EP2323770B1 - Composite impactor for impact crusher - Google Patents

Composite impactor for impact crusher Download PDF

Info

Publication number
EP2323770B1
EP2323770B1 EP09814104.7A EP09814104A EP2323770B1 EP 2323770 B1 EP2323770 B1 EP 2323770B1 EP 09814104 A EP09814104 A EP 09814104A EP 2323770 B1 EP2323770 B1 EP 2323770B1
Authority
EP
European Patent Office
Prior art keywords
titanium carbide
impactor
granules
micrometric
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09814104.7A
Other languages
German (de)
French (fr)
Other versions
EP2323770A1 (en
Inventor
Guy Berton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magotteaux International SA
Original Assignee
Magotteaux International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magotteaux International SA filed Critical Magotteaux International SA
Priority to PL09814104T priority Critical patent/PL2323770T3/en
Publication of EP2323770A1 publication Critical patent/EP2323770A1/en
Application granted granted Critical
Publication of EP2323770B1 publication Critical patent/EP2323770B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2210/00Codes relating to different types of disintegrating devices
    • B02C2210/02Features for generally used wear parts on beaters, knives, rollers, anvils, linings and the like

Definitions

  • the present invention relates to a composite impactor for impact crushers.
  • Percussion crushers grouping crushing machines for rocks and hard materials such as hammer crushers, crushers, vertical axis crushers, etc. These machines are used extensively in the first and second stages of a production line intended to drastically reduce the dimension of the rock in the extractive industries (mines, quarries, cement plants, ...) and recycling.
  • impactor for impact crushers is to be interpreted in the broad sense, namely a composite wear part whose function is to be in direct contact with the rock or the material to be ground during the process phase where these rocks and materials are subjected to extremely violent impacts intended to fragment them. These wear parts must therefore show great resistance to impact and they are often called hammers, beaters or impactors.
  • impactor therefore includes hammers and beaters but also fixed armor plates undergoing the impacts of materials projected against them.
  • the document LU 64303 (Joiret ) describes a method of manufacturing hammers that uses two different materials, one harder to make the head, subject to abrasion, the other more resilient that ensures resistance against breakage.
  • the EP Patent 1,651,389 (Mayer ) also discloses a technique for manufacturing hammers using two different materials, one being arranged in the form of a prefabricated insert disposed in the other material at the place where the part is the most stressed.
  • the present invention discloses a composite impactor for impact crushers having improved wear resistance while maintaining good impact resistance. This property is obtained by a composite reinforcement structure specifically designed for this application, a material that alternates on a millimeter scale dense zones in fine micrometric globular particles of metal carbides with zones that are practically free of them within the metallic matrix. of the impactor.
  • the present invention also provides a method for obtaining said reinforcing structure.
  • the present invention discloses a composite impactor for impact crushers, said impactor comprising a ferrous alloy reinforced at least in part with titanium carbide according to a defined geometry, wherein said reinforced portion comprises an alternating macro-microstructure of millimetric zones concentrated in particles.
  • micrometric cylinders of titanium carbide separated by millimetric zones substantially free of micrometric globular particles of titanium carbide, said micrometrically concentrated micrometric micrometric particles of micrometric titanium carbide particles in which the micrometric interstices between said globular particles are also occupied by said ferrous alloy.
  • the present invention also discloses a composite impactor obtained by the process of any one of claims 11 to 12.
  • the figure 1 shows a horizontal axis crusher in which the impactors of the present invention are used.
  • the figure 2 shows a vertical axis crusher in which the impactors of the present invention are also used.
  • the figure 3 shows an impactor / hammer of the prior art without reinforcement.
  • FIGS. 4a and 4b show a hammer with two types of reinforcement possible. This reinforcing geometry is of course not limiting.
  • the figure 6 represents a binocular view of a non-etched polished surface of a section of the reinforced portion of an impactor according to the invention with millimetric zones (in light gray) concentrated micrometric globular titanium carbide (TiC nodules ).
  • the dark part represents the metal matrix (steel or cast iron) filling at the same time the space between these concentrated zones in micrometric globular titanium carbide but also the spaces between the globules themselves.
  • the figures 7 and 8 represent SEM electron microscopic views of micrometric globular titanium carbide on polished and untouched surfaces at different magnifications. We see that in this particular case most of the globules of titanium carbide have a size less than 10 microns.
  • the figure 9 represents a view of micrometric globular titanium carbide on a fracture surface taken by SEM electron microscope. It can be seen that the globules of titanium carbide are perfectly incorporated in the metal matrix. This proves that the casting metal completely infiltrates (impregnates) the pores during casting once the chemical reaction between titanium and carbon is initiated.
  • the figure 10 schematically represents the reinforcement zones on a hammer impactor. Reinforced corners are similar to those of the figure 4b and the schematic enlargement of the reinforcement zones makes it possible to show the reinforcement macro-microstructure according to the invention.
  • the term SHS or "self-propagating high temperature synthesis" reaction is a self-propagating, high temperature synthesis reaction in which reaction temperatures are generally higher than 1500 ° C or even 2000 ° C.
  • reaction temperatures are generally higher than 1500 ° C or even 2000 ° C.
  • the reaction between titanium powder and the powder of carbon to obtain titanium carbide TiC is highly exothermic. Only a little energy is needed to initiate the reaction locally. Then, the reaction will spontaneously propagate to the entire mixture of reagents thanks to the high temperatures reached. After initiation of the reaction, there is a reaction front which propagates spontaneously (self-propagated) and which makes it possible to obtain titanium carbide from titanium and carbon.
  • the titanium carbide thus obtained is said to be "obtained in situ" because it does not come from the cast ferrous alloy.
  • the reactant powder mixtures comprise carbon powder and titanium powder and are compressed into plates and then crushed to obtain granules ranging in size from 1 to 12 mm, preferably from 1 to 6 mm, and particularly preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed between 55 and 95% of the theoretical density. These granules allow easy use / manipulation (see Fig. 3a-3h ).
  • millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of figure 3a-3h are the precursors of the titanium carbide to be created and make it easy to fill mold parts of various shapes or irregular. These granules can be held in place in the mold 15 by means of a dam 16, for example. The shaping or assembly of these granules can also be done using an adhesive.
  • the composite impactor according to the present invention has a reinforcing macro-microstructure which can also be called an alternating structure of zones concentrated in micrometric globular particles of titanium carbide separated by zones which are practically free.
  • a reinforcing macro-microstructure which can also be called an alternating structure of zones concentrated in micrometric globular particles of titanium carbide separated by zones which are practically free.
  • Such a structure is obtained by the reaction in the mold of the granules comprising a mixture of powders of carbon and titanium. This reaction is initiated by the heat of casting of the cast iron or steel used to pour the whole piece and thus both the unreinforced part and the reinforced part (see Fig. 3rd ).
  • the casting therefore triggers an exothermic reaction of self-propagating synthesis at high temperature of the mixture of powders of carbon and titanium compacted in the form of granules (self-propagating high-temperature synthesis - SHS) and previously placed in the mold 15.
  • the reaction then has the distinction of continuing to spread as soon as it is initiated.
  • This high temperature synthesis allows easy infiltration of all millimetric and micrometric interstices by cast iron or casting steel ( Fig. 5g & 5h ). By increasing the wettability, the infiltration can be done on any thickness or depth of reinforcement of the impactor. It advantageously makes it possible, after SHS reaction and infiltration by an external casting metal, to create one or more reinforcement zones on the impactor comprising a high concentration of micrometric globular particles of titanium carbide (which could also be called clusters). nodules), which areas have a size of the order of a millimeter or a few millimeters, and which alternate with areas substantially free of globular titanium carbide.
  • the reinforcement zones where these granules were found show a concentrated dispersion of micrometric globular particles 4 of TiC (globules) whose micrometric interstices 3 have also been infiltrated by the casting metal which is here from cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metal matrix as that which constitutes the unreinforced part of the impactor; this allows a total freedom of choice of the casting metal.
  • the reinforcement zones with a high concentration of titanium carbide are composed of globular micrometer particles of TiC in a large percentage (between approximately 35 and approximately 70% by volume) and of the ferrous infiltration alloy.
  • Micrometric globular particles are understood to mean globally spheroidal particles having a size ranging from a few ⁇ m to a few tens of ⁇ m at the most, the vast majority of these particles having a size of less than 50 ⁇ m, and even 20 ⁇ m, or even less than 10 ⁇ m.
  • TiC globules This globular form is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see Fig. 8 ).
  • the process for obtaining the granules is illustrated in figure 5a-5h .
  • the granules of carbon / titanium reagents are obtained by compaction between rollers 10 in order to obtain strips that are then crushed in a crusher 11.
  • the mixture of the powders is made in a mixer 8 consisting of a tank equipped with blades , to promote homogeneity.
  • the mixture then passes into a granulation apparatus through a hopper 9.
  • This machine comprises two rollers 10, through which the material is passed. Pressure is applied to these rollers 10, which compresses the material. We get at the exit a band of material compressed which is then crushed to obtain the granules.
  • These granules are then sieved to the desired particle size in a sieve 13.
  • the degree of compaction of the bands depends on the applied pressure (in Pa) on the rollers (diameter 200 mm, width 30 mm). For a low level of compaction, of the order of 10 6 Pa, we obtain a density on the bands of the order of 55% of the theoretical density. After passing through the rollers 10 to compress this material, the apparent density of the granules is 3.75 x 0.55, ie 2.06 g / cm 3 .
  • the granules obtained from the raw material Ti + C are porous. This porosity varies from 5% for highly compressed granules, to 45% for slightly compressed granules.
  • the granules obtained overall a size between 1 and 12 mm, preferably between 1 and 6 mm, and particularly preferably between 1.4 and 4 mm.
  • the granules are made as described above. To obtain a three-dimensional structure or superstructure / macro-microstructure with these granules, they are placed in the areas of the mold where it is desired to reinforce the workpiece. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container, or by any other means (dam 16).
  • the bulk density of the stack of Ti + C granules is measured according to ISO 697 and depends on the level of compaction of the bands, the granulometric distribution of the granules and the crushing mode of the bands, which influences the shape of the granules .
  • the bulk density of these Ti + C granules is generally of the order of 0.9 g / cm 3 to 2.5 g / cm 3 depending on the level of compaction of these granules and the density of the stack.
  • Granulation was carried out with a Sahut-Conreur granulator.
  • the compactness of the granules was obtained by varying the pressure between the rolls by 10 to 250 ⁇ 10 5 Pa.
  • Reinforcement has been done by placing granules in a metal container, which is then conveniently placed in the mold where the impactor is likely to be reinforced. Then we cast the steel or cast in this mold.
  • a band is produced by compaction at 85% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 2.1 g / cm 3 (35% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the mold at the location of the part to be reinforced, which thus comprises 65% by volume of porous granules.
  • a chromium cast iron (3% C, 25% Cr) was then cast at about 1500 ° C in a non-preheated sand mold.
  • the reaction between Ti and C is initiated by the heat of melting. This casting is done without a protective atmosphere.
  • an impactor whose reinforced zones comprise an overall volume percentage of TiC of about 30%.
  • a 70% compaction band is made of the theoretical density of a mixture of C and Ti.
  • the granules are sieved to obtain a pellet size of between 1.4 and 4 mm.
  • a bulk density of the order of 1.4 g / cm 3 (45% of space between the granules + 30% of porosity in the granules) is obtained.
  • the granules are available in the section strengthen which thus comprises 55% by volume of porous granules.
  • 55% by volume of zones with a high concentration of approximately 53% of globular titanium carbide is obtained, ie approximately 30% by global volume of TiC in the reinforced part of the impactor.
  • a band is made by compaction at 60% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved so as to obtain a granule size of between 1 and 6 mm. A bulk density of the order of 1.0 g / cm 3 (55% of space between the granules + 40% of porosity in the granules) is obtained. The granules are placed in the part to be reinforced, which thus comprises 45% by volume of porous granules. After reaction, 45% by volume of zones concentrated to about 45% of globular titanium carbide are obtained in the reinforced part, ie 20% by global volume of TiC in the reinforced part of the impactor.
  • Example 2 it was sought to attenuate the intensity of the reaction between carbon and titanium by adding a ferrous alloy powder.
  • it is intended to provide an impactor whose reinforced zones comprise a global volume percentage of TiC of about 30%.
  • a compaction band is produced at 85% of the theoretical density of a mixture by weight of 15% of C, 63% of Ti and 22% of Fe.
  • the granules are sieved to obtain a granule size between 1.4 and 4 mm.
  • a bulk density of the order of 2 g / cm 3 (45% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules. After reaction, 55% by volume of zones with a high concentration of approximately 55% of globular titanium carbide, ie 30% by volume of global titanium carbide in the reinforced macro-microstructure of the impactor, are obtained in the reinforced part. .
  • the inventor has targeted a mixture to obtain 15% by volume of iron after reaction.
  • the proportion of mixture that has been used is: 100 ⁇ g Ti + 24.5 ⁇ g C + 35.2 ⁇ g Fe
  • Theoretical density of the mixture 4.25g / cm 3 Volumetric shrinkage during the reaction: 21% ⁇ b> ⁇ u> Table 4 ⁇ / u> ⁇ /b>
  • Overall percentage of TiC obtained in the reinforced microstructure after reaction Ti + 0.98 C + Fe in the reinforced part of the impactor Compaction of the granules (% of theoretical density which is 4.25 g / cm 3 ) 55 60 65 70 75 80 85 90 95
  • millimetric granules which are crimped into the metal infiltration alloy. These millimetric granules are themselves composed of microscopic particles of TiC globular tendency also crimped in the alloy metallic infiltration. This system makes it possible to obtain an impactor with a reinforcement zone comprising a macrostructure within which there is an identical microstructure on a scale approximately a thousand times smaller.
  • the reinforcing zone of the impactor comprises small globular particles of titanium carbide, hard and finely dispersed in a metal matrix which surrounds them, makes it possible to prevent the formation and propagation of cracks (see FIG. Fig. 4 & 6 ). There is thus a double dissipative system of cracks.
  • Cracks generally originate at the most fragile places, which in this case are the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric particle of TiC, the propagation of this crack is then impeded by the infiltration alloy which surrounds this particle. The toughness of the infiltration alloy is greater than that of the TiC ceramic particle. The crack needs more energy to pass from one particle to another, to cross the micrometric spaces that exist between the particles.
  • the expansion coefficient of the TiC reinforcement is lower than that of the ferrous alloy matrix (TiC expansion coefficient: 7.5 10-6 / K and the ferrous alloy: approximately 12.0 10-6 / K). This difference in the expansion coefficients has the consequence of generating tensions in the material during the solidification phase and also during the heat treatment. If these voltages are too great, cracks may appear in the room and lead to scrapping it. In this In the invention, a small proportion of TiC reinforcement (less than 50% by volume) is used, resulting in less stress in the workpiece. In addition, the presence of a more ductile matrix between the micrometric globular particles of TiC in alternating zones of low and high concentration makes it possible to better manage any local voltages.
  • the boundary between the reinforced portion and the unreinforced portion of the impactor is not abrupt because there is a continuity of the metal matrix between the reinforced portion and the unreinforced portion, thereby protect it against a complete tearing of the reinforcement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Food Science & Technology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Description

