme de granulés millimétriques précurseurs de carbure de titane ;
    • coulée d'un alliage ferreux dans le moule, la chaleur de ladite coulée déclenchant une réaction exothermique de synthèse auto-propagée de carbure de titane à haute température (SHS) au sein desdits granulés précurseurs ;
    • formation, au sein de la partie renforcée de la dent composite d'une macro-microstructure alternée de zones millimétriques concentrées en particules globulaires micrométriques de carbure de titane à l'emplacement desdits granulés précurseurs, lesdites zones étant séparées entre elles par des zones millimétriques essentiellement exemptes de particules globulaires micrométriques de carbure de titane, lesdites particules globulaires étant également séparées au sein desdites zones millimétriques concentrées de carbure de titane par des interstices micrométriques ;
    • infiltration des interstices millimétriques et micrométriques par ledit alliage ferreux de coulée à haute température, consécutive à la formation de particules microscopiques globulaires de carbure de titane.
  • Selon des modes particuliers de l'invention, le procédé comporte au moins une ou une combinaison appropriée des caractéristiques suivantes :
    • les poudres compactées de titane et de carbone comportent une poudre d'un alliage ferreux ;
    • ledit carbone est du graphite.
  • La présente invention divulgue également une dent composite obtenue selon le procédé de l'une quelconque des revendications 11 à 13.
  • Brève description des figures
  • Les figures 1a et 1b montrent une vue en trois dimensions de dents sans renforcement selon l'état de la technique.
  • Les figures 1c à 1h montrent une vue en trois dimensions de dents avec un renforcement selon l'invention.
  • La figure 2 montre des exemples illustratifs d'outils sur lesquels les dents selon l'invention sont montées. Outils d'excavation et de forage.
  • La figure 3a-3h représente le procédé de fabrication de la dent représentée à la figure 1b selon l'invention.
    • l'étape 3a montre le dispositif de mélange des poudres de titane et de carbone ;
    • l'étape 3b montre la compaction des poudres entre deux rouleaux suivie d'un concassage et d'un tamisage avec recyclage des particules trop fines ;
    • la figure 3c montre un moule de sable dans lequel on a placé un barrage pour contenir les granulés de poudre compactée à l'endroit du renforcement de la dent de type 1d ;
    • la figure 3d montre un agrandissement de la zone de renforcement dans laquelle se trouvent les granulés compactés comportant les réactifs précurseurs du TiC ;
    • l'étape 3e montre la coulée de l'alliage ferreux dans le moule ;
    • la figure 3f montre la dent de type 1b résultant de la coulée ;
    • la figure 3g montre un agrandissement des zones à forte concentration en nodules de TiC - ce schéma représente les mêmes zones que dans la figure 4 ;
    • la figure 3h montre un agrandissement au sein d'une même zone à forte concentration en globules de TiC - les globules micrométriques sont individuellement entourés par le métal de coulée.
  • La figure 4 représente une vue au binoculaire d'une surface polie, non attaquée, d'une coupe de la partie renforcée de la dent selon invention avec des zones millimétriques (en gris clair) concentrées en carbure de titane globulaire micrométrique (globules de TiC). La partie sombre représente la matrice métallique (acier ou fonte) remplissant à la fois l'espace entre ces zones concentrées en carbure de titane globulaire micrométrique mais aussi les espaces entre les globules eux-mêmes. (Voir figures 5 et 6).
  • Les figures 5 et 6 représentent des vues prises au microscope électronique SEM de carbure de titane globulaire micrométrique sur des surfaces polies et non attaquées à des grossissements différents. On voit que dans ce cas particulier la plupart des globules de carbure de titane ont une taille inférieure à 10 µm.
  • La figure 7 représente une vue de carbure de titane globulaire micrométrique sur une surface de rupture prise au microscope électronique SEM. On voit que les globules de carbure de titane sont parfaitement incorporés dans la matrice métallique. Ceci prouve que le métal de coulée infiltre (imprègne) complètement les pores lors de la coulée une fois que la réaction chimique entre le titane et le carbone est initiée.
  • Légende
    1. 1. zones millimétriques concentrées en particules globulaires (nodules) micrométriques de carbure de titane (zones claires)
    2. 2. interstices millimétriques remplis par l'alliage ferreux de coulée globalement exempts de particules globulaires micrométriques de carbure de titane (zones foncées)
    3. 3. interstices micrométriques entre les nodules de TiC également infiltrés par l'alliage de coulée
    4. 4. carbure de titane globulaire micrométrique, dans les zones concentrées en carbure de titane
    5. 5. renfort de carbure de titane
    6. 6. défauts de gaz
    7. 7. (libre)
    8. 8. mélangeur de poudres de Ti et de C
    9. 9. trémie
    10. 10. rouleau
    11. 11. concasseur
    12. 12. grille de sortie
    13. 13. tamis
    14. 14. recyclage des particules trop fines vers la trémie
    15. 15. moule de sable
    16. 16. barrage contenant les granulés compactés de mélange Ti/C
    17. 17. poche de coulée
    18. 18. dent de type 1d
    Description détaillée de l'invention
