EP2318678A1 - Wärmemanagementmodul des kühlsystems einer verbrennungskraftmaschine - Google Patents

Wärmemanagementmodul des kühlsystems einer verbrennungskraftmaschine

Info

Publication number
EP2318678A1
EP2318678A1 EP09780145A EP09780145A EP2318678A1 EP 2318678 A1 EP2318678 A1 EP 2318678A1 EP 09780145 A EP09780145 A EP 09780145A EP 09780145 A EP09780145 A EP 09780145A EP 2318678 A1 EP2318678 A1 EP 2318678A1
Authority
EP
European Patent Office
Prior art keywords
management module
thermal management
valve
cooling system
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09780145A
Other languages
English (en)
French (fr)
Other versions
EP2318678B1 (de
Inventor
Thomas Traudt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP2318678A1 publication Critical patent/EP2318678A1/de
Application granted granted Critical
Publication of EP2318678B1 publication Critical patent/EP2318678B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86815Multiple inlet with single outlet
    • Y10T137/86823Rotary valve

Definitions

  • the present invention relates to a thermal management module of the cooling system of an internal combustion engine, with at least one arranged in a valve housing first supply port for cooling water of a bypass circuit and at least one adjacent second feed port for cooling water of a radiator circuit, which can be connected depending on the position of a valve housing accommodated in the valve member with a discharge port are, are provided on the valve housing drive means for actuating the valve member. Furthermore, the invention also relates to a cooling system comprising such a thermal management module.
  • the cooling system of an internal combustion engine usually comprises two coolant circuits.
  • the cooling water flows through a previously designated as a cooler heat exchanger before it is fed back into the internal combustion engine. Excess heat is dissipated in the heat exchanger and delivered to a secondary coolant.
  • Both cooling circuits of the internal combustion engine can be switched on simultaneously or shifted in time.
  • the targeted distribution of the cooling water flow to both circuits, the internal combustion engine is adjusted in the range of the optimal coolant temperature. As a result, compliance with the permissible limit temperatures for engine and transmission is ensured in the first place.
  • the thermal management module comprises a valve mechanism, with which a cooler circuit and / or a bypass circuit of a cooling system can be switched. This is done by means of an electric motor, which is controlled by an electronic control, the input side evaluates the signal of adewassertempera- tursensors to operate depending on the prevailing cooling water temperature, the valve mechanism, so that the mix ratio of the cooling water between the two cooling circuits adjusted based on a predetermined cooling water temperature becomes.
  • the valve mechanism includes a valve spool that performs either a linear or rotational indexing movement.
  • the electric motor drive is designed either as a linear drive, for example in the form of a proportional magnet, or as an electric stepper motor for generating the rotary switching movement.
  • a further thermal management module emerges that has a valve member for switching a bypass circuit as well as a cooler circuit of a cooling system.
  • the valve member is designed in this prior art as a rotary valve, which is driven by an electric motor. With the electric motor drive, the valve member can optionally in bring a blocking position for the radiator circuit and the bypass circuit or in an open position between the radiator circuit or the bypass circuit.
  • an electric motor drive in a thermal management module which has a cooling water flowed through valve mechanism, must allow reliable reliable permanent separation of cooling water flowed through and electrical / mechanical component area. Otherwise, for example, undesirable coolant flowing over a seal leakage in the area of the electromotive drive means could cause an electrical short circuit or progressive wear there, which leads to the failure of the drive for the thermal management module.
  • the requirements placed on electromechanical components in vehicle construction with regard to the prevailing ambient conditions in the area of the cooling system can usually only be realized by complex designs which are capable of the specific higher temperatures, the required sealing properties, the desired power requirement and service life fulfill.
  • the invention includes the technical teaching that the drive means for actuating the valve member of a thermal management module are designed as a rotating drive motion generating hydrostatic servo motor which uses a branching from the cooling system feed pressure line for pressurizing.
  • the advantage of the solution according to the invention lies in the fact that compared to electromechanical drives, the high power density and robustness of hydraulic drives is harnessed and on the other hand a permanently pressure-tight torque transmission is ensured on the valve member, because the required drive torque is generated directly on the valve member.
  • the solution according to the invention works free of external leakage and makes use of the hydraulic pressure energy available per se in the cooling system for actuating the valve member.
  • the hydrostatic actuator according to the invention should be designed in the manner of an internal gear motor.
  • an internal gear motor forms a very compact hydrostatic actuator, which is able to provide the drive energy for the valve member, which is preferably designed as a rotary valve to advantageously directly one use rotary drive movement of the internal gear motor as a switching movement.
  • the valve member which is preferably designed as a rotary valve to advantageously directly one use rotary drive movement of the internal gear motor as a switching movement.
  • This variant also makes it possible to exchange existing electromotive drive units with hydrostatic actuators of the type according to the invention in order to increase the robustness of such a thermal management module.
  • a particularly compact hydrostatic servo motor which is designed as an internal gear motor, results in which an internally toothed ring gear of the internal gear motor forms the rotatively movable part of the hydrostatic servo motor and is integrally formed with the rotary valve of the valve member.
