JP7215379B2 - エンジン冷却装置 - Google Patents

エンジン冷却装置 Download PDF

Info

Publication number
JP7215379B2
JP7215379B2 JP2019170211A JP2019170211A JP7215379B2 JP 7215379 B2 JP7215379 B2 JP 7215379B2 JP 2019170211 A JP2019170211 A JP 2019170211A JP 2019170211 A JP2019170211 A JP 2019170211A JP 7215379 B2 JP7215379 B2 JP 7215379B2
Authority
JP
Japan
Prior art keywords
engine
operating position
valve body
speed
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019170211A
Other languages
English (en)
Other versions
JP2021046829A (ja
Inventor
登 高木
和樹 加藤
正晃 山口
俊夫 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019170211A priority Critical patent/JP7215379B2/ja
Priority to US16/996,973 priority patent/US11028763B2/en
Priority to CN202010877744.7A priority patent/CN112523856B/zh
Publication of JP2021046829A publication Critical patent/JP2021046829A/ja
Application granted granted Critical
Publication of JP7215379B2 publication Critical patent/JP7215379B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、機械式のウォータポンプと流量制御弁とを備えるエンジン冷却装置に関する。
エンジンの内部に形成されたウォータジャケットを通って冷却水を循環させることでエンジンを冷却する水冷式のエンジン冷却装置として従来、特許文献1に記載の装置が知られている。特許文献1に記載のエンジン冷却装置は、エンジンの回転を受けて作動してウォータジャケットに冷却水を送出する機械式のウォータポンプと、閉弁に応じてウォータジャケットからの冷却水の流出を制限する電子制御弁と、を備えている。そして、エンジンが未暖機のときには、電子制御弁を閉弁してウォータジャケット内に冷却水を滞留させることでエンジンの暖機を促進している。
なお、機械式のウォータポンプの吐出圧はエンジン回転数の上昇と共に高くなる。そのため、電子制御弁が閉弁した状態でエンジン回転数が高くなると、ウォータジャケットの水圧が高くなり過ぎる場合がある。これに対して、上記従来のエンジン冷却装置では、暖機促進のために電子制御弁を閉弁しているときにエンジン回転数が一定の回転数以上となった場合には、暖機の完了を待たずに電子制御弁を強制開弁することで、ウォータジャケットの水圧上昇を抑えている。
特開2013-234605号公報
しかしながら、車載電源の給電圧が低下すると、電子制御弁の開弁に要する時間が長くなり、その間は水圧が高い状態が続くため、水圧上昇を十分に抑制できない場合がある。
上記課題を解決するエンジン冷却装置は、エンジンの内部に形成されたウォータジャケットを通る冷却水の循環回路と、エンジンの回転を受けて作動して循環回路に冷却水を循環させる機械式のウォータポンプと、循環回路を流れる冷却水の流量を調整するための弁であって、車載電源からの給電により作動する電動式のアクチュエータにより駆動される弁体を有して同弁体の動作位置により冷却水の流路面積が変化する流量制御弁と、エンジンの運転状況に応じて既定の制御範囲内の動作位置を目標動作位置として設定するとともに、その設定した目標動作位置に弁体の動作位置を変更すべくアクチュエータの駆動制御を実施する制御部と、を備えている。上記エンジン冷却装置における制御部は、耐圧限界回転数が現在のエンジン回転数以上となる動作位置を目標動作位置として設定する保護制御を実施している。さらに同制御部は、最大耐圧動作位置を含む動作位置の範囲であって既定の制御範囲よりも小さな範囲として予め設定された退避動作範囲に制御範囲を縮小する退避制御を車載電源の給電圧が低下した状態にある場合に実施する。なお、ここでの耐圧限界回転数は、循環回路のいずれの部位においても水圧が該当部位における許容可能な同水圧の上限値未満となるエンジン回転数の最大値を指しており、弁体の動作位置に応じて変化するものである。また、最大耐圧動作位置は、上記制御範囲内の動作位置の中で耐圧限界回転数が最大の動作位置を指している。
上記のように構成されたエンジン冷却装置では、エンジンの回転を受けて作動する機械式のウォータポンプにより循環回路に冷却水を循環させているため、エンジン回転数が上昇すると循環回路の水圧が上昇する。そしてその結果、循環回路のいずれかの部位で水圧がその部位の耐圧限界を、すなわち許容可能な水圧の上限値を超える状態が続くと、循環回路の構成部材が水圧に耐えきれずに、冷却水の漏れ等が生じてしてしまう。
一方、流量制御弁の弁体の動作位置を変更して循環回路の冷却水の流れを変えると、循環回路の各部位の水圧が変化する。よって、エンジン回転数が上昇した際にも、循環回路のいずれの部位においても水圧が耐圧限界を超えないように流量制御弁の動作位置を変更すれば、水圧に対する循環回路の構成部材の保護が可能となる。なお、弁体の動作位置により、循環回路のいずれの部位においても水圧が許容可能な同水圧の上限値未満となるエンジン回転数の最大値、すなわち耐圧限界回転数は異なる値となる。よって、水圧に対する循環回路の構成部材の保護は、耐圧限界回転数が現在のエンジン回転数以上となる動作位置に弁体を駆動することで達成できる。そのため、上記エンジン冷却装置における制御部は、耐圧限界回転数が現在のエンジン回転数以上となる動作位置を目標動作位置として設定する保護制御をエンジン回転数が上昇した際に実施することで、水圧に対する循環回路の構成部材の保護を図っている。
