EP2329052B1 - Composite tooth for working the ground or rock - Google Patents
Composite tooth for working the ground or rock Download PDFInfo
- Publication number
- EP2329052B1 EP2329052B1 EP09782199A EP09782199A EP2329052B1 EP 2329052 B1 EP2329052 B1 EP 2329052B1 EP 09782199 A EP09782199 A EP 09782199A EP 09782199 A EP09782199 A EP 09782199A EP 2329052 B1 EP2329052 B1 EP 2329052B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- titanium carbide
- tooth
- micrometric
- granules
- areas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 16
- 239000011435 rock Substances 0.000 title claims abstract description 8
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims abstract description 79
- 239000002245 particle Substances 0.000 claims abstract description 55
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 24
- 239000000956 alloy Substances 0.000 claims abstract description 24
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000008187 granular material Substances 0.000 claims description 87
- 239000010936 titanium Substances 0.000 claims description 55
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 31
- 230000002787 reinforcement Effects 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- 229910052799 carbon Inorganic materials 0.000 claims description 25
- 238000005266 casting Methods 0.000 claims description 25
- 229910052719 titanium Inorganic materials 0.000 claims description 23
- 230000015572 biosynthetic process Effects 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 20
- 238000003786 synthesis reaction Methods 0.000 claims description 18
- 238000001764 infiltration Methods 0.000 claims description 13
- 230000008595 infiltration Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 238000005056 compaction Methods 0.000 description 46
- 238000006243 chemical reaction Methods 0.000 description 40
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 21
- 239000011159 matrix material Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 230000008602 contraction Effects 0.000 description 8
- 229910001018 Cast iron Inorganic materials 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 241001508691 Martes zibellina Species 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000003971 tillage Methods 0.000 description 4
- 239000010953 base metal Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- QYLJIYOGHRGUIH-CIUDSAMLSA-N Arg-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CCCNC(N)=N QYLJIYOGHRGUIH-CIUDSAMLSA-N 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910001311 M2 high speed steel Inorganic materials 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 241000923606 Schistes Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- QFXZANXYUCUTQH-UHFFFAOYSA-N ethynol Chemical group OC#C QFXZANXYUCUTQH-UHFFFAOYSA-N 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- -1 titanium carbides Chemical class 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
- C22C1/053—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
- C22C1/055—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/06—Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/14—Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/23—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F3/26—Impregnating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0242—Making ferrous alloys by powder metallurgy using the impregnating technique
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/28—Small metalwork for digging elements, e.g. teeth scraper bits
- E02F9/2808—Teeth
- E02F9/285—Teeth characterised by the material used
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/28—Small metalwork for digging elements, e.g. teeth scraper bits
- E02F9/2866—Small metalwork for digging elements, e.g. teeth scraper bits for rotating digging elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/10—Carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2303/00—Functional details of metal or compound in the powder or product
- B22F2303/01—Main component
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2303/00—Functional details of metal or compound in the powder or product
- B22F2303/05—Compulsory alloy component
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the present invention relates to a composite tooth intended to equip a machine for working the soil or rocks. It relates in particular to a tooth comprising a metal matrix reinforced by particles of titanium carbide.
- teeth is to be interpreted broadly and includes any element of any size, having a pointed or flattened shape, intended in particular for working the soil, the bottom of rivers or seas, rocks, on the surface or in the mines.
- the document EP 1 450 973 B1 describes a reinforcement of wearing parts made by placing in the mold intended to receive the casting metal, an insert consisting of reactive powders which react with each other thanks to the heat provided by the metal during the casting at very high temperature (> 1400 ° C). After reaction of SHS type, the powders of the reactive insert will create a relatively uniform porous cluster (conglomerate) of hard particles; once formed, this porous mass will be immediately infiltrated by the casting metal at high temperature. The reaction of the powders is exothermic and self-propagating, which allows a synthesis of the carbides at high temperature and considerably increases the wettability of the porous mass by the infiltration metal.
- the present invention discloses a composite tooth for a tillage or rock tillage tool, particularly for excavating or dredging tools, with improved wear resistance while maintaining good impact resistance.
- This property is obtained by a composite reinforcement structure specifically designed for this application, a material that alternates on a millimeter scale dense zones in fine micrometric globular particles of metal carbides with zones that are practically free of them within the metallic matrix. of the tooth.
- the present invention also provides a method for obtaining said reinforcing structure.
- the present invention discloses a composite tooth for tillage or rock, said tooth comprising a ferrous alloy reinforced at least in part with titanium carbide in a defined geometry, wherein said reinforced portion comprises an alternating macro-microstructure of zones millimeters millimeter areas concentrated in micrometric globular particles of titanium carbide separated by millimetric areas substantially free of micrometric globular particles of titanium carbide, said micrometrically concentrated micrometric micrometric particles of micrometric titanium carbide particles in which the micrometric interstices between said globular particles are also occupied by said ferrous alloy.
- the present invention also discloses a composite tooth obtained according to the method of any one of claims 11 to 13.
- FIGS. 1a and 1b show a three-dimensional view of teeth without reinforcement according to the state of the art.
- FIGS. 1c to 1h show a three-dimensional view of teeth with reinforcement according to the invention.
- the figure 2 shows illustrative examples of tools on which the teeth according to the invention are mounted. Excavation and drilling tools.
- the figure 4 represents a binocular view of a polished, unengaged surface of a section of the reinforced portion of the tooth according to the invention with millimetric areas (in light gray) concentrated micrometric globular titanium carbide (TiC globules).
- the dark part represents the metal matrix (steel or cast iron) filling at the same time the space between these concentrated zones in micrometric globular titanium carbide but also the spaces between the globules themselves. (See figures 5 and 6 ).
- the figures 5 and 6 represent SEM electron microscopic views of micrometric globular titanium carbide on polished and untouched surfaces at different magnifications. We see that in this particular case most of the globules of titanium carbide have a size less than 10 microns.
- the figure 7 represents a view of micrometric globular titanium carbide on a fracture surface taken by SEM electron microscope. It can be seen that the globules of titanium carbide are perfectly incorporated in the metal matrix. This proves that the casting metal completely infiltrates (impregnates) the pores during casting once the chemical reaction between titanium and carbon is initiated.
- the SHS or " s elf-propagating h igh temperature s ynthesis" reaction is a self-propagating, high-temperature synthesis reaction in which reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
- reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
- the reaction between titanium powder and carbon powder to obtain titanium carbide TiC is highly exothermic. Only a little energy is needed to initiate the reaction locally. Then, the reaction will spontaneously propagate to the entire mixture of reagents thanks to the high temperatures reached. After initiation of the reaction, one has a reaction front which is propagated spontaneously (self-propagated) and which makes it possible to obtain titanium carbide from titanium and carbon.
- the titanium carbide thus obtained is said to be "obtained in situ" because it does not come from the cast ferrous alloy.
- the reactant powder mixtures comprise carbon powder and titanium powder and are compressed into plates and then crushed to obtain granules ranging in size from 1 to 12 mm, preferably from 1 to 6 mm, and particularly preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed between 55 and 95% of the theoretical density. These granules allow easy use / handling (see Fig. 3a-3h).
- These millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of FIG. 3a-3h constitute the precursors of the titanium carbide to be created and make it possible to easily fill mold parts of various or irregular shapes. These granules can be held in place in the mold 15 by means of a dam 16, for example. The shaping or assembly of these granules can also be done using an adhesive.
- the composite tooth for tillage or rocks according to the present invention has a reinforcing macro-microstructure which can also be called an alternating structure of zones concentrated in micrometric globular particles of titanium carbide separated by zones which are practically free.
- a reinforcing macro-microstructure which can also be called an alternating structure of zones concentrated in micrometric globular particles of titanium carbide separated by zones which are practically free.
- Such a structure is obtained by the reaction in the mold of the granules comprising a mixture of powders of carbon and titanium. This reaction is initiated by the heat of casting of the cast iron or steel used to sink any the piece and therefore both the unreinforced and the reinforced part (see Fig. 3rd ).
- the casting therefore triggers an exothermic reaction of self-propagating synthesis at high temperature of the mixture of powders of carbon and titanium compacted in the form of granules (self-propagating high-temperature synthesis - SHS) and previously placed in the mold 15.
- the reaction then has the distinction of continuing to spread as soon as it is initiated.
