EP2327802B1 - Bestimmung der Badspiegelhöhe in metallurgischen Gefäßen - Google Patents

Bestimmung der Badspiegelhöhe in metallurgischen Gefäßen Download PDF

Info

Publication number
EP2327802B1
EP2327802B1 EP20100014451 EP10014451A EP2327802B1 EP 2327802 B1 EP2327802 B1 EP 2327802B1 EP 20100014451 EP20100014451 EP 20100014451 EP 10014451 A EP10014451 A EP 10014451A EP 2327802 B1 EP2327802 B1 EP 2327802B1
Authority
EP
European Patent Office
Prior art keywords
bath
charge
transmitter
measuring body
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20100014451
Other languages
English (en)
French (fr)
Other versions
EP2327802A1 (de
Inventor
Frank Wagener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Siemag AG filed Critical SMS Siemag AG
Publication of EP2327802A1 publication Critical patent/EP2327802A1/de
Application granted granted Critical
Publication of EP2327802B1 publication Critical patent/EP2327802B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0028Devices for monitoring the level of the melt

Definitions

  • the invention relates to a method and a device for accurate and rapid determination of the constant at the same bath volume by the wear of the refractory lining from batch to batch and within a batch changing level of a bath covered with a slag layer metal bath in a metallurgical vessel, for example in a converter a blow-molder.
  • the refractory vessel lining When using metallurgical vessels for steel production, the refractory vessel lining is exposed to a constant wear by the metal and slag melt through which its inner volume increases accordingly and the bath level drops while a constant bath volume.
  • the knowledge of this lowering of the bath level is important for the operation of the metallurgical vessel, since, for example, a defined distance of the lance position to the melt must be maintained for an optimal process. It is therefore necessary to determine the height of the bath level at regular intervals, so that, for example, the blowing position of the lance and the sampling position of the sublance can each be redefined.
  • various methods are known.
  • Another method of determining the level of the bath is a sub-level probe that registers the temperature difference between the steel bath and the slag layer. The height of the bath surface is then determined via the travel path of the sublance probe.
  • this option is only possible in steelworks equipped with a sublance.
  • a method for determining the current level of the bath level in an electric arc furnace or in a liquid steel converter wherein a measuring probe is lowered down to the bath level and forms an electrical measuring circuit with the metallic vessel shell.
  • the electrical measuring circuit is tuned to conductivity values of the slag layer, the liquid metal and the refractory material.
  • the measuring probe Depending on the distance traveled by the measuring probe per unit time and a change in the electrical conductivity of slag and / or liquid metal occurring when the slag layer and / or the liquid metal is touched, the measuring probe generates a measuring signal, whereby the level of the bath level is displayed.
  • WO 2005/059527 discloses a method for analyzing a melt.
  • a method for measuring the height of the bath level, the oxygen partial pressure and the temperature of a below a slag layer metal bath in a container in particular known in a converter, one consisting of an EMF cell for measuring the oxygen partial pressure and a thermocouple, by a protective cap protected measuring probe is immersed in the metal bath from a starting position located outside the container to a predetermined depth as a fixed point and after the melting of the protective cap, the oxygen partial pressure and the temperature of the metal bath are measured.
  • the oxygen partial pressure and the temperature are measured as a function of the distance traveled by the measuring probe in the metal bath from the selected fixed point and until a change in the measured oxygen partial pressure and Temperature from the fixed point traveled distance is recorded as a measure of the Badstands sleep.