ところで、上記エンジン冷却装置では、車載電源からの給電により作動する電動式のアクチュエータにより弁体の動作位置を変更している。そのため、車載電源の給電圧が低下すると、アクチュエータによる弁体の動作位置の変更速度が低下する。したがって、給電圧が低下している場合には、保護制御での弁体の動作位置の変更に要する時間が長くなり、循環回路の水圧上昇を十分に抑制できない状態となる虞がある。
これに対して上記エンジン冷却装置では、車載電源の給電圧が低下した状態にある場合には、最大耐圧動作位置を含む動作位置の範囲として予め設定された退避動作範囲に制御範囲を縮小する退避制御が実施される。そしてこれにより、弁体の動作位置が退避動作範囲内の動作位置に、すなわち最大耐圧動作位置から大きく離れない範囲内に変更されることになる。そのため、その後にエンジン回転数が上昇して保護制御が実施された場合の弁体の動作位置の変更量がある程度を超えて大きくならなくなり、車載電源の給電圧が低下して弁体の動作位置の変更速度が低下した状態でも、保護制御での弁体の動作位置の変更に要する時間が長くなり難くなる。したがって、上記エンジン冷却装置によれば、車載電源の給電圧が低下しているときにも、エンジン回転数が上昇した際の循環回路の水圧上昇の抑制に要する時間が長くなり難くなる。
なお、上記のような保護制御においても、耐圧限界回転数が現在のエンジン回転数以上となる適切な動作位置が目標動作位置として設定されなければ、水圧上昇の抑制が不十分となってしまう。これに対しては、上記エンジン冷却装置に、弁体の動作位置毎の耐圧限界回転数の情報が記憶された記憶部を設け、さらにその制御部を、記憶部に記憶された情報に基づき耐圧限界回転数が現在のエンジン回転数よりも高くなる弁体の動作位置を求めるとともにその求めた動作位置を目標動作位置として設定することで保護制御を実施するものとするとよい。こうした場合には、弁体の動作位置毎の耐圧限界回転数の情報が記憶部に予め記憶されているため、その情報に基づくことで、耐圧限界回転数が現在のエンジン回転数以上となる動作位置を、目標回転位置として的確に設定できる。
上記のような保護制御を実施しても循環回路の水圧上昇を十分に抑制できない場合、エンジントルクを低下してエンジン回転数を下げることで循環回路の構成部材の保護を達成することが考えられる。このようなエンジントルクの低下の追加実施の判断は、上記エンジン冷却装置における制御部を、弁体の現在の動作位置における耐圧限界回転数よりも現在のエンジン回転数が高い状態が既定時間以上継続している場合にエンジントルクの低下の必要があると判定することでエンジントルクの低下の要否を判定することで行える。
エンジン始動の直後には、エンジン始動のための電力消費により車載電源の給電圧が一時的に低下することがある。こうしたエンジン始動直後の車載電源の給電圧低下は短時間で解消されるため、このときの給電圧の低下に対する退避制御の実施は不要となることが多い。これに対しては、上記エンジン冷却装置における制御部を、車載電源の給電圧が電圧低下判定値以下であることをもって給電圧が低下した状態にあると判定し、かつエンジン始動後の経過時間が既定時間未満の場合には同経過時間が既定時間以上の場合よりも高い電圧を電圧低下判定値の値として設定するとよい。
冷却水の温度が低いときには冷却水の粘度が高くなり、動作位置の変更に際して弁体に加わる冷却水の流動抵抗が大きくなる。そのため、冷却水の温度が低いときにも、アクチュエータによる弁体の動作位置の変更速度が低くなる。そのため、上記エンジン冷却装置における制御部は、冷却水の温度が既定の低水温判定値以下の場合にも退避制御を実施することが望ましい。
なお、車載電源の給電圧が低下している状態になくても、短い時間のうちに保護制御を実施する可能性がある場合には、退避制御を実施して、保護制御の弁体の動作位置の変更を短時間で完了できる状態としておくことが望ましい。そうした場合の一つは、その後のエンジン回転数の僅かな上昇により保護制御の実施が必要となる程度にエンジン回転数が高まっている場合である。よって、上記エンジン冷却装置における制御部は、エンジン回転数が既定の退避開始回転数以上の場合にも退避制御を実施するようにするとよい。さらに、車両に搭載されたエンジンにこうしたエンジン冷却装置を適用する場合には、上記制御部を、エンジンと車輪との間の動力伝達が切断されている場合には、同動力伝達が切断されていない場合よりも低い回転数を退避開始回転数として設定するように構成するとよい。エンジン、車輪間の動力伝達が切断されている場合にはエンジンの回転負荷が軽くなるため、上記動力伝達が切断されていない場合よりもエンジン回転数の上昇速度が高くなり易い。そのため、上記動力伝達が切断されている場合には、切断されていない場合よりも、低いエンジン回転速度より、退避制御を実施することが望ましい。
また、車両に搭載されたエンジンでは、車輪の回転に応じてエンジンが連れ回される車両の惰性走行中には、ダウンシフト等によりエンジン回転数が急上昇することがある。よって、上記エンジン冷却装置を車両に搭載されたエンジンに適用する場合には、その制御部は、車両が惰性走行中である場合にも退避制御を実施することが望ましい。
エンジン冷却装置の一実施形態の構成を模式的に示す図。 同冷却装置に設けられた流量制御弁の斜視図。 同流量制御弁の分解斜視図。 同流量制御弁の構成部材である弁体の斜視図。 同流量制御弁の構成部材であるハウジングの斜視図。 (a)は同流量制御弁における弁体の相対角度と各出力ポートの開口率との関係を示すグラフであり、(b)は同弁体の相対角度と耐圧限界回転数との関係を示すグラフである。 上記エンジン冷却装置の一実施形態に設けられた制御ユニットが実行する流量制御弁制御ルーチンの処理手順の一部を示すフローチャート。 同流量制御弁制御ルーチンの処理手順の残りの部分を示すフローチャート。