  • this functionally integrated component can be manufactured, for example, as an injection molded part made of plastic or light metal.
  • the rotationally movable internally toothed ring gear mesh with a sun gear arranged in a stationary and eccentric manner in order to implement the principle of a gear motor.
  • a curved-shaped filler piece arranged in contrast to be stationary and eccentric should be included in the rotatively movable internally toothed ring gear.
  • the filler seals by its outer arc shape the pressure area relative to the internal teeth of the ring gear.
  • About an inner arc shape of the filler sealing against the adjacent thereto sun gear is realized.
  • the pressurization of the preferably constructed in the above manner internal gear motor is carried out according to a further measure improving the invention in that the front side of the drive region, a first Pressure connection and a second pressure connection arranged adjacent thereto are arranged, which are mutually coupled to the feed pressure line in order to move the valve member pressure controlled along the two mutually opposite switching directions can.
  • an electromagnetic pilot valve in the context of a hydraulic pilot control, which is preferably designed as a monostable 4/3-way valve.
  • the three switching positions allow the two oppositely directed switching movements and an additional blocking position to be implemented.
  • the feed pressure line according to the invention for actuating the hydrostatic servo motor described above preferably starts from the region of the outflow-side connection of a cooling water pump integrated in the cooling system.
  • the cooling water pressure in the entire system is still free of pressure drop and thus largest, so that the design of the hydrostatic servomotor can be based on the prevailing maximum cooling water pressure there.
  • the hydrostatic actuator can be sized as small as possible, which benefits the compactness of the thermal management module.
  • Figure 1 is a schematic representation of a cooling system of a combustion engine with integrated thermal management module
  • FIG. 2 shows a schematic perspective view of the thermal management module according to FIG. 1.
  • the cooling system of an internal combustion engine 1 essentially consists of a cooler circuit 2 and a bypass circuit 3.
  • the cooler circuit 2 performs the heated by the internal combustion engine 1 cooling water by acting as a heat exchanger cooler 4, so that after cooling via a downstream coolant pump 5, the cooling water is again available in the internal combustion engine 1 for its cooling.
  • this cooler circuit 2 is used for cooling the internal combustion engine 1
  • the bypass circuit 3 is used for heating the internal combustion engine 1, in particular during the warm-up phase, to heat the cooling water as quickly as possible near the optimum temperature, bypassing the radiator 4.
  • the required for temperature control of the internal combustion engine 1 selection between radiator circuit 2 and bypass circuit 3 or a mixed operation between the two circuits is performed by a thermal management module. 6
  • the thermal management module 6 comprises a valve housing 7, shown here only in schematic section, on which there is a first supply connection 8 for the cooling water of the bypass circuit 3 (not shown here) and at least one adjacent second supply connection 9 for the cooling water - Which is also not shown here - cooler circuit 2 is arranged.
  • a first supply connection 8 for the cooling water of the bypass circuit 3 (not shown here)
  • at least one adjacent second supply connection 9 for the cooling water - which is also not shown here - cooler circuit 2 is arranged.
  • the two supply ports 8 and 9 are selectively connected to a likewise arranged on the valve housing 7 discharge 11.
  • a hydrostatic servo motor 12 is provided as the drive means, which, generating a rotating drive movement, directly actuates the rotary valve 10.
  • the hydrostatic servo motor 12 is designed in the manner of an internal gear motor and has an internally toothed ring gear 13, which is formed rotatably movable in one piece with the rotary valve 10.
  • the internally toothed ring gear 13 meshes with a counter-eccentrically arranged sun gear 14 to form a gear motor.
  • a contrast is fixed and eccentrically arranged arcuate filler 15 is also placed.
  • the filler 15 forms together with the opposite and not coming to rest sun gear 14, two opposing gear motor internal pressure chambers, which are associated with a first pressure port 16a and a second pressure port 16b arranged adjacent thereto.
  • Both pressure ports 16a and 16b are mutually coupled to a feed pressure line 17, which branches off the feed pressure directly from the cooling system of the internal combustion engine.
  • a monostable 4/3-way valve 18 is provided, which acts here as an electropneumatic pilot valve.
  • the 4/3-way valve 18 is electrically controlled by an electronic heat management control 19, which is part of the engine control here.
  • valve member instead of the embodiment of the valve member as a rotary valve and a turntable or the like can be used to form the valve mechanism of the thermal management module 6.
  • valve member instead of the embodiment of the valve member as a rotary valve and a turntable or the like can be used to form the valve mechanism of the thermal management module 6.
  • a valve member a translationally adjustable valve slide or the like. In this case, however, the rotating drive movement of the hydrostatic servo motor in a translational drive movement required for such a valve member to convert transmission technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)
  • Temperature-Responsive Valves (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Wärmemanagementmodul (6) des Kühlsystems einer Verbrennungskraftmaschine (1) mit mindestens einem an einem Ventilgehäuse (7) angeordneten ersten Zuführanschluss (8) für Kühlwasser eines Bypasskreises (3) sowie mindestens einem benachbarten zweiten Zuführanschluss (9) für Kühlwasser eines Kühlerkreises (2), die je nach Stellung eines im Ventilgehäuse (7) untergebrachten Ventilgliedes mit einem Abführanschluss (11) verbindbar sind, wobei am Ventilgehäuse (7) Antriebsmittel zur Betätigung des Ventilgliedes vorgesehen sind, die als ein eine drehende Antriebsbewegung erzeugender hydrostatischer Stellmotor (12) ausgeführt sind, der eine vom Kühlsystem abzweigende Speisedruckleitung (17) zur Druckbeaufschlagung nutzt.