  • the object is achieved with the characterizing features of claim 1, characterized in that the determination of the height of the bath level during a batch with a wireless transmitter-receiver system according to the RFID method (Radio Frequency Identification) is performed by measuring the radio wave Signal strength between at least one battery-powered RF transmitter, which is integrated in a floating on the metal bath measuring body and at least one fixed above the metallurgical vessel RF receiver, wherein the increasing distance between the RF transmitter and the RF receiver reduction takes place Radio wave signal strength is used for the current distance determination.
  • RFID method Radio Frequency Identification
  • the measuring body with integrated battery-operated RF transmitter can either be placed manually from above, for example via the doghouse door, or via a material supply system or via the sublance robot, into the metallurgical vessel and onto the metal bath.
  • This task and the subsequent determination of the current Badspielgel Actually is advantageously carried out at an optimal time at the end of the metallurgical treatment time at which all additives and the scrap used are melted and a bath calming has occurred.
  • the invention consists of the RF transmitter enveloping measuring body made of a heat-resistant ceramic material, including refractory materials count and is designed as a sphere, its density is selected so that the ball floats exactly on the dividing line between the metal bath and the slag layer, the bath mirror.
  • the measuring body and the integrated RF transmitter are designed for a single measurement with a relatively short service life, so that they are destroyed during their residence time on the metal bath. Any existing remains are removed by the slag from the metallurgical vessel with. Higher service life of the measuring body are not economical, since they can only be achieved with higher quality expensive materials, leaving open whether the RF transmitter is then still functional for a second batch and at what cost the measuring body can be removed from the metallurgical vessel again.
  • the RF receiver required for receiving the radio waves emanating from the RF transmitter and their signal strength is installed stationarily above the metallurgical vessel, for example in the exhaust system. Due to the stationary position of the RF receiver, the change in the signal strength emanating from the freely movable measuring body with its RF transmitter, converted to a distance calculation between the measuring body and the RF receiver and thus the height of the bath level can be determined. In conjunction with a vessel profile measuring system then the exact determination of the instantaneous amount of melt is feasible.
  • the drawing figure shows a sectional view of a plant scheme with a arranged in a "Doghouse" 5 serving as a metallurgical vessel converter 1.
  • the converter 1 is delivered with a refractory lining 2 and in the illustrated operating state in its lower part with a Metal bath 3, which is covered with a slag layer 4.
  • Above the converter 1 is an exhaust system 6 with a lower opening 11 for receiving the exhaust gases generated in the converter 1.
  • a filler neck 12 is arranged with a funnel 13, through which the measuring body 9 passes into the exhaust system and can be fed through the lower opening 11 in free fall directly to the metal bath 3.
  • more task options are available.
  • a material addition system is used for the measuring object, consisting of a bottom open container 17 with a plurality of measuring bodies 9, a conveyor belt 15 and a chute 14, with each one or more measuring body 9 in the transport direction 7, 7 ', 7 " can be promoted to the funnel 13.
  • the sublance robot 8 shown in the drawing figure at the top left can also be used to discharge the measuring body 9 into the funnel 13, wherein the sublance robot 8 removes a measuring body from the container 16 which is arranged in reach and drops it into the funnel 13.
  • the introduced by one of the possibilities shown in the converter 1 measuring body 9 is arranged according to its set density below the slag layer 4 in a stable floating position on the bath level 20 of the metal bath 3, as shown in the drawing figure.
  • an RF receiver 10 is installed fixed above the converter 1 in the lower part of the exhaust system 6. During the entire service life of a measuring body 9 with RF transmitter, the signal arriving at the RF receiver 10, depending on the distance between the measuring body 9 and the RF receiver 10 different signal strength, registered and converted in an (not shown) evaluation unit in a current distance value.