以下、エンジン冷却装置の一実施形態を、図1~図8に従って説明する。本実施形態のエンジン冷却装置は、自動変速機を有する車両に搭載されたエンジンに適用されている。
図1に示すように、本実施形態のエンジン冷却装置は、エンジン10のシリンダブロック11内のウォータジャケット111及びシリンダヘッド12内のウォータジャケット121を流れる冷却水が循環する循環回路21を備えている。循環回路21には、シリンダブロック11内のウォータジャケット111に向けて冷却水を吐出する機械式のウォータポンプ22が設けられている。また、循環回路21には、ラジエータ23、ATFウォーマ24、及び車両の空調装置のヒータコア25、の3つの熱交換器が設けられている。ラジエータ23は、外気との熱交換により冷却水を冷却する。ATFウォーマ24は、冷却水との熱交換により、エンジン10に連結された自動変速機241の作動油であるATF(Automatic Transmission Fluid)の加温や冷却を行う。ヒータコア25は、冷却水との熱交換により、空調装置により車室に送風される空気を温める。
なお、ウォータポンプ22は、巻き掛け伝導機構102を介してエンジン10のクランク軸101に連結されている。これにより、ウォータポンプ22は、エンジン10のクランク軸101の回転を受けて作動して冷却水をウォータジャケット111に向けて冷却水を送出する。
循環回路21には、シリンダヘッド12内のウォータジャケット121から流出した冷却水が流入する流量制御弁26が設けられている。流量制御弁26は、流量制御弁26内に流入した冷却水を流出させる出力ポートとして、ラジエータポートP1、デバイスポートP2、及びヒータポートP3の3つのポートを有している。ラジエータポートP1は、ラジエータ23を経由して冷却水を流動させる第1冷却水通路271に接続されている。デバイスポートP2は、ATFウォーマ24を経由して冷却水を流動させる第2冷却水通路272に接続されている。ヒータポートP3は、ヒータコア25を経由して冷却水を流動させる第3冷却水通路273に接続されている。なお、循環回路21には、シリンダヘッド12内のウォータジャケット121から流出して流量制御弁26に流入する冷却水の温度を検出する水温センサ122が設けられている。
さらに本実施形態のエンジン冷却装置は、同エンジン冷却装置の制御部としての制御ユニット50を備えている。制御ユニット50は、エンジン冷却装置の制御のための演算処理を行う演算処理回路51と、制御用のプログラムやデータが記憶されたメモリ52と、を備えている。また、制御ユニット50には、車載電源53から供給された電圧をパルス幅変調により調圧して流量制御弁26に内蔵されたモータ37に給電する調圧回路54が設けられている。なお、制御ユニット50には、エンジン10の運転状況や車両の走行状況に関する各種の情報が入力されている。制御ユニット50に入力される情報としては、水温センサ122により検出された冷却水の温度、エンジン回転数NE、自動変速機241のシフトレンジの設定、アクセルペダルの操作量、車載電源53の給電圧、空調装置による車室暖房の実施状況の情報が含まれる。なお、制御ユニット50は、車内通信回線を通じてエンジン制御用の電子制御装置であるエンジン制御ユニット55に接続されている。
続いて、流量制御弁26の構成を図2~図6に従って説明する。
図2に示すように、流量制御弁26は、流量制御弁26の骨格を形成するハウジング31を備えている。ハウジング31には、第1コネクタ部材32、第2コネクタ部材33及び第3コネクタ部材34が取り付けられている。第1コネクタ部材32にはラジエータポートP1が設けられている。第2コネクタ部材33にはデバイスポートP2が設けられている。第3コネクタ部材34にはヒータポートP3が設けられている。そして、各コネクタ部材32~34がハウジング31に取り付けられた状態では、各出力ポートP1~P3が互いに異なる位置に配置されている。
図3に示すように、流量制御弁26は、ハウジング31内に収容される弁体35を備えている。弁体35には、冷却水通路が形成されている。また、弁体35には、ハウジング31の軸線方向Zに延びるシャフト36が連結されている。そして、弁体35は、図3に矢印で示すようにシャフト36を中心に回転する。弁体35の回転によってハウジング31に対する弁体35の相対角度ANGが変化すると、弁体35に形成されている冷却水通路と各出力ポートP1~P3との重なり具合が変わり、各出力ポートP1~P3の冷却水の流路面積が変化する。すなわち、ハウジング31に対する弁体35の相対回転位相を変化させることで、循環回路21内での冷却水の流れを制御することができる。
流量制御弁26のハウジング31内には、上述のモータ37が収容されている。またハウジング31内には、伝達機構38が設けられている。伝達機構38は、互いに噛み合う複数のギア39を有しており、それらのギア39を介してモータ37の出力を弁体35のシャフト36に伝達する。
ハウジング31には、モータ37及び伝達機構38を収容する部分を覆うようにカバー40が取り付けられている。カバー40内には、モータ37の回転角を検出する回転角センサ123が設置されている。なお、上述の制御ユニット50には、この回転角センサ123により検出されたモータ37の回転角の情報も入力されている。
図4に示すように、弁体35は、2つの樽型の物体をハウジング31の軸線方向Zに重ねたような形状をなしている。弁体35の側壁には、軸線方向Zに並んだ2つの孔351,352が形成されている。これら各孔351,352は、弁体35に設けられた冷却水通路の一部となっている。2つの孔351,352のうち、図中上側に位置する第1孔351は、弁体35がハウジング31に対してある相対角度の範囲にあるときにラジエータポートP1と連通する。第1孔351がラジエータポートP1と連通している場合、流量制御弁26内に流入した冷却水がラジエータポートP1から流出する。また、2つの孔351,352のうち、第1孔351とは別の第2孔352は、弁体35がハウジング31に対して別のある相対角度の範囲にあるときにデバイスポートP2及びヒータポートP3のうちの少なくとも一方と連通する。第2孔352がデバイスポートP2と連通している場合、流量制御弁26内に流入した冷却水がデバイスポートP2から流出する。また、第2孔352がヒータポートP3と連通している場合、流量制御弁26内に流入した冷却水がヒータポートP3から流出する。