- This high temperature synthesis allows easy infiltration of all millimetric and micrometric interstices by cast iron or casting steel ( Fig. 3g & 3h ). By increasing the wettability, the infiltration can be done on any thickness or depth of reinforcement of the tooth. It advantageously makes it possible, after SHS reaction and infiltration by an external casting metal, to create one or more reinforcement zones on the tooth comprising a high concentration of micrometric globular particles of titanium carbide (which could also be called clusters of nodules), which areas have a size of the order of a millimeter or a few millimeters, and which alternate with areas substantially free of globular titanium carbide.
- the zones of reinforcement where these granules were found show a concentrated dispersion of micrometric globular particles 4 of TiC carbide (globules) whose micrometric interstices 3 have also been infiltrated by the casting metal. which is here cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metallic matrix as that which constitutes the unreinforced part of the tooth; this allows a total freedom of choice of the casting metal.
- the reinforcement zones with a high concentration of titanium carbide are composed of globular micrometer particles of TiC in a large percentage (between approximately 35 and approximately 70% by volume) and of the ferrous infiltration alloy.
- Micrometric globular particles are understood to mean globally spheroidal particles having a size ranging from a few ⁇ m to a few tens of ⁇ m at the most, the vast majority of these particles having a size of less than 50 ⁇ m, and even 20 ⁇ m, or even less than 10 ⁇ m.
- TiC globules This globular form is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see Fig. 6 ).
- the process for obtaining the granules is illustrated in FIG. 3a-3h.
- the granules of carbon / titanium reagents are obtained by compaction between rollers 10 in order to obtain strips that are then crushed in a crusher 11.
- the mixture of the powders is made in a mixer 8 consisting of a tank equipped with blades , to promote homogeneity.
- the mixture then passes into a granulation apparatus through a hopper 9.
- This machine comprises two rollers 10, through which the material is passed. Pressure is applied to these rollers 10, which compresses the material. A strip of compressed material is obtained at the outlet, which is then crushed in order to obtain the granules.
- These granules are then sieved to the desired particle size in a sieve 13.
- the degree of compaction of the bands depends on the applied pressure (in Pa) on the rollers (diameter 200 mm, width 30 mm). For a low level of compaction, of the order of 10 6 Pa, we obtain a density on the bands of the order of 55% of the theoretical density. After passing through the rollers 10 to compress this material, the apparent density of the granules is 3.75 x 0.55, ie 2.06 g / cm 3 .
- the granules obtained from the raw material Ti + C are porous. This porosity varies from 5% for highly compressed granules, to 45% for slightly compressed granules.
- the granules obtained generally have a size between 1 and 12 mm, preferably between 1 and 6 mm, and particularly preferably between 1.4 and 4 mm.
- the granules are made as described above. To obtain a three-dimensional structure or superstructure / macro-microstructure with these granules, they are placed in the areas of the mold where it is desired to reinforce the workpiece. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container, or by any other means (dam 16).
- the bulk density of the stack of Ti + C granules is measured according to ISO 697 and depends on the level of compaction of the bands, the granulometric distribution of the granules and the crushing mode of the bands, which influences the shape of the granules .
- the bulk density of these Ti + C granules is generally of the order of 0.9 g / cm 3 to 2.5 g / cm 3 depending on the level of compaction of these granules and the density of the stack.
- a tooth whose reinforced zones comprise an overall volume percentage of TiC of about 42%.
- a band is produced by compaction at 85% of the density theoretical of a mixture of C and Ti. After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 2.1 g / cm 3 (35% of space between the granules + 15% of porosity in the granules) is obtained.
- the granules are placed in the mold at the location of the part to be reinforced, which thus comprises 65% by volume of porous granules.
- a chromium cast iron (3% C, 25% Cr) was then cast at about 1500 ° C in a non-preheated sand mold.
- the reaction between Ti and C is initiated by the heat of melting. This casting is done without a protective atmosphere.
- 65% by volume of zones with a high concentration of approximately 65% of globular titanium carbide, ie 42% by global volume of TiC in the reinforced part of the tooth, are obtained in the reinforced part.
- a tooth whose reinforced zones comprise an overall Tic volume percentage of approximately 30%.
- a 70% compaction band of the theoretical density of a mixture of C and Ti After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 1.4 g / cm 3 (45% of space between the granules + 30% of porosity in the granules) is obtained.
- the granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones with a high concentration of approximately 53% of globular titanium carbide are obtained, ie approximately 30% by total volume of TiC in the reinforced part of the tooth.
- a tooth whose reinforced areas comprise an overall volume percentage of TiC of about 20%.
- a band is made by compaction at 60% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved so as to obtain a granule size of 1 and 6 mm. A bulk density of the order of 1.0 g / cm 3 (55% of space between the granules + 40% of porosity in the granules) is obtained. The granules are placed in the part to be reinforced, which thus comprises 45% by volume of porous granules. After reaction, 45% by volume of zones concentrated to about 45% of globular titanium carbide, or 20% by volume of TiC in the reinforced portion of the tooth, are obtained in the reinforced portion.
- Example 2 it was sought to attenuate the intensity of the reaction between carbon and titanium by adding a ferrous alloy powder.
- a ferrous alloy powder As in Example 2, it is intended to make a tooth whose reinforced areas comprise an overall volume percentage of TiC of about 30%.
- a compaction band is produced at 85% of the theoretical density of a mixture by weight of 15% of C, 63% of Ti and 22% of Fe.
- the granules After crushing, the granules are sieved to obtain a granule size between 1.4 and 4 mm. A bulk density of the order of 2 g / cm 3 (45% of space between the granules + 15% of porosity in the granules) is obtained.
- the granules are placed in the reinforced part, which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones with a high concentration are obtained. approximately 55% of globular titanium carbide, ie 30% by volume of global titanium carbide in the reinforced macro-microstructure of the tooth.
- millimetric granules which are crimped into the metal infiltration alloy. These millimetric granules are themselves composed of microscopic particles of globular TiC also crimped in the metal alloy infiltration. This system makes it possible to obtain a tooth with a reinforcement zone comprising a macrostructure within which there is an identical microstructure on a scale approximately a thousand times smaller.
- the reinforcement zone of the tooth comprises small globular particles of titanium carbide, hard and finely dispersed in a metal matrix which surrounds them, makes it possible to avoid the formation and crack propagation (see Fig. 4 & 6 ). There is thus a double dissipative system of cracks.
- Cracks generally originate at the most fragile places, which in this case are the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric particle of TiC, the propagation of this crack is then impeded by the infiltration alloy which surrounds this particle. The toughness of the infiltration alloy is greater than that of the TiC ceramic particle. The crack needs more energy to pass from one particle to another, to cross the micrometric spaces that exist between the particles.
- the coefficient of expansion of the TiC reinforcement is lower than that of the ferrous alloy matrix (TiC expansion coefficient: 7.5 ⁇ 10 -6 / K and the ferrous alloy: about 12.0 ⁇ 10 -5 / K).
- This difference in the expansion coefficients has the consequence of generating tensions in the material during the solidification phase and also during the heat treatment. If these voltages are too great, cracks may appear in the room and lead to scrapping it.
- a small proportion of TiC reinforcement (less than 50% by volume) is used, resulting in less stress in the part.
- the presence of a more ductile matrix between the micrometric globular particles of TiC in alternating zones of low and high concentration makes it possible to better manage any local voltages.
- the boundary between the reinforced portion and the unreinforced portion of the tooth is not abrupt because there is a continuity of the metal matrix between the reinforced portion and the unreinforced portion, which allows the protect against a complete tearing of the reinforcement.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Powder Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Silicon Polymers (AREA)
- Polyesters Or Polycarbonates (AREA)
- Earth Drilling (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Soil Working Implements (AREA)
- Dental Preparations (AREA)
Abstract
Description
La présente invention se rapporte à une dent composite destinée à équiper une machine pour le travail du sol ou des roches. Elle se rapporte en particulier à une dent comportant une matrice métallique renforcée par des particules de carbure de titane.The present invention relates to a composite tooth intended to equip a machine for working the soil or rocks. It relates in particular to a tooth comprising a metal matrix reinforced by particles of titanium carbide.
L'expression « dent » est à interpréter au sens large et comporte tout élément de toute dimension, présentant une forme pointue ou aplatie, destiné notamment à travailler le sol, le fond des cours d'eau ou des mers, les roches, en surface ou dans les mines.The term "tooth" is to be interpreted broadly and includes any element of any size, having a pointed or flattened shape, intended in particular for working the soil, the bottom of rivers or seas, rocks, on the surface or in the mines.