  • the invention is not limited to the illustrated embodiment. Depending on the metallurgical process to be carried out and the size of the metallurgical vessel, it may be necessary to use several measuring bodies during a batch, which is why a corresponding supply of measuring bodies should be present. Also, depending on local circumstances, installation of more than one RF receiver could prove useful to eliminate the sources of interference affecting the signal strength of the radio wave signal. But even then, the simple system structure according to the invention makes possible a use for all metallurgical vessels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur exakten und schnellen Bestimmung der bei gleichzeitigem konstanten Badvolumen durch den Verschleiß der feuerfesten Auskleidung von Charge zu Charge und innerhalb einer Charge sich verändernden Badspiegelhöhe eines mit einer Schlackenschicht bedeckten Metallbades in einem metallurgischen Gefäß, beispielsweise in einem Konverter eines Blasstahlwerkes.
  • Bei der Verwendung metallurgischer Gefäße zur Stahlherstellung ist die feuerfeste Gefäßauskleidung einem stetigen Verschleiß durch die Metall- und Schlackenschmelze ausgesetzt, durch den sein inneres Volumen sich entsprechend vergrößert und der Badspiegel bei gleichzeitigem konstanten Badvolumen absinkt. Die Kenntnis dieser Badspiegelabsenkung ist für den Betrieb des metallurgischen Gefäßes wichtig, da beispielsweise für einen optimalen Prozess ein definierter Abstand der Lanzenposition zur Schmelze einzuhalten ist. Es ist deshalb erforderlich, in regelmäßigen Abständen die Höhe des Badspiegels zu bestimmen, damit beispielsweise die Blasposition der Blaslanze und die Probeentnahme-position der Sublanze jeweils neu festgelegt werden können. Zur Bestimmung der Höhe des Badspiegels sind verschiedene Methoden bekannt.
  • Eine einfache Möglichkeit besteht darin, einen Holzstiel an der Blas- oder Sublanze zu befestigen und in das Stahlbad zu fahren. Nach einer kurzen Verweilzeit kann durch den Abbrand des Holzstiels die Höhe des Badspiegels mathematisch bestimmt werden. Die Methode ist sehr personen- und zeitintensiv und auch nicht sehr genau, da der Abbrand des Holzstiels durch die Schmelze und die Schlacke erfolgt.
  • Eine weitere Methode zur Bestimmung der Badspiegelhöhe ist eine Sublanzensonde, die den Temperaturunterschied zwischen dem Stahlbad und der Schlackenschicht registriert. Über den Fahrweg der Sublanzensonde wird dann die Höhe der Badoberfläche bestimmt. Diese Möglichkeit ist aber nur in Stahlwerken möglich, die mit einer Sublanze ausgestattet sind.
  • Weiterhin ist es bekannt, die Badspiegelhöhe eines Konverters über eine Radarmessung zu bestimmen. Hierbei werden über eine Öffnung im Abgassystem des Konverters Radarwellen auf die Badoberfläche gesendet. Über die Wellenlaufzeit kann dann die Höhe der Badoberfläche berechnet werden. Negativ bei diesem Verfahren ist, dass die Messergebnisse von der Schlackenschicht negativ beeinflusst werden, was zu Messungenauigkeiten führen kann. Darüber hinaus ist der Installationsaufwand von Nachteil, da das Messsystem über den vorhandenen Lanzendom zur Messung geschwenkt werden muss. Regelmäßige Wartungsarbeiten führen zu zusätzlichen Kosten und Produktionsausfall.
  • Aus der DE 102 07 395 B4 ist ein Verfahren zum Bestimmen der momentanen Badspiegelhöhe in einem Elektrolichtbogenofen oder in einem Konverter für flüssigen Stahl bekannt, wobei eine Mess-Sonde bis auf den Badspiegel abgesenkt wird und mit dem metallischen Gefäßmantel einen elektrischen Messkreis ausbildet. Der elektrische Messkreis ist auf Leitfähigkeitswerte der Schlackenschicht, des Flüssigmetalls und des Feuerfestmaterials abgestimmt. Abhängig von dem pro Zeiteinheit zurückgelegten Absenkweg der Mess-Sonde und einer bei Berührung der Schlackenschicht und/oder des Flüssigmetalls eintretenden Änderung der elektrischen Leitfähigkeit von Schlacke und/oder Flüssigmetall erzeugt die Mess-Sonde ein Mess-Signal, wodurch die Badspiegelhöhe angezeigt wird.
  • Auch WO 2005/059527 offenbart ein Verfahren zur Analyse eines Schmelzstoffes.