  • En science des matériaux, on appelle réaction SHS ou « self-propagating high temperature synthesis », une réaction de synthèse à haute température auto-propagée où l'on atteint des températures de réaction généralement supérieures à 1500°C, voire 2000°C. Par exemple, la réaction entre de la poudre de titane et de la poudre de carbone pour obtenir le carbure de titane TiC, est fortement exothermique. On a uniquement besoin d'un peu d'énergie pour initier localement la réaction. Ensuite, la réaction se propagera spontanément à la totalité du mélange des réactifs grâce aux hautes températures atteintes. Après initiation de la réaction, on a un front de réaction qui se propage ainsi spontanément (auto-propagée) et qui permet l'obtention du carbure de titane à partir du titane et du carbone. Le carbure de titane ainsi obtenu est dit « obtenu in situ » car il ne provient pas de l'alliage ferreux coulé.
  • Les mélanges de poudres de réactif comportent de la poudre de carbone et de la poudre de titane et sont comprimés en plaques et ensuite concassés afin d'obtenir des granulés dont la taille varie de 1 à 12 mm, de préférence de 1 à 6 mm, et de manière particulièrement préférée de 1.4 à 4 mm. Ces granulés ne sont pas compactés à 100 %. On les comprime généralement entre 55 et 95 % de la densité théorique. Ces granulés permettent une utilisation/manipulation aisée (voir Fig. 3a-3h).
  • Ces granulés millimétriques de poudres de carbone et de titane mélangées obtenus selon les schémas de la figure 3a-3h constituent les précurseurs du carbure de titane à créer et permettent de remplir facilement des parties de moules de formes diverses ou irrégulières. Ces granulés peuvent être maintenus en place dans le moule 15 à l'aide d'un barrage 16, par exemple. La mise en forme ou l'assemblage de ces granulés peut également se faire à l'aide d'une colle.
  • La dent composite pour le travail du sol ou des roches selon la présente invention possède une macro-microstructure de renforcement que l'on peut encore appeler structure alternée de zones concentrées en particules micrométriques globulaires de carbure de titane séparées par des zones qui en sont pratiquement exemptes. Une telle structure est obtenue par la réaction dans le moule 15 des granulés comportant un mélange de poudres de carbone et de titane. Cette réaction est initiée par la chaleur de la coulée de la fonte ou de l'acier utilisés pour couler toute la pièce et donc à la fois la partie non renforcée et la partie renforcée (voir Fig. 3e). La coulée déclenche donc une réaction exothermique de synthèse auto-propagée à haute température du mélange de poudres de carbone et de titane compactées sous forme de granulés (self-propagating high-temperature synthesis - SHS) et préalablement placées dans le moule 15. La réaction a alors la particularité de continuer à se propager dès qu'elle est initiée.
  • Cette synthèse à haute température (SHS) permet une infiltration aisée de tous les interstices millimétriques et micrométriques par la fonte ou l'acier de coulée (Fig. 3g & 3h). En augmentant la mouillabilité, l'infiltration peut se faire sur n'importe quelle épaisseur ou profondeur de renforcement de la dent. Elle permet avantageusement de créer, après réaction SHS et infiltration par un métal de coulée extérieur, une ou plusieurs zones de renfort sur la dent comportant une forte concentration de particules globulaires micrométriques de carbure de titane (que l'on pourrait encore appeler des clusters de nodules), lesquelles zones ayant une taille de l'ordre du millimètre ou de quelques millimètres, et qui alternent avec des zones substantiellement exemptes de carbure de titane globulaire.
  • Une fois que ces granulés ont réagi selon une réaction SHS, les zones de renforcement où se trouvaient ces granulés montrent une dispersion concentrée de particules globulaires micrométriques 4 de carbure TiC (globules) dont les interstices micrométriques 3 ont été également infiltrés par le métal de coulée qui est ici de la fonte ou de l'acier. Il est important de remarquer que les interstices millimétriques et micrométriques sont infiltrés par la même matrice métallique que celle qui constitue la partie non renforcée de la dent; ceci permet une liberté totale de choix du métal de coulée. Dans la dent finalement obtenue, les zones de renfort à forte concentration de carbure de titane sont composées de particules micrométriques globulaires de TiC en pourcentage important (entre environ 35 et environ 70 % en volume) et de l'alliage ferreux d'infiltration.
  • Par particules globulaires micrométriques, il faut entendre des particules globalement sphéroïdales qui ont une taille allant du µm à quelques dizaines de µm tout au plus, la grande majorité de ces particules ayant une taille inférieure à 50 µm, et même à 20 µm, voire à 10 µm. Nous les appelons également des globules de TiC. Cette forme globulaire est caractéristique d'une méthode d'obtention du carbure de titane par synthèse auto-propagée SHS (voir Fig. 6).
  • Obtention des granulés (version Ti + C) pour le renforcement de la dent
  • Le procédé d'obtention des granulés est illustré à la figure 3a-3h. Les granulés de réactifs carbone/titane sont obtenus par compaction entre des rouleaux 10 afin d'obtenir des bandes que l'on concasse ensuite dans un concasseur 11. Le mélange des poudres est fait dans un mélangeur 8 constitué d'une cuve munie de pales, afin de favoriser l'homogénéité. Le mélange passe ensuite dans un appareil de granulation par une trémie 9. Cette machine comprend deux rouleaux 10, au travers desquels on fait passer la matière. Une pression est appliquée sur ces rouleaux 10, ce qui permet de comprimer la matière. On obtient à la sortie une bande de matière comprimée qui est ensuite concassée afin d'obtenir les granulés. Ces granulés sont ensuite tamisés à la granulométrie souhaitée dans un tamis 13. Un paramètre important est la pression appliquée sur les rouleaux. Au plus cette pression est élevée, au plus la bande, et donc les granulés seront comprimés. On peut ainsi faire varier la densité des bandes, et par conséquent des granulés, entre 55 et 95 % de la densité théorique qui est de 3.75 g/cm3 pour le mélange stoechiométrique de titane et de carbone. La densité apparente (tenant compte de la porosité) se situe alors entre 2.06 et 3.56 g/cm3.