弁体35の図中上壁を弁体35の上壁353とした場合、上壁353にシャフト36が接続されている。また、上壁353には、一部を係合部354として残すようにシャフト36の根本を取り囲むように延びる円弧状の溝355が設けられている。
図5には、弁体35の挿入方向から見た場合のハウジング31の斜視構造が示されている。流量制御弁26を組み立てる際には、収容開口311を介して弁体35がハウジング31内に挿入される。ハウジング31において弁体35の上壁353に対向する部分には、溝355に収容されるストッパ312が設けられている。そのため、ハウジング31内に弁体35が収容されている場合、弁体35の係合部354がストッパ312に当接することで、ハウジング31に対する弁体35の相対回転が規制される。すなわち、係合部354がストッパ312に当接しない範囲が、弁体35のハウジング31に対する相対回転が許容される範囲となる。
こうした流量制御弁26のハウジング31内には、冷却水が収容開口311を介して流入するようになっている。すなわち、収容開口311が、流量制御弁26の入力ポートとして機能する。そして、ハウジング31内に流入した冷却水は、弁体35に設けられた冷却水通路を流れ、各出力ポートP1~P3に導かれる。
図6(a)は、ハウジング31に対する弁体35の相対角度ANGと、各出力ポートP1~P3の開口率との関係を示すグラフである。なお、本実施形態では、この相対角度ANGを、流量制御弁26における弁体35の動作位置を示す状態量として用いている。開口率は、該当する出力ポートが全開となった状態にあるときを100%とした同出力ポートの流路面積の比率を示している。
流量制御弁26では、すべての出力ポートP1~P3が閉じた状態になるときの相対角度ANGを「0°」として、ハウジング31のストッパ312と弁体35の係合部354とが当接するまで、プラスの方向にもマイナスの方向にも、弁体35をハウジング31に対して相対回転させることができる。弁体35の孔351,352の大きさや位置は、相対角度ANGの変化に伴い、図6に示すように各出力ポートP1~P3の開度が変化するように設定されている。本実施形態では、弁体35をハウジング31に対してプラスの方向に相対回転させると、相対角度ANGが大きくなる一方で、弁体35をハウジング31に対してマイナスの方向に相対回転させると、相対角度ANGが小さくなる。
流量制御弁26では、相対角度ANGが「0°」となる位置から弁体35をプラスの方向に相対回転させると、まず、ヒータポートP3が開き始め、相対角度ANGが大きくなるのに伴って次第にヒータポートP3の開度が大きくなる。そして、ヒータポートP3が全開になった後、相対角度ANGがさらに大きくなると、次にデバイスポートP2が開くようになる。相対角度ANGが大きくなるのに伴い、デバイスポートP2の開度は大きくなる。そして、デバイスポートP2が全開になった後、ラジエータポートP1が開き始める。ラジエータポートP1の開度も相対角度ANGが大きくなるのに伴って大きくなる。係合部354とストッパ312とが当接するときの相対角度を「+β°」とした場合、相対角度ANGが「+β°」となる位置に弁体35が至る手前でラジエータポートP1が全開になる。そして、相対角度ANGが「+β°」となる位置に弁体35が達するまでは、相対角度ANGが大きくなっても各出力ポートP1~P3が全開である状態が維持される。
一方、流量制御弁26では、相対角度ANGが「0°」となる位置から弁体35をマイナスの方向に相対回転させた場合、ヒータポートP3は開弁しない。この場合には、まず、デバイスポートP2が開き始め、相対角度ANGが小さくなるのに伴って次第にデバイスポートP2の開度が大きくなる。そして、デバイスポートP2が全開になった後、相対角度ANGがさらに小さくなると、ラジエータポートP1が開くようになる。相対角度ANGが小さくなるのに伴ってラジエータポートP1の開度が大きくなる。係合部354とストッパ312とが当接するときの相対角度を「-α°」とした場合、相対角度ANGが「-α°」となる位置に弁体35が至る手前でラジエータポートP1が全開になる。そして、相対角度ANGが「-α°」となる位置に弁体35が達するまでは、相対角度ANGが小さくなってもラジエータポートP1及びデバイスポートP2が全開の状態が維持される。
なお、以上のように構成されたエンジン冷却装置では、エンジン10の回転を受けて作動する機械式のウォータポンプ22により循環回路21に冷却水が循環されている。こうしたエンジン冷却装置では、エンジン回転数NEの上昇と共にウォータポンプ22の冷却水の吐出圧が高くなる。一方、上記エンジン冷却装置では、循環回路21の冷却水の流れが流量制御弁26により変更される。こうしたエンジン冷却装置では、エンジン回転数NEと流量制御弁26の弁体35の相対角度ANGとにより、循環回路21の各部の水圧が定まるようになる。
なお、循環回路21の構成部材にはそれぞれ許容可能な水圧の上限値が存在しており、水圧がその上限値を超えた状態が続くと冷却水の漏れが発生する虞がある。以下の説明では、循環回路21の構成部材のそれぞれの許容可能な水圧の上限値を該当構成部材の耐圧限界と記載する。また、循環回路21のいずれの部位においても水圧が該当部位における許容可能な同水圧の上限値未満となるエンジン回転数NEの最大値を耐圧限界回転数と記載する。
本実施形態では、エンジン冷却装置の設計時に、実験やシミュレーション等により、流量制御弁26の弁体35の相対角度ANG毎の耐圧限界回転数の値を求めている。そして、弁体35の相対角度ANG毎の耐圧限界回転数の値を示すマップMを制御ユニット50のメモリ52に記憶している。本実施形態のエンジン冷却装置では、こうしたメモリ52が、弁体35の動作位置毎の耐圧限界回転数の情報が記憶された記憶部に対応している。