Objet de l'inventionObject of the invention

La présente invention se rapporte à un impacteur composite pour concasseurs à percussion. Les concasseurs à percussion regroupant des machines de concassage des roches et matériaux durs comme les concasseurs à marteaux, concasseurs à battoirs, concasseurs à axe vertical, etc. Ces machines sont utilisées extensivement dans les premières et secondes étapes d'une ligne de fabrication destinée à diminuer drastiquement la dimension de la roche dans les industries extractives (mines, carrières, cimenteries, ...) et de recyclage.The present invention relates to a composite impactor for impact crushers. Percussion crushers grouping crushing machines for rocks and hard materials such as hammer crushers, crushers, vertical axis crushers, etc. These machines are used extensively in the first and second stages of a production line intended to drastically reduce the dimension of the rock in the extractive industries (mines, quarries, cement plants, ...) and recycling.

DéfinitionDefinition

L'expression « impacteur pour concasseurs à percussion » est à interpréter au sens large, à savoir une pièce d'usure composite qui a pour fonction d'être au contact direct de la roche ou du matériau à broyer pendant la phase du procédé où ces roches et matériaux sont soumis à des impacts extrêmement violents destinés à les fragmenter.
Ces pièces d'usure doivent donc faire preuve d'une grande résistance à l'impact et ils sont souvent appelés marteaux, battoirs ou impacteurs. Le terme « impacteur » englobe donc les marteaux et les battoirs mais également les plaques de blindage fixes subissant les impacts des matériaux projetés contre elles.
The expression "impactor for impact crushers" is to be interpreted in the broad sense, namely a composite wear part whose function is to be in direct contact with the rock or the material to be ground during the process phase where these rocks and materials are subjected to extremely violent impacts intended to fragment them.
These wear parts must therefore show great resistance to impact and they are often called hammers, beaters or impactors. The term "impactor" therefore includes hammers and beaters but also fixed armor plates undergoing the impacts of materials projected against them.

Etat de la techniqueState of the art

Peu de moyens sont connus pour modifier la dureté et la résistance à l'impact d'un alliage de fonderie en profondeur « dans la masse ». Les moyens connus concernent généralement des modifications en surface de faible profondeur (quelques mm). Pour les pièces d'usure réalisées en fonderie, les éléments de renfort doivent être présents en profondeur afin de résister à des sollicitations localisées importantes et simultanées en termes de contraintes mécaniques, d'usure et d'impact et aussi parce qu'en général, c'est une proportion importante du volume (ou du poids) de la pièce qui est consommée pendant sa vie.Few means are known for modifying the hardness and impact resistance of a deep casting alloy "in the mass". The known means generally concern surface modifications of shallow depth (a few mm). For wear parts made in the foundry, reinforcing elements must be present in depth in order to withstand significant and simultaneous localized stress in terms of mechanical stress, wear and impact and also because, in general, it is a significant proportion of the volume (or weight) of the piece that is consumed during its lifetime.

Le document LU 64303 (Joiret ) décrit une méthode de fabrication de marteaux qui met en oeuvre deux matériaux différents, l'un plus dur pour réaliser la tête, soumise à l'abrasion, l'autre plus résilient qui garantit la résistance contre la casse.The document LU 64303 (Joiret ) describes a method of manufacturing hammers that uses two different materials, one harder to make the head, subject to abrasion, the other more resilient that ensures resistance against breakage.

Le document EP 0 476 496 (Guerard ) propose l'utilisation d'un insert dur mécaniquement serti dans un corps de marteau réalisé dans un acier ductile.The document EP 0 476 496 (Guerard ) proposes the use of a hard insert mechanically crimped into a hammer body made of ductile steel.

Le brevet EP 1 651 389 (Mayer ) décrit également une technique de fabrication de marteaux mettant en oeuvre deux matériaux différents, l'un étant disposé sous forme d'un insert préfabriqué disposé dans l'autre matériau à l'endroit où la pièce est la plus sollicitée.The EP Patent 1,651,389 (Mayer ) also discloses a technique for manufacturing hammers using two different materials, one being arranged in the form of a prefabricated insert disposed in the other material at the place where the part is the most stressed.

Le document US 2008/041993 (Hall ) propose l'utilisation d'inserts en matériau très dur, fixés au marteau sur sa face travaillante.The document US 2008/041993 (Hall ) proposes the use of inserts very hard material, fixed to the hammer on its working side.

Le document US 6,066,407 (Getz ) divulgue un impacteur composite renforcé avec des carbures. Il ne divulgue cependant pas une structure de renfort avec des particules de carbure de titane sphéroïdales entourées par l'alliage d'infiltration ou une quelconque géométrie microscopique hiérarchisée dans la partie renforcée.The document US 6,066,407 (Getz ) discloses a reinforced composite impactor with carbides. However, it does not disclose a reinforcing structure with spheroidal titanium carbide particles surrounded by the infiltration alloy or any hierarchical microscopic geometry in the reinforced part.

Le point commun de toutes ces techniques de renforcement de pièces utilisées dans des procédés de concassage par percussion est évidemment la difficulté de garantir, à la fabrication et en service, une liaison parfaite et durable entre les deux matériaux utilisés.The common point of all these techniques of reinforcement of parts used in percussion crushing processes is obviously the difficulty of guaranteeing, in manufacture and in service, a perfect and durable connection between the two materials used.

Buts de l'inventionGoals of the invention

La présente invention divulgue un impacteur composite pour concasseurs à percussion présentant une résistance améliorée contre l'usure tout en maintenant une bonne résistance aux chocs. Cette propriété est obtenue par une structure composite de renforcement spécifiquement conçue pour cette application, matériau qui fait alterner à l'échelle millimétrique des zones denses en fines particules globulaires micrométriques de carbures métalliques avec des zones qui en sont pratiquement exemptes au sein de la matrice métallique de l'impacteur.The present invention discloses a composite impactor for impact crushers having improved wear resistance while maintaining good impact resistance. This property is obtained by a composite reinforcement structure specifically designed for this application, a material that alternates on a millimeter scale dense zones in fine micrometric globular particles of metal carbides with zones that are practically free of them within the metallic matrix. of the impactor.

La présente invention propose également un procédé pour l'obtention de ladite structure de renforcement.The present invention also provides a method for obtaining said reinforcing structure.

Résumé de l'inventionSummary of the invention

La présente invention divulgue un impacteur composite pour concasseurs à percussion, ledit impacteur comportant un alliage ferreux renforcé au moins en partie avec du carbure de titane selon une géométrie définie, dans lequel ladite partie renforcée comporte une macro-microstructure alternée de zones millimétriques concentrées en particules globulaires micrométriques de carbure de titane séparées par des zones millimétriques essentiellement exemptes de particules globulaires micrométriques de carbure de titane, lesdites zones concentrées en particules globulaires micrométriques de carbure de titane formant une microstructure dans laquelle les interstices micrométriques entre lesdites particules globulaires sont également occupés par ledit alliage ferreux.The present invention discloses a composite impactor for impact crushers, said impactor comprising a ferrous alloy reinforced at least in part with titanium carbide according to a defined geometry, wherein said reinforced portion comprises an alternating macro-microstructure of millimetric zones concentrated in particles. micrometric cylinders of titanium carbide separated by millimetric zones substantially free of micrometric globular particles of titanium carbide, said micrometrically concentrated micrometric micrometric particles of micrometric titanium carbide particles in which the micrometric interstices between said globular particles are also occupied by said ferrous alloy.