Peu de moyens sont connus pour modifier la dureté et la résistance à l'impact d'un alliage de fonderie en profondeur "dans la masse". Les moyens connus concernent généralement des modifications en surface de faible profondeur (quelques mm). Pour les dents réalisées en fonderie, les éléments de renfort doivent être présents en profondeur afin de résister à des sollicitations localisées importantes et simultanées en termes de contraintes mécaniques, d'usure et d'impact, et aussi parce qu'une dent est utilisée sur une grande partie de sa longueur.Few means are known for modifying the hardness and impact resistance of a deep casting alloy "in the mass". The known means generally concern surface modifications of shallow depth (a few mm). For foundry teeth, the reinforcing elements must be present in depth in order to withstand significant and simultaneous localized stress in terms of mechanical stress, wear and impact, and also because a tooth is used on much of its length.
Il est connu de recharger des dents avec des carbures métalliques (Technosphère® - Technogenia) par soudage oxyacétylénique. Un tel rechargement permet de déposer une couche de carbure de quelques millimètres d'épaisseur à la surface d'une dent. Un tel renfort n'est cependant pas intégré à la matrice métallique de la dent et ne garantit pas la même performance qu'une dent où un renfort de carbure est entièrement incorporé dans la masse de la matrice métallique.It is known to refill teeth with metal carbides (Technosphère® - Technogenia) by oxyacetylene welding. Such reloading makes it possible to deposit a carbide layer a few millimeters thick on the surface of a tooth. Such a reinforcement is however not integrated with the metal matrix of the tooth and does not guarantee the same performance as a tooth where a carbide reinforcement is entirely incorporated into the mass of the metal matrix.
Le document
Le document
Le document
La présente invention divulgue une dent composite pour un outil de travail du sol ou de la roche, en particulier pour des outils d'excavation ou de dragage, avec une résistance améliorée contre l'usure tout en maintenant une bonne résistance aux chocs. Cette propriété est obtenue par une structure composite de renforcement spécifiquement conçue pour cette application, matériau qui fait alterner à l'échelle millimétrique des zones denses en fines particules globulaires micrométriques de carbures métalliques avec des zones qui en sont pratiquement exemptes au sein de la matrice métallique de la dent.The present invention discloses a composite tooth for a tillage or rock tillage tool, particularly for excavating or dredging tools, with improved wear resistance while maintaining good impact resistance. This property is obtained by a composite reinforcement structure specifically designed for this application, a material that alternates on a millimeter scale dense zones in fine micrometric globular particles of metal carbides with zones that are practically free of them within the metallic matrix. of the tooth.
La présente invention propose également un procédé pour l'obtention de ladite structure de renforcement.The present invention also provides a method for obtaining said reinforcing structure.
La présente invention divulgue une dent composite pour le travail du sol ou des roches, ladite dent comportant un alliage ferreux renforcé au moins en partie avec du carbure de titane selon une géométrie définie, dans laquelle ladite partie renforcée comporte une macro-microstructure alternée de zones millimétriques de zones millimétriques concentrées en particules globulaires micrométriques de carbure de titane séparées par des zones millimétriques essentiellement exemptes de particules globulaires micrométriques de carbure de titane, lesdites zones concentrées en particules globulaires micrométriques de carbure de titane formant une microstructure dans laquelle les interstices micrométriques entre lesdites particules globulaires sont également occupés par ledit alliage ferreux.The present invention discloses a composite tooth for tillage or rock, said tooth comprising a ferrous alloy reinforced at least in part with titanium carbide in a defined geometry, wherein said reinforced portion comprises an alternating macro-microstructure of zones millimeters millimeter areas concentrated in micrometric globular particles of titanium carbide separated by millimetric areas substantially free of micrometric globular particles of titanium carbide, said micrometrically concentrated micrometric micrometric particles of micrometric titanium carbide particles in which the micrometric interstices between said globular particles are also occupied by said ferrous alloy.
Selon des modes particuliers de l'invention, la dent composite comporte au moins une ou une combinaison appropriée des caractéristiques suivantes :
- lesdites zones millimétriques concentrées ont une concentration en carbures de titane supérieure à 36.9 % en volume ;
- ladite partie renforcée a une teneur globale de carbure de titane entre 16.6 et 50.5 % en volume ;
- les particules micrométriques globulaires de carbure de titane ont une taille inférieure à 50µm ;
- la majeure partie des particules micrométriques globulaires de carbure de titane a une taille inférieure à 20 µm ;
- lesdites zones concentrées en particules globulaires de carbure de titane comportent 36.9 à 72.2 % en volume de carbure de titane ;
- lesdites zones millimétriques concentrées en carbure de titane ont une dimension variant de 1 à 12 mm ;
- lesdites zones millimétriques concentrées en carbure de titane ont une dimension variant de 1 à 6 mm ;
- lesdites zones concentrées en carbure de titane ont une dimension variant de 1.4 à 4 mm ;
- said concentrated millimeter areas have a concentration of titanium carbides greater than 36.9% by volume;
- said reinforced portion has an overall titanium carbide content between 16.6 and 50.5% by volume;
- the micrometric globular particles of titanium carbide have a size of less than 50 μm;
- most of the micrometric globular particles of titanium carbide has a size less than 20 microns;
- said zones concentrated in globular particles of titanium carbide comprise 36.9 to 72.2% by volume of titanium carbide;
- said millimetric areas of concentrated titanium carbide have a size ranging from 1 to 12 mm;
- said millimetric zones concentrated in titanium carbide have a dimension ranging from 1 to 6 mm;
- said concentrated areas of titanium carbide have a size ranging from 1.4 to 4 mm;
La présente invention divulgue également un procédé de fabrication de la dent composite selon l'une quelconque des revendications 1 à 9 comportant les étapes suivantes :
- mise à disposition d'un moule comportant l'empreinte de la dent avec une géométrie de renforcement prédéfinie ;
- introduction, dans la partie de l'empreinte de la dent destinée à former la partie renforcée (5), d'un mélange de poudres compactées comportant du carbone et du titane sous forme de granulés millimétriques précurseurs de carbure de titane ;
- coulée d'un alliage ferreux dans le moule, la chaleur de ladite coulée déclenchant une réaction exothermique de synthèse auto-propagée de carbure de titane à haute température (SHS) au sein desdits granulés précurseurs ;
- formation, au sein de la partie renforcée de la dent composite d'une macro-microstructure alternée de zones millimétriques concentrées en particules globulaires micrométriques de carbure de titane à l'emplacement desdits granulés précurseurs, lesdites zones étant séparées entre elles par des zones millimétriques essentiellement exemptes de particules globulaires micrométriques de carbure de titane, lesdites particules globulaires étant également séparées au sein desdites zones millimétriques concentrées de carbure de titane par des interstices micrométriques ;
- infiltration des interstices millimétriques et micrométriques par ledit alliage ferreux de coulée à haute température, consécutive à la formation de particules microscopiques globulaires de carbure de titane.
- provision of a mold having the tooth impression with a predefined reinforcement geometry;
- introducing, into the part of the impression of the tooth intended to form the reinforced part (5), a mixture of compacted powders comprising carbon and titanium in the form of millimetric granules precursors of titanium carbide;
- casting a ferrous alloy into the mold, the heat of said casting triggering an exothermic reaction of self-propagating synthesis of high temperature titanium carbide (SHS) within said precursor granules;
- forming, within the reinforced portion of the composite tooth, an alternating macro-microstructure of millimetric zones concentrated in micrometric globular particles of titanium carbide at the location of said precursor granules, said zones being separated from each other by millimetric zones essentially free of micrometric globular particles of titanium carbide, said globular particles being also separated within said millimetric areas of concentrated titanium carbide by micrometric interstices;
- infiltration of the millimetric and micrometric interstices by said high-temperature ferrous casting alloy, subsequent to the formation of microscopic globular particles of titanium carbide.
Selon des modes particuliers de l'invention, le procédé comporte au moins une ou une combinaison appropriée des caractéristiques suivantes :
- les poudres compactées de titane et de carbone comportent une poudre d'un alliage ferreux ;
- ledit carbone est du graphite.
- the compacted powders of titanium and carbon comprise a powder of a ferrous alloy;
- said carbon is graphite.