図6(b)に、本実施形態のエンジン冷却装置における弁体35の相対角度ANGと耐圧限界回転数との関係を示す。
相対角度ANGが「0°」となる位置に弁体35が位置しているのときには各出力ポートP1~P3の開口率はいずれも「0%」であり、流量制御弁26により冷却水の流れが堰き止められる。以下の説明では、循環回路21におけるウォータポンプ22よりも下流側、かつ流量制御弁26よりも上流側の部分をポンプ・弁間部と記載する。流量制御弁26により冷却水の流れが堰き止められた状態でエンジン回転数NEを、ひいてはウォータポンプ22の吐出圧を上昇していくと、ポンプ・弁間部の水圧が耐圧限界に達するようになる。このときには、ポンプ・弁間部の水圧が耐圧限界に達するエンジン回転数NEが耐圧限界回転数となる。
相対角度ANGが「0°」となる位置から弁体35をプラスの方向に相対回転していくと、各出力ポートP1~P3が順次に開いて、それら出力ポートP1~P3から冷却水が送出される。そしてその結果、ポンプ・弁間部の水圧が緩和されるため、相対角度ANGが「0°」となる位置から弁体35をプラスの方向に相対回転していくと、耐圧限界回転数は次第に高くなる。
一方、ラジエータポートP1から第1冷却水通路271に送出される冷却水の流量が増加すると、ラジエータ23を通過する際の冷却水の圧損が大きくなり、循環回路21の第1冷却水通路271におけるラジエータ23よりも上流側の部分の水圧が高くなる。以下の説明では、循環回路21の第1冷却水通路271におけるラジエータ23よりも上流側の部分を弁・ラジエータ間部と記載する。
相対角度ANGが「γ°」となる位置まで弁体35が相対回転すると、ポンプ・弁間部の水圧が耐圧限界に達するエンジン回転数NEと弁・ラジエータ間部の水圧が耐圧限界に達するエンジン回転数NEとが等しくなる。相対角度ANGが「γ°」となる位置から弁体35を更にプラスの方向に相対回転させると、ポンプ・弁間部の水圧が耐圧限界に達するエンジン回転数NEよりも弁・ラジエータ間部の水圧が耐圧限界に達するエンジン回転数NEの方が低くなる。よって、相対角度ANGが「γ°」を超える範囲では、弁・ラジエータ間部の水圧が耐圧限界に達するエンジン回転数NEが耐圧限界回転数となる。なお、相対角度ANGが「γ°」となる位置から弁体35をプラスの方向に相対回転していくと、ラジエータポートP1の開口率の増加と共に第1冷却水通路271の冷却水の流量も増加していくため、弁・ラジエータ間部の水圧が耐圧限界に達するエンジン回転数NEは低下する。よって、相対角度ANGが「0°」となる位置から弁体35をプラスの方向に相対回転していったときの耐圧限界回転数は、相対角度ANGが「γ°」となる位置を境に上昇から下降に転じるようになる。
同様に、相対角度ANGが「0°」となる位置から弁体35をマイナスの方向に相対回転していった場合にも、耐圧限界回転数は相対角度ANGが「-δ°」となる位置に弁体35が到達するまでは上昇し、その後は下降に転じる。このように、耐圧限界回転数は、相対角度ANGが「γ°」となる弁体35の相対回転位置、及び相対角度ANGが「-δ°」となる弁体35の相対回転位置のそれぞれにおいて、極大を示す。なお、相対角度ANGが「γ°」となる弁体35の相対回転位置では3つの出力ポートP1~P3のすべてが開いている。これに対して、相対角度ANGが「-δ°」となる弁体35の相対回転位置では、3つの出力ポートP1~P3のうちのラジエータポートP1及びデバイスポートP2だけが開いている。そのため、相対角度ANGが「-α°」となる位置から相対角度ANGが「β°」となるまでの弁体35の相対回転の範囲の中で、耐圧限界回転数が最大となるのは、相対角度ANGが「γ°」となる位置に弁体35が相対回転しているときとなる。以下の説明では、そうした相対角度ANGが「γ°」となる弁体35が相対回転位置を、最大耐圧相対回転位置と記載する。
続いて、本実施形態のエンジン冷却装置における流量制御弁26の制御について説明する。
図7及び図8に、流量制御弁26の制御に際して制御ユニット50が実行する流量制御弁制御ルーチンのフローチャートを示す。制御ユニット50は、同ルーチンの処理を、エンジン10の運転中に既定の制御周期毎に繰り返し実行する。
本ルーチンの処理が開始されると、まずステップS100において、要求相対回転位置が算出される。具体的には、各出力ポートP1~P3の開口率がそれぞれ、エンジン10やATFの暖機、冷却の要求や空調装置による車室の暖房要求を満たす開口率となる弁体35の相対角度ANGが要求相対回転位置の値として算出される。なお、要求相対回転位置として設定される弁体35の相対回転位置の範囲は、相対角度ANGが「-α°」となる位置から相対角度ANGが「β°」となる位置までの範囲となっている。
続く、ステップS110~ステップS170では、以下の条件(イ)~条件(へ)に該当するかどうかが判定される。
(イ)自動変速機241のシフトレンジとして駐車用のシフトレンジ(P)、又は中立のシフトレンジ(N)が設定されており、かつエンジン回転数NEが既定の退避開始回転数N1以上であること(S110:YES)。なお、図6(b)に示されるように、退避開始回転数N1には、耐圧限界回転数の最小値よりも低いエンジン回転数NEが値として設定されている。
(ロ)自動変速機241のシフトレンジとして走行用のシフトレンジ、すなわち前進用のシフトレンジ(D)、又は後退用のシフトレンジ(R)が設定されており、エンジン回転数NEが既定の退避開始回転数N2以上であること(S120:YES)。なお、同条件(ロ)における退避開始回転数N2には、上記条件(イ)における退避開始回転数N1よりも高いエンジン回転数NEが値として設定されている。
(ハ)車両が惰性走行中であること(S130:YES)。本実施形態では、アクセルペダルの操作量が「0」、かつエンジン回転数NEが一定の回転数以上の状態が既定時間以上継続していることをもって、車両が惰性走行中であると判定している。
(ニ)エンジン10の始動開始からの経過時間である始動後経過時間が既定時間T0未満であり(S140:NO)、かつ車載電源53の給電圧が電圧低下判定値V1未満である(S150:YES)こと。