Selon des modes particuliers de l'invention, l'impacteur composite comporte au moins une ou une combinaison appropriée des caractéristiques suivantes :

  • lesdites zones millimétriques concentrées ont une concentration en carbure de titane supérieure à 36.9 % en volume ;
  • ladite partie renforcée a une teneur globale de carbure de titane entre 16.6 et 50.5 % en volume ;
  • les particules micrométriques globulaires de carbure de titane ont une taille inférieure à 50µm ;
  • la majeure partie des particules micrométriques globulaires de carbure de titane a une taille inférieure à 20 µm ;
  • lesdites zones concentrées en particules globulaires de carbure de titane comportent 36.9 à 72.2 % en volume de carbure de titane ;
  • lesdites zones millimétriques concentrées en carbure de titane ont une dimension variant de 1 à 12 mm ;
  • lesdites zones millimétriques concentrées en carbure de titane ont une dimension variant de 1 à 6 mm ;
  • lesdites zones concentrées en carbure de titane ont une dimension variant de 1.4 à 4 mm.
According to particular embodiments of the invention, the composite impactor comprises at least one or an appropriate combination of the following characteristics:
  • said concentrated millimeter areas have a titanium carbide concentration of greater than 36.9% by volume;
  • said reinforced portion has an overall titanium carbide content between 16.6 and 50.5% by volume;
  • the micrometric globular particles of titanium carbide have a size of less than 50 μm;
  • most of the micrometric globular particles of titanium carbide has a size less than 20 microns;
  • said zones concentrated in globular particles of titanium carbide comprise 36.9 to 72.2% by volume of titanium carbide;
  • said millimetric areas of concentrated titanium carbide have a size ranging from 1 to 12 mm;
  • said millimetric zones concentrated in titanium carbide have a dimension ranging from 1 to 6 mm;
  • said concentrated areas of titanium carbide have a dimension ranging from 1.4 to 4 mm.

La présente invention divulgue également un procédé de fabrication de l'impacteur composite selon l'une quelconque des revendications 1 à 9 comportant les étapes suivantes:

  • mise à disposition d'un moule comportant l'empreinte de l'impacteur avec une géométrie de renforcement prédéfinie ;
  • introduction, dans la partie de l'empreinte de l'impacteur destiné à former la partie renforcée (5), d'un mélange de poudres compactées comportant du carbone et du titane sous forme de granulés millimétriques précurseurs de carbure de titane ;
  • coulée d'un alliage ferreux dans le moule, la chaleur de ladite coulée déclenchant une réaction exothermique de synthèse auto-propagée de carbure de titane à haute température (SHS) au sein desdits granulés précurseurs ;
  • formation, au sein de la partie renforcée de l'impacteur composite d'une macro-microstructure alternée de zones millimétriques concentrées en particules globulaires micrométriques de carbure de titane à l'emplacement desdits granulés précurseurs, lesdites zones étant séparées entre elles par des zones millimétriques essentiellement exemptes de particules globulaires micrométriques de carbure de titane, lesdites particules globulaires étant également séparées au sein desdites zones millimétriques concentrées de carbure de titane par des interstices micrométriques ;
  • infiltration des interstices millimétriques et micrométriques par ledit alliage ferreux de coulée à haute température, consécutive à la formation de particules microscopiques globulaires de carbure de titane.
The present invention also discloses a method of manufacturing the composite impactor according to any one of claims 1 to 9 comprising the following steps:
  • provision of a mold having the imprint of the impactor with a predefined reinforcement geometry;
  • introducing, into the part of the impression of the impactor intended to form the reinforced part (5), a mixture of compacted powders comprising carbon and titanium in the form of millimetric granules precursors of titanium carbide;
  • casting a ferrous alloy into the mold, the heat of said casting triggering an exothermic reaction of self-propagating synthesis of high temperature titanium carbide (SHS) within said precursor granules;
  • forming, within the reinforced portion of the composite impactor, an alternating macro-microstructure of millimetric zones concentrated in micrometric globular particles of titanium carbide at the location of said precursor granules, said zones being separated from each other by millimetric zones substantially free of micrometric globular particles of titanium carbide, said globular particles being also separated within said millimetric millimetric zones of titanium carbide by micrometric interstices;
  • infiltration of the millimetric and micrometric interstices by said high-temperature ferrous casting alloy, subsequent to the formation of microscopic globular particles of titanium carbide.

Selon des modes particuliers de l'invention, le procédé comporte au moins une ou une combinaison appropriée des caractéristiques suivantes :

  • les poudres compactées de titane et de carbone comportent une poudre d'un alliage ferreux :
  • ledit carbone est du graphite.
According to particular embodiments of the invention, the method comprises at least one or a suitable combination of the following characteristics:
  • the compacted powders of titanium and carbon comprise a powder of a ferrous alloy:
  • said carbon is graphite.

La présente invention divulgue également un impacteur composite obtenu selon le procédé de l'une quelconque des revendications 11 à 12.The present invention also discloses a composite impactor obtained by the process of any one of claims 11 to 12.

Brève description des figuresBrief description of the figures

La figure 1 montre un concasseur à axe horizontal dans lequel sont utilisés les impacteurs de la présente invention.The figure 1 shows a horizontal axis crusher in which the impactors of the present invention are used.

La figure 2 montre un concasseur à axe vertical dans lequel sont également utilisés les impacteurs de la présente invention.The figure 2 shows a vertical axis crusher in which the impactors of the present invention are also used.

La figure 3 montre un impacteur/marteau de l'art antérieur sans renforcement.The figure 3 shows an impactor / hammer of the prior art without reinforcement.

Les figures 4a et 4b montrent un marteau avec deux types de renforcement possibles. Cette géométrie de renforcement n'est bien entendu pas limitative.The Figures 4a and 4b show a hammer with two types of reinforcement possible. This reinforcing geometry is of course not limiting.

La figure 5a-5h représente schématiquement le procédé de fabrication d'un marteau selon l'invention.

  • l'étape 5a montre le dispositif de mélange des poudres de titane et de carbone ;
  • l'étape 5b montre la compaction des poudres entre deux rouleaux suivie d'un concassage et d'un tamisage avec recyclage des particules trop fines ;
  • la figure 5c montre un moule de sable dans lequel on a placé un barrage pour contenir les granulés de poudre compactée à l'endroit du renforcement de l'impacteur (marteau) ;
  • la figure 5d montre un agrandissement de la zone de renforcement dans laquelle se trouvent les granulés compactés comportant les réactifs précurseurs du TiC ;
  • l'étape 5e montre la coulée de l'alliage ferreux dans le moule ;
  • la figure 5f montre schématiquement le marteau qui est le résultat de la coulée ;
  • la figure 5g montre un agrandissement des zones à forte concentration en nodules de TiC ;
  • la figure 5h montre un agrandissement au sein d'une même zone à forte concentration en nodules de TiC. Les nodules micrométriques sont individuellement entourés par le métal de coulée.
The figure 5a-5h schematically represents the method of manufacturing a hammer according to the invention.
  • step 5a shows the device for mixing titanium and carbon powders;
  • step 5b shows the compaction of the powders between two rollers followed by crushing and sieving with recycling of the fine particles;
  • the figure 5c shows a sand mold in which a dam has been placed to contain the granules of compacted powder at the location of the reinforcement of the impactor (hammer);
  • the figure 5d shows an enlargement of the reinforcement zone in which the compacted granules comprising TiC precursor reactants are located;
  • step 5e shows the casting of the ferrous alloy in the mold;
  • the figure 5f schematically shows the hammer which is the result of the casting;
  • the figure 5g shows an enlargement of areas with high concentrations of TiC nodules;
  • the figure 5h shows an enlargement within the same zone with a high concentration of TiC nodules. The micrometric nodules are individually surrounded by the casting metal.

La figure 6 représente une vue au binoculaire d'une surface polie, non attaquée, d'une coupe de la partie renforcée d'un impacteur selon l'invention avec des zones millimétriques (en gris clair) concentrées en carbure de titane globulaire micrométrique (nodules de TiC). La partie sombre représente la matrice métallique (acier ou fonte) remplissant à la fois l'espace entre ces zones concentrées en carbure de titane globulaire micrométrique mais aussi les espaces entre les globules eux-mêmes.The figure 6 represents a binocular view of a non-etched polished surface of a section of the reinforced portion of an impactor according to the invention with millimetric zones (in light gray) concentrated micrometric globular titanium carbide (TiC nodules ). The dark part represents the metal matrix (steel or cast iron) filling at the same time the space between these concentrated zones in micrometric globular titanium carbide but also the spaces between the globules themselves.

Les figures 7 et 8 représentent des vues prises au microscope électronique SEM de carbure de titane globulaire micrométrique sur des surfaces polies et non attaquées à des grossissements différents. On voit que dans ce cas particulier la plupart des globules de carbure de titane ont une taille inférieure à 10 µm.The figures 7 and 8 represent SEM electron microscopic views of micrometric globular titanium carbide on polished and untouched surfaces at different magnifications. We see that in this particular case most of the globules of titanium carbide have a size less than 10 microns.

La figure 9 représente une vue de carbure de titane globulaire micrométrique sur une surface de rupture prise au microscope électronique SEM. On voit que les globules de carbure de titane sont parfaitement incorporés dans la matrice métallique. Ceci prouve que le métal de coulée infiltre (imprègne) complètement les pores lors de la coulée une fois que la réaction chimique entre le titane et le carbone est initiée.The figure 9 represents a view of micrometric globular titanium carbide on a fracture surface taken by SEM electron microscope. It can be seen that the globules of titanium carbide are perfectly incorporated in the metal matrix. This proves that the casting metal completely infiltrates (impregnates) the pores during casting once the chemical reaction between titanium and carbon is initiated.

La figure 10 représente schématiquement les zones de renfort sur un impacteur de type marteau. Les coins renforcés sont analogues à ceux de la figure 4b et l'agrandissement schématique des zones de renfort permet de montrer la macro-microstructure de renforcement selon l'invention.The figure 10 schematically represents the reinforcement zones on a hammer impactor. Reinforced corners are similar to those of the figure 4b and the schematic enlargement of the reinforcement zones makes it possible to show the reinforcement macro-microstructure according to the invention.