La présente invention divulgue également une dent composite obtenue selon le procédé de l'une quelconque des revendications 11 à 13.The present invention also discloses a composite tooth obtained according to the method of any one of
Les
Les
La
La figure 3a-3h représente le procédé de fabrication de la dent représentée à la
- l'étape 3a montre le dispositif de mélange des poudres de titane et de carbone ;
- l'étape 3b montre la compaction des poudres entre deux rouleaux suivie d'un concassage et d'un tamisage avec recyclage des particules trop fines ;
- la
figure 3c montre un moule de sable dans lequel on a placé un barrage pour contenir les granulés de poudre compactée à l'endroit du renforcement de la dent de type 1d ; - la
figure 3d montre un agrandissement de la zone de renforcement dans laquelle se trouvent les granulés compactés comportant les réactifs précurseurs du TiC ; - l'étape 3e montre la coulée de l'alliage ferreux dans le moule ;
- la
figure 3f montre la dent de type 1b résultant de la coulée ; - la
figure 3g montre un agrandissement des zones à forte concentration en nodules de TiC - ce schéma représente les mêmes zones que dans lafigure 4 ; - la
figure 3h montre un agrandissement au sein d'une même zone à forte concentration en globules de TiC - les globules micrométriques sont individuellement entourés par le métal de coulée.
- step 3a shows the device for mixing titanium and carbon powders;
- step 3b shows the compaction of the powders between two rollers followed by crushing and sieving with recycling of the fine particles;
- the
figure 3c shows a sand mold in which a dam has been placed to contain the compacted powder granules at the location of the reinforcement of the type 1d tooth; - the
figure 3d shows an enlargement of the reinforcement zone in which the compacted granules comprising TiC precursor reactants are located; - step 3e shows the casting of the ferrous alloy in the mold;
- the
figure 3f shows the type 1b tooth resulting from casting; - the
figure 3g shows an enlargement of areas with high concentrations of TiC nodules - this diagram represents the same areas as in thefigure 4 ; - the
figure 3h shows an enlargement within the same zone with a high concentration of TiC globules - the Micrometric globules are individually surrounded by the casting metal.
La
Les
La
- 1. zones millimétriques concentrées en particules globulaires (nodules) micrométriques de carbure de titane (zones claires)1. Millimeter zones concentrated in micrometric globular particles (nodules) micrometric titanium carbide (bright areas)
- 2. interstices millimétriques remplis par l'alliage ferreux de coulée globalement exempts de particules globulaires micrométriques de carbure de titane (zones foncées)2. millimetric interstices filled with ferrous casting alloy generally free of particles micrometric globular titanium carbide (dark areas)
- 3. interstices micrométriques entre les nodules de TiC également infiltrés par l'alliage de coulée3. micrometric interstices between TiC nodules also infiltrated by casting alloy
- 4. carbure de titane globulaire micrométrique, dans les zones concentrées en carbure de titane4. micrometric globular titanium carbide, in the concentrated areas of titanium carbide
- 5. renfort de carbure de titane5. titanium carbide reinforcement
- 6. défauts de gaz6. gas defects
- 7. (libre)7. (free)
- 8. mélangeur de poudres de Ti et de C8. mixer of Ti and C powders
- 9. trémie9. hopper
- 10. rouleau10. roll
- 11. concasseur11. crusher
- 12. grille de sortie12. exit grid
- 13. tamis13. sieve
- 14. recyclage des particules trop fines vers la trémie14. recycling of fine particles to the hopper
- 15. moule de sable15. sand mold
- 16. barrage contenant les granulés compactés de mélange Ti/C16. dam containing the compacted granules of Ti / C mixture
- 17. poche de coulée17. ladle
- 18. dent de type 1d18. tooth type 1d
En science des matériaux, on appelle réaction SHS ou « self-propagating high temperature synthesis », une réaction de synthèse à haute température auto-propagée où l'on atteint des températures de réaction généralement supérieures à 1500°C, voire 2000°C. Par exemple, la réaction entre de la poudre de titane et de la poudre de carbone pour obtenir le carbure de titane TiC, est fortement exothermique. On a uniquement besoin d'un peu d'énergie pour initier localement la réaction. Ensuite, la réaction se propagera spontanément à la totalité du mélange des réactifs grâce aux hautes températures atteintes. Après initiation de la réaction, on a un front de réaction qui se propage ainsi spontanément (auto-propagée) et qui permet l'obtention du carbure de titane à partir du titane et du carbone. Le carbure de titane ainsi obtenu est dit « obtenu in situ » car il ne provient pas de l'alliage ferreux coulé.In materials science, the SHS or " s elf-propagating h igh temperature s ynthesis" reaction is a self-propagating, high-temperature synthesis reaction in which reaction temperatures are generally greater than 1500 ° C or even 2000. ° C. For example, the reaction between titanium powder and carbon powder to obtain titanium carbide TiC is highly exothermic. Only a little energy is needed to initiate the reaction locally. Then, the reaction will spontaneously propagate to the entire mixture of reagents thanks to the high temperatures reached. After initiation of the reaction, one has a reaction front which is propagated spontaneously (self-propagated) and which makes it possible to obtain titanium carbide from titanium and carbon. The titanium carbide thus obtained is said to be "obtained in situ" because it does not come from the cast ferrous alloy.
Les mélanges de poudres de réactif comportent de la poudre de carbone et de la poudre de titane et sont comprimés en plaques et ensuite concassés afin d'obtenir des granulés dont la taille varie de 1 à 12 mm, de préférence de 1 à 6 mm, et de manière particulièrement préférée de 1.4 à 4 mm. Ces granulés ne sont pas compactés à 100 %. On les comprime généralement entre 55 et 95 % de la densité théorique. Ces granulés permettent une utilisation/manipulation aisée (voir Fig. 3a-3h).The reactant powder mixtures comprise carbon powder and titanium powder and are compressed into plates and then crushed to obtain granules ranging in size from 1 to 12 mm, preferably from 1 to 6 mm, and particularly preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed between 55 and 95% of the theoretical density. These granules allow easy use / handling (see Fig. 3a-3h).