(ホ)始動後経過時間が既定時間T0以上であり(S140:YES)、かつ車載電源53の給電圧が電圧低下判定値V2未満である(S160:YES)こと。なお、電圧低下判定値V2には電圧低下判定値V1よりも高い電圧が値として設定されている。
(へ)冷却水の温度が既定の低温判定値未満であること(S170:YES)。
条件(イ)~条件(へ)のいずれにも該当しない場合には、ステップS180において、要求相対回転位置の値がそのまま目標相対回転位置の値として設定された後、ステップS210に処理が進められる。上述のように、要求相対回転位置として設定される弁体35の相対回転位置の範囲は、相対角度ANGが「-α°」となる位置から相対角度ANGが「β°」となる位置までの範囲となっている。そのため、このときの目標相対回転位置として設定される弁体35の相対回転位置の範囲も、相対角度ANGが「-α°」となる位置から相対角度ANGが「β°」となる位置までの範囲となる。
これに対して条件(イ)~条件(へ)のうちのいずれか一つ以上に該当している場合にも、要求相対回転位置が「ε°」以上の場合(S190:NO)には上記ステップS180において、要求相対回転位置の値がそのまま目標相対回転位置の値として設定された後、ステップS210に処理が進められる。一方、条件(イ)~条件(へ)のうちのいずれか一つ以上に該当し、かつ要求相対回転位置が「ε°」未満の場合(S190:YES)には、ステップS200において「ε°」が目標相対回転位置の値として設定された後、ステップS210に処理が進められる。このように条件(イ)~条件(へ)のうちのいずれか一つ以上に該当する場合には、相対角度ANGが「ε°」となる位置から相対角度ANGが「β°」となる位置までの範囲が、目標相対回転位置として設定される弁体35の相対回転位置の範囲となる。
このように条件(イ)~条件(へ)のうちのいずれか一つ以上に該当している場合の目標相対回転位置は、相対角度ANGが「ε°」となる位置よりもプラス側の相対回転位置が値として設定される。図6(b)に示すように、「ε°」は、最大耐圧相対回転位置である相対角度ANGが「γ°」となる弁体35が相対回転位置を含む弁体35の相対回転の範囲として予め設定された退避動作範囲のマイナス側の端となる相対角度ANGとなっている。したがって、条件(イ)~条件(へ)のうちのいずれか一つ以上に該当する場合には、退避動作範囲内の相対角度ANGが目標相対回転位置の値として設定されることになる。
ここで、目標相対回転位置として設定される弁体35の相対回転位置の範囲を弁体35の制御範囲とする。条件(イ)~条件(へ)のいずれにも該当しない場合の弁体35の制御範囲は、相対角度ANGが「-α°」となる位置から相対角度ANGが「β°」となる位置までの範囲とされている。これに対して、条件(イ)~条件(へ)のうちのいずれか一つ以上に該当する場合には、最大耐圧相対回転位置を含む弁体35の相対回転位置の範囲として予め設定された退避動作範囲に制御範囲が縮小されることになる。
上記のようなステップS180又はステップS200での目標相対回転位置の設定に続き、ステップS210に処理が進められると、そのステップS210において、メモリ52に記憶された上述のマップMに基づき、目標相対回転位置の値として設定された相対角度ANGにおける耐圧限界回転数NLの値が算出される。さらに、続くステップS220において、算出した耐圧限界回転数NLが現在のエンジン回転数NE未満であるか否かが判定される。そして、目標相対回転位置における耐圧限界回転数NLが現在のエンジン回転数NE以上の場合(NO)には、そのままステップS240に処理が進められる。これに対して目標相対回転位置における耐圧限界回転数NLが現在のエンジン回転数NE未満の場合(YES)には、ステップS230において、耐圧限界回転数が現在のエンジン回転数NE以上となり、かつ退避動作範囲内の相対角度ANGがマップMに基づき求められる。そして、同ステップS230において更にその求められた相対角度ANGが目標相対回転位置の値として再設定された後、ステップS240に処理が進められる。
ステップS240に処理が進められると、そのステップS240において、弁体35が現在位置している相対回転位置の相対角度ANGの値が取得される。なお、以下の説明では、弁体35が現在位置している相対回転位置の相対角度ANGを現在相対角度と記載する。なお、現在相対角度は、上述の回転角センサ123によるモータ37の回転角の検出結果から求められている。
続くステップS250では、メモリ52に記憶されたマップMに基づき、現在相対角度における耐圧限界回転数NNが算出される。そして続くステップS260において、算出した現在相対角度における耐圧限界回転数NNよりも現在のエンジン回転数NEが高いか否かが判定される。このときの耐圧限界回転数NNが現在のエンジン回転数NEよりも高い場合(YES)には、ステップS270においてカウンタCOUNTの値のインクリメント操作が行われた後、ステップS290に処理が進められる。一方、耐圧限界回転数NNが現在のエンジン回転数NE以下の場合(S260:NO)には、ステップS280においてカウンタCOUNTの値が「0」にクリア操作が行われた後、今回の本ルーチンの処理が終了される。こうして操作されるカウンタCOUNTの値は、耐圧限界回転数NNが現在のエンジン回転数NEを超えた状態の継続時間を表す。
ステップS290に処理が進められると、そのステップS290において、カウンタCOUNTの値が既定の許容時間判定値以上であるか否かが判定される。このときのカウンタCOUNTの値が許容時間判定値未満の場合(NO)には、そのまま今回の本ルーチンの処理が終了される。一方、カウンタCOUNTの値が許容時間判定値以上の場合(YES)には、エンジン制御ユニット55に対してエンジントルクの低下要求が出力された後、今回の本ルーチンの処理が終了される。なお、エンジン制御ユニット55は、エンジントルクの低下要求の入力に応じてエンジン10のトルクを低下させる。