LégendeLegend

  • 1. zones millimétriques concentrées en particules globulaires (nodules) micrométriques de carbure de titane1. Millimeter areas concentrated in micrometric globular particles (nodules) of titanium carbide
  • 2. interstices millimétriques remplis par l'alliage de coulée globalement exempts de particules globulaires micrométriques de carbure de titane2. millimetric interstices filled with the casting alloy generally free of micrometric globular particles of titanium carbide
  • 3. interstices micrométriques entre les nodules de TiC également infiltrés par l'alliage de coulée3. micrometric interstices between TiC nodules also infiltrated by casting alloy
  • 4. carbure de titane globulaire micrométrique, dans les zones concentrées en carbure de titane4. micrometric globular titanium carbide, in the concentrated areas of titanium carbide
  • 5. renfort de carbure de titane5. titanium carbide reinforcement
  • 6. défauts de gaz6. gas defects
  • 7. marteau/impacteur7. hammer / impactor
  • 8. mélangeur de poudres de Ti et de C8. mixer of Ti and C powders
  • 9. trémie9. hopper
  • 10. rouleau10. roll
  • 11. broyeur11. crusher
  • 12. grille de sortie12. exit grid
  • 13. tamis13. sieve
  • 14. recyclage des particules trop fines vers la trémie14. recycling of fine particles to the hopper
  • 15. moule de sable15. sand mold
  • 16. barrage contenant les granulés compactés de mélange Ti/C16. dam containing the compacted granules of Ti / C mixture
  • 17. poche de coulée17. ladle
  • 18. impacteur (schématique)18. impactor (schematic)
Description détaillée de l'inventionDetailed description of the invention

En science des matériaux, on appelle réaction SHS ou « self-propagating high temperature synthesis », une réaction de synthèse à haute température auto-propagée où l'on atteint des températures de réaction généralement supérieures à 1500°C, voire 2000°C. Par exemple, la réaction entre de la poudre de titane et de la poudre de carbone pour obtenir le carbure de titane TiC, est fortement exothermique. On a uniquement besoin d'un peu d'énergie pour initier localement la réaction. Ensuite, la réaction se propagera spontanément à la totalité du mélange des réactifs grâce aux hautes températures atteintes. Après initiation de la réaction, on a un front de réaction qui se propage ainsi spontanément (auto-propagée) et qui permet l'obtention du carbure de titane à partir du titane et du carbone. Le carbure de titane ainsi obtenu est dit « obtenu in Situ » car il ne provient pas de l'alliage ferreux coulé.In materials science, the term SHS or "self-propagating high temperature synthesis" reaction is a self-propagating, high temperature synthesis reaction in which reaction temperatures are generally higher than 1500 ° C or even 2000 ° C. For example, the reaction between titanium powder and the powder of carbon to obtain titanium carbide TiC, is highly exothermic. Only a little energy is needed to initiate the reaction locally. Then, the reaction will spontaneously propagate to the entire mixture of reagents thanks to the high temperatures reached. After initiation of the reaction, there is a reaction front which propagates spontaneously (self-propagated) and which makes it possible to obtain titanium carbide from titanium and carbon. The titanium carbide thus obtained is said to be "obtained in situ" because it does not come from the cast ferrous alloy.

Les mélanges de poudres de réactif comportent de la poudre de carbone et de la poudre de titane et sont comprimés en plaques et ensuite concassés afin d'obtenir des granulés dont la taille varie de 1 à 12 mm, de préférence de 1 à 6 mm, et de manière particulièrement préférée de 1.4 à 4 mm. Ces granulés ne sont pas compactés à 100 %. On les comprime généralement entre 55 et 95 % de la densité théorique. Ces granulés permettent une utilisation/manipulation aisée (voir Fig. 3a-3h).The reactant powder mixtures comprise carbon powder and titanium powder and are compressed into plates and then crushed to obtain granules ranging in size from 1 to 12 mm, preferably from 1 to 6 mm, and particularly preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed between 55 and 95% of the theoretical density. These granules allow easy use / manipulation (see Fig. 3a-3h ).

Ces granulés millimétriques de poudres de carbone et de titane mélangées obtenus selon les schémas de la figure 3a-3h constituent les précurseurs du carbure de titane à créer et permettent de remplir facilement des parties de moules de formes diverses ou irrégulières. Ces granulés peuvent être maintenus en place dans le moule 15 à l'aide d'un barrage 16, par exemple. La mise en forme ou l'assemblage de ces granulés peut également se faire à l'aide d'une colle.These millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of figure 3a-3h are the precursors of the titanium carbide to be created and make it easy to fill mold parts of various shapes or irregular. These granules can be held in place in the mold 15 by means of a dam 16, for example. The shaping or assembly of these granules can also be done using an adhesive.

L'impacteur composite selon la présente invention possède une macro-microstructure de renforcement que l'on peut encore appeler structure alternée de zones concentrées en particules micrométriques globulaires de carbure de titane séparées par des zones qui en sont pratiquement exemptes. Une telle structure est obtenue par la réaction dans le moule 15 des granulés comportant un mélange de poudres de carbone et de titane. Cette réaction est initiée par la chaleur de la coulée de la fonte ou de l'acier utilisés pour couler toute la pièce et donc à la fois la partie non renforcée et la partie renforcée (voir Fig. 3e). La coulée déclenche donc une réaction exothermique de synthèse auto-propagée à haute température du mélange de poudres de carbone et de titane compactées sous forme de granulés (self-propagating high-temperature synthesis - SHS) et préalablement placées dans le moule 15. La réaction a alors la particularité de continuer à se propager dès qu'elle est initiée.The composite impactor according to the present invention has a reinforcing macro-microstructure which can also be called an alternating structure of zones concentrated in micrometric globular particles of titanium carbide separated by zones which are practically free. Such a structure is obtained by the reaction in the mold of the granules comprising a mixture of powders of carbon and titanium. This reaction is initiated by the heat of casting of the cast iron or steel used to pour the whole piece and thus both the unreinforced part and the reinforced part (see Fig. 3rd ). The casting therefore triggers an exothermic reaction of self-propagating synthesis at high temperature of the mixture of powders of carbon and titanium compacted in the form of granules (self-propagating high-temperature synthesis - SHS) and previously placed in the mold 15. The reaction then has the distinction of continuing to spread as soon as it is initiated.

Cette synthèse à haute température (SHS) permet une infiltration aisée de tous les interstices millimétriques et micrométriques par la fonte ou l'acier de coulée (Fig. 5g & 5h). En augmentant la mouillabilité, l'infiltration peut se faire sur n'importe quelle épaisseur ou profondeur de renforcement de l'impacteur. Elle permet avantageusement de créer, après réaction SHS et infiltration par un métal de coulée extérieur, une ou plusieurs zones de renfort sur l'impacteur comportant une forte concentration de particules globulaires micrométriques de carbure de titane (que l'on pourrait encore appeler des clusters de nodules), lesquelles zones ayant une taille de l'ordre du millimètre ou de quelques millimètres, et qui alternent avec des zones substantiellement exemptes de carbure de titane globulaire.This high temperature synthesis (SHS) allows easy infiltration of all millimetric and micrometric interstices by cast iron or casting steel ( Fig. 5g & 5h ). By increasing the wettability, the infiltration can be done on any thickness or depth of reinforcement of the impactor. It advantageously makes it possible, after SHS reaction and infiltration by an external casting metal, to create one or more reinforcement zones on the impactor comprising a high concentration of micrometric globular particles of titanium carbide (which could also be called clusters). nodules), which areas have a size of the order of a millimeter or a few millimeters, and which alternate with areas substantially free of globular titanium carbide.

Une fois que ces granulés ont réagi selon une réaction SHS, les zones de renforcement où se trouvaient ces granulés montrent une dispersion concentrée de particules globulaires micrométriques 4 de TiC (globules) dont les interstices micrométriques 3 ont été également infiltrés par le métal de coulée qui est ici de la fonte ou de l'acier. Il est important de remarquer que les interstices millimétriques et micrométriques sont infiltrés par la même matrice métallique que celle qui constitue la partie non renforcée de l'impacteur; ceci permet une liberté totale de choix du métal de coulée. Dans l'impacteur finalement obtenu, les zones de renfort à forte concentration de carbure de titane sont composées de particules micrométriques globulaires de TiC en pourcentage important (entre environ 35 et environ 70 % en volume) et de l'alliage ferreux d'infiltration.Once these granules have reacted according to an SHS reaction, the reinforcement zones where these granules were found show a concentrated dispersion of micrometric globular particles 4 of TiC (globules) whose micrometric interstices 3 have also been infiltrated by the casting metal which is here from cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metal matrix as that which constitutes the unreinforced part of the impactor; this allows a total freedom of choice of the casting metal. In the impactor finally obtained, the reinforcement zones with a high concentration of titanium carbide are composed of globular micrometer particles of TiC in a large percentage (between approximately 35 and approximately 70% by volume) and of the ferrous infiltration alloy.

Par particules globulaires micrométriques, il faut entendre des particules globalement sphéroïdales qui ont une taille allant du µm à quelques dizaines de µm tout au plus, la grande majorité de ces particules ayant une taille inférieure à 50 µm, et même à 20 µm, voire à 10 µm. Nous les appelons également des globules de TiC. Cette forme globulaire est caractéristique d'une méthode d'obtention du carbure de titane par synthèse auto-propagée SHS (voir Fig. 8).Micrometric globular particles are understood to mean globally spheroidal particles having a size ranging from a few μm to a few tens of μm at the most, the vast majority of these particles having a size of less than 50 μm, and even 20 μm, or even less than 10 μm. We also call them TiC globules. This globular form is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see Fig. 8 ).

Obtention des granulés (version Ti + C) pour le renforcement de l'impacteur Obtaining pellets (Ti + C version) for strengthening the impactor

Le procédé d'obtention des granulés est illustré à la figure 5a-5h. Les granulés de réactifs carbone/titane sont obtenus par compaction entre des rouleaux 10 afin d'obtenir des bandes que l'on concasse ensuite dans un concasseur 11. Le mélange des poudres est fait dans un mélangeur 8 constitué d'une cuve munie de pales, afin de favoriser l'homogénéité. Le mélange passe ensuite dans un appareil de granulation par une trémie 9. Cette machine comprend deux rouleaux 10, au travers desquels on fait passer la matière. Une pression est appliquée sur ces rouleaux 10, ce qui permet de comprimer la matière. On obtient à la sortie une bande de matière comprimée qui est ensuite concassée afin d'obtenir les granulés. Ces granulés sont ensuite tamisés à la granulométrie souhaitée dans un tamis 13. Un paramètre important est la pression appliquée sur les rouleaux. Au plus cette pression est élevée, au plus la bande, et donc les granulés seront comprimés. On peut ainsi faire varier la densité des bandes, et par conséquent des granulés, entre 55 et 95 % de la densité théorique qui est de 3.75 g/cm3 pour le mélange stoechiométrique de titane et de carbone. La densité apparente (tenant compte de la porosité) se situe alors entre 2.06 et 3.56 g/cm3.The process for obtaining the granules is illustrated in figure 5a-5h . The granules of carbon / titanium reagents are obtained by compaction between rollers 10 in order to obtain strips that are then crushed in a crusher 11. The mixture of the powders is made in a mixer 8 consisting of a tank equipped with blades , to promote homogeneity. The mixture then passes into a granulation apparatus through a hopper 9. This machine comprises two rollers 10, through which the material is passed. Pressure is applied to these rollers 10, which compresses the material. We get at the exit a band of material compressed which is then crushed to obtain the granules. These granules are then sieved to the desired particle size in a sieve 13. An important parameter is the pressure applied to the rollers. At most this pressure is high, the more the band, and therefore the granules will be compressed. It is thus possible to vary the density of the strips, and consequently of the granules, between 55 and 95% of the theoretical density which is 3.75 g / cm 3 for the stoichiometric mixture of titanium and carbon. The apparent density (taking into account the porosity) is then between 2.06 and 3.56 g / cm 3 .

Le degré de compaction des bandes dépend de la pression appliquée (en Pa) sur les rouleaux (diamètre 200 mm, largeur 30 mm). Pour un bas niveau de compaction, de l'ordre de 106 Pa, on obtient une densité sur les bandes de l'ordre de 55 % de la densité théorique. Après le passage à travers les rouleaux 10 pour comprimer cette matière, la densité apparente des granulés est de 3.75 x 0.55, soit 2.06 g/cm3.The degree of compaction of the bands depends on the applied pressure (in Pa) on the rollers (diameter 200 mm, width 30 mm). For a low level of compaction, of the order of 10 6 Pa, we obtain a density on the bands of the order of 55% of the theoretical density. After passing through the rollers 10 to compress this material, the apparent density of the granules is 3.75 x 0.55, ie 2.06 g / cm 3 .