Ces granulés millimétriques de poudres de carbone et de titane mélangées obtenus selon les schémas de la figure 3a-3h constituent les précurseurs du carbure de titane à créer et permettent de remplir facilement des parties de moules de formes diverses ou irrégulières. Ces granulés peuvent être maintenus en place dans le moule 15 à l'aide d'un barrage 16, par exemple. La mise en forme ou l'assemblage de ces granulés peut également se faire à l'aide d'une colle.These millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of FIG. 3a-3h constitute the precursors of the titanium carbide to be created and make it possible to easily fill mold parts of various or irregular shapes. These granules can be held in place in the
La dent composite pour le travail du sol ou des roches selon la présente invention possède une macro-microstructure de renforcement que l'on peut encore appeler structure alternée de zones concentrées en particules micrométriques globulaires de carbure de titane séparées par des zones qui en sont pratiquement exemptes. Une telle structure est obtenue par la réaction dans le moule 15 des granulés comportant un mélange de poudres de carbone et de titane. Cette réaction est initiée par la chaleur de la coulée de la fonte ou de l'acier utilisés pour couler toute la pièce et donc à la fois la partie non renforcée et la partie renforcée (voir
Cette synthèse à haute température (SHS) permet une infiltration aisée de tous les interstices millimétriques et micrométriques par la fonte ou l'acier de coulée (
Une fois que ces granulés ont réagi selon une réaction SHS, les zones de renforcement où se trouvaient ces granulés montrent une dispersion concentrée de particules globulaires micrométriques 4 de carbure TiC (globules) dont les interstices micrométriques 3 ont été également infiltrés par le métal de coulée qui est ici de la fonte ou de l'acier. Il est important de remarquer que les interstices millimétriques et micrométriques sont infiltrés par la même matrice métallique que celle qui constitue la partie non renforcée de la dent; ceci permet une liberté totale de choix du métal de coulée. Dans la dent finalement obtenue, les zones de renfort à forte concentration de carbure de titane sont composées de particules micrométriques globulaires de TiC en pourcentage important (entre environ 35 et environ 70 % en volume) et de l'alliage ferreux d'infiltration.Once these granules have reacted according to an SHS reaction, the zones of reinforcement where these granules were found show a concentrated dispersion of micrometric globular particles 4 of TiC carbide (globules) whose
Par particules globulaires micrométriques, il faut entendre des particules globalement sphéroïdales qui ont une taille allant du µm à quelques dizaines de µm tout au plus, la grande majorité de ces particules ayant une taille inférieure à 50 µm, et même à 20 µm, voire à 10 µm. Nous les appelons également des globules de TiC. Cette forme globulaire est caractéristique d'une méthode d'obtention du carbure de titane par synthèse auto-propagée SHS (voir
Le procédé d'obtention des granulés est illustré à la figure 3a-3h. Les granulés de réactifs carbone/titane sont obtenus par compaction entre des rouleaux 10 afin d'obtenir des bandes que l'on concasse ensuite dans un concasseur 11. Le mélange des poudres est fait dans un mélangeur 8 constitué d'une cuve munie de pales, afin de favoriser l'homogénéité. Le mélange passe ensuite dans un appareil de granulation par une trémie 9. Cette machine comprend deux rouleaux 10, au travers desquels on fait passer la matière. Une pression est appliquée sur ces rouleaux 10, ce qui permet de comprimer la matière. On obtient à la sortie une bande de matière comprimée qui est ensuite concassée afin d'obtenir les granulés. Ces granulés sont ensuite tamisés à la granulométrie souhaitée dans un tamis 13. Un paramètre important est la pression appliquée sur les rouleaux. Au plus cette pression est élevée, au plus la bande, et donc les granulés seront comprimés. On peut ainsi faire varier la densité des bandes, et par conséquent des granulés, entre 55 et 95 % de la densité théorique qui est de 3.75 g/cm3 pour le mélange stoechiométrique de titane et de carbone. La densité apparente (tenant compte de la porosité) se situe alors entre 2.06 et 3.56 g/cm3.The process for obtaining the granules is illustrated in FIG. 3a-3h. The granules of carbon / titanium reagents are obtained by compaction between
Le degré de compaction des bandes dépend de la pression appliquée (en Pa) sur les rouleaux (diamètre 200 mm, largeur 30 mm). Pour un bas niveau de compaction, de l'ordre de 106 Pa, on obtient une densité sur les bandes de l'ordre de 55 % de la densité théorique. Après le passage à travers les rouleaux 10 pour comprimer cette matière, la densité apparente des granulés est de 3.75 x 0.55, soit 2.06 g/cm3.The degree of compaction of the bands depends on the applied pressure (in Pa) on the rollers (diameter 200 mm, width 30 mm). For a low level of compaction, of the order of 10 6 Pa, we obtain a density on the bands of the order of 55% of the theoretical density. After passing through the
Pour un haut niveau de compaction, de l'ordre de 25.106 Pa, on obtient une densité sur les bandes de 90 % de la densité théorique, soit une densité apparente de 3.38 g/cm3. En pratique on peut aller jusqu'à 95 % de la densité théorique.For a high level of compaction, of the order of 25 × 10 6 Pa, a density on the strips of 90% of the theoretical density is obtained, ie a bulk density of 3.38 g / cm 3 . In practice one can go up to 95% of the theoretical density.
Par conséquent, les granulés obtenus à partir de la matière première Ti + C sont poreux. Cette porosité varie de 5 % pour les granulés très fortement comprimés, à 45 % pour les granulés faiblement comprimés.Therefore, the granules obtained from the raw material Ti + C are porous. This porosity varies from 5% for highly compressed granules, to 45% for slightly compressed granules.
Outre le niveau de compaction, il est également possible de régler la répartition granulométrique des granulés ainsi que leur forme lors de l'opération de concassage des bandes et de tamisage des granulés de Ti+C. On recycle à volonté les fractions granulométriques non désirées (voir
Les granulés sont réalisés comme exposé ci-dessus. Pour obtenir une structure tridimensionnelle ou superstructure/macro-microstructure avec ces granulés, on les dispose dans les zones du moule où l'on souhaite renforcer la pièce. Ceci est réalisé en agglomérant les granulés soit au moyen d'une colle, soit en les confinant dans un récipient, ou par tout autre moyen (barrage 16). La densité en vrac de l'empilement des granulés de Ti + C est mesurée selon la norme ISO 697 et dépend du niveau de compaction des bandes, de la répartition granulométrique des granulés et du mode de concassage des bandes, qui influence la forme des granulés.
La densité en vrac de ces granulés de Ti + C est généralement de l'ordre de 0.9 g/cm3 à 2.5 g/cm3 en fonction du niveau de compaction de ces granulés et de la densité de l'empilement.The granules are made as described above. To obtain a three-dimensional structure or superstructure / macro-microstructure with these granules, they are placed in the areas of the mold where it is desired to reinforce the workpiece. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container, or by any other means (dam 16). The bulk density of the stack of Ti + C granules is measured according to ISO 697 and depends on the level of compaction of the bands, the granulometric distribution of the granules and the crushing mode of the bands, which influences the shape of the granules .
The bulk density of these Ti + C granules is generally of the order of 0.9 g / cm 3 to 2.5 g / cm 3 depending on the level of compaction of these granules and the density of the stack.
Avant réaction, on a donc un empilement de granulés poreux composés d'un mélange de poudre de titane et de poudre de carbone.Before reaction, there is therefore a stack of porous granules composed of a mixture of titanium powder and carbon powder.
Lors de la réaction Ti + C → TiC, il se produit une contraction volumétrique de l'ordre de 24 % quand on passe des réactifs au produit (contraction venant de la différence de densité entre les réactifs et les produits). Ainsi, la densité théorique du mélange Ti + C est de 3.75 g/cm3 et la densité théorique du TiC est de 4.93 g/cm3. Dans le produit final, après la réaction d'obtention du TiC, le métal de coulée infiltrera :
- la porosité microscopique présente dans les espaces à forte concentration en carbure de titane, dépendant du niveau de compaction initial de ces granulés ;
- les espaces millimétriques entre les zones à forte concentration en carbure de titane, dépendant de l'empilement initial des granulés (densité en vrac) ;
- la porosité venant de la contraction volumétrique lors de la réaction entre Ti + C pour obtenir le TiC.
- the microscopic porosity present in spaces with a high concentration of titanium carbide, depending on the initial level of compaction of these granules;
- the millimeter spaces between the zones with a high concentration of titanium carbide, depending on the initial stacking of the granules (bulk density);
- the porosity coming from the volumetric contraction during the reaction between Ti + C to obtain the TiC.
Dans les exemples qui suivent, on a utilisé les matières premières suivantes :
- titane, H.C. STARCK, Amperit 155.066, moins de 200 mesh,
- carbone graphite GK Kropfmuhl, UF4, > 99.5 %, moins de 15 µm,
- Fe, sous la forme Acier HSS M2, moins de 25 µm,
- proportions :
- Ti + C 100 g Ti - 24.5 g C
- Ti + C + Fe 100 g Ti - 24.5 g C - 35.2
g Fe Mélange 15 min dans mélangeur Lindor, sous argon.
Pour les mélanges Ti+C+Fe et Ti+C, la compacité des granulés a été obtenue en faisant varier la pression entre les rouleaux de 10 à 250.105 Pa.
Le renforcement a été effectué en plaçant des granulés dans un container métallique, qui est ensuite judicieusement placé dans le moule à l'endroit où la dent est susceptible d'être renforcée. Ensuite on coule l'acier ou la fonte dans ce moule.In the examples that follow, the following raw materials were used:
- titanium, HC STARCK, Amperit 155.066, less than 200 mesh,
- graphite carbon GK Kropfmuhl, UF4,> 99.5%, less than 15 μm,
- Fe, in the form of HSS M2 steel, less than 25 μm,
- proportions:
- Ti + C 100 g Ti - 24.5 g C
- Ti + C + Fe 100 g Ti - 24.5 g C - 35.2
g Fe Mix 15 min in Lindor mixer, under argon.
For the Ti + C + Fe and Ti + C mixtures, the compactness of the granules was obtained by varying the pressure between the rolls by 10 to 250 × 10 5 Pa.
Reinforcement has been done by placing granules in a metal container, which is then conveniently placed in the mold where the tooth is likely to be reinforced. Then we cast the steel or cast in this mold.
Dans cet exemple, on vise à réaliser une dent dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 42 %. A cette fin, on réalise une bande par compaction à 85 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 2.1 g/cm3 (35 % d'espace entre les granulés + 15 % de porosité dans les granulés).In this example, it is intended to make a tooth whose reinforced zones comprise an overall volume percentage of TiC of about 42%. For this purpose, a band is produced by compaction at 85% of the density theoretical of a mixture of C and Ti. After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 2.1 g / cm 3 (35% of space between the granules + 15% of porosity in the granules) is obtained.