なお、制御ユニット50は、本ルーチンにおいて設定された目標相対回転位置に向けて弁体35を相対回転させるべく、モータ13の給電制御を行う。すなわち、制御ユニット50は、弁体35の現在の相対回転位置が目標回転位置よりもマイナスの方向に位置している場合には、弁体35をプラスの方向に相対回転させる方向がモータ37の回転方向となるようにモータ37の給電を行う。また、制御ユニット50は、弁体35の現在の相対回転位置が目標回転位置よりもプラスの方向に位置している場合には、弁体35をマイナスの方向に相対回転させる方向がモータ37の回転方向となるようにモータ37の給電を行う。そして、制御ユニット50は、弁体35の現在の相対回転位置が目標相対回転位置と一致した状態となると、モータ37の給電を停止する。
本実施形態の作用及び効果について説明する。
上述のように機械式のウォータポンプ22を備える本実施形態のエンジン冷却装置では、エンジン10やATFの暖機、冷却の要求や空調装置による暖房の要求に応じて要求相対回転位置の値が設定され、通常はその要求相対回転位置の値がそのまま目標相対回転位置の値として設定される。そして、設定した目標相対回転位置へと弁体35の相対回転位置を変更すべく、モータ37の給電制御が行われる。
一方、エンジン10の回転を受けて作動する機械式のウォータポンプ22を採用する本実施形態のエンジン冷却装置では、エンジン回転数NEの上昇と共にウォータポンプ22の冷却水の吐出圧が高くなる。そして、そのときの流量制御弁26の弁体35の相対回転位置によっては、循環回路21の水圧が耐圧限界を超える虞がある。
これに対して本実施形態のエンジン冷却装置では、エンジン回転数NEが上昇した際に、耐圧限界回転数が現在のエンジン回転数NE以上となる相対回転位置を目標相対回転位置の値として再設定することで、耐圧限界を超える循環回路21の水圧上昇を抑制する保護制御を実施している。
また、本実施形態では、上述の条件(イ)~条件(ヘ)のいずれか一つ以上に該当する場合には、最大耐圧相対角度を含む弁体35の相対回転位置の範囲として予め設定された退避動作範囲内の相対回転位置を目標相対回転位置として再設定する退避制御が実施される。これにより、弁体35の相対回転位置が退避動作範囲内の相対回転位置に、すなわち最大耐圧相対回転位置から大きく離れない範囲内に変更されることになる。
なお、上記のような退避制御、及び保護制御を実施しても、エンジン回転数NEが耐圧限界回転数を超える状態が続いた場合には、エンジン制御ユニット55に対してエンジントルクの低下要求が出力され、これに応じたエンジントルクの低下によりエンジン回転数NEの上昇が抑えられる。
以上の本実施形態のエンジン冷却装置によれば、以下の効果を奏することができる。
(1)本実施形態では、車載電源53の給電圧が低下した状態にある場合に上記退避制御を実施している。車載電源53の給電圧が低下すると、モータ37による弁体の弁体35の相対回転位置の変更速度が低下して、保護制御での弁体35の相対回転位置の変更に要する時間が長くなる。その点、保護制御の実施に先立ち、上記退避制御を実施すれば、その後にエンジン回転数NEが上昇して保護制御が実施された場合の弁体35の相対回転位置の変更量がある程度を超えて大きくならなくなる。そのため、車載電源53の給電圧が低下して弁体35の相対回転位置の変更速度が低下した状態でも、保護制御での弁体35の相対回転位置の変更に要する時間が長くなり難くなる。したがって、車載電源53の給電圧が低下しているときにも、エンジン回転数NEが上昇した際の循環回路21の水圧上昇の抑制に要する時間が長くなり難くなる。
(2)弁体35の相対回転位置毎の耐圧限界回転数の情報をメモリ52に予め記憶しておき、保護制御に際しては、その情報に基づき求めた耐圧限界回転数が現在のエンジン回転数NEよりも高くなる弁体35の相対回転位置を目標相対回転位置として設定している。そのため、保護制御において、耐圧限界回転数が現在のエンジン回転数NE以上となる適切な目標相対回転位置を設定できる。
(3)弁体35の現在相対回転位置における耐圧限界回転数よりも現在のエンジン回転数NEが高い状態が既定時間以上継続している場合にエンジントルクの低下の必要があると判定することでエンジントルクの低下の要否を判定している。そのため、保護制御により水圧上昇を十分抑制できない場合にエンジントルクの低下を要求して、エンジン回転数NEの上昇を抑えることで、水圧上昇を抑制可能となる。
(4)エンジン始動の直後には、エンジン始動のための電力消費により車載電源53の給電圧が一時的に低下することがある。こうしたエンジン始動直後の車載電源53の給電圧低下は短時間で解消されるため、このときの給電圧の低下に対する退避制御の実施は不要となることが多い。これに対して本実施形態では、エンジン始動後の経過時間が既定時間T0未満の場合には同経過時間が既定時間T0以上の場合よりも高い電圧を電圧低下判定値の値として設定しているため、退避制御が不要に実施され難くなる。
(5)冷却水温度が低いときには冷却水の粘度が高くなり、弁体35の相対回転位置の変更に際して弁体35に加わる冷却水の流動抵抗が大きくなる。そのため、冷却水の温度が低いときにも、モータ37による弁体35の相対回転位置の変更速度が低くなる。これに対して本実施形態では、冷却水温度が既定の低水温判定値以下の場合にも退避制御を実施しているため、低水温のためにモータ37による弁体35の相対回転位置の変更速度が低下した場合にも、エンジン回転数NEが上昇した際の循環回路21の水圧上昇の抑制が不十分となり難くなる。
(6)エンジン回転数NEがある程度に高くなっており、短時間のうちに保護制御の実施が必要となる可能性がある場合にも退避制御を実施している。そのため、エンジン回転数NEが上昇した際に循環回路21の水圧上昇を速やかに抑制できる。
(7)停車用、中立用のシフトレンジの設定時には、エンジン10と車輪との間の動力伝達が自動変速機241により切断されて、車両の動力伝達系における自動変速機241よりも車輪側の部分がエンジン10から切り離されるため、エンジン10の回転負荷が軽くなる。そのため、停車用、中立用のシフトレンジの設定時には、上記動力伝達が切断されていない走行用の設定時に比べてエンジン回転数NEの上昇速度が高くなり易い。これに対して本実施形態では、自動変速機241のシフトレンジが停車用のシフトレンジ及び中立用のシフトレンジのいずれかに設定されている場合には、同シフトレンジが走行用のシフトレンジに設定されている場合よりも低いエンジン回転数NEで退避制御を実施している。そのため、エンジン10と車輪との間の動力伝達が自動変速機241により切断されていて、エンジン回転数NEの上昇速度が高くなり易い状態にあるときにも、エンジン回転数NEが上昇した際に循環回路の水圧上昇を抑制し易くなる。