  • Le degré de compaction des bandes dépend de la pression appliquée (en Pa) sur les rouleaux (diamètre 200 mm, largeur 30 mm). Pour un bas niveau de compaction, de l'ordre de 106 Pa, on obtient une densité sur les bandes de l'ordre de 55 % de la densité théorique. Après le passage à travers les rouleaux 10 pour comprimer cette matière, la densité apparente des granulés est de 3.75 x 0.55, soit 2.06 g/cm3.
  • Pour un haut niveau de compaction, de l'ordre de 25.106 Pa, on obtient une densité sur les bandes de 90 % de la densité théorique, soit une densité apparente de 3.38 g/cm3. En pratique on peut aller jusqu'à 95 % de la densité théorique.
  • Par conséquent, les granulés obtenus à partir de la matière première Ti + C sont poreux. Cette porosité varie de 5 % pour les granulés très fortement comprimés, à 45 % pour les granulés faiblement comprimés.
  • Outre le niveau de compaction, il est également possible de régler la répartition granulométrique des granulés ainsi que leur forme lors de l'opération de concassage des bandes et de tamisage des granulés de Ti+C. On recycle à volonté les fractions granulométriques non désirées (voir Fig. 3b). Les granulés obtenus ont globalement une taille entre 1 et 12 mm, de préférence entre 1 et 6 mm, et de manière particulièrement préférée entre 1.4 et 4 mm.
  • Réalisation de la zone de renfort dans la dent composite selon invention
  • Les granulés sont réalisés comme exposé ci-dessus. Pour obtenir une structure tridimensionnelle ou superstructure/macro-microstructure avec ces granulés, on les dispose dans les zones du moule où l'on souhaite renforcer la pièce. Ceci est réalisé en agglomérant les granulés soit au moyen d'une colle, soit en les confinant dans un récipient, ou par tout autre moyen (barrage 16). La densité en vrac de l'empilement des granulés de Ti + C est mesurée selon la norme ISO 697 et dépend du niveau de compaction des bandes, de la répartition granulométrique des granulés et du mode de concassage des bandes, qui influence la forme des granulés.
    La densité en vrac de ces granulés de Ti + C est généralement de l'ordre de 0.9 g/cm3 à 2.5 g/cm3 en fonction du niveau de compaction de ces granulés et de la densité de l'empilement.
  • Avant réaction, on a donc un empilement de granulés poreux composés d'un mélange de poudre de titane et de poudre de carbone.
  • Lors de la réaction Ti + C → TiC, il se produit une contraction volumétrique de l'ordre de 24 % quand on passe des réactifs au produit (contraction venant de la différence de densité entre les réactifs et les produits). Ainsi, la densité théorique du mélange Ti + C est de 3.75 g/cm3 et la densité théorique du TiC est de 4.93 g/cm3. Dans le produit final, après la réaction d'obtention du TiC, le métal de coulée infiltrera :
    • la porosité microscopique présente dans les espaces à forte concentration en carbure de titane, dépendant du niveau de compaction initial de ces granulés ;
    • les espaces millimétriques entre les zones à forte concentration en carbure de titane, dépendant de l'empilement initial des granulés (densité en vrac) ;
    • la porosité venant de la contraction volumétrique lors de la réaction entre Ti + C pour obtenir le TiC.
    Exemples
  • Dans les exemples qui suivent, on a utilisé les matières premières suivantes :
    • titane, H.C. STARCK, Amperit 155.066, moins de 200 mesh,
    • carbone graphite GK Kropfmuhl, UF4, > 99.5 %, moins de 15 µm,
    • Fe, sous la forme Acier HSS M2, moins de 25 µm,
    • proportions :
      • Ti + C 100 g Ti - 24.5 g C
      • Ti + C + Fe 100 g Ti - 24.5 g C - 35.2 g Fe Mélange 15 min dans mélangeur Lindor, sous argon.
    La granulation a été effectuée avec un granulateur Sahut-Conreur.
    Pour les mélanges Ti+C+Fe et Ti+C, la compacité des granulés a été obtenue en faisant varier la pression entre les rouleaux de 10 à 250.105 Pa.
    Le renforcement a été effectué en plaçant des granulés dans un container métallique, qui est ensuite judicieusement placé dans le moule à l'endroit où la dent est susceptible d'être renforcée. Ensuite on coule l'acier ou la fonte dans ce moule. Exemple 1
  • Dans cet exemple, on vise à réaliser une dent dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 42 %. A cette fin, on réalise une bande par compaction à 85 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 2.1 g/cm3 (35 % d'espace entre les granulés + 15 % de porosité dans les granulés).
  • On dispose les granulés dans le moule à l'endroit de la partie à renforcer qui comporte ainsi 65 % en volume de granulés poreux. On coule ensuite une fonte au chrome (3 % C, 25 % Cr) à environ 1500°C dans un moule en sable non préchauffé. La réaction entre le Ti et le C est initiée par la chaleur de la fonte. Cette coulée se fait sans atmosphère de protection. Après réaction, on obtient dans la partie renforcée 65 % en volume de zones avec une forte concentration d'environ 65 % en carbure de titane globulaire, soit 42 % en volume global de TiC dans la partie renforcée de la dent.