Description

Bezeichnung der Erfindung
Wärmemanagennentnnodul des Kühlsystems einer Verbrennungskraftmaschine
Beschreibung
Gebiet der Erfindung
Die vorliegende Erfindung betrifft ein Wärmemanagementmodul des Kühlsystems einer Verbrennungskraftmaschine, mit mindestens einem in einem Ventilgehäuse angeordneten ersten Zuführanschluss für Kühlwasser eines Bypass- kreises sowie mindestens einem benachbarten zweiten Zuführanschluss für Kühlwasser eines Kühlerkreises, die je nach Stellung eines im Ventilgehäuse untergebrachten Ventilgliedes mit einem Abführanschluss verbindbar sind, wobei am Ventilgehäuse Antriebsmittel zur Betätigung des Ventilgliedes vorgesehen sind. Ferner betrifft die Erfindung auch ein Kühlsystem, welches ein derartiges Wärmemanagementmodul umfasst.
Das Kühlsystem einer Verbrennungskraftmaschine umfasst in der Regel zwei Kühlmittelkreise. Ein Bypasskreis, oder auch Kurzschlusskreis genannt, führt der Verbrennungskraftmaschine das Kühlwasser ohne Kühlung wieder zu. Im Kühlerkreis durchströmt das Kühlwasser zuvor einen als Kühler bezeichneten Wärmetauscher, bevor es der Verbrennungskraftmaschine wieder zugeführt wird. In dem Wärmetauscher wird überschüssige Wärme abgeführt und an ein sekundäres Kühlmittel abgegeben. Beide Kühlkreise der Verbrennungskraftmaschine können gleichzeitig oder zeitlich verschoben eingeschaltet werden. Durch die gezielte Verteilung des Kühlwasserstroms auf beide Kreisläufe wird die Verbrennungskraftmaschine im Bereich der optimalen Kühlmitteltemperatur eingeregelt. Hierdurch wird in erster Linie die Einhaltung der zulässigen Grenztemperaturen für Motor und Getriebe sichergestellt. Darüber hinaus muss den zueinander konkurrierenden Anforderungen hinsichtlich eines verbrauchsoptimierten Warmlaufs und einer raschen Innenraumklimatisierung Rechnung ge- tragen werden. Bei modernen Kühlsystemen des Standes der Technik wird dies gewöhnlich durch flexibel ansteuerbare Bauteile, wie eine elektrische Kühlmittelpumpe, deren Drehzahl nicht fest an die Drehzahl der Kurbelwelle gekoppelt ist, sowie ein elektrisch ansteuerbarer Kennfeldthermostat, Elektro- lüfter und Heizungsventile umgesetzt. Hierdurch ist die Auslegung des Kühlsystems auf die vorstehend genannten Randbedingungen inklusive eines flexiblen Wärmemanagements möglich. Durch intelligentes Wärmemanagement lassen sich daneben auch Kraftstoffverbrauch und Schadstoffemission reduzieren. Besonders geeignet dafür sind eine extern gekühlte Abgasrückführung sowie die Verkürzung der Warmlaufphase durch Kühlmittelstillstand und einer Abkopplung von thermischen Massen. Durch die Anpassung der Kühlmitteltemperatur an den vorliegenden Lastbereich des Verbrennungsmotors mit Hilfe eines Wärmemanagementmoduls lassen sich diese Ziele erreichen.
Aus der US 4,644,909 geht ein solches Wärmemanagementmodul hervor. Das Wärmemanagementmodul umfasst einen Ventilmechanismus, mit welchem ein Kühlerkreis und/oder ein Bypasskreis eines Kühlsystems schaltbar sind. Dies erfolgt mit Hilfe eines Elektromotors, welcher durch eine elektronische Steuerung ansteuerbar ist, die eingangsseitig das Signal eines Kühlwassertempera- tursensors auswertet, um abhängig von der herrschenden Kühlwassertemperatur den Ventilmechanismus zu betätigen, damit das Mixverhältnis des Kühlwassers zwischen den beiden Kühlkreisen anhand einer vorgegebenen Kühlwassertemperatur eingestellt wird. Der Ventilmechanismus umfasst einen Ventilschieber, der entweder eine lineare oder eine rotatorische Schaltbewegung durchführt. Dementsprechend ist der elektromotorische Antrieb entweder als Linearantrieb ausgeführt, beispielsweise in Form eines Proportionalmagneten, oder als elektrischer Schrittmotor zur Erzeugung der rotativen Schaltbewegung.
Aus der DE 198 49 492 A1 geht ein weiteres Wärmemanagementmodul hervor, dass ein Ventilglied zum Schalten eines Bypasskreises sowie eines Kühlerkreises eines Kühlsystems aufweist. Das Ventilglied ist bei diesem Stand der Technik als ein Drehschieber ausgeführt, welcher elektromotorisch angetrieben ist. Mit dem elektromotorischen Antrieb lässt sich das Ventilglied wahlweise in eine Sperrstellung für den Kühlerkreis sowie den Bypasskreis bringen oder in eine Offenstellung zwischen dem Kühlerkreis oder dem Bypasskreis. Darüber hinaus ist es auch möglich, einen Mischbetrieb durch gleichzeitige Verbindung des Kühlerkreises und des Bypasskreises mit dem Abfüh ran Schluss herzustel- len, um ein Wärmemanagement innerhalb des Kühlsystems durch eine kenn- feldgeregelte Kühlung zu realisieren. Durch Auswahl einer geeigneten Schaltstellung der Ventilmechanik ist für jeden Betriebszustand der Verbrennungskraftmaschine eine optimale Kühlmitteltemperatur möglich, was zur eingangs erwähnten Verringerung des Kraftstoffverbrauchs sowie der Schadstoffemissi- on bei gleichzeitiger Schonung der Verbrennungskraftmaschine führt.