  • In der DE 103 52 628 A1 wird ein Verfahren und eine Einrichtung zum Bestimmen der Schmelzbadhöhe von aufeinanderfolgenden Roheisen-Chargen in einem Elektrolichtbogen-Ofen beim Herstellen von Stahl aus Roheisen beschrieben, wobei der mit einer Ausmauerung versehene Unterofen von Charge zu Charge unterschiedliche Volumina an Roheisen aufnimmt und mit einer Sauerstoff-Aufblaslanze betrieben wird, wobei zur Einstellung des Abstandes der Sauerstoff-Aufblaslanze zum Schmelzbadspiegel der prozessbedingte Abstand zwischen dem Lanzenkopf und der Schmelzbadhöhe dadurch ermittelt wird, dass der Schmelzbadspiegel der jeweiligen Charge durch Kippen des Elektrolichtbogen-Ofens und nach Rückkippen in die Betriebslage durch optisches Messen oder zumindest durch Schätzen des Kippwinkels festgestellt und daraus die Schmelzbadhöhe bestimmt und danach der Abstand eingestellt wird.
  • Schließlich ist aus der DE 38 22 705 C2 ein Verfahren zur Messung der Höhe des Badspiegels, des Sauerstoffpartialdrucks und der Temperatur eines unter einer Schlackenschicht befindlichen Metallbades in einem Behälter, insbesondere in einem Konverter bekannt, wobei eine aus einer EMK-Zelle zur Messung des Sauerstoffpartialdruckes und aus einem Thermoelement bestehenden, durch eine Schutzkappe geschützten Mess-Sonde von einer außerhalb des Behälters gelegene Ausgangsstellung bis zu einer als Fixpunkt vorbestimmten Tiefe in das Metallbad eingetaucht wird und nach dem Aufschmelzen der Schutzkappe der Sauerstoffpartialdruck und die Temperatur des Metallbades gemessen werden. Während der mit einer langsameren Geschwindigkeit erfolgenden Aufwärtsbewegung der Mess-Sonde werden der Sauerstoffpartialdruck und die Temperatur als Funktion der von der Mess-Sonde in dem Metallbad von dem gewählten Fixpunkt aus zu rückgelegten Wegstrecke gemessen und die bis zum Eintreten einer Änderung des gemessenen Sauerstoffpartialdruckes und der Temperatur von dem Fixpunkt aus zurückgelegte Wegstrecke wird als Maß für die Badstandshöhe erfasst.
  • Ausgehend von diesem geschilderten Stand der Technik ist es Aufgabe der Erfindung, ein von anderem Equipment unabhängiges System zur Ermittlung der Höhe des Badspiegels in metallurgischen Gefäßen anzugeben, mit dem bei optimierter Genauigkeit ein Produktionsausfall durch den Mess- und Wartungsaufwand der bekannten Verfahren und Vorrichtungen reduziert wird und das bei allen bekannten metallurgischen Gefäßen einsetzbar ist.
  • Die gestellte Aufgabe wird mit den kennzeichnenden Merkmalen des Anspruchs 1 dadurch gelöst, dass die Bestimmung der Höhe des Badspiegels während einer Charge mit einem kabellosen Sender-Empfänger-System nach dem RFID-Verfahren (Radio Frequency Identification) durchgeführt wird, durch Messung der Radiowellen-Signalstärke zwischen mindestens einem batteriebetriebenen RF-Sender, der in einem auf dem Metallbad schwimmenden Messkörper integriert ist und mindestens einem oberhalb des metallurgischen Gefäßes ortsfest angeordneten RF-Empfänger, wobei die mit zunehmenden Abstand zwischen dem RF-Sender und dem RF-Empfänger stattfindende Verringerung der Radiowellen-Signalstärke zur momentanen Abstandsbestimmung genutzt wird.
  • Eine Vorrichtung zur Durchführung des Verfahrens wird im Anspruch 4 angegeben.
  • Der Messkörper mit integriertem batteriebetriebenen RF-Sender kann entweder manuell, beispielsweise über die Doghousetür, oder über ein Materialzugabesystem oder über den Sublanzenroboter von oben in das metallurgische Gefäß und auf das Metallbad aufgegeben werden. Diese Aufgabe und die daran anschließende Bestimmung der momentanen Badspielgelhöhe wird zweckmäßiger Weise zu einem optimalen Zeitpunkt am Ende der metallurgischen Behandlungszeit durchgeführt, an dem alle Zusatzstoffe und der eingesetzte Schrott erschmolzen sind und eine Badberuhigung eingetreten ist.
  • Erfindungsgemäß besteht der den RF-Sender umhüllende Messkörper aus einem hitzebeständigen keramischen Material, wozu auch feuerfeste Materialien zählen und ist als Kugel ausgebildet, wobei seine Dichte so gewählt ist, dass die Kugel exakt auf der Trennlinie zwischen dem Metallbad und der Schlackenschicht, dem Badspiegel, schwimmt.
  • Wegen der innerhalb des metallurgischen Gefäßes herrschenden extremen Bedingungen sind der Messkörper und der integrierte RF-Sender nur für eine einmalige Messung mit relativ kurzer Standzeit ausgelegt, so dass sie während ihrer Verweildauer auf dem Metallbad zerstört werden. Eventuell vorhandene Überreste werden durch das Abschlacken aus dem metallurgischen Gefäß mit entfernt. Höhere Standzeiten des Messkörpers sind nicht wirtschaftlich, da diese nur mit höherwertigen kostspieligen Materialien erreichbar sind, wobei offenbleibt, ob der RF-Sender dann für eine zweite Charge noch funktionsfähig ist und mit welchem Kostenaufwand der Messkörper aus dem metallurgischen Gefäß wieder entnommen werden kann.