Pour un haut niveau de compaction, de l'ordre de 25.106 Pa, on obtient une densité sur les bandes de 90 % de la densité théorique, soit une densité apparente de 3.38 g/cm3. En pratique on peut aller jusqu'à 95 % de la densité théorique.For a high level of compaction, of the order of 25 × 10 6 Pa, a density on the strips of 90% of the theoretical density is obtained, ie a bulk density of 3.38 g / cm 3 . In practice one can go up to 95% of the theoretical density.

Par conséquent, les granulés obtenus à partir de la matière première Ti + C sont poreux. Cette porosité varie de 5 % pour les granulés très fortement comprimés, à 45 % pour les granulés faiblement comprimés.Therefore, the granules obtained from the raw material Ti + C are porous. This porosity varies from 5% for highly compressed granules, to 45% for slightly compressed granules.

Outre le niveau de compaction, il est également possible de régler la répartition granulométrique des granulés ainsi que leur forme lors de l'opération de concassage des bandes et de tamisage des granulés de Ti+C. On recycle à volonté les fractions granulométriques non désirées (voir Fig. 3b). Les granulés obtenus ont globalement une taille entre 1 et 12 mm, de préférence entre 1 et 6 mm, et de manière particulièrement préférée entre 1.4 et 4 mm.In addition to the level of compaction, it is also possible to adjust the granulometric distribution of the granules and their shape during the operation of crushing strips and sieving Ti + C granules. Unwanted particle size fractions are recycled at will (see Fig. 3b ). The granules obtained overall a size between 1 and 12 mm, preferably between 1 and 6 mm, and particularly preferably between 1.4 and 4 mm.

Réalisation de la zone de renfort dans l'impacteur composite selon inventionRealization of the reinforcement zone in the composite impactor according to the invention

Les granulés sont réalisés comme exposé ci-dessus. Pour obtenir une structure tridimensionnelle ou superstructure/macro-microstructure avec ces granulés, on les dispose dans les zones du moule où l'on souhaite renforcer la pièce. Ceci est réalisé en agglomérant les granulés soit au moyen d'une colle, soit en les confinant dans un récipient, ou par tout autre moyen (barrage 16).
La densité en vrac de l'empilement des granulés de Ti + C est mesurée selon la norme ISO 697 et dépend du niveau de compaction des bandes, de la répartition granulométrique des granulés et du mode de concassage des bandes, qui influence la forme des granulés.
La densité en vrac de ces granulés de Ti + C est généralement de l'ordre de 0.9 g/cm3 à 2.5 g/cm3 en fonction du niveau de compaction de ces granulés et de la densité de l'empilement.
The granules are made as described above. To obtain a three-dimensional structure or superstructure / macro-microstructure with these granules, they are placed in the areas of the mold where it is desired to reinforce the workpiece. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container, or by any other means (dam 16).
The bulk density of the stack of Ti + C granules is measured according to ISO 697 and depends on the level of compaction of the bands, the granulometric distribution of the granules and the crushing mode of the bands, which influences the shape of the granules .
The bulk density of these Ti + C granules is generally of the order of 0.9 g / cm 3 to 2.5 g / cm 3 depending on the level of compaction of these granules and the density of the stack.

Avant réaction, on a donc un empilement de granulés poreux composés d'un mélange de poudre de titane et de poudre de carbone.Before reaction, there is therefore a stack of porous granules composed of a mixture of titanium powder and carbon powder.

Lors de la réaction Ti + C → TiC, il se produit une contraction volumétrique de l'ordre de 24 % quand on passe des réactifs au produit (contraction venant de la différence de densité entre les réactifs et les produits). Ainsi, la densité théorique du mélange Ti + C est de 3.75 g/cm3 et la densité théorique du TiC est de 4.93 g/cm3. Dans le produit final, après la réaction d'obtention du TiC, le métal de coulée infiltrera :

  • la porosité microscopique présente dans les espaces à forte concentration en carbure de titane, dépendant du niveau de compaction initial de ces granulés ;
  • les espaces millimétriques entre les zones à forte concentration en carbure de titane, dépendant de l'empilement initial des granulés (densité en vrac) ;
  • la porosité venant de la contraction volumétrique lors de la réaction entre Ti + C pour obtenir le TiC.
During the Ti + C → TiC reaction, there is a volumetric contraction of about 24% when passing reagents to the product (contraction coming from the density difference between the reagents and the products). Thus, the theoretical density of the Ti + C mixture is 3.75 g / cm 3 and the theoretical density of the TiC is 4.93 g / cm 3 . In the final product, after the reaction to obtain TiC, the casting metal will infiltrate:
  • the microscopic porosity present in spaces with a high concentration of titanium carbide, depending on the initial level of compaction of these granules;
  • the millimeter spaces between the zones with a high concentration of titanium carbide, depending on the initial stacking of the granules (bulk density);
  • the porosity coming from the volumetric contraction during the reaction between Ti + C to obtain the TiC.

ExemplesExamples

Dans les exemples qui suivent, on a utilisé les matières premières suivantes :

  • titane, H.C. STARCK, Amperit 155.066, moins de 200 mesh,
  • carbone graphite GK Kropfmuhl, UF4, > 99.5 %, moins de 15 µm,
  • Fe, sous la forme Acier HSS M2, moins de 25 µm,
  • proportions :
    • Ti + C 100 g Ti - 24.5 g C
    • Ti + C + Fe 100 g Ti - 24.5 g C - 35.2 g Fe
Mélange 15 min dans mélangeur Lindor, sous Argon.In the examples that follow, the following raw materials were used:
  • titanium, HC STARCK, Amperit 155.066, less than 200 mesh,
  • graphite carbon GK Kropfmuhl, UF4,> 99.5%, less than 15 μm,
  • Fe, in the form of HSS M2 steel, less than 25 μm,
  • proportions:
    • Ti + C 100 g Ti - 24.5 g C
    • Ti + C + Fe 100 g Ti - 24.5 g C - 35.2 g Fe
Mix 15 min in Lindor mixer, under Argon.

La granulation a été effectuée avec un granulateur Sahut-Conreur.Granulation was carried out with a Sahut-Conreur granulator.

Pour les mélanges Ti+C+Fe et Ti+C, la compacité des granulés a été obtenue en faisant varier la pression entre les rouleaux de 10 à 250.105 Pa.For the Ti + C + Fe and Ti + C mixtures, the compactness of the granules was obtained by varying the pressure between the rolls by 10 to 250 × 10 5 Pa.

Le renforcement a été effectué en plaçant des granulés dans un container métallique, qui est ensuite judicieusement placé dans le moule à l'endroit où l'impacteur est susceptible d'être renforcé. Ensuite on coule l'acier ou la fonte dans ce moule.Reinforcement has been done by placing granules in a metal container, which is then conveniently placed in the mold where the impactor is likely to be reinforced. Then we cast the steel or cast in this mold.

Exemple 1Example 1

Dans cet exemple, on vise à réaliser un impacteur dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 42 %. A cette fin, on réalise une bande par compaction à 85 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 2.1 g/cm3 (35 % d'espace entre les granulés + 15 % de porosité dans les granulés).In this example, it is intended to provide an impactor whose reinforced areas comprise an overall volume percentage of TiC of about 42%. For this purpose, a band is produced by compaction at 85% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 2.1 g / cm 3 (35% of space between the granules + 15% of porosity in the granules) is obtained.

On dispose les granulés dans le moule à l'endroit de la partie à renforcer qui comporte ainsi 65 % en volume de granulés poreux. On coule ensuite une fonte au chrome (3 % C, 25 % Cr) à environ 1500°C dans un moule en sable non préchauffé. La réaction entre le Ti et le C est initiée par la chaleur de la fonte. Cette coulée se fait sans atmosphère de protection. Après réaction, on obtient dans la partie renforcée 65 % en volume de zones avec une forte concentration d'environ 65 % en carbure de titane globulaire, soit 42 % en volume global de TiC dans la partie renforcée de l'impacteur.The granules are placed in the mold at the location of the part to be reinforced, which thus comprises 65% by volume of porous granules. A chromium cast iron (3% C, 25% Cr) was then cast at about 1500 ° C in a non-preheated sand mold. The reaction between Ti and C is initiated by the heat of melting. This casting is done without a protective atmosphere. After reaction, in the reinforced part 65% by volume of zones with a high concentration of approximately 65% of globular titanium carbide is obtained, ie 42% by global volume of TiC in the reinforced part of the impactor.

Exemple 2Example 2

Dans cet exemple, on vise à réaliser un impacteur dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 30 %. A cette fin, on réalise une bande par compaction à 70 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 1.4 g/cm3 (45 % d'espace entre les granulés + 30 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 55 % en volume de granulés poreux. Après réaction, on obtient, dans la partie renforcée, 55 % en volume de zones avec une forte concentration d'environ 53 % en carbure de titane globulaire, soit environ 30 % en volume global de TiC dans la partie renforcée de l'impacteur.In this example, it is intended to provide an impactor whose reinforced zones comprise an overall volume percentage of TiC of about 30%. For this purpose, a 70% compaction band is made of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 1.4 g / cm 3 (45% of space between the granules + 30% of porosity in the granules) is obtained. The granules are available in the section strengthen which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones with a high concentration of approximately 53% of globular titanium carbide is obtained, ie approximately 30% by global volume of TiC in the reinforced part of the impactor.

Exemple 3Example 3

Dans cet exemple, on vise à réaliser un impacteur dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 20 %. A cette fin, on réalise une bande par compaction à 60 % de la densité théorique d'un mélange de C et de Ti. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1 et 6 mm. On obtient une densité en vrac de l'ordre de 1.0 g/cm3 (55 % d'espace entre les granulés + 40 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 45 % en volume de granulés poreux. Après réaction, on obtient dans la partie renforcée 45 % en volume de zones concentrées à environ 45 % en carbure de titane globulaire, soit 20 % en volume global de TiC dans la partie renforcée de l'impacteur.In this example, it is intended to achieve an impactor whose reinforced areas comprise a global volume percentage of TiC of about 20%. For this purpose, a band is made by compaction at 60% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved so as to obtain a granule size of between 1 and 6 mm. A bulk density of the order of 1.0 g / cm 3 (55% of space between the granules + 40% of porosity in the granules) is obtained. The granules are placed in the part to be reinforced, which thus comprises 45% by volume of porous granules. After reaction, 45% by volume of zones concentrated to about 45% of globular titanium carbide are obtained in the reinforced part, ie 20% by global volume of TiC in the reinforced part of the impactor.

Exemple 4Example 4

Dans cet exemple, on a cherché à atténuer l'intensité de la réaction entre le carbone et le titane en y ajoutant un alliage ferreux en poudre. Comme dans l'exemple 2, on vise à réaliser un impacteur dont les zones renforcées comportent un pourcentage en volume global de TiC d'environ 30 %. A cette fin, on réalise une bande par compaction à 85 % de la densité théorique d'un mélange en poids de 15 % de C, 63 % de Ti et 22 % de Fe. Après concassage, les granulés sont tamisés de manière à obtenir une dimension de granulés située entre 1.4 et 4 mm. On obtient une densité en vrac de l'ordre de 2 g/cm3 (45 % d'espace entre les granulés + 15 % de porosité dans les granulés). On dispose les granulés dans la partie à renforcer qui comporte ainsi 55 % en volume de granulés poreux. Après réaction, on obtient dans la partie renforcée 55 % en volume de zones avec une forte concentration d'environ 55 % en carbure de titane globulaire, soit 30 % en volume de carbure de titane global dans la macro-microstructure renforcée de l'impacteur.In this example, it was sought to attenuate the intensity of the reaction between carbon and titanium by adding a ferrous alloy powder. As in Example 2, it is intended to provide an impactor whose reinforced zones comprise a global volume percentage of TiC of about 30%. For this purpose, a compaction band is produced at 85% of the theoretical density of a mixture by weight of 15% of C, 63% of Ti and 22% of Fe. After crushing, the granules are sieved to obtain a granule size between 1.4 and 4 mm. A bulk density of the order of 2 g / cm 3 (45% of space between the granules + 15% of porosity in the granules) is obtained. The granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules. After reaction, 55% by volume of zones with a high concentration of approximately 55% of globular titanium carbide, ie 30% by volume of global titanium carbide in the reinforced macro-microstructure of the impactor, are obtained in the reinforced part. .