  • Exemple 2
  • Dans cet exemple, on vise à réaliser une dent dont les zones renforcées comportent un pourcentage en volume global de Tic d'environ 30 %- A cette fin, on réalise une bande par compaction à 70 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 1.4 g/cm3 (45 % d'espace entre les granulés + 30 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 55 % en volume de granulés poreux. Après réaction, on obtient, dans la partie renforcée, 55 % en volume de zones avec une forte concentration d'environ 53 % en carbure de titane globulaire, soit environ 30 % en volume global de TiC dans la partie renforcée de la dent.
  • Exemple 3
  • Dans cet exemple, on vise à réaliser une dent dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 20 %. A cette fin, on réalise une bande par compaction à 60 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située 1 et 6 mm. On obtient une densité en vrac de l'ordre de 1.0 g/cm3 (55 % d'espace entre les granulés + 40 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 45 % en volume de granulés poreux. Après réaction, on obtient dans la partie renforcée 45 % en volume de zones concentrées à environ 45 % en carbure de titane globulaire, soit 20 % en volume global de TiC dans la partie renforcée de la dent.
  • Exemple 4
  • Dans cet exemple, on a cherché à atténuer l'intensité de la réaction entre le carbone et le titane en y ajoutant un alliage ferreux en poudre. Comme dans l'exemple 2, on vise à réaliser une dent dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 30 %. A cette fin, on réalise une bande par compaction à 85 % de la densité théorique d'un mélange en poids de 15 % de C, 63 % de Ti et 22 % de Fe. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 2 g/cm3 (45 % d'espace entre les granulés + 15 % de porosité dans les granulées). On dispose les granulés dans la partie à renforcée qui comporte ainsi 55 % en volume de granulés poreux. Après réaction, on obtient dans la partie renforcée 55 % en volume de zones avec une forte concentration d'environ 55 % en carbure de titane globulaire, soit 30 % en volume de carbure de titane global dans la macro-microstructure renforcée de la dent.
  • Les tableaux suivants montrent les nombreuses combinaisons possibles. Tableau 1 (Ti + 0.98 C)
    Pourcentage global de TiC obtenu dans la macro-microstructure renforcée après réaction Ti + 0.98 C dans la partie renforcée de la dent.
    Compaction des granulés (% de la densité théorique qui est de 3,75 g/cm3) 55 60 65 70 75 80 85 90 95
    Remplissage de la partie renforcée de la pièce (% vol.) 70 29.3 31.9 34.6 37.2 39.9 42.6 45.2 47.9 50.5
    65 27.2 29.6 32.1 34.6 37.1 39.5 42.0 44.5 46.9
    55 23.0 25.1 27.2 29.3 31.4 33.4 35.5 37.6 39.7
    45 18.8 20.6 22.2 23.9 25.7 27.4 29.1 30.8 32.5
    ce tableau montre qu'avec un niveau de compaction allant de 55 à 95 % pour les bandes et donc les granulés, on peut pratiquer des niveaux de remplissage en granulés dans la partie renforcée allant de 45 à 70 % en volume (rapport entre le volume total des granulés et le volume de leur confinement). Ainsi, pour obtenir une concentration globale en TiC dans la partie renforcée d'environ 29 % vol. (en lettres grasses dans le tableau), on peut procéder à différentes combinaisons comme par exemple 60 % de compaction et 65 % de remplissage, ou 70 % de compaction et 55 % de remplissage, ou encore 85 % de compaction et 45 % de remplissage. Pour obtenir des niveaux de remplissage en granulés dans la partie renforcée allant jusqu'à 70 % en volume, on est obligé d'appliquer une vibration pour tasser les granulés. Dans ce cas, la norme ISO 697 pour la mesure du taux de remplissage n'est plus applicable et on mesure la quantité de matière dans un volume donné. Tableau 2
    Relation entre le niveau de compaction, la densité théorique et le pourcentage de TiC obtenu après réaction dans le granulé
    Compaction des granulés 55 60 65 70 75 80 85 90 95
    Densité en g/cm3 2.06 2.25 2.44 2.63 2.81 3.00 3.19 3.38 3.56
    TiC obtenu après réaction (et contraction) en %vol. dans les granulés 41.8 45.6 49.4 53.2 57.0 60.8 64.6 68.4 72.2
    Ici, nous avons représenté la densité des granulés en fonction de leur niveau de compaction et on en a déduit le pourcentage volumique de TiC obtenu après réaction et donc contraction d'environ 24 % vol. Des granulés compactés à 95 % de leur densité théorique permettent donc d'obtenir après réaction, une concentration de 72.2 % vol. en TiC. Tableau 3
    Densité en vrac de l'empilement des granulés
    Compaction 55 60 65 70 75 80 85 90 95
    Remplissage de la partie renforcée de la pièce en % vol 70 1.4 1.6 1.7 1.8 2 2.1 2.2 2.4 2.5
    65 1.3* 1.5 1.6 1.7 1.8 2.0 2.1 2.2 2.3
    55 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 2.0
    45 0.9 1.0 1.1 1.2 1.3 1.4 1.4 1.5 1.6
    (*) Densité en vrac (1.3) = densité théorique (3.75 g/cm3)) x 0.65 (remplissage) x 0.55 (compaction)
    En pratique, ces tableaux servent d'abaques à l'utilisateur de cette technologie, qui se fixe un pourcentage global de TiC à réaliser dans la partie renforcée de la dent et qui en fonction de cela détermine le niveau de remplissage et la compaction des granulés qu'il va utiliser. Les mêmes tableaux ont été réalisés pour un mélange de poudres Ti + C + Fe.
  • Ti + 0.98 C + Fe
  • Ici, l'inventeur a visé un mélange permettant d'obtenir 15% en volume de fer après réaction. La proportion de mélange qui a été utilisée est de : 100 g Ti + 25.5 g C + 35.2 g Fe
    Figure imgb0001