  • Der zur Aufnahme der vom RF-Sender ausgehenden Radiowellen und deren Signalstärke erforderliche RF-Empfänger ist ortsfest oberhalb des metallurgischen Gefäßes installiert, beispielsweise im Abgassystem. Durch die ortsfeste Position des RF-Empfängers kann die Änderung der Signalstärke, die vom freibeweglichen Messkörper mit seinem RF-Sender ausgeht, zu einer Abstandsberechnung zwischen dem Messkörper und dem RF-Empfänger umgerechnet und damit die Höhe des Badspiegels bestimmt werden. In Verbindung mit einem Gefäßprofil-Messsystem ist dann auch die exakte Bestimmung der momentanen Schmelzmenge durchführbar.
  • Weitere Einzelheiten der Erfindung werden nachfolgend an einem in einer Zeichnungsfigur dargestellten Ausführungsbeispiel näher erläutert.
  • Die Zeichnungsfigur zeigt in einer geschnittenen Ansicht ein Anlagenschema mit einem in einem "Doghouse" 5 angeordneten als metallurgisches Gefäß dienenden Konverter 1. Der Konverter 1 ist mit einer feuerfesten Auskleidung 2 zugestellt und im dargestellten Betriebszustand in seinem unteren Teil mit einem Metallbad 3 befüllt, das mit einer Schlackenschicht 4 bedeckt ist. Oberhalb des Konverters 1 befindet sich ein Abgassystem 6 mit einer unteren Öffnung 11 zur Aufnahme der im Konverter 1 erzeugten Abgase. Im unteren Teil des Abgassystems 6 ist ein Einfüllstutzen 12 mit einem Trichter 13 angeordnet, durch den der Messkörper 9 in das Abgassystem gelangt und durch die untere Öffnung 11 im freien Fall direkt auf das Metallbad 3 aufgegeben werden kann. Neben der manuellen Aufgabe in den Trichter 13 sind weitere Aufgabemöglichkeiten vorhanden.
  • In der Zeichnungsfigur oben rechts wird für die Messkörperaufgabe ein Materialzugabesystem verwendet, bestehend aus einem unten offenen Behälter 17 mit mehreren Messkörpern 9, einem Förderband 15 und einer Rutsche 14, mit dem jeweils ein oder mehrere Messkörper 9 in Transportrichtung 7, 7', 7" bis in den Trichter 13 gefördert werden können.
  • Soweit vorhanden kann auch der in der Zeichnungsfigur oben links dargestellte Sublanzenroboter 8 zur Aufgabe der Messkörper 9 in den Trichter 13 verwendet werden, wobei der Sublanzenroboter 8 jeweils einen Messkörper aus dem in Reichweite angeordneten oben offenen Behälter 16 entnimmt und in den Trichter 13 fallen lässt.
  • Der durch eine der dargestellten Möglichkeiten in den Konverter 1 eingebrachte Messkörper 9 ordnet sich entsprechend seiner eingestellten Dichte unterhalb der Schlackenschicht 4 in eine stabile Schwimmlage auf dem Badspiegel 20 des Metallbades 3 an, wie in der Zeichnungsfigur dargestellt ist. Zum Empfang der vom RF-Sender im Messkörper 9 abgestrahlten Radiowellen ist oberhalb des Konverters 1 im unteren Teil des Abgassystems 6 ein RF-Empfänger 10 ortsfest installiert. Während der gesamten Standzeit eines Messkörpers 9 mit RF-Sender wird die beim RF-Empfänger 10 ankommende, je nach Abstand zwischen dem Messkörper 9 und dem RF-Empfänger 10 unterschiedliche Signalstärke, registriert und in einer (nicht dargestellten) Auswerteeinheit in einen momentanen Abstandswert umgerechnet.
  • Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt. Je nach dem durchzuführenden metallurgischen Prozess und der Größe des metallurgischen Gefäßes kann es erforderlich sein, mehrere Messkörper während einer Charge einzusetzen, weshalb ein entsprechender Vorrat an Messkörpern vorhanden sein sollte. Auch könnte sich je nach den örtlichen Gegebenheiten die Installation von mehr als einem RF-Empfänger als zweckmäßig erweisen, um die die Signalstärke des Radiowellen-Signals beeinflussenden Störquellen zu eliminieren. Aber auch dann macht der erfindungsgemäße einfache Systemaufbau eine Verwendung für alle metallurgischen Gefäße möglich.
  • Bezugszeichenliste
  • 1
    Konverter
    2
    Feuerfeste Auskleidung des Konverters
    3
    Metallbad
    4
    Schlackenschicht
    5
    Doghouse
    6
    Abgassystem
    7, 7', 7"
    Transportrichtung
    8
    Sublanzenroboter
    9
    Messkörper mit integrierten RF-Sender
    10
    RF-Empfänger
    11
    untere Öffnung des Abgassystems
    12
    Einfüllstutzen
    13
    Trichter
    14
    Rutsche
    15
    Förderband
    16
    oben offener Behälter
    17
    unten offener Behälter
    20
    Badspiegel