On dispose les granulés dans le moule à l'endroit de la partie à renforcer qui comporte ainsi 65 % en volume de granulés poreux. On coule ensuite une fonte au chrome (3 % C, 25 % Cr) à environ 1500°C dans un moule en sable non préchauffé. La réaction entre le Ti et le C est initiée par la chaleur de la fonte. Cette coulée se fait sans atmosphère de protection. Après réaction, on obtient dans la partie renforcée 65 % en volume de zones avec une forte concentration d'environ 65 % en carbure de titane globulaire, soit 42 % en volume global de TiC dans la partie renforcée de la dent.The granules are placed in the mold at the location of the part to be reinforced, which thus comprises 65% by volume of porous granules. A chromium cast iron (3% C, 25% Cr) was then cast at about 1500 ° C in a non-preheated sand mold. The reaction between Ti and C is initiated by the heat of melting. This casting is done without a protective atmosphere. After reaction, 65% by volume of zones with a high concentration of approximately 65% of globular titanium carbide, ie 42% by global volume of TiC in the reinforced part of the tooth, are obtained in the reinforced part.
Dans cet exemple, on vise à réaliser une dent dont les zones renforcées comportent un pourcentage en volume global de Tic d'environ 30 %- A cette fin, on réalise une bande par compaction à 70 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 1.4 g/cm3 (45 % d'espace entre les granulés + 30 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 55 % en volume de granulés poreux. Après réaction, on obtient, dans la partie renforcée, 55 % en volume de zones avec une forte concentration d'environ 53 % en carbure de titane globulaire, soit environ 30 % en volume global de TiC dans la partie renforcée de la dent.In this example, it is intended to produce a tooth whose reinforced zones comprise an overall Tic volume percentage of approximately 30%. For this purpose, a 70% compaction band of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 1.4 g / cm 3 (45% of space between the granules + 30% of porosity in the granules) is obtained. The granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones with a high concentration of approximately 53% of globular titanium carbide are obtained, ie approximately 30% by total volume of TiC in the reinforced part of the tooth.
Dans cet exemple, on vise à réaliser une dent dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 20 %. A cette fin, on réalise une bande par compaction à 60 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située 1 et 6 mm. On obtient une densité en vrac de l'ordre de 1.0 g/cm3 (55 % d'espace entre les granulés + 40 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 45 % en volume de granulés poreux. Après réaction, on obtient dans la partie renforcée 45 % en volume de zones concentrées à environ 45 % en carbure de titane globulaire, soit 20 % en volume global de TiC dans la partie renforcée de la dent.In this example, it is intended to make a tooth whose reinforced areas comprise an overall volume percentage of TiC of about 20%. For this purpose, a band is made by compaction at 60% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved so as to obtain a granule size of 1 and 6 mm. A bulk density of the order of 1.0 g / cm 3 (55% of space between the granules + 40% of porosity in the granules) is obtained. The granules are placed in the part to be reinforced, which thus comprises 45% by volume of porous granules. After reaction, 45% by volume of zones concentrated to about 45% of globular titanium carbide, or 20% by volume of TiC in the reinforced portion of the tooth, are obtained in the reinforced portion.
Dans cet exemple, on a cherché à atténuer l'intensité de la réaction entre le carbone et le titane en y ajoutant un alliage ferreux en poudre. Comme dans l'exemple 2, on vise à réaliser une dent dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 30 %. A cette fin, on réalise une bande par compaction à 85 % de la densité théorique d'un mélange en poids de 15 % de C, 63 % de Ti et 22 % de Fe. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 2 g/cm3 (45 % d'espace entre les granulés + 15 % de porosité dans les granulées). On dispose les granulés dans la partie à renforcée qui comporte ainsi 55 % en volume de granulés poreux. Après réaction, on obtient dans la partie renforcée 55 % en volume de zones avec une forte concentration d'environ 55 % en carbure de titane globulaire, soit 30 % en volume de carbure de titane global dans la macro-microstructure renforcée de la dent.In this example, it was sought to attenuate the intensity of the reaction between carbon and titanium by adding a ferrous alloy powder. As in Example 2, it is intended to make a tooth whose reinforced areas comprise an overall volume percentage of TiC of about 30%. For this purpose, a compaction band is produced at 85% of the theoretical density of a mixture by weight of 15% of C, 63% of Ti and 22% of Fe. After crushing, the granules are sieved to obtain a granule size between 1.4 and 4 mm. A bulk density of the order of 2 g / cm 3 (45% of space between the granules + 15% of porosity in the granules) is obtained. The granules are placed in the reinforced part, which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones with a high concentration are obtained. approximately 55% of globular titanium carbide, ie 30% by volume of global titanium carbide in the reinforced macro-microstructure of the tooth.
Les tableaux suivants montrent les nombreuses combinaisons possibles.
Ici, l'inventeur a visé un mélange permettant d'obtenir 15% en volume de fer après réaction. La proportion de mélange qui a été utilisée est de :
Nous entendons par poudre de fer : fer pur ou alliage de fer.
- Densité théorique du mélange : 4.25 g/cm3
- Retrait volumétrique lors de la réaction : 21 %
We mean by iron powder: pure iron or iron alloy.
- Theoretical density of the mixture: 4.25 g / cm 3
- Volumetric shrinkage during the reaction: 21%
La présente invention présente les avantages suivants par rapport à l'état de la technique en général:The present invention has the following advantages over the state of the art in general:
Avec le présent procédé, on a des granulés millimétriques poreux qui sont sertis dans l'alliage métallique d'infiltration. Ces granulés millimétriques sont eux-mêmes composés de particules microscopiques de TiC à tendance globulaire également sertis dans l'alliage métallique d'infiltration. Ce système permet d'obtenir une dent avec une zone de renfort comportant une macrostructure au sein de laquelle il y a une microstructure identique à une échelle environ mille fois plus petite.With the present process, there are porous millimetric granules which are crimped into the metal infiltration alloy. These millimetric granules are themselves composed of microscopic particles of globular TiC also crimped in the metal alloy infiltration. This system makes it possible to obtain a tooth with a reinforcement zone comprising a macrostructure within which there is an identical microstructure on a scale approximately a thousand times smaller.
Le fait que la zone de renfort de la dent comporte des petites particules globulaires de carbure de titane, dures et finement dispersées dans une matrice métallique qui les entoure, permet d'éviter la formation et la propagation des fissures (voir
Les fissures prennent généralement naissance aux endroits les plus fragiles, qui sont dans ce cas la particule de TiC ou l'interface entre cette particule et l'alliage métallique d'infiltration. Si une fissure prend naissance à l'interface ou dans la particule micrométrique de TiC, la propagation de cette fissure est ensuite entravée par l'alliage d'infiltration qui entoure cette particule. La ténacité de l'alliage d'infiltration est supérieure à celle de la particule céramique TiC. La fissure a besoin de plus d'énergie pour passer d'une particule à l'autre, pour franchir les espaces micrométriques qui existent entre les particules.Cracks generally originate at the most fragile places, which in this case are the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric particle of TiC, the propagation of this crack is then impeded by the infiltration alloy which surrounds this particle. The toughness of the infiltration alloy is greater than that of the TiC ceramic particle. The crack needs more energy to pass from one particle to another, to cross the micrometric spaces that exist between the particles.
Outre le niveau de compaction des granulés, on peut faire varier deux paramètres qui sont la fraction granulométrique et la forme des granulés, et donc leur densité en vrac. Par contre, dans une technique de renforcement par insert, on ne peut faire varier que le niveau de compaction de celui-ci dans une plage limitée. Au niveau de la forme que l'on souhaite donner au renforcement, compte tenu du design de la dent et de l'endroit que l'on souhaite renforcer, l'utilisation de granulés permet davantage de possibilités et d'adaptation.In addition to the level of compaction of the granules, it is possible to vary two parameters which are the granulometric fraction and the shape of the granules, and therefore their bulk density. On the other hand, in an insert reinforcement technique, it is only possible to vary the level of compaction thereof in a limited range. In terms of the shape that we want to give the reinforcement, given the design of the tooth and the place that we want to strengthen, the use of granules allows more opportunities and adaptation.