    Nous entendons par poudre de fer : fer pur ou alliage de fer.
    • Densité théorique du mélange : 4.25 g/cm3
    • Retrait volumétrique lors de la réaction : 21 %
    Tableau 4
    Pourcentage global de TiC obtenu dans la macro-microstructure renforcée après réaction Ti + 0.98 C + Fe dans la partie renforcée de la dent
    Compaction des granulés (% de la densité théorique qui est de 4.25 g/cm3) 55 60 65 70 75 80 85 90 95
    Remplissage de la partie renforcée de la pièce (% vol) 70 25.9 28.2 30.6 32.9 35.5 37.6 40.0 42.3 44.7
    65 24.0 26.2 28.4 30.6 32.7 34.9 37.1 39.3 41.5
    55 20.3 22.2 24.0 25.9 27.7 29.5 31.4 33.2 35.1
    45 16.6 18.1 19.6 21.2 22.7 24.2 25.7 27.2 28.7
    A nouveau, pour obtenir une concentration globale en TiC dans la partie renforcée d'environ 26 % vol (en lettres grasses dans le tableau), on peut procéder à différentes combinaisons comme par exemple 55 % de compaction et 70 % de remplissage, ou 60 % de compaction et 65 % de remplissage, ou 70 % de compaction et 55 % de remplissage, ou encore 85 % de compaction et 45 % de remplissage. Tableau 5
    Relation entre le niveau de compaction, la densité théorique et le pourcentage de TiC, obtenue après réaction dans le granulé en tenant compte de la présence de fer
    Compaction des granulés 55 60 65 70 75 80 85 90 95
    Densité en g/cm3 2.34 2.55 2.76 2.98 3.19 3.40 3.61 3.83 4.04
    TiC obtenu après réaction (et contraction) en %vol. dans les granulés 36.9 40.3 43.6 47.0 50.4 53.7 57.1 60.4 63.8
    Tableau 6
    Densité en vrac de l'empilement des granulés (Ti + C + Fe)
    Compaction 55 60 65 70 75 80 85 90 95
    Remplissage de la partie renforcée de la pièce en % vol. 70 1.6 1.8 1.9 2.1 2.2 2.4 2.5 2.7 2.8
    65 1.5* 1.7 1.8 1.9 2.1 2.2 2.3 2.5 2.6
    55 1.3 1.4 1.5 1.6 1.8 1.9 2.0 2.1 2.2
    45 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
    (*) Densité en vrac (1.5) = densité théorique (4.25) x 0.65 (remplissage) x 0.55 (compaction)
    Avantages
  • La présente invention présente les avantages suivants par rapport à l'état de la technique en général:
  • Meilleure résistance aux chocs
  • Avec le présent procédé, on a des granulés millimétriques poreux qui sont sertis dans l'alliage métallique d'infiltration. Ces granulés millimétriques sont eux-mêmes composés de particules microscopiques de TiC à tendance globulaire également sertis dans l'alliage métallique d'infiltration. Ce système permet d'obtenir une dent avec une zone de renfort comportant une macrostructure au sein de laquelle il y a une microstructure identique à une échelle environ mille fois plus petite.
  • Le fait que la zone de renfort de la dent comporte des petites particules globulaires de carbure de titane, dures et finement dispersées dans une matrice métallique qui les entoure, permet d'éviter la formation et la propagation des fissures (voir Fig. 4 & 6). On a ainsi un double système dissipatif des fissures.
  • Les fissures prennent généralement naissance aux endroits les plus fragiles, qui sont dans ce cas la particule de TiC ou l'interface entre cette particule et l'alliage métallique d'infiltration. Si une fissure prend naissance à l'interface ou dans la particule micrométrique de TiC, la propagation de cette fissure est ensuite entravée par l'alliage d'infiltration qui entoure cette particule. La ténacité de l'alliage d'infiltration est supérieure à celle de la particule céramique TiC. La fissure a besoin de plus d'énergie pour passer d'une particule à l'autre, pour franchir les espaces micrométriques qui existent entre les particules.
  • Flexibilité maximale pour les paramètres de mise en oeuvre
  • Outre le niveau de compaction des granulés, on peut faire varier deux paramètres qui sont la fraction granulométrique et la forme des granulés, et donc leur densité en vrac. Par contre, dans une technique de renforcement par insert, on ne peut faire varier que le niveau de compaction de celui-ci dans une plage limitée. Au niveau de la forme que l'on souhaite donner au renforcement, compte tenu du design de la dent et de l'endroit que l'on souhaite renforcer, l'utilisation de granulés permet davantage de possibilités et d'adaptation.
  • Avantages au niveau de la fabrication
  • L'utilisation comme renforcement d'un empilement de granulés poreux, présente certains avantages au niveau de la fabrication :
    • moins de dégagement gazeux,
    • moindre susceptibilité à la crique,
    • meilleure localisation du renforcement dans la dent.
    La réaction entre le Ti et le C est fortement exothermique. L'élévation de température provoque un dégazage des réactifs, c'est-à-dire des matières volatiles comprises dans les réactifs (H2O dans le carbone, H2, N2 dans le titane). Au plus la température de réaction est élevée, au plus ce dégagement est important. La technique par granulés permet de limiter la température, de limiter le volume gazeux et permet une évacuation plus facile des gaz et ainsi de limiter les défauts de gaz. (voir Fig. 7 avec bulle de gaz indésirable). Faible susceptibilité à la crique lors de la fabrication de la dent selon l'invention
  • Le coefficient de dilatation du renforcement TiC est plus faible que celui de la matrice en alliage ferreux (coefficient de dilatation du TiC : 7.5 10-6/K et de l'alliage ferreux : environ 12.0 10-5/K). Cette différence dans les coefficients de dilatation a pour conséquence de générer des tensions dans le matériau pendant la phase de solidification et aussi lors du traitement thermique. Si ces tensions sont trop importantes, des criques peuvent apparaître dans la pièce et conduire au rebut de celle-ci. Dans la présente invention, on utilise une faible proportion de renforcement TiC (moins de 50 % en volume), ce qui entraîne moins de tensions dans la pièce. De plus, la présence d'une matrice plus ductile entre les particules globulaires micrométriques de TiC en zones alternées de faible et de forte concentration permet de mieux gérer d'éventuelles tensions locales.
  • Excellent maintien du renforcement dans la dent
  • Dans la présente invention, la frontière entre la partie renforcée et la partie non renforcée de la dent n'est pas abrupte puisqu'il y a une continuité de la matrice métallique entre la partie renforcée et la partie non renforcée, ce qui permet de la protéger contre un arrachage complet du renforcement.
  • Résultats de test
  • Les avantages de la dent selon la présente invention par rapport à des dents non composites sont une amélioration de la résistance à l'usure de l'ordre de 300 %. De manière plus détaillée, et suivant les circonstances d'essai (dragage), on a pu constater les performances suivantes (exprimées en durée de vie de la dent pour un volume de travail donné) pour les produits réalisés selon l'invention (renforcement type Fig. 1f comportant globalement un pourcentage en volume de TiC de 30 % vol - exemple 2), par comparaison à des dents identiques en acier trempé.
    • calcaire dur : 2.5 fois ;
    • mélange d'argile dure, de sable et de gravier compactés : 2.9 fois ;
    • mélange de sable et d'argile dure : 3.2 fois ;
    • mélange de schiste et de sable : 3.4 fois.
    Globalement la durée de vie de la dent type 1f (voir Fig. 1f) avec 30 % vol de TiC dans la partie renforcée est 2.5 à 3.4 fois plus longue par rapport à une dent identique en acier trempé.