Claims (6)

  1. Verfahren zur exakten und schnellen Bestimmung der bei gleichzeitig konstantem Badvolumen durch den Verschleiß der feuerfesten Auskleidung von Charge zu Charge und innerhalb einer Charge sich verändernden Badspiegelhöhe eines mit einer Schlackenschicht (4) bedeckten Metallbades (3) in einem metallurgischen Gefäß, dadurch gekennzeichnet, dass die Bestimmung der Höhe des Badspiegels (20) während einer Charge mit einem kabellosen Sender-Empfänger-System nach dem RFID-Verfahren (Radio Frequency Identification) durchgeführt wird, durch Messung der Radiowellen-Signalstärke zwischen mindestens einem batteriebetriebenen RF-Sender, der in einem auf dem Metallbad (3) schwimmenden Messkörper (9) integriert ist und mindestens einem oberhalb des metallurgischen Gefäßes angeordneten RF-Empfänger (10), wobei die mit zunehmenden Abstand zwischen dem RF-Sender und dem RF-Empfänger (10) stattfindende Verringerung der Radiowellen-Signalstärke zur momentanen Abstandsbestimmung genutzt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Messkörper (9) entweder manuell oder über ein Materialzugabesystem oder über den Sublanzenroboter (8) von oben in das metallurgische Gefäß und auf das Metallbad (3) aufgegeben wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Aufgabe des Messkörpers (9) und die daran anschließende Bestimmung der momentanen Badspielgelhöhe zu einem optimalen Zeitpunkt am Ende der metallurgischen Behandlungszeit durchgeführt wird, an dem alle Zusatzstoffe und der eingesetzte Schrott erschmolzen sind und eine Badberuhigung eingetreten ist.
  4. Vorrichtung zur exakten und schnellen Bestimmung der bei gleichzeitig konstantem Badvolumen durch den Verschleiß der Feuerfestzustellung von Charge zu Charge und innerhalb einer Charge sich verändernden Badspielgelhöhe eines mit einer Schlackenschicht (4) bedeckten Metallbades (3) in einem metallurgischen Gefäß, beispielsweise in einem Konverter (1), insbesondere zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 3, gekennzeichnet durch ein installiertes kabelloses Sender-Empfänger-System nach dem RFID-Verfahren (Radio Frequency Identification)
    • mit mindestens einem ortsfest oberhalb des metallurgischen Gefäßes, beispielsweise oberhalb des Konverters (1) im Doghousebereich, angeordneten RF-Empfänger (10),
    • einem mit dem RF-Empfänger (10) verbundenen Auswertesystem,
    • und mit je Charge mindestens einem frei beweglichen Messkörper (9) mit einem integrierten RF-Sender.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Messkörper (9) aus einem hitzebeständigen keramischen Material, wozu auch feuerfeste Materialien zählen, gefertigt und als Kugel ausgebildet ist, wobei seine Dichte so gewählt ist, dass die Kugel (9) exakt auf der Trennlinie zwischen dem Metallbad (3) und der Schlackenschicht (4), dem Badspiegel (20), schwimmt.
  6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Messkörper (9) und der integrierte RF-Sender nur für eine einmalige Messung mit kurzer Standzeit ausgelegt sind, so dass sie während ihrer Verweildauer auf dem Metallbad (3) zerstörbar sind, wobei eventuell vorhandene Überreste durch das Abschlacken aus dem metallurgischen Gefäß entfernbar sind.
EP20100014451 2009-11-11 2010-11-10 Bestimmung der Badspiegelhöhe in metallurgischen Gefäßen Active EP2327802B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910052778 DE102009052778A1 (de) 2009-11-11 2009-11-11 Bestimmung der Badspiegelhöhe in metallurgischen Gefäßen