L'utilisation comme renforcement d'un empilement de granulés poreux, présente certains avantages au niveau de la fabrication :
- moins de dégagement gazeux,
- moindre susceptibilité à la crique,
- meilleure localisation du renforcement dans la dent.
- less gassing,
- less susceptibility to the crack,
- better localization of reinforcement in the tooth.
Le coefficient de dilatation du renforcement TiC est plus faible que celui de la matrice en alliage ferreux (coefficient de dilatation du TiC : 7.5 10-6/K et de l'alliage ferreux : environ 12.0 10-5/K). Cette différence dans les coefficients de dilatation a pour conséquence de générer des tensions dans le matériau pendant la phase de solidification et aussi lors du traitement thermique. Si ces tensions sont trop importantes, des criques peuvent apparaître dans la pièce et conduire au rebut de celle-ci. Dans la présente invention, on utilise une faible proportion de renforcement TiC (moins de 50 % en volume), ce qui entraîne moins de tensions dans la pièce. De plus, la présence d'une matrice plus ductile entre les particules globulaires micrométriques de TiC en zones alternées de faible et de forte concentration permet de mieux gérer d'éventuelles tensions locales.The coefficient of expansion of the TiC reinforcement is lower than that of the ferrous alloy matrix (TiC expansion coefficient: 7.5 × 10 -6 / K and the ferrous alloy: about 12.0 × 10 -5 / K). This difference in the expansion coefficients has the consequence of generating tensions in the material during the solidification phase and also during the heat treatment. If these voltages are too great, cracks may appear in the room and lead to scrapping it. In the present invention, a small proportion of TiC reinforcement (less than 50% by volume) is used, resulting in less stress in the part. In addition, the presence of a more ductile matrix between the micrometric globular particles of TiC in alternating zones of low and high concentration makes it possible to better manage any local voltages.
Dans la présente invention, la frontière entre la partie renforcée et la partie non renforcée de la dent n'est pas abrupte puisqu'il y a une continuité de la matrice métallique entre la partie renforcée et la partie non renforcée, ce qui permet de la protéger contre un arrachage complet du renforcement.In the present invention, the boundary between the reinforced portion and the unreinforced portion of the tooth is not abrupt because there is a continuity of the metal matrix between the reinforced portion and the unreinforced portion, which allows the protect against a complete tearing of the reinforcement.
Les avantages de la dent selon la présente invention par rapport à des dents non composites sont une amélioration de la résistance à l'usure de l'ordre de 300 %. De manière plus détaillée, et suivant les circonstances d'essai (dragage), on a pu constater les performances suivantes (exprimées en durée de vie de la dent pour un volume de travail donné) pour les produits réalisés selon l'invention (renforcement type
- calcaire dur : 2.5 fois ;
- mélange d'argile dure, de sable et de gravier compactés : 2.9 fois ;
- mélange de sable et d'argile dure : 3.2 fois ;
- mélange de schiste et de sable : 3.4 fois.
- hard limestone: 2.5 times;
- mixture of hard clay, compacted sand and gravel: 2.9 times;
- mixture of sand and hard clay: 3.2 times;
- mixture of shale and sand: 3.4 times.
Claims (13)
- A composite tooth for working the ground or rocks, said tooth comprising a ferrous alloy at least partially reinforced (5) with titanium carbide according to a defined geometry, wherein said reinforced portion (5) comprises an alternating macro-microstructure of millimetric areas (1) concentrated with micrometric globular particles of titanium carbide (4) separated by millimetric areas (2) essentially free of micrometric globular particles of titanium carbide (4), said areas concentrated with micrometric globular particles of titanium carbide (4) forming a microstructure in which the micrometric interstices (3) between said globular particles (4) are also filled by said ferrous alloy.
- The tooth according to claim 1, wherein said millimetric concentrated areas have a concentration of micrometric globular particles of titanium carbide (4) greater than 36.9% by volume.
- The tooth according to any of claims 1 or 2, wherein said reinforced portion has a global titanium carbide content between 16.6 and 50.5% by volume.
- The tooth according to any of the preceding claims, wherein the micrometric globular particles of titanium carbide (4) have a size of less than 50µm.
- The tooth according to any of the preceding claims, wherein the major portion of the micrometric globular particles of titanium carbide (4) has a size of less than 20 µm.
- The tooth according to any of the preceding claims, wherein said areas concentrated with globular particles of titanium carbide (1) comprise 36.9 to 72.2% by volume of titanium carbide.
- The tooth according to any of the preceding claims, wherein said areas concentrated with titanium carbide (1) have a dimension varying from 1 to 12 mm.
- The tooth according to any of the preceding claims, wherein said areas concentrated in titanium carbide (1) have a dimension varying from 1 to 6 mm.
- The tooth according to any of the preceding claims, wherein said areas concentrated in titanium carbide (1) have a dimension varying from 1.4 to 4 mm.
- A method for manufacturing by casting a composite tooth according to any of claims 1 to 9, comprising the following steps:- providing a mold comprising the imprint of the tooth with a predefined reinforcement geometry;- introducing, into the portion, of the imprint of the tooth intended to form the reinforced portion (5), a mixture of compacted powders comprising carbon and titanium in the form of millimetric granules precursor of titanium carbide;- casting a ferrous alloy into the mold, the heat of said casting triggering an exothermic self-propagating high temperature synthesis (SHS) of titanium carbide within said precursor granules;- forming, within the reinforced portion (5) of the tooth, an alternating macro-microstructure of millimetric areas concentrated (1) with micrometric globular particles of titanium carbide (4) at the location of said precursor granules, said areas being separated from each other by millimetric areas (2) essentially free of micrometric globular particles of titanium carbide (4), said globular particles (4) being also separated within said millimetric areas concentrated (1) with titanium carbide by micrometric interstices (3);- infiltration of the millimetric (2) and micrometric (3) interstices by said high temperature cast ferrous alloy, following the formation of microscopic globular particles of titanium carbide (4).
- The manufacturing method according to claim 10, wherein the mixture of compacted powders of titanium and carbon comprises a powder of a ferrous alloy.
- The manufacturing method according to any of claims 10 or 11, wherein said carbon is graphite.