Nachteilhaft bei dem vorstehend diskutierten Stand der Technik wirkt sich allerdings der elektromotorische Antrieb der Ventilmechanik aus. Denn ein elektromotorischer Antrieb bei einem Wärmemanagementmodul, welches eine kühlwasserdurchströmte Ventilmechanik aufweist, muss eine zuverlässig dauerdichte Trennung von kühlwasserdurchströmten und elektrisch/mechanischen Bauteilbereich ermöglichen. Ansonsten könnte beispielsweise unerwünscht über eine Dichtungsleckage überströmendes Kühlmittel in den Bereich der elektromotorischen Antriebsmittel dort einen elektrischen Kurzschluss oder fortschreitenden Verschleiß verursachen, der zum Ausfall des Antriebs für das Wärmemanagementmodul führt. Weiterhin sind die Anforderungen an elektro- mechanische Komponenten im Fahrzeugbau im Hinblick auf die herrschenden Umgebungsbedingungen im Bereich des Kühlsystems meist nur durch aufwendige Konstruktionen zu realisieren, welche in der Lage sind, die spezifischen höheren Temperaturen, je erforderlichen Abdichtungseigenschaften, den gewünschten Leistungsbedarf sowie Lebensdauer zu erfüllen.
So ist es beispielsweise schon versucht worden, den elektromotorischen Antrieb einer Ventilmechanik eines Wärmemanagementmoduls in einem getrenn- ten Gehäuse unterzubringen und über eine Stirnradstufe auf die Ventilmechanik zu übertragen. Durch die getrennten Gehäuse wird zwar ein dichtungsle- ckagebedingtes Eindringen von Kühlwasser in den elektromotorischen Antrieb verhindert, allerdings erfordert diese räumliche Trennung, den technischen Aufwand einer zusätzlichen Getriebestufe zur Kraftübertragung sowie insgesamt einen recht großen Bauraum.
Es ist daher die Aufgabe der vorliegenden Erfindung ein Wämnemanagennent- modul eines Kühlsystems für eine Brennkraftmaschine zu schaffen, welches kompaktbauend und robust konstruiert ist und sich gleichzeitig leckagegefahr- frei über die gesamte Lebensdauer im Kühlsystem betreiben lässt.
Die Aufgabe wird ausgehend von einem Wärmemanagementmodul gemäß dem Oberbegriff von Anspruch 1 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Die nachfolgenden abhängigen Ansprüche geben vorteilhafte Weiterbildungen der Erfindung wieder.
Die Erfindung schließt die technische Lehre ein, dass die Antriebsmittel zur Betätigung des Ventilgliedes eines Wärmemanagementmoduls als ein eine drehende Antriebsbewegung erzeugender hydrostatischer Stellmotor ausgeführt sind, der eine vom Kühlsystem abzweigende Speisedruckleitung zur Druckbeaufschlagung nutzt.
Der Vorteil der erfindungsgemäßen Lösung liegt insbesondere darin, dass gegenüber elektromechanischen Antrieben die hohe Leistungsdichte sowie Robustheit hydraulischer Antriebe nutzbar gemacht wird und zum anderen eine dauerhaft druckdicht ausgeführte Drehmomentübertragung auf das Ventilglied sichergestellt wird, weil das erforderliche Antriebsmoment direkt am Ventilglied entsteht. Die erfindungsgemäße Lösung arbeitet frei von äußerer Leckage und macht sich die per se im Kühlsystem zur Verfügung stehende hydraulische Druckenergie zur Betätigung des Ventilgliedes zu Nutze.
Vorzugsweise sollte der erfindungsgemäße hydrostatische Stellmotor nach Art eines Innenzahnradmotors ausgebildet sein. Denn ein Innenzahnradmotor bildet einen sehr kompakt bauenden hydrostatischen Stellmotor, welcher in der Lage ist, die Antriebsenergie für das Ventilglied bereitzustellen, das vorzugsweise als ein Drehschieber ausgebildet ist, um vorteilhafterweise direkt eine rotatorische Antriebsbewegung des Innenzahnradmotors als Schaltbewegung zu nutzen. Sollte es aufgrund besonderer konstruktiver Randbedingungen erforderlich sein, das von einem hydrostatischen Stellmotor gelieferte Drehmoment zur Verwendung als Schaltbewegung zu erhöhen, so wird vorgeschlagen, zwischen dem hydrostatischen Stellmotor und dem vorzugsweise als Drehschieber ausgebildeten Ventilglied ein Untersetzungsgetriebe zwischenzuschalten, welches beispielsweise als Stirnradstufe ausgebildet sein kann. Diese Variante gestattet es auch, vorhandene elektromotorische Antriebseinheiten gegen hydrostatische Stellmotoren der erfindungsgegenständlichen Art auszu- tauschen, um die Robustheit eines solchen Wärmemanagementmoduls zu erhöhen.