Claims (13)

  1. Dent composite pour le travail du sol ou des roches, ladite dent comportant un alliage ferreux renforcé au moins en partie (5) avec du carbure de titane selon une géométrie définie, dans laquelle ladite partie renforcée (5) comporte une macro-microstructure alternée de zones millimétriques (1) concentrées en particules globulaires micrométriques de carbure de titane (4) séparées par des zones millimétriques (2) essentiellement exemptes de particules globulaires micrométriques de carbure de titane (4), lesdites zones concentrées en particules globulaires micrométriques de carbure de titane (4) formant une microstructure dans laquelle les interstices micrométriques (3) entre lesdites particules globulaires (4) sont également occupés par ledit alliage ferreux -
  2. Dent selon la revendication 1, dans laquelle lesdites zones millimétriques concentrées ont une concentration en particules globulaires micrométriques de carbure de titane (4) supérieure à 36.9 % en volume.
  3. Dent selon l'une quelconque des revendications 1 ou 2, dans laquelle ladite partie renforcée a une teneur globale de carbure de titane entre 16.6 et 50.5 % en volume.
  4. Dent selon l'une quelconque des revendications précédentes, dans laquelle les particules micrométriques globulaires de carbure de titane (4) ont une taille inférieure à 50µm.
  5. Dent selon l'une quelconque des revendications précédentes, dans laquelle la majeure partie des particules micrométriques globulaires de carbure de titane (4) a une taille inférieure à 20 µm.
  6. Dent selon l'une quelconque des revendications précédentes, dans laquelle lesdites zones concentrées en particules globulaires de carbure de titane (1) comportent 36.9 à 72.2 % en volume de carbure de titane.
  7. Dent selon l'une quelconque des revendications précédentes, dans laquelle lesdites zones concentrées en carbure de titane (1) ont une dimension variant de 1 à 12 mm.
  8. Dent selon l'une quelconque des revendications précédentes, dans laquelle lesdites zones concentrées en carbure de titane (1) ont une dimension variant de 1 à 6 mm.
  9. Dent selon l'une quelconque des revendications précédentes, dans laquelle lesdites zones concentrées en carbure de titane (1) ont une dimension variant de 1.4 à 4 mm.
  10. Procédé de fabrication par coulée d'une dent composite selon l'une quelconque des revendications 1 à 9, comportant les étapes suivantes :
    - mise à disposition d'un moule comportant l'empreinte de la dent avec une géométrie de renforcement prédéfinie ;
    - introduction, dans la partie de l'empreinte de la dent destinée à former la partie renforcée (5), d'un mélange de poudres compactées comportant du carbone et du titane sous forme de granulés millimétriques précurseurs de carbure de titane ;
    - coulée d'un alliage ferreux dans le moule, la chaleur de ladite coulée déclenchant une réaction exothermique de synthèse auto-propagée de carbure de titane à haute température (SHS) au sein desdits granulés précurseurs ;
    - formation, au sein de la partie renforcée (5) de la dent d'une macro-microstructure alternée de zones millimétriques concentrées (1) en particules globulaires micrométriques de carbure de titane (4) à l'emplacement desdits granulés précurseurs, lesdites zones étant séparées entre elles par des zones millimétriques (2) essentiellement exemptes de particules globulaires micrométriques de carbure de titane (4), lesdites particules globulaires (4) étant également séparées au sein desdites zones millimétriques concentrées (1) de carbure de titane par des interstices micrométriques (3) ;
    - infiltration des interstices millimétriques (2) et micrométriques (3) par ledit alliage ferreux de coulée à haute température, consécutive à la formation de particules microscopiques globulaires de carbure de titane (4).
  11. Procédé de fabrication selon la revendication 10, dans laquelle le mélange de poudres compactées de titane et de carbone comporte une poudre d'un alliage ferreux.
  12. Procédé de fabrication selon l'une quelconque des revendications 10 ou 11, dans lequel ledit carbone est du graphite.
  13. Dent obtenue selon l'une quelconque des revendications 10 à 12.
EP09782199A 2008-09-19 2009-08-26 Dent composite pour le travail du sol ou des roches Active EP2329052B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09782199T PL2329052T3 (pl) 2008-09-19 2009-08-26 Ząb kompozytowy do obróbki gruntu lub skał