Publications (2)

Publication Number Publication Date
EP2327802A1 EP2327802A1 (de) 2011-06-01
EP2327802B1 true EP2327802B1 (de) 2014-05-21

Family

ID=43640468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100014451 Active EP2327802B1 (de) 2009-11-11 2010-11-10 Bestimmung der Badspiegelhöhe in metallurgischen Gefäßen

Country Status (2)

Country Link
EP (1) EP2327802B1 (de)
DE (1) DE102009052778A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010035412A1 (de) * 2010-08-25 2012-03-01 Sms Siemag Ag Verfahren und Vorrichtung zur spektroskopischen Temperatur- und Analysebestimmung von flüsssigen Metallbädern in metallurgischen Gefäßen, insbesondere Konvertern
DE102012100936A1 (de) * 2012-02-06 2013-08-08 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zur Messung eines Füllstandes einer Flüssigkeit in einem Behälter
EP2853607A1 (de) 2013-09-25 2015-04-01 Siemens VAI Metals Technologies GmbH Ermittlung einer Badspiegelhöhe einer Schmelze oder eines Abstandes einer beweglichen Lanze zur Badspiegelhöhe
DE102016209238A1 (de) * 2016-05-27 2017-11-30 Sms Group Gmbh Vorrichtung und Verfahren zum Erfassen einer Förderrate eines flüssigen Materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822705A1 (de) 1988-07-05 1990-01-11 Thyssen Stahl Ag Verfahren zur messung der hoehe des badspiegels eines metallbades in einem behaelter
CA2038825A1 (en) * 1990-03-30 1991-10-01 Akio Nagamune In-furnace slag level measuring apparatus
DE10207395B4 (de) 2002-02-21 2005-02-10 Sms Demag Ag Verfahren und Einrichtung zum Bestimmen der momentanen Flüssigmetall-Badspiegelhöhe in einem metallurgischen Gefäß
DE10352628A1 (de) 2003-11-11 2005-06-23 Ispat Industries Ltd., Taluka-Pen Verfahren und Einrichtung zum Bestimmen der Schmelzbadhöhe von aufeinanderfolgenden Roheisen-Chargen in einem Elektrolichtbogen-Ofen
CA2539844C (en) * 2003-12-17 2012-01-31 Heraeus Electro-Nite International N.V. Method for analysis of a fused material device and dipping sensor
EP1918703B1 (de) * 2007-02-07 2015-06-24 Tata Steel UK Limited Schallemissionskontrolle der Schlackendicke in einem Stahlherstellungsprozess