Ein besonders kompaktbauender hydrostatischer Stellmotor, der als Innen- zahnradmotor ausgebildet ist, ergibt sich, in dem ein innenverzahntes Hohlrad des Innenzahnradmotors den rotativ beweglichen Teil des hydrostatischen Stellmotors bildet und einstückig mit dem Drehschieber des Ventilglieds ausgebildet ist. Dabei kann dieses funktionsintegrierte Bauteil beispielsweise als Spritzgussteil aus Kunststoff oder Leichtmetall gefertigt werden.
Im Zusammenhang damit wird vorgeschlagen, dass das rotativ bewegliche innenverzahnte Hohlrad mit einem demgegenüber ortsfest und exzentrisch angeordneten Sonnenrad kämmt, um das Prinzip eines Zahnradmotors umzusetzen. Um die Antriebsbewegung per Druckbeaufschlagung sicherzustellen, sollte sich an das rotativ bewegliche innenverzahnte Hohlrad ein demgegenüber ortsfest und exzentrisch angeordnetes bogenförmiges Füllstück einschließen. Das Füllstück dichtet durch seine äußere Bogenform den Druckbereich gegenüber der Innenverzahnung des Hohlrades. Über eine innere Bogenform des Füllstücks wird die Abdichtung gegenüber dem hieran anliegenden Sonnenrad realisiert.
Die Druckbeaufschlagung des vorzugsweise in vorstehender Weise aufgebauten Innenzahnradmotors erfolgt gemäß einer weiteren die Erfindung verbessernden Maßnahme dadurch, dass stirnseitig des Antriebsbereichs ein erster Druckanschluss sowie ein benachbart hierzu angeordneter zweiter Druckan- schluss angeordnet sind, welche wechselseitig mit der Speisedruckleitung koppelbar sind, um das Ventilglied druckgesteuert entlang der beiden zueinander entgegensetzten Schaltrichtungen bewegen zu können.
Für eine solche wechselseitige Kopplung der beiden Druckanschlüsse mit der Speisedruckleitung wird vorgeschlagen, ein elektromagnetisches Pilotventil im Rahmen einer hydraulischen Vorsteuerung zu verwenden, das vorzugsweise als monostabiles 4/3-Wegeventil ausgeführt wird. Durch die drei Schaltstellun- gen lassen sich die beiden entgegengesetzt zueinander ausgerichteten Schaltbewegungen sowie eine zusätzliche Sperrstellung umsetzen. Um das monostabile 4/3-Wegeventil in eine definierte Notfallstellung bei Ausfall der elektrischen Ansteuerung zu bringen, wird vorgeschlagen, dieses federrückge- stellt auszuführen. Durch Verwendung des elektromagnetischen Pilotventils bleiben bei der erfindungsgemäßen Lösung die Vorzüge elektrisch angesteuerter Systeme im Bezug auf die Einbindung in die Funktionalität elektronischer Regler erhalten, so dass eine Einbindbarkeit des erfindungsgemäßen Wärmemanagementmoduls in den Regelalgorithmus des Motorsteuergeräts einer Verbrennungskraftmaschine gegeben ist.
Die erfindungsgemäße Speisedruckleitung zur Betätigung des vorstehend beschriebenen hydrostatischen Stellmotors geht vorzugsweise vom Bereich des abflussseitigen Anschlusses einer im Kühlsystem integrierten Kühlwasserpumpe aus. Denn hier ist der Kühlwasserdruck im Gesamtsystem noch druckabfall- frei und damit am größten, so dass die Auslegung des hydrostatischen Stellmotors anhand des dort herrschenden maximalen Kühlwasserdrucks erfolgen kann. Hierdurch lässt sich der hydrostatische Stellmotor so kleinbauend wie möglich dimensionieren, was der Kompaktheit des Wärmemanagementmoduls zu Gute kommt.
Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt. Es zeigt: Figur 1 eine schematische Darstellung eines Kühlsystems einer Verbren- nungskraftmaschine mit integriertem Wärmemanagementmodul, und
Figur 2 eine schematisch perspektivische Darstellung des Wärmemanagementmoduls nach Figur 1.