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2008/0518A BE1018127A3 (fr) 2008-09-19 2008-09-19 Dent composite pour le travail du sol ou des roches.
PCT/EP2009/060978 WO2010031660A1 (fr) 2008-09-19 2009-08-26 Dent composite pour le travail du sol ou des roches

Publications (2)

Publication Number Publication Date
EP2329052A1 EP2329052A1 (fr) 2011-06-08
EP2329052B1 true EP2329052B1 (fr) 2012-03-14

Family

ID=40651784

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782199A Active EP2329052B1 (fr) 2008-09-19 2009-08-26 Dent composite pour le travail du sol ou des roches

Country Status (19)

Country Link
US (1) US8646192B2 (fr)
EP (1) EP2329052B1 (fr)
KR (1) KR101633141B1 (fr)
CN (1) CN102159740B (fr)
AT (1) ATE549425T1 (fr)
AU (1) AU2009294779B2 (fr)
BE (1) BE1018127A3 (fr)
BR (1) BRPI0913715B1 (fr)
CA (1) CA2743343C (fr)
CL (1) CL2011000574A1 (fr)
DK (1) DK2329052T3 (fr)
ES (1) ES2383142T3 (fr)
HK (1) HK1157824A1 (fr)
MX (1) MX2011003026A (fr)
MY (1) MY150582A (fr)
PL (1) PL2329052T3 (fr)
PT (1) PT2329052E (fr)
WO (1) WO2010031660A1 (fr)
ZA (1) ZA201101623B (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1018130A3 (fr) * 2008-09-19 2010-05-04 Magotteaux Int Materiau composite hierarchique.
JP2014527133A (ja) * 2011-08-26 2014-10-09 ボルボ コンストラクション イクイップメント アーベー 掘削歯の摩耗インジケータ及び方法
ITUD20120134A1 (it) 2012-07-25 2014-01-26 F A R Fonderie Acciaierie Roiale S P A Procedimento per la fabbricazione di getti in acciaio e getti in acciaio cosi' fabbricati
JP5373169B1 (ja) * 2012-10-10 2013-12-18 株式会社小松製作所 掘削爪および掘削爪用ボディ
CN103147481A (zh) * 2013-03-19 2013-06-12 中交天津港航勘察设计研究院有限公司 一种挖泥船用复合型破岩刀齿
US20160122970A1 (en) * 2014-10-24 2016-05-05 The Charles Machine Works, Inc. Linked Tooth Digging Chain
US20170233986A1 (en) * 2016-02-15 2017-08-17 Caterpillar Inc. Ground engaging component and method for manufacturing the same
US10378188B2 (en) 2016-09-23 2019-08-13 Rockland Manufacturing Company Bucket, blade, liner, or chute with visual wear indicator
JP6804143B2 (ja) * 2016-09-30 2020-12-23 株式会社小松製作所 耐土砂摩耗部品およびその製造方法
EP3563951A1 (fr) 2018-05-04 2019-11-06 Magotteaux International S.A. Dent composite avec insert tronconique
DE102019200302A1 (de) * 2019-01-11 2020-07-16 Thyssenkrupp Ag Zahn zum Anbringen an eine Baggerschaufel
BE1027444B1 (fr) 2020-02-11 2021-02-10 Magotteaux Int Piece d'usure composite
CN111482579B (zh) * 2020-03-17 2022-03-22 内蒙古科技大学 一种耐磨钢结硬质合金复合锤头及其制造方法
EP3885061A1 (fr) * 2020-03-27 2021-09-29 Magotteaux International S.A. Composant d'usure composite
EP3915699A1 (fr) 2020-05-29 2021-12-01 Magotteaux International SA Pièce d'usure composite céramique-métal
US11882777B2 (en) 2020-07-21 2024-01-30 Osmundson Mfg. Co. Agricultural sweep with wear resistant coating
US20230332383A1 (en) * 2022-04-13 2023-10-19 Hensley Industries, Inc. Reinforced wear member