Les tableaux suivants montrent les nombreuses combinaisons possibles. Tableau 1 (Ti + 0.98 C) Pourcentage global de TiC obtenu dans la macro-microstructure renforcée après réaction Ti + 0.98 C dans la partie renforcée de l'impacteur Compaction des granulés (% de la densité théorique qui est de 3,75 g/cm3) 55 60 65 70 75 80 85 90 95 Remplissage de la partie renforcée de la pièce (% vol.) 70 29.3 31.9 34.6 37.2 39.9 42.6 45.2 47.9 50.5 65 27.2 29.6 32.1 34.6 37.1 39.5 42.0 44.5 46.9 55 23.0 25.1 27.2 29.3 31.4 33.4 35.5 37.6 39.7 45 18.8 20.5 22.2 23.9 25.7 27.4 29.1 30.8 32.5 Ce tableau montre qu'avec un niveau de compaction allant de 55 à 95 % pour les bandes et donc les granulés, on peut pratiquer des niveaux de remplissage en granulés dans la partie renforcée de l'impacteur allant de 45 à 70 % en volume (rapport entre le volume total des granulés et le volume de leur confinement). Ainsi, pour obtenir une concentration globale en TiC dans la partie renforcée d'environ 29 % vol. (en lettres grasses dans le tableau), on peut procéder à différentes combinaisons comme par exemple 60 % de compaction et 65 % de remplissage, ou 70 % de compaction et 55 % de remplissage, ou encore 85 % de compaction et 45 % de remplissage. Pour obtenir des niveaux de remplissage en granulés dans la partie renforcée allant jusqu'à 70 % en volume, on est obligé d'appliquer une vibration pour tasser les granulés. Dans ce cas, la norme ISO 697 pour la mesure du taux de remplissage n'est plus applicable et on mesure la quantité de matière dans un volume donné. Tableau 2 Relation entre le niveau de compaction, la densité théorique et le pourcentage de TiC obtenu après réaction dans le granulé Compaction des granulés 55 60 65 70 75 80 85 90 95 Densité en g/cm3 2.06 2.25 2.44 2.63 2.81 3.00 3.19 3.38 3.56 TiC obtenu après réaction (et contraction) en %vol. dans les granulés 41.8 45.6 49.4 53.2 57.0 60.8 64.6 68.4 72.2 Ici nous avons représenté la densité des granulés en fonction de leur niveau de compaction et on en a déduit le pourcentage volumique de TiC obtenu après réaction et donc contraction d'environ 24 % vol. Des granulés compactés à 95 % de leur densité théorique permettent donc d'obtenir, après réaction, une concentration de 72.2 % vol. en TiC. Tableau 3 Densité en vrac de l'empilement des granulés Compaction 55 60 65 70 75 80 85 90 95 Remplissage de la partie renforcée de la pièce en % vol 70 1.4 1.6 1.7 1.8 2 2.1 2.2 2.4 2.5 65 1.3* 1.5 1.6 1.7 1.8 2.0 2.1 2.2 2.3 55 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 2.0 45 0.9 1.0 1.1 1.2 1.3 1.4 1.4 1.5 1.6 (*) Densité en vrac (1.3) = densité théorique (3.75 g/cm3)) x 0.65 (remplissage) x 0.55 (compaction) En pratique, ces tableaux servent d'abaques à l'utilisateur de cette technologie, qui se fixe un pourcentage global de TiC à réaliser dans la partie renforcée de l'impacteur et qui en fonction de cela détermine le niveau de remplissage et la compaction des granulés qu'il va utiliser. Les mêmes tableaux ont été réalisés pour un mélange de poudres Ti + C + Fe.The following tables show the many possible combinations. <b><u> Table 1 </ u></b> (Ti + 0.98 C) Overall percentage of TiC obtained in the reinforced microstructure after reaction Ti + 0.98 C in the reinforced part of the impactor Compaction of the granules (% of the theoretical density which is 3.75 g / cm 3 ) 55 60 65 70 75 80 85 90 95 Filling the reinforced part of the part (% vol.) 70 29.3 31.9 34.6 37.2 39.9 42.6 45.2 47.9 50.5 65 27.2 29.6 32.1 34.6 37.1 39.5 42.0 44.5 46.9 55 23.0 25.1 27.2 29.3 31.4 33.4 35.5 37.6 39.7 45 18.8 20.5 22.2 23.9 25.7 27.4 29.1 30.8 32.5 This table shows that with a compaction level ranging from 55 to 95% for the bands and therefore the granules, it is possible to practice filling levels in granules in the reinforced part of the impactor ranging from 45 to 70% by volume ( ratio between the total volume of pellets and the volume of their confinement). Thus, to obtain an overall concentration of TiC in the reinforced portion of about 29% vol. (in bold letters in the table), we can proceed to different combinations such as for example 60% of compaction and 65% of filling, or 70% compaction and 55% filling, or 85% compaction and 45% filling. To obtain granular filling levels in the reinforced portion up to 70% by volume, it is necessary to apply a vibration to compact the granules. In this case, the ISO 697 standard for measuring the degree of filling is no longer applicable and the quantity of material in a given volume is measured. Relationship between the compaction level, the theoretical density and the percentage of TiC obtained after reaction in the granule Compaction of granules 55 60 65 70 75 80 85 90 95 Density in g / cm 3 2.06 2.25 2.44 2.63 2.81 3.00 3.19 3.38 3.56 TiC obtained after reaction (and contraction) in% vol. in the granules 41.8 45.6 49.4 53.2 57.0 60.8 64.6 68.4 72.2 Here we have represented the density of the granules as a function of their level of compaction and deduced the volume percentage of TiC obtained after reaction and thus contraction of about 24% vol. Granules compacted to 95% of their theoretical density thus make it possible to obtain, after reaction, a concentration of 72.2% vol. in TiC. Bulk density of the stack of pellets compaction 55 60 65 70 75 80 85 90 95 Filling the reinforced part of the part in% vol 70 1.4 1.6 1.7 1.8 2 2.1 2.2 2.4 2.5 65 1.3 * 1.5 1.6 1.7 1.8 2.0 2.1 2.2 2.3 55 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 2.0 45 0.9 1.0 1.1 1.2 1.3 1.4 1.4 1.5 1.6 (*) Bulk density (1.3) = theoretical density (3.75 g / cm 3 )) x 0.65 (filling) x 0.55 (compaction) In practice, these tables are used by the user of this technology, which sets a global percentage of TiC to be produced in the reinforced part of the impactor and which, as a result, determines the filling level and the compaction of the granules that he will use. The same tables were made for a mixture of Ti + C + Fe powders.

Ti + 0.98 C + FeTi + 0.98 C + Fe

Ici, l'inventeur a visé un mélange permettant d'obtenir 15% en volume de fer après réaction. La proportion de mélange qui a été utilisée est de : 100 g Ti + 24.5 g C + 35.2 g Fe

Figure imgb0001
Nous entendons par poudre de fer : fer pur ou alliage de fer.
Densité théorique du mélange : 4.25g/cm3
Retrait volumétrique lors de la réaction : 21 % Tableau 4 Pourcentage global de TiC obtenu dans la macro-microstructure renforcée après réaction Ti + 0.98 C + Fe dans la partie renforcée de l'impacteur Compaction des granulés (% de la densité théorique qui est de 4.25 g/cm3) 55 60 65 70 75 80 85 90 95 Remplissage de la partie renforcée de la pièce (% vol) 70 25.9 28.2 30.6 32.9 35.5 37.6 40.0 42.3 44.7 65 24.0 26.2 28.4 30.6 32.7 34.9 37.1 39.3 41.5 55 20.3 22.2 24.0 25.9 27.7 29.5 31.4 33.2 35.1 45 16.6 18.1 19.6 21.2 22.7 24.2 25.7 27.2 28.7 Here, the inventor has targeted a mixture to obtain 15% by volume of iron after reaction. The proportion of mixture that has been used is: 100 g Ti + 24.5 g C + 35.2 g Fe
Figure imgb0001
We mean by iron powder: pure iron or iron alloy.
Theoretical density of the mixture: 4.25g / cm 3
Volumetric shrinkage during the reaction: 21% <b><u> Table 4 </ u></b> Overall percentage of TiC obtained in the reinforced microstructure after reaction Ti + 0.98 C + Fe in the reinforced part of the impactor Compaction of the granules (% of theoretical density which is 4.25 g / cm 3 ) 55 60 65 70 75 80 85 90 95 Filling the reinforced part of the part (% vol) 70 25.9 28.2 30.6 32.9 35.5 37.6 40.0 42.3 44.7 65 24.0 26.2 28.4 30.6 32.7 34.9 37.1 39.3 41.5 55 20.3 22.2 24.0 25.9 27.7 29.5 31.4 33.2 35.1 45 16.6 18.1 19.6 21.2 22.7 24.2 25.7 27.2 28.7

A nouveau, pour obtenir une concentration globale en TiC dans la partie renforcée d'environ 26 % vol (en lettres grasses dans le tableau), on peut procéder à différentes combinaisons comme par exemple 55 % de compaction et 70 % de remplissage, ou 60 % de compaction et 65 % de remplissage, ou 70 % de compaction et 55 % de remplissage, ou encore 85 % de compaction et 45 % de remplissage. Tableau 5 Relation entre le niveau de compaction, la densité théorique et le pourcentage de TiC, obtenue après réaction dans le granulé en tenant compte de la présence de fer Compaction des granulés 55 60 65 70 75 80 85 90 95 Densité en g/cm3 2.34 2.55 2.76 2.98 3.19 3.40 3.61 3.83 4.04 TiC obtenu après réaction (et contraction) en %vol. dans les granulés 36.9 40.3 43.6 47.0 50.4 53.7 57.1 60.4 63.8 Tableau 6 Densité en vrac de l'empilement des granulés (Ti + C + Fe) Compaction 55 60 65 70 75 80 85 90 95 Remplissage de la partie renforcée de la pièce en % vol. 70 1.6 1.8 1.9 2.1 2.2 2.4 2.5 2.7 2.8 65 1.5* 1.7 1.8 1.9 2.1 2.2 2.3 2.5 2.6 55 1.3 1.4 1.5 1.6 1.8 1.9 2.0 2.1 2.2 45 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 (*) Densité en vrac (1.5) = densité théorique (4.25) x 0.65 (remplissage) x 0.55 (compaction) Again, to obtain an overall concentration of TiC in the reinforced part of about 26% vol (in bold letters in the table), one can proceed to different combinations such as for example 55% compaction and 70% filling, or 60%. % of compaction and 65% of filling, or 70% compaction and 55% filling, or 85% compaction and 45% filling. <b><u> Table 5 </ u></b> Relationship between the compaction level, the theoretical density and the percentage of TiC, obtained after reaction in the granule taking into account the presence of iron Compaction of granules 55 60 65 70 75 80 85 90 95 Density in g / cm 3 2.34 2.55 2.76 2.98 3.19 3.40 3.61 3.83 4.04 TiC obtained after reaction (and contraction) in% vol. in the granules 36.9 40.3 43.6 47.0 50.4 53.7 57.1 60.4 63.8 Bulk density of the stack of pellets (Ti + C + Fe) compaction 55 60 65 70 75 80 85 90 95 Filling the reinforced part of the piece in% vol. 70 1.6 1.8 1.9 2.1 2.2 2.4 2.5 2.7 2.8 65 1.5 * 1.7 1.8 1.9 2.1 2.2 2.3 2.5 2.6 55 1.3 1.4 1.5 1.6 1.8 1.9 2.0 2.1 2.2 45 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 (*) Bulk density (1.5) = theoretical density (4.25) x 0.65 (filling) x 0.55 (compaction)