Gemäß Figur 1 besteht das Kühlsystem einer Verbrennungskraftmaschine 1 im Wesentlichen aus einem Kühlerkreis 2 sowie einem Bypasskreis 3. Der Kühlerkreis 2 führt das durch die Verbrennungskraftmaschine 1 aufgeheizte Kühlwasser durch einen als Wärmetauscher fungierenden Kühler 4, so dass nach Abkühlung über eine nachgeschaltete Kühlmittelpumpe 5 das Kühlwasser wieder in der Verbrennungskraftmaschine 1 zu dessen Kühlung zur Verfügung steht. Während dieser Kühlerkreis 2 zur Abkühlung der Verbrennungskraftmaschine 1 genutzt wird, , wird der Bypasskreis 3 zur Aufheizung des Verbrennungskraftmaschine 1 insbesondere während der Aufwärmphase genutzt, um unter Umgehung des Kühlers 4 das Kühlwasser möglichst schnell nahe der optimalen Temperatur aufzuheizen. Die zur Temperierung der Verbrennungs- kraftmaschine 1 erforderliche Auswahl zwischen Kühlerkreis 2 sowie Bypasskreis 3 oder auch einen Mischbetrieb zwischen beiden Kreisen erfolgt durch ein Wärmemanagementmodul 6.
Gemäß Figur 2 umfasst das Wärmemanagementmodul 6 ein - hier nur im schematischen Schnitt dargestelltes - Ventilgehäuse 7, an dem ein erster Zu- führanschluss 8 für das Kühlwasser des - hier nicht dargestellt - Bypasskrei- ses 3 sowie mindestens ein benachbarter zweiter Zuführanschluss 9 für das Kühlwasser - das ebenfalls hier nicht dargestellten - Kühlerkreises 2 angeordnet ist. Je nach Stellung des hier nach Art eines Drehschiebers 10 ausgebilde- ten, innerhalb des Ventilgehäuses 7 angeordneten Ventilglieds sind die beiden Zuführanschlüsse 8 und 9 wahlweise mit einem ebenfalls am Ventilgehäuse 7 angeordneten Abführanschluss 11 verbindbar. Zur Betätigung des Drehschiebers 10 ist als Antriebsmittel ein hydrostatischer Stellmotor 12 vorgesehen, der, eine drehende Antriebsbewegung erzeugend, direkt den Drehschieber 10 betätigt. Der hydrostatische Stellmotor 12 ist nach Art eines Innenzahnradmotors ausgebildet und weist ein innenverzahntes Hohlrad 13 auf, das rotativ beweglich einstückig mit dem Drehschieber 10 ausgebildet ist. Das innenverzahnte Hohlrad 13 kämmt mit einem demgegenüber exzentrisch angeordneten Sonnenrad 14 zur Bildung eines Zahnradmotors. Im Hohlrad 13 ist ebenfalls ein demgegenüber ortsfest und exzentrisch angeordnetes bogenförmiges Füllstück 15 platziert. Das Füllstück 15 bildet gemeinsam mit dem gegenüberliegenden und hieran nicht zur Anlage kommenden Sonnenrad 14 zwei einander gegenüberliegende zahnradmotorinterne Druckkammern, welche einem ersten Druckanschluss 16a sowie einem benachbart hierzu angeordneten zweiten Druckanschluss 16b zugeordnet sind.
Beide Druckanschlüsse 16a und 16b sind wechselseitig mit einer Speisedruckleitung 17 koppelbar, welche den Speisedruck direkt aus dem Kühlsystem der Verbrennungskraftmaschine abzweigt. Zur wechselseitigen Kopplung der beiden Druckanschlüsse 16a und 16b des hydrostatischen Stellmotors 12 mit der Speisedruckleitung 17 ist ein monostabiles 4/3-Wegeventil 18 vorgesehen, das hier als elektropneumatisches Pilotventil fungiert. Das 4/3-Wegeventil 18 wird elektrisch angesteuert von einer elektronischen Wärmemanagementsteuerung 19, welche hier Bestandteil der Motorsteuerung ist.
Die Erfindung ist nicht beschränkt auf das vorstehend beschriebene Ausfüh- rungsbeispiel, sondern umfasst auch Abwandlungen hiervon, welche vom Schutzbereich der nachfolgenden Ansprüche eingeschlossen sind. So kann anstelle der Ausführung des Ventilgliedes als Drehschieber auch eine Drehscheibe oder dergleichen verwendet werden, um die Ventilmechanik des Wärmemanagementmoduls 6 zu bilden. Daneben ist es auch möglich, als Ventil- glied einen translatorisch verstellbaren Ventilschieber oder dergleichen zu wählen. In diesem Falle ist jedoch die drehende Antriebsbewegung des hydrostatischen Stellmotors in eine insoweit erforderliche translatorische Antriebsbewegung für ein solches Ventilglied getriebetechnisch umzuwandeln. Ebenso denkbar ist es, den die Antriebsbewegung erzeugenden hydrostatischen Stellmotor über ein zwischengeschaltetes Getriebe mit dem Ventilglied zu koppeln, um dieses zu betätigen, wozu sich beispielsweise eine Stirnradgetriebestufe, ein Schneckengetriebe oder dergleichen eignen würde, um vorzugsweise ein Untersetzungsgetriebe zur Umwandlung einer schnellen Drehzahl des hydrostatischen Stellmotors in eine niedrigere Drehzahl zur Erzeugung der Schaltbewegung des Ventilgliedes zu schaffen.
Bezugszeichenliste
1 Verbrennungskraftmaschine
2 Kühlerkreis
3 Bypasskreis
4 Kühler
5 Kühlwasserpumpe
6 Wärmemanagementmodul
7 Ventilgehäuse
8 erster Zuführanschluss
9 zweiter Zuführanschluss
10 Drehschieber
11 Abführanschluss
12 hydrostatischer Stellmotor
13 Hohlrad
14 Sonnenrad
15 Füllstück
16 Druckanschluss
17 Speisedruckleitung
18 4/3-Wegeventil
19 Wärmemanagementsteuerung