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596106B2 (ja) * 1988-12-27 1997-04-02 住友重機械鋳鍛株式会社 複合掘削ツース
US5066546A (en) * 1989-03-23 1991-11-19 Kennametal Inc. Wear-resistant steel castings
GB2257985A (en) * 1991-07-26 1993-01-27 London Scandinavian Metall Metal matrix alloys.
US5720830A (en) * 1992-11-19 1998-02-24 Sheffield Forgemasters Limited Engineering ferrous metals and method of making thereof
KR100391096B1 (ko) * 1995-09-27 2003-12-01 가부시키가이샤 이시즈카 겐큐쇼 초지립함유복합재및그제법
US6607782B1 (en) * 2000-06-29 2003-08-19 Board Of Trustees Of The University Of Arkansas Methods of making and using cubic boron nitride composition, coating and articles made therefrom
ES2258158T3 (es) * 2001-12-04 2006-08-16 Magotteaux International S.A. Piezas de fundicion con una resistencia incrementada al desgaste.
CN1321768C (zh) * 2005-01-19 2007-06-20 华南理工大学 温压弥散颗粒增强钢铁基粉末冶金复合材料的制备方法
JP4707407B2 (ja) * 2005-02-18 2011-06-22 Ntn株式会社 製鋼ダスト固形化物およびその製造方法
US7780798B2 (en) * 2006-10-13 2010-08-24 Boston Scientific Scimed, Inc. Medical devices including hardened alloys

Also Published As

Publication number Publication date
CN102159740B (zh) 2013-06-05
BRPI0913715B1 (pt) 2017-11-21
CN102159740A (zh) 2011-08-17
WO2010031660A1 (fr) 2010-03-25
MX2011003026A (es) 2011-04-12
ZA201101623B (en) 2012-08-29
US20110225856A1 (en) 2011-09-22
CL2011000574A1 (es) 2011-08-26
ES2383142T3 (es) 2012-06-18
HK1157824A1 (en) 2012-07-06
PT2329052E (pt) 2012-06-25
CA2743343C (fr) 2016-03-29
MY150582A (en) 2014-01-30
DK2329052T3 (da) 2012-07-09
BRPI0913715A2 (pt) 2015-10-13
ATE549425T1 (de) 2012-03-15
BE1018127A3 (fr) 2010-05-04
PL2329052T3 (pl) 2012-08-31
EP2329052A1 (fr) 2011-06-08
AU2009294779A1 (en) 2010-03-25
US8646192B2 (en) 2014-02-11
AU2009294779B2 (en) 2013-05-09
KR101633141B1 (ko) 2016-06-23
KR20110063467A (ko) 2011-06-10
CA2743343A1 (fr) 2010-03-25

Similar Documents

Publication Publication Date Title
EP2329052B1 (fr) Dent composite pour le travail du sol ou des roches
EP2323770B1 (fr) Impacteur composite pour concasseurs à percussion
EP2326738B9 (fr) Cône de broyage pour concasseur a compression
EP2334836B9 (fr) Materiau composite hierarchique
EP3563951A1 (fr) Dent composite avec insert tronconique
EP4157569A1 (fr) Piece d'usure composite ceramique-metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 33/02 20060101ALI20110817BHEP

Ipc: C22C 1/05 20060101AFI20110817BHEP

Ipc: C22C 29/06 20060101ALI20110817BHEP

Ipc: E02F 9/28 20060101ALI20110817BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 549425

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009005932

Country of ref document: DE

Effective date: 20120510

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2383142

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120618

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120614

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 11811

Country of ref document: SK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 549425

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

26N No opposition filed

Effective date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009005932

Country of ref document: DE

Effective date: 20121217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120826

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120826

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230728

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230731

Year of fee payment: 15

Ref country code: RO

Payment date: 20230811

Year of fee payment: 15

Ref country code: ES

Payment date: 20230912

Year of fee payment: 15

Ref country code: CZ

Payment date: 20230801

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230802

Year of fee payment: 15

Ref country code: SE

Payment date: 20230822

Year of fee payment: 15

Ref country code: PT

Payment date: 20230731

Year of fee payment: 15

Ref country code: PL

Payment date: 20230731

Year of fee payment: 15

Ref country code: FR

Payment date: 20230822

Year of fee payment: 15

Ref country code: DK

Payment date: 20230725

Year of fee payment: 15

Ref country code: DE

Payment date: 20230731

Year of fee payment: 15

Ref country code: BE

Payment date: 20230728

Year of fee payment: 15