AvantagesAdvantages

La présente invention présente les avantages suivants par rapport à l'état de la technique en général:The present invention has the following advantages over the state of the art in general:

Meilleure résistance aux chocsBetter shock resistance

Avec le présent procédé, on a des granulés millimétriques poreux qui sont sertis dans l'alliage métallique d'infiltration. Ces granulés millimétriques sont eux-mêmes composés de particules microscopiques de TiC à tendance globulaire également sertis dans l'alliage métallique d'infiltration. Ce système permet d'obtenir un impacteur avec une zone de renfort comportant une macrostructure au sein de laquelle il y a une microstructure identique à une échelle environ mille fois plus petite.With the present process, there are porous millimetric granules which are crimped into the metal infiltration alloy. These millimetric granules are themselves composed of microscopic particles of TiC globular tendency also crimped in the alloy metallic infiltration. This system makes it possible to obtain an impactor with a reinforcement zone comprising a macrostructure within which there is an identical microstructure on a scale approximately a thousand times smaller.

Le fait que la zone de renfort de l'impacteur comporte des petites particules globulaires de carbure de titane, dures et finement dispersées dans une matrice métallique qui les entoure, permet d'éviter la formation et la propagation des fissures (voir Fig. 4 & 6). On a ainsi un double système dissipatif des fissures.The fact that the reinforcing zone of the impactor comprises small globular particles of titanium carbide, hard and finely dispersed in a metal matrix which surrounds them, makes it possible to prevent the formation and propagation of cracks (see FIG. Fig. 4 & 6 ). There is thus a double dissipative system of cracks.

Les fissures prennent généralement naissance aux endroits les plus fragiles, qui sont dans ce cas la particule de TiC ou l'interface entre cette particule et l'alliage métallique d'infiltration. Si une fissure prend naissance à l'interface ou dans la particule micrométrique de TiC, la propagation de cette fissure est ensuite entravée par l'alliage d'infiltration qui entoure cette particule. La ténacité de l'alliage d'infiltration est supérieure à celle de la particule céramique TiC. La fissure a besoin de plus d'énergie pour passer d'une particule à l'autre, pour franchir les espaces micrométriques qui existent entre les particules.Cracks generally originate at the most fragile places, which in this case are the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric particle of TiC, the propagation of this crack is then impeded by the infiltration alloy which surrounds this particle. The toughness of the infiltration alloy is greater than that of the TiC ceramic particle. The crack needs more energy to pass from one particle to another, to cross the micrometric spaces that exist between the particles.

Flexibilité maximale pour les paramètres de mise en oeuvreMaximum flexibility for implementation parameters

Outre le niveau de compaction des granulés, on peut faire varier deux paramètres qui sont la fraction granulométrique et la forme des granulés, et donc leur densité en vrac. Par contre, dans une technique de renforcement par insert, on ne peut faire varier que le niveau de compaction de celui-ci dans une plage limitée. Au niveau de la forme que l'on souhaite donner au renforcement, compte tenu du design de l'impacteur et de l'endroit que l'on souhaite renforcer, l'utilisation de granulés permet davantage de possibilités et d'adaptation.In addition to the level of compaction of the granules, it is possible to vary two parameters which are the granulometric fraction and the shape of the granules, and therefore their bulk density. On the other hand, in an insert reinforcement technique, it is only possible to vary the level of compaction thereof in a limited range. In terms of the form that we wish to give to reinforcement, given the design of the impactor and the place you want to strengthen, the use of pellets allows more opportunities and adaptation.

Avantages au niveau de la fabricationAdvantages in manufacturing

L'utilisation comme renforcement d'un empilement de granulés poreux présente certains avantages au niveau de la fabrication :

  • moins de dégagement gazeux,
  • moindre susceptibilité à la crique,
  • meilleure localisation du renforcement dans l'impacteur. La réaction entre le Ti et le C est fortement exothermique. L'élévation de température provoque un dégazage des réactifs, c'est-à-dire des matières volatiles comprises dans les réactifs (H2O dans le carbone, H2, N2 dans le titane). Au plus la température de réaction est élevée, au plus ce dégagement est important. La technique par granulés permet de limiter la température, de limiter le volume gazeux et permet une évacuation plus facile des gaz et ainsi de limiter les défauts de gaz (voir Fig. 9 avec bulle de gaz indésirable).
The use as reinforcement of a stack of porous granules has certain advantages at the manufacturing level:
  • less gassing,
  • less susceptibility to the crack,
  • better localization of the reinforcement in the impactor. The reaction between Ti and C is strongly exothermic. The rise in temperature causes degassing of the reagents, that is to say volatile materials included in the reagents (H 2 O in carbon, H 2 , N 2 in titanium). The higher the reaction temperature, the greater this clearance is important. The granular technique makes it possible to limit the temperature, to limit the gaseous volume and allows an easier evacuation of the gases and thus to limit the gas defects (see Fig. 9 with unwanted gas bubble).

Faible susceptibilité à la crique lors de la fabrication de l'impacteur selon l'inventionLow susceptibility to crack during the manufacture of the impactor according to the invention

Le coefficient de dilatation du renforcement TiC est plus faible que celui de la matrice en alliage ferreux (coefficient de dilatation du TiC : 7.5 10-6/K et de l'alliage ferreux : environ 12.0 10-6/K). Cette différence dans les coefficients de dilatation a pour conséquence de générer des tensions dans le matériau pendant la phase de solidification et aussi lors du traitement thermique. Si ces tensions sont trop importantes, des criques peuvent apparaître dans la pièce et conduire au rebut de celle-ci. Dans la présente invention, on utilise une faible proportion de renforcement TiC (moins de 50 % en volume), ce qui entraîne moins de tensions dans la pièce. De plus, la présence d'une matrice plus ductile entre les particules globulaires micrométriques de TiC en zones alternées de faible et de forte concentration permet de mieux gérer d'éventuelles tensions locales.The expansion coefficient of the TiC reinforcement is lower than that of the ferrous alloy matrix (TiC expansion coefficient: 7.5 10-6 / K and the ferrous alloy: approximately 12.0 10-6 / K). This difference in the expansion coefficients has the consequence of generating tensions in the material during the solidification phase and also during the heat treatment. If these voltages are too great, cracks may appear in the room and lead to scrapping it. In this In the invention, a small proportion of TiC reinforcement (less than 50% by volume) is used, resulting in less stress in the workpiece. In addition, the presence of a more ductile matrix between the micrometric globular particles of TiC in alternating zones of low and high concentration makes it possible to better manage any local voltages.

Excellent maintien du renforcement dans l'impacteurExcellent maintenance of the reinforcement in the impactor

Dans la présente invention, la frontière entre la partie renforcée et la partie non renforcée de l'impacteur n'est pas abrupte puisqu'il y a une continuité de la matrice métallique entre la partie renforcée et la partie non renforcée, ce qui permet de la protéger contre un arrachage complet du renforcement.In the present invention, the boundary between the reinforced portion and the unreinforced portion of the impactor is not abrupt because there is a continuity of the metal matrix between the reinforced portion and the unreinforced portion, thereby protect it against a complete tearing of the reinforcement.

Résultats de testsTest results

Trois tests ont été effectués avec des impacteurs de type marteau du type de celui représenté à la figure 4b et à la figure 10 sur une plage de poids allant de 30 à 130 Kg.Three tests were carried out with hammer impactors of the type shown in figure 4b and at the figure 10 over a weight range of 30 to 130 kg.

Test 1Test 1

  • poids des marteaux : 30 à 70 kgshammer weight: 30 to 70 kgs
  • matériau concassé : clinker de cimenteriecrushed material: cement clinker
  • augmentation de la durée de vie du marteau par rapport à un marteau en acier trempé : 200%increased hammer life compared to a hardened steel hammer: 200%
Test 2Test 2

  • poids des marteaux : 70 à 130 kgshammer weight: 70 to 130 kgs
  • matériau concassé : roche calcairecrushed material: limestone
  • stade : primairestage: primary
  • augmentation de la durée de vie du marteau par rapport à un marteau en acier trempé: 100 à 200 %increased hammer life compared to a hardened steel hammer: 100 to 200%
Test 3Test 3

  • poids des marteaux : 30 à 80 kgsHammer weight: 30 to 80 kgs
  • matériau concassé : roche calcairecrushed material: limestone
  • stade : secondairestage: secondary
  • augmentation de la durée de vie de la pièce : 100 à 200 %increase the service life of the part: 100 to 200%

Claims (12)

  1. A composite impactor for impact crusher, said impactor comprising a ferrous alloy at least partially reinforced (5) with titanium carbide according to a defined geometry, wherein said reinforced portion (5) comprises an alternating macro-microstructure of millimetric areas (1) concentrated with micrometric globular particles of titanium carbide (4) separated by millimetric areas (2) essentially free of micrometric globular particles of titanium carbide (4), said areas concentrated with micrometric globular particles of titanium carbide (4) forming a microstructure in which the micrometric interstices (3) between said globular particles (4) are also filled by said ferrous alloy.
  2. The impactor according to claim 1, wherein said millimetric concentrated areas have a concentration of micrometric globular particles of titanium carbide (4) greater than 36.9% by volume.
  3. The impactor according to any of claims 1 or 2, wherein said reinforced portion has a global titanium carbide content between 16.6 and 50.5% by volume.
  4. The impactor according to any of the preceding claims, wherein the micrometric globular particles of titanium carbide (4) have a size of less than 50µm.
  5. The impactor according to any of the preceding claims, wherein the major portion of the micrometric globular particles of titanium carbide (4) has a size of less than 20 µm.
  6. The impactor according to any of the preceding claims, wherein said areas concentrated with globular particles of titanium carbide (1) comprise 36.9 to 72.2% by volume of titanium carbide.
  7. The impactor according to any of the preceding claims, wherein said areas concentrated with titanium carbide (1) have a dimension varying from 1 to 12 mm.
  8. The impactor according to any of the preceding claims, wherein said areas concentrated in titanium carbide (1) have a dimension varying from 1 to 6 mm.
  9. The impactor according to any of the preceding claims, wherein said areas concentrated in titanium carbide (1) have a dimension varying from 1.4 to 4 mm.
  10. A method for manufacturing by casting a composite impactor according to any of claims 1 to 9, comprising the following steps:
    - providing a mold comprising the imprint of the impactor with a predefined reinforcement geometry;
    - introducing, into the portion of the imprint of the impactor intended to form the reinforced portion (5), a mixture of compacted powders comprising carbon and titanium in the form of millimetric granules precursor of titanium carbide;
    - casting a ferrous alloy into the mold, the heat of said casting triggering an exothermic self-propagating high temperature synthesis (SHS) of titanium carbide within said precursor granules;
    - forming, within the reinforced portion (5) of the impactor, an alternating macro-microstructure of millimetric areas concentrated (1) with micrometric globular particles of titanium carbide (4) at the location of said precursor granules, said areas being separated from each other by millimetric areas (2) essentially free of micrometric globular particles of titanium carbide (4), said globular particles (4) being also separated within said millimetric areas concentrated (1) with titanium carbide by micrometric interstices (3);
    - infiltration of the millimetric (2) and micrometric (3) interstices by said high temperature cast ferrous alloy, following the formation of microscopic globular particles of titanium carbide (4).
  11. The manufacturing method according to claim 10, wherein the mixture of compacted powders of titanium and carbon comprises a powder of a ferrous alloy.
  12. The manufacturing method according to any of claims 10 or 11, wherein said carbon is graphite.
EP09814104.7A 2008-09-19 2009-08-26 Composite impactor for impact crusher Active EP2323770B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09814104T PL2323770T3 (en) 2008-09-19 2009-08-26 Composite impactor for impact crusher