- The tooth obtained according to any of claims 10 to 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL09782199T PL2329052T3 (en) | 2008-09-19 | 2009-08-26 | Composite tooth for working the ground or rock |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE2008/0518A BE1018127A3 (en) | 2008-09-19 | 2008-09-19 | COMPOSITE TOOTH FOR WORKING SOIL OR ROCKS. |
PCT/EP2009/060978 WO2010031660A1 (en) | 2008-09-19 | 2009-08-26 | Composite tooth for working the ground or rock |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2329052A1 EP2329052A1 (en) | 2011-06-08 |
EP2329052B1 true EP2329052B1 (en) | 2012-03-14 |
Family
ID=40651784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09782199A Active EP2329052B1 (en) | 2008-09-19 | 2009-08-26 | Composite tooth for working the ground or rock |
Country Status (19)
Country | Link |
---|---|
US (1) | US8646192B2 (en) |
EP (1) | EP2329052B1 (en) |
KR (1) | KR101633141B1 (en) |
CN (1) | CN102159740B (en) |
AT (1) | ATE549425T1 (en) |
AU (1) | AU2009294779B2 (en) |
BE (1) | BE1018127A3 (en) |
BR (1) | BRPI0913715B1 (en) |
CA (1) | CA2743343C (en) |
CL (1) | CL2011000574A1 (en) |
DK (1) | DK2329052T3 (en) |
ES (1) | ES2383142T3 (en) |
HK (1) | HK1157824A1 (en) |
MX (1) | MX2011003026A (en) |
MY (1) | MY150582A (en) |
PL (1) | PL2329052T3 (en) |
PT (1) | PT2329052E (en) |
WO (1) | WO2010031660A1 (en) |
ZA (1) | ZA201101623B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1018130A3 (en) * | 2008-09-19 | 2010-05-04 | Magotteaux Int | HIERARCHICAL COMPOSITE MATERIAL. |
JP2014527133A (en) * | 2011-08-26 | 2014-10-09 | ボルボ コンストラクション イクイップメント アーベー | Drilling tooth wear indicator and method |
ITUD20120134A1 (en) | 2012-07-25 | 2014-01-26 | F A R Fonderie Acciaierie Roiale S P A | PROCEDURE FOR THE MANUFACTURE OF STEEL JETS AND STEEL JETS SO MADE |
JP5373169B1 (en) * | 2012-10-10 | 2013-12-18 | 株式会社小松製作所 | Drilling nails and body for drilling nails |
CN103147481A (en) * | 2013-03-19 | 2013-06-12 | 中交天津港航勘察设计研究院有限公司 | Composite rock breaking knife tooth for dredge boat |
US20160122970A1 (en) * | 2014-10-24 | 2016-05-05 | The Charles Machine Works, Inc. | Linked Tooth Digging Chain |
US20170233986A1 (en) | 2016-02-15 | 2017-08-17 | Caterpillar Inc. | Ground engaging component and method for manufacturing the same |
US10378188B2 (en) | 2016-09-23 | 2019-08-13 | Rockland Manufacturing Company | Bucket, blade, liner, or chute with visual wear indicator |
JP6804143B2 (en) * | 2016-09-30 | 2020-12-23 | 株式会社小松製作所 | Earth and sand wear resistant parts and their manufacturing methods |
EP3563951A1 (en) | 2018-05-04 | 2019-11-06 | Magotteaux International S.A. | Composite tooth with tapered insert |
DE102019200302A1 (en) * | 2019-01-11 | 2020-07-16 | Thyssenkrupp Ag | Tooth for attachment to an excavator bucket |
BE1027444B1 (en) | 2020-02-11 | 2021-02-10 | Magotteaux Int | COMPOSITE WEAR PART |
CN111482579B (en) * | 2020-03-17 | 2022-03-22 | 内蒙古科技大学 | Wear-resistant steel bonded hard alloy composite hammer head and manufacturing method thereof |
EP3885061A1 (en) * | 2020-03-27 | 2021-09-29 | Magotteaux International S.A. | Composite wear component |
AU2021254246B2 (en) * | 2020-04-09 | 2024-02-08 | Komatsu Ltd. | Wear-resistant component |
EP3915699A1 (en) | 2020-05-29 | 2021-12-01 | Magotteaux International SA | Ceramic-metal composite wear part |
US11882777B2 (en) | 2020-07-21 | 2024-01-30 | Osmundson Mfg. Co. | Agricultural sweep with wear resistant coating |
US20230332383A1 (en) * | 2022-04-13 | 2023-10-19 | Hensley Industries, Inc. | Reinforced wear member |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2596106B2 (en) * | 1988-12-27 | 1997-04-02 | 住友重機械鋳鍛株式会社 | Combined drilling tooth |
US5066546A (en) * | 1989-03-23 | 1991-11-19 | Kennametal Inc. | Wear-resistant steel castings |
GB2257985A (en) * | 1991-07-26 | 1993-01-27 | London Scandinavian Metall | Metal matrix alloys. |
US5720830A (en) * | 1992-11-19 | 1998-02-24 | Sheffield Forgemasters Limited | Engineering ferrous metals and method of making thereof |
UA54398C2 (en) * | 1995-09-27 | 2003-03-17 | Дзе Ішізука Ресеарш Інстітут. Лтд | Composite material containing superabrasive particles and method for producing this material |
US6607782B1 (en) * | 2000-06-29 | 2003-08-19 | Board Of Trustees Of The University Of Arkansas | Methods of making and using cubic boron nitride composition, coating and articles made therefrom |
CA2468352C (en) * | 2001-12-04 | 2010-06-15 | Claude Poncin | Cast parts with enhanced wear resistance |
CN1321768C (en) * | 2005-01-19 | 2007-06-20 | 华南理工大学 | Preparation of warm pressed diffusing particle reinforced iron-based powder metallized composite materials |
JP4707407B2 (en) * | 2005-02-18 | 2011-06-22 | Ntn株式会社 | Steelmaking dust solidified product and method for producing the same |
US7780798B2 (en) * | 2006-10-13 | 2010-08-24 | Boston Scientific Scimed, Inc. | Medical devices including hardened alloys |
-
2008
- 2008-09-19 BE BE2008/0518A patent/BE1018127A3/en not_active IP Right Cessation
-
2009
- 2009-08-26 KR KR1020117006356A patent/KR101633141B1/en active IP Right Grant
- 2009-08-26 PT PT09782199T patent/PT2329052E/en unknown
- 2009-08-26 AT AT09782199T patent/ATE549425T1/en active
- 2009-08-26 CN CN2009801364962A patent/CN102159740B/en active Active
- 2009-08-26 MX MX2011003026A patent/MX2011003026A/en active IP Right Grant
- 2009-08-26 CA CA2743343A patent/CA2743343C/en active Active
- 2009-08-26 BR BRPI0913715-7A patent/BRPI0913715B1/en active IP Right Grant
- 2009-08-26 MY MYPI20111216 patent/MY150582A/en unknown
- 2009-08-26 EP EP09782199A patent/EP2329052B1/en active Active
- 2009-08-26 US US13/119,669 patent/US8646192B2/en active Active
- 2009-08-26 ES ES09782199T patent/ES2383142T3/en active Active
- 2009-08-26 PL PL09782199T patent/PL2329052T3/en unknown
- 2009-08-26 DK DK09782199.5T patent/DK2329052T3/en active
- 2009-08-26 AU AU2009294779A patent/AU2009294779B2/en active Active
- 2009-08-26 WO PCT/EP2009/060978 patent/WO2010031660A1/en active Application Filing
-
2011
- 2011-03-02 ZA ZA2011/01623A patent/ZA201101623B/en unknown
- 2011-03-18 CL CL2011000574A patent/CL2011000574A1/en unknown
- 2011-11-08 HK HK11112068.9A patent/HK1157824A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
HK1157824A1 (en) | 2012-07-06 |
US8646192B2 (en) | 2014-02-11 |
EP2329052A1 (en) | 2011-06-08 |
BRPI0913715B1 (en) | 2017-11-21 |
AU2009294779A1 (en) | 2010-03-25 |
ES2383142T3 (en) | 2012-06-18 |
ATE549425T1 (en) | 2012-03-15 |
PL2329052T3 (en) | 2012-08-31 |
CL2011000574A1 (en) | 2011-08-26 |
AU2009294779B2 (en) | 2013-05-09 |
BRPI0913715A2 (en) | 2015-10-13 |
KR101633141B1 (en) | 2016-06-23 |
PT2329052E (en) | 2012-06-25 |
KR20110063467A (en) | 2011-06-10 |
DK2329052T3 (en) | 2012-07-09 |
CA2743343A1 (en) | 2010-03-25 |
WO2010031660A1 (en) | 2010-03-25 |
BE1018127A3 (en) | 2010-05-04 |
MX2011003026A (en) | 2011-04-12 |
US20110225856A1 (en) | 2011-09-22 |
CN102159740B (en) | 2013-06-05 |
ZA201101623B (en) | 2012-08-29 |
CN102159740A (en) | 2011-08-17 |
CA2743343C (en) | 2016-03-29 |
MY150582A (en) | 2014-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2329052B1 (en) | Composite tooth for working the ground or rock | |
EP2323770B1 (en) | Composite impactor for impact crusher | |
EP2326738B9 (en) | Milling cone for a compression crusher | |
EP2334836B9 (en) | Hierarchical composite material | |
EP3563951A1 (en) | Composite tooth with tapered insert | |
US12123177B2 (en) | Composite tooth with frustoconical insert |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110310 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 33/02 20060101ALI20110817BHEP Ipc: C22C 1/05 20060101AFI20110817BHEP Ipc: C22C 29/06 20060101ALI20110817BHEP Ipc: E02F 9/28 20060101ALI20110817BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 549425 Country of ref document: AT Kind code of ref document: T Effective date: 20120315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009005932 Country of ref document: DE Effective date: 20120510 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2383142 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120618 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20120614 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120614 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 11811 Country of ref document: SK |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120615 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 549425 Country of ref document: AT Kind code of ref document: T Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120714 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
26N | No opposition filed |
Effective date: 20121217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009005932 Country of ref document: DE Effective date: 20121217 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120826 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120826 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090826 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120314 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230731 Year of fee payment: 15 Ref country code: RO Payment date: 20230811 Year of fee payment: 15 Ref country code: ES Payment date: 20230912 Year of fee payment: 15 Ref country code: CZ Payment date: 20230801 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20230802 Year of fee payment: 15 Ref country code: SE Payment date: 20230822 Year of fee payment: 15 Ref country code: PL Payment date: 20230731 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240723 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240723 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240723 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20240725 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240723 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240723 Year of fee payment: 16 |