Also Published As

Publication number Publication date
DE102009052778A1 (de) 2011-05-12
EP2327802A1 (de) 2011-06-01

Similar Documents

Publication Publication Date Title
EP2327802B1 (de) Bestimmung der Badspiegelhöhe in metallurgischen Gefäßen
AT504079B1 (de) Verfahren zum abgiessen von schmelze aus einem kippbaren metallurgischen gefäss sowie anlage zur durchführung des verfahrens
DE102005023133B4 (de) Anlage zur Messung und zur Kontrolle der Beschickung eines Ofens mit Schmelzgut und Schrott und entsprechendes Verfahren
JP2023145627A (ja) 特に溶融金属用の冶金容器の耐火物ライニングの状態を決定するための方法
CN106670449A (zh) 一种铁水扒渣测控方法
DE1798054A1 (de) Verfahren zur Steuerung metallurgischer Vorgaenge und Vorrichtung zur Durchfuehrung des Verfahrens
CN113005254A (zh) 一种无人化智能炼钢系统及炼钢方法
DE3344944A1 (de) Verfahren zur analyse von stahl waehrend seiner herstellung und weiterverarbeitung
CN112458234A (zh) 一种精准控制钢水温度、成分的精炼方法及系统
KR101597688B1 (ko) 지금 부착방지용 프로브
CN110628974A (zh) 一种基于炉缸安全液面的操作决策方法及系统
US5082044A (en) Method and apparatus for controlling the composition of a molten metal bath
EP2423674B1 (de) Verfahren zur spektroskopischen Temperatur- und Analysebestimmung von flüssigen Metallbädern in metallurgischen Gefäßen, insbesondere Konvertern
EP2527800B1 (de) Verfahren und Vorrichtung zur Bestimmung der Pegelstandshöhe eines Mediums in metallurgischen Gefäßen
KR20110071733A (ko) 출강구 폐쇄기 투입장치
DE10352628A1 (de) Verfahren und Einrichtung zum Bestimmen der Schmelzbadhöhe von aufeinanderfolgenden Roheisen-Chargen in einem Elektrolichtbogen-Ofen
EP2136172A1 (de) Lichtbogenofen
CN213924901U (zh) 一种精准控制钢水温度、成分的精炼系统
DE19535014A1 (de) Verfahren zum Einbringen von körnigen Feststoffen in Metallschmelzen
DE102011113302B3 (de) Verfahren und Vorrichtung zur Untersuchung der Fließeigenschaften und der Viskosität von heterogenen flüssigen Stoffen, insbesondere bei Temperaturen von 1000°C und mehr
JP2986311B2 (ja) 鉄鋼分析用赤熱試料の冷却制御方法
EP2554955A1 (de) Verfahren und Vorrichtung zum Messen des Flüssigmetallpegels und der Dicke einer Schlackenschicht in einem metallurgischen Gefäß
Pesonen et al. In Situ Measurement of Silicon Content in Molten Ferrochrome
DE19836844A1 (de) Verfahren zum Bestimmen der Höhe des Badspiegels eines Elektrolichtbogenofens
KR20160077328A (ko) 전로 조업 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F27D 21/00 20060101ALI20110926BHEP

Ipc: C21C 5/46 20060101AFI20110926BHEP

17Q First examination report despatched

Effective date: 20111007

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 669648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010007009

Country of ref document: DE

Effective date: 20140626

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140521

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010007009

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010007009

Country of ref document: DE

Effective date: 20150224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141110

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010007009

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010007009

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141110

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101110

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140521

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 14

Ref country code: DE

Payment date: 20231121

Year of fee payment: 14

Ref country code: AT

Payment date: 20231121

Year of fee payment: 14