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2008/0520A BE1018129A3 (en) 2008-09-19 2008-09-19 COMPOSITE IMPACTOR FOR PERCUSSION CRUSHERS.
PCT/EP2009/060981 WO2010031663A1 (en) 2008-09-19 2009-08-26 Composite impactor for percussion crushers

Publications (2)

Publication Number Publication Date
EP2323770A1 EP2323770A1 (en) 2011-05-25
EP2323770B1 true EP2323770B1 (en) 2013-11-27

Family

ID=40578583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09814104.7A Active EP2323770B1 (en) 2008-09-19 2009-08-26 Composite impactor for impact crusher

Country Status (18)

Country Link
US (1) US8651407B2 (en)
EP (1) EP2323770B1 (en)
JP (1) JP5503653B2 (en)
KR (1) KR101621996B1 (en)
CN (1) CN102176973B (en)
AU (1) AU2009294782B2 (en)
BE (1) BE1018129A3 (en)
BR (1) BRPI0913717B1 (en)
CA (1) CA2735877C (en)
CL (1) CL2011000576A1 (en)
DK (1) DK2323770T3 (en)
EG (1) EG26800A (en)
ES (1) ES2449440T3 (en)
MX (1) MX2011003028A (en)
PL (1) PL2323770T3 (en)
PT (1) PT2323770E (en)
WO (1) WO2010031663A1 (en)
ZA (1) ZA201101792B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1018130A3 (en) * 2008-09-19 2010-05-04 Magotteaux Int HIERARCHICAL COMPOSITE MATERIAL.
CN102310014B (en) * 2011-08-22 2015-09-16 宁国市东方碾磨材料有限责任公司 High performance composite metal hammer
CN102423799B (en) * 2011-12-12 2013-02-13 广东新劲刚超硬材料有限公司 Method of in situ synthetic steel bond hard alloy casting composite hammerhead and hammerhead
PL398770A1 (en) * 2012-04-10 2013-01-07 Akademia Górniczo-Hutnicza im. Stanislawa Staszica Method for producing the cast composite zones
US11045813B2 (en) 2013-10-28 2021-06-29 Postle Industries, Inc. Hammermill system, hammer and method
EP2978716A1 (en) 2014-02-10 2016-02-03 LISEC Austria GmbH Method for cutting laminated glass
CA3003685A1 (en) 2015-11-12 2017-05-18 Innerco Sp. Z O.O. Powder composition for the manufacture of casting inserts, casting insert and method of obtaining local composite zones in castings
PL414755A1 (en) 2015-11-12 2017-05-22 Innerco Spółka Z Ograniczoną Odpowiedzialnością Method for producing local composite zones in castings and the casting insert
US20170233986A1 (en) * 2016-02-15 2017-08-17 Caterpillar Inc. Ground engaging component and method for manufacturing the same
CA3029673A1 (en) 2016-06-29 2018-01-04 Superior Industries, Inc. Vertical shaft impact crusher
JP6804143B2 (en) * 2016-09-30 2020-12-23 株式会社小松製作所 Earth and sand wear resistant parts and their manufacturing methods
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same
CN110791677A (en) * 2019-11-18 2020-02-14 中国科学院上海硅酸盐研究所 High-performance wear-resistant bronze-based composite material and preparation method and application thereof
BE1027444B1 (en) 2020-02-11 2021-02-10 Magotteaux Int COMPOSITE WEAR PART
EP3885061A1 (en) 2020-03-27 2021-09-29 Magotteaux International S.A. Composite wear component
EP3915699A1 (en) 2020-05-29 2021-12-01 Magotteaux International SA Ceramic-metal composite wear part
WO2022008038A1 (en) 2020-07-07 2022-01-13 Sandvik Srp Ab A crushing or wear part having a localized composite wear zone
CA3202076A1 (en) 2020-12-10 2022-06-16 Magotteaux International S.A. Hierarchical composite wear part with structural reinforcement
EP4155008A1 (en) 2021-09-23 2023-03-29 Magotteaux International S.A. Composite wear component
EP4279201A1 (en) * 2022-05-20 2023-11-22 Innerco SP. Z O.O. Method for casting a component for application in a high wear industrial environment and such a casted component

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6606502A (en) * 1965-05-29 1966-11-30
JPS58130203A (en) * 1982-01-29 1983-08-03 Mitsui Alum Kogyo Kk Production of composite material dispersed with aluminum particles
JP2596106B2 (en) 1988-12-27 1997-04-02 住友重機械鋳鍛株式会社 Combined drilling tooth
US5066546A (en) 1989-03-23 1991-11-19 Kennametal Inc. Wear-resistant steel castings
BE1004573A4 (en) 1990-09-20 1992-12-15 Magotteaux Int Process for producing a piece bimetallic foundry and wear piece made thereby.
GB2257985A (en) * 1991-07-26 1993-01-27 London Scandinavian Metall Metal matrix alloys.
US5720830A (en) 1992-11-19 1998-02-24 Sheffield Forgemasters Limited Engineering ferrous metals and method of making thereof
AU5530494A (en) * 1992-11-19 1994-06-08 Sheffield Forgemasters Limited Engineering ferrous metals, in particular cast iron and steel
GB2274467A (en) * 1993-01-26 1994-07-27 London Scandinavian Metall Metal matrix alloys
JP2852867B2 (en) * 1994-05-13 1999-02-03 株式会社小松製作所 Method for producing wear-resistant parts and wear-resistant parts
JP3156243B2 (en) * 1995-10-23 2001-04-16 ヤマハ発動機株式会社 Casting surface hardening method
CN1135457A (en) * 1996-01-12 1996-11-13 华东理工大学 Method for preparation of titanium carbide micropowder by using self-spreading high-temp. synthesizing chemical-reacting furnace
US6066407A (en) * 1998-06-15 2000-05-23 Getz; Roland A. Wear resistant parts for hammers and chippers
KR100302141B1 (en) 1999-03-02 2001-09-22 정주용 Rollers for use in high press roller crusher
CN1079443C (en) * 1999-06-24 2002-02-20 东南大学 Titanium carbide reinforced antiwear aluminium alloy and its preparing process
EP1450973B1 (en) 2001-12-04 2006-04-12 Magotteaux International S.A. Cast part with enhanced wear resistance
CN1152969C (en) * 2002-01-27 2004-06-09 吉林大学 Process for preparing particle reinforced Mg-base composite
AU2003271497A1 (en) * 2002-11-11 2004-06-03 Empa Eidgenossische Materialprufungs- Und Forschungsanstalt Ceramic-metal or metal-ceramic composite
CN1260385C (en) * 2002-12-05 2006-06-21 天津理工学院 Silicide alloy-titanium carbide cermet
DE10336169B4 (en) 2003-08-07 2006-11-09 Stahlwerke Bochum Gmbh Composite tool for impact and / or abrasive loads
CN1868635A (en) * 2006-04-19 2006-11-29 吉林大学 Preparation method of local reinforced steel base composite material for synthosizing TiC particle in mould
US7712692B2 (en) 2006-06-16 2010-05-11 Hall David R Rotary impact mill
US8147980B2 (en) * 2006-11-01 2012-04-03 Aia Engineering, Ltd. Wear-resistant metal matrix ceramic composite parts and methods of manufacturing thereof
CN101214539A (en) * 2008-01-07 2008-07-09 吉林大学 Method for preparing TiC granule partial reinforced abrasion-proof manganese steel composite material

Also Published As

Publication number Publication date
DK2323770T3 (en) 2014-03-03
BRPI0913717B1 (en) 2019-11-26
CN102176973B (en) 2014-02-26
JP2012502789A (en) 2012-02-02
US8651407B2 (en) 2014-02-18
BE1018129A3 (en) 2010-05-04
BRPI0913717A2 (en) 2015-10-13
CL2011000576A1 (en) 2011-08-26
PL2323770T3 (en) 2014-07-31
MX2011003028A (en) 2011-04-12
WO2010031663A1 (en) 2010-03-25
ES2449440T3 (en) 2014-03-19
KR101621996B1 (en) 2016-05-17
ZA201101792B (en) 2012-08-29
CA2735877A1 (en) 2010-03-25
AU2009294782B2 (en) 2013-11-14
AU2009294782A1 (en) 2010-03-25
KR20110081151A (en) 2011-07-13
CA2735877C (en) 2015-12-22
EP2323770A1 (en) 2011-05-25
US20110226882A1 (en) 2011-09-22
PT2323770E (en) 2014-02-24
JP5503653B2 (en) 2014-05-28
CN102176973A (en) 2011-09-07
EG26800A (en) 2014-09-17

Similar Documents

Publication Publication Date Title
EP2323770B1 (en) Composite impactor for impact crusher
EP2326738B9 (en) Milling cone for a compression crusher
EP2329052B1 (en) Composite tooth for working the ground or rock
EP2334836B9 (en) Hierarchical composite material
EP3563951A1 (en) Composite tooth with tapered insert
EP4157538A1 (en) Composite wear part

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130417

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130910

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 642457

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009020445

Country of ref document: DE

Effective date: 20140123

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CRONIN INTELLECTUAL PROPERTY, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140214

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140227

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131127

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2449440

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140319

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140327

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009020445

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009020445

Country of ref document: DE

Effective date: 20140828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140826

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140826

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090826

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: CHEMIN DE LA VUARPILLIERE 29, 1260 NYON (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230731

Year of fee payment: 15

Ref country code: RO

Payment date: 20230811

Year of fee payment: 15

Ref country code: IT

Payment date: 20230822

Year of fee payment: 15

Ref country code: GB

Payment date: 20230728

Year of fee payment: 15

Ref country code: ES

Payment date: 20230912

Year of fee payment: 15

Ref country code: CZ

Payment date: 20230801

Year of fee payment: 15

Ref country code: CH

Payment date: 20230902

Year of fee payment: 15

Ref country code: AT

Payment date: 20230728

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230822

Year of fee payment: 15

Ref country code: PT

Payment date: 20230731

Year of fee payment: 15

Ref country code: PL

Payment date: 20230731

Year of fee payment: 15

Ref country code: FR

Payment date: 20230822

Year of fee payment: 15

Ref country code: DK

Payment date: 20230725

Year of fee payment: 15

Ref country code: DE

Payment date: 20230731

Year of fee payment: 15

Ref country code: BE

Payment date: 20230728

Year of fee payment: 15