Claims

Patentansprüche
1. Wärmemanagementmodul (6) des Kühlsystems einer Verbren nung s- kraftmaschine (1 ) mit mindestens einem an einem Ventilgehäuse (7) an- geordneten ersten Zuführanschluss (8) für Kühlwasser eines Bypass- kreises (3) sowie mindestens einem benachbarten zweiten Zuführanschluss (9) für Kühlwasser eines Kühlerkreises (2), die je nach Stellung eines im Ventilgehäuse (7) untergebrachten Ventilgliedes mit einem Ab- führanschluss (11 ) verbindbar sind, wobei am Ventilgehäuse (7) An- triebsmittel zur Betätigung des Ventilgliedes vorgesehen sind, dadurch gekennzeichnet, dass die Antriebsmittel als ein eine drehende Antriebsbewegung erzeugender hydrostatischer Stellmotor (12) ausgeführt sind, der eine vom Kühlsystem abzweigende Speisedruckleitung (17) zur Druckbeaufschlagung nutzt.
2. Wärmemanagementmodul (6) nach Anspruch 1 , dadurch gekennzeichnet, dass der hydrostatische Stellmotor (12) nach Art eines Innen- zahnradmotors ausgebildet ist.
3. Wärmemanagementmodul (6) nach Anspruch 1 , dadurch gekennzeichnet, dass das Ventilglied als ein Drehschieber (10) ausgebildet ist, den die Antriebsmittel direkt oder unter Zwischenschaltung eines Untersetzungsgetriebes nach Maßgabe einer Wärmemanagementsteuerung (19) drehbar betätigen.
4. Wärmemanagementmodul (6) nach Anspruch 3, dadurch gekennzeichnet, dass ein innenverzahntes Hohlrad (13) ein rotativ bewegliches Teil des hydrostatischen Stellmotors (6) darstellt und einstückig mit dem Drehschieber (10) ausgebildet ist.
5. Wärmemanagementmodul (6) nach Anspruch 4, dadurch gekennzeichnet, dass das rotativ bewegliche innenverzahnte Hohlrad (13) mit einem demgegenüber exzentrisch angeordneten Sonnenrad (14) zur Bildung eines Zahnradmotors kämmt.
6. Wärmemanagementmodul (6) nach Anspruch 4, dadurch gekenn- zeichnet, dass das rotativ bewegliche innenverzahnte Hohlrad (13) ein demgegenüber ortsfest und exzentrisch angeordnetes bogenförmiges Füllstück (15) einschließt.
7. Wärmemanagementmodul (6) nach Anspruch 2, dadurch gekenn- zeichnet, dass stirnseitig des hydrostatischen Stellmotors (12) ein erster
Druckanschluss (16a) sowie ein benachbart hierzu angeordneter zweiter Druckanschluss (16b) angeordnet ist, welche wechselseitig mit der Speisedruckleitung (17) koppelbar sind.
8. Wärmemanagementmodul (6) nach Anspruch 7, dadurch gekennzeichnet, dass zur wechselseitigen Kopplung der beiden Druckanschlüsse (16a, 16b) mit der Speisedruckleitung (17) ein als elektromagnetisches Pilotventil fungierendes monostabiles 4/3-Wegeventil (18) vorgesehen ist.
9. Wärmemanagementmodul (6) nach Anspruch 8, dadurch gekennzeichnet, dass das monostabile 4/3-Wegeventil (18) federrückgestellt in eine definierte Notfallstellung gelangt.
10. Wärmemanagementmodul (6) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zumindest das Ventilgehäuse (7), der innenliegende Drehschieber (10) mit angeformtem innenverzahnten Hohlrad (13) sowie das hiermit korrespondierende Sonnenrad (14) aus Kunststoff oder Leichtmetallguss gefertigt sind.
11. Kühlsystem einer Verbrennungskraftmaschine (1 ) mit zumindest einem Kühlerkreis (2) sowie Bypasskreiskreis (3), die per Kühlmittelpumpe (5) betrieben sind und nach Maßgabe eines Wärmemanagementinodul (6) nach einem der vorstehenden Ansprüche steuerbar sind.
12. Kühlsystem nach Anspruch 11 , dadurch gekennzeichnet, dass die Speisedruckleitung (17) zur Betätigung des hydrostatischen Stellmotors (12) vom Bereich des abflussseitigen Anschlusses der im Kühlsystem integrierten Kühlwasserpumpe (5) ausgeht.
EP20090780145 2008-07-31 2009-07-03 Wärmemanagementmodul des kühlsystems einer verbrennungskraftmaschine Not-in-force EP2318678B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810035961 DE102008035961A1 (de) 2008-07-31 2008-07-31 Wärmemanagementmodul des Kühlsystems einer Verbrennungskraftmaschine
PCT/EP2009/058433 WO2010012563A1 (de) 2008-07-31 2009-07-03 Wärmemanagementmodul des kühlsystems einer verbrennungskraftmaschine

Publications (2)

Publication Number Publication Date
EP2318678A1 true EP2318678A1 (de) 2011-05-11
EP2318678B1 EP2318678B1 (de) 2012-05-23

Family

ID=40988497

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090780145 Not-in-force EP2318678B1 (de) 2008-07-31 2009-07-03 Wärmemanagementmodul des kühlsystems einer verbrennungskraftmaschine

Country Status (6)

Country Link
US (1) US8807096B2 (de)
EP (1) EP2318678B1 (de)
CN (1) CN102112715B (de)
BR (1) BRPI0916717A8 (de)
DE (1) DE102008035961A1 (de)
WO (1) WO2010012563A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013221475A1 (de) 2012-11-16 2014-05-22 Schaeffler Technologies Gmbh & Co. Kg Modul für die Steuerung eines Kühlmittelventils, und aktive Gitterabdeckung
DE102014207202A1 (de) * 2014-04-15 2015-10-15 Schaeffler Technologies AG & Co. KG Wärmemanagementmodul
US10280818B2 (en) * 2014-05-12 2019-05-07 Volvo Truck Corporation Fluid control valve
CN106574543B (zh) 2014-08-05 2019-07-02 舍弗勒技术股份两合公司 具有用于旋转阀控制的同心轴的热管理阀模块
CN110700933B (zh) * 2018-07-10 2021-02-26 长城汽车股份有限公司 用于车辆热管理系统的阀体及车辆
JP7215379B2 (ja) * 2019-09-19 2023-01-31 トヨタ自動車株式会社 エンジン冷却装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335867A (en) * 1977-10-06 1982-06-22 Bihlmaier John A Pneumatic-hydraulic actuator system
DE3226508C2 (de) * 1982-07-15 1985-12-12 Bayerische Motoren Werke AG, 8000 München Kühlkreis für Brennkraftmaschinen
DD224085A1 (de) * 1984-03-12 1985-06-26 Dresden Kuehlanlagenbau Kreiskolbenvierwegeventil
JPS60237116A (ja) 1984-05-10 1985-11-26 Aisin Seiki Co Ltd エンジンの冷却制御方法及び装置
DE3435833A1 (de) 1984-09-28 1986-04-10 Bayerische Motoren Werke AG, 8000 München Steuervorrichtung fuer den fluessigkeits-kuehlkreis von brennkraftmaschinen
US4598736A (en) * 1984-12-03 1986-07-08 Chorkey William J Solenoid operated valve with balancing means
US4744335A (en) * 1987-08-03 1988-05-17 Chrysler Motors Corporation Servo type cooling system control
US4902945A (en) * 1988-02-16 1990-02-20 Meades Jr Flavious J Electrical control for hydraulic valves
DE4004936A1 (de) 1989-02-17 1990-08-23 Aisin Seiki Brennkraftmaschine mit einem wassergekuehlten zwischenkuehler
DE4033261C2 (de) * 1990-10-19 1995-06-08 Freudenberg Carl Fa Temperaturgesteuerter Kühlkreis einer Verbrennungskraftmaschine
US5275231A (en) * 1992-07-28 1994-01-04 Yoshikazu Kuze Cooling system for an automotive engine
DE4324749A1 (de) 1993-07-23 1995-01-26 Freudenberg Carl Fa Regelventil
DE19717295C2 (de) * 1997-04-24 1999-09-23 Danfoss As Fluid-Maschine
DE19849492B4 (de) 1998-10-27 2005-12-22 Daimlerchrysler Ag Steuervorrichtung für einen Kühlkreislauf einer Brennkraftmaschine
DE10155386A1 (de) 2001-11-10 2003-05-22 Bosch Gmbh Robert Ventil mit Notfunktion
US6681805B2 (en) * 2001-11-28 2004-01-27 Ranco Incorporated Of Delaware Automotive coolant control valve
US6539899B1 (en) * 2002-02-11 2003-04-01 Visteon Global Technologies, Inc. Rotary valve for single-point coolant diversion in engine cooling system
US6920845B2 (en) * 2003-08-14 2005-07-26 Visteon Global Technologies, Inc. Engine cooling disc valve
DE102006053310A1 (de) * 2006-11-13 2008-05-15 Robert Bosch Gmbh Ventil zur Steuerung von Volumenströmen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010012563A1 *

Also Published As

Publication number Publication date
US8807096B2 (en) 2014-08-19
WO2010012563A1 (de) 2010-02-04
CN102112715B (zh) 2013-05-29
CN102112715A (zh) 2011-06-29
DE102008035961A1 (de) 2010-02-04
BRPI0916717A8 (pt) 2016-05-24
BRPI0916717A2 (pt) 2015-11-10
US20110162595A1 (en) 2011-07-07
EP2318678B1 (de) 2012-05-23

Similar Documents

Publication Publication Date Title
EP1482222B1 (de) Mehrwegventil für ein Fahrzeug-Kühl/Heiz-System
EP3198124B1 (de) Brennkraftmaschine
EP2318678B1 (de) Wärmemanagementmodul des kühlsystems einer verbrennungskraftmaschine
DE102011119368A1 (de) Verbundverschlusssystem mit unabhängiger und nicht-sequenzieller betriebsweise
DE102006023852A1 (de) Ventilanordnung für eine Abgasrückführeinrichtung
DE102006050826A1 (de) Drehschieber mit mehreren Querschnittsverstellgliedern
DE102009014050A1 (de) Wärmemanagementmodul mit axial hydraulisch betriebenem Ventilglied
WO2014187452A1 (de) Drehschieberkugel für ein thermomanagementmodul
EP0903482B1 (de) Vorrichtung zur Regelung des Kühlwasserkreislaufes für einen Verbrennungsmotor
DE102011120798A1 (de) Thermostatventil in Drehschieberbauform
EP2886822A1 (de) Kühlwassersteuerung
DE102014207280B4 (de) Ventil für ein Kühlsystem eines Kraftfahrzeugs mit verringertem Energieverbrauch
DE10155387A1 (de) Proportionalventil
EP3325859B1 (de) Kühlmittelverteilungsmodul für einen kühlmittelkreislauf
DE102006037640B4 (de) Wärmetauscher für ein Kraftfahrzeug
DE102009014038B4 (de) Wärmemanagement-Modul mit prismatischem Regelschieber
EP3320197A1 (de) Kühlmittelkreislauf für flüssigkeitsgekühlte getriebe
DE10160380A1 (de) Vorrichtung zur Wärmeübertragung
DE10304837A1 (de) Ventil mit Vollabsperrung
WO2014086456A1 (de) Vorrichtung zur steuerung des betriebs eines mittels eines hydromotors antreibbaren lüfters einer kühleinrichtung
EP1519090A1 (de) Dreiwegeventil
DE102010032777A1 (de) Einrichtung zur Energiegewinnung aus thermischer Energie
DE102011078907A1 (de) Vervollkommnetes Ventil und Anwendung
DE102009014048A1 (de) Wärmemanagementmodul mit schraubenförmig bewegtem Regelschieber
EP1008471B1 (de) Kühl- und Heizungskreislauf sowie Wärmetauscher für Kraftfahrzeuge mit zusätzlicher Kühlmittel-Heizeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 559211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009003627

Country of ref document: DE

Effective date: 20120802

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120523

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120924

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

BERE Be: lapsed

Owner name: SCHAEFFLER TECHNOLOGIES A.G. & CO. KG

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120903

26N No opposition filed

Effective date: 20130226

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009003627

Country of ref document: DE

Effective date: 20130226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120823

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009003627

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140212

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009003627

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130703

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009003627

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20150127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 559211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150730

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150723

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190930

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009003627

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522