(8)車両に搭載されたエンジン10では、車輪の回転に応じてエンジン10が連れ回される車両の惰性走行中には、ダウンシフト等によりエンジン回転数が急上昇することがある。これに対して本実施形態では、車両が惰性走行中である場合にも退避制御を実施しているため、惰性走行中のエンジン回転数NEの急上昇に際しても循環回路21の水圧上昇を抑え易くなる。
なお、本実施形態では、ハウジング31に対する弁体35の相対回転位置により流量制御弁26における弁体35の動作位置を表している。こうした本実施形態では、目標相対回転位置が目標動作位置に、最大耐圧相対回転位置が最大耐圧動作位置に、それぞれ対応している。
本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記実施形態では、弁体35の相対回転位置毎の耐圧限界回転数の情報をマップMとして記録装置42に記憶しておき、保護制御での目標相対回転位置をその記憶した情報に基づき算出していたが、上記情報を記憶せず、保護制御での目標相対回転位置を他の方法で算出するようにしてもよい。例えば保護制御での目標相対回転位置を、最大耐圧動作位置などに固定するようにしてもよい。
・上記実施形態では、弁体35の現在相対回転位置における耐圧限界回転数よりも現在のエンジン回転数NEが高い状態が既定時間以上継続している場合にエンジントルクの低下が必要と判定してエンジン制御ユニット55にエンジントルクの低下要求を出力していた。こうしたエンジントルクの低下の要否の判定やその低下要求の出力を割愛してもよい。
・上記実施形態では、自動変速機241のシフトレンジが停車用、中立用のシフトレンジに設定されてエンジン10と車輪との動力伝達が切断されているときには、同動力伝達が切断されていない走行用のシフトレンジの設定時よりも低いエンジン回転数NEから退避制御を実施するようにしていた。手動変速機を採用する車両では、エンジン、手動変速機間に設けられたクラッチが開放されているときや、手動変速機が中立(ニュートラル)の状態にあるときに、エンジン、車輪間の動力伝達が切断される。よって、手動変速機を採用する車両では、(ト)クラッチが開放されていること、及び(チ)手動変速機が中立の状態にあること、の少なくとも一方が成立する場合には、上記(ト)及び(チ)が双方共に不成立となる場合よりも低いエンジン回転数NEから退避制御を実施するとよい。
・上記実施形態では、エンジン、車輪間の動力伝達が切断されている場合には、切断されていない場合に比べて低いエンジン回転数NEから退避制御を実施するようにしていたが、上記動力伝達の切断の有無に関わらず、エンジン回転数NEが一定の回転速度以上となった場合に退避制御を実施するようにしてもよい。
・上記実施形態では、エンジン始動後の経過時間により低電圧判定値の値を変えていたが、エンジン始動後の経過時間に関わらず、固定した値を低電圧判定値の値として設定してもよい。
・条件(イ)~条件(へ)のいずれか一つ以上に該当する場合に退避制御を実施していたが、条件(イ)、条件(ロ)、上記(ハ)、及び条件(ヘ)のうちの一つ以上を割愛してもよい。
・流量制御弁26の出力ポートの数、及び循環回路における出力ポートに繋がる冷却水通路の数を適宜変更してもよい。
・上記実施形態では、ハウジング31に対して相対回転する弁体35を有しており、その弁体35の相対回転位置により出力ポートの冷却水の流路面積が変化する流量制御弁26を採用していたが、往復直線動などの相対回転以外の動作を行う弁体を有した流量制御弁を採用してもよい。
・弁体35を駆動するアクチュエータとして、例えば電磁ソレノイドなどのモータ37以外の電動式のアクチュエータを採用する流量制御弁を採用してもよい。
10…エンジン、101…クランク軸、11…シリンダブロック、12…シリンダヘッド、111,121…ウォータジャケット、122…水温センサ、21…循環回路、22…機械式のウォータポンプ、23…ラジエータ、24…ATFウォーマ、25…ヒータコア、26…流量制御弁、271…第1冷却水通路、272…第2冷却水通路、273…第3冷却水通路、35…弁体、37…モータ、50…制御部としての制御ユニット、51…演算処理回路、52…記憶部としてのメモリ、53…車載電源、54…調圧回路、P1…ラジエータポート、P2…デバイスポート、P3…ヒータポート。

Claims (8)

  1. エンジンの内部に形成されたウォータジャケットを通る冷却水の循環回路と、前記エンジンの回転を受けて作動して前記循環回路に冷却水を循環させる機械式のウォータポンプと、前記循環回路を流れる冷却水の流量を調整するための弁であって、車載電源からの給電により作動する電動式のアクチュエータにより駆動される弁体を有しており、かつ前記弁体の動作位置により冷却水の流路面積が変化する流量制御弁と、前記エンジンの運転状況に応じて既定の制御範囲内の動作位置を目標動作位置として設定するとともに、その設定した目標動作位置に前記弁体の動作位置を変更すべく前記アクチュエータの駆動制御を実施する制御部と、を備えるエンジン冷却装置において、
    前記循環回路のいずれの部位においても水圧が該当部位における許容可能な同水圧の上限値未満となるエンジン回転数の最大値を耐圧限界回転数としたとき、前記耐圧限界回転数は前記弁体の動作位置に応じて変化するものであり、
    前記制御範囲内の動作位置の中で前記耐圧限界回転数が最大の動作位置を最大耐圧動作位置としたとき、
    前記制御部は、前記耐圧限界回転数が現在のエンジン回転数以上となる動作位置を前記目標動作位置として設定する保護制御を実施し、かつ前記最大耐圧動作位置を含む前記動作位置の範囲であって前記既定の制御範囲よりも小さな範囲として予め設定された退避動作範囲に前記制御範囲を縮小する退避制御を前記車載電源の給電圧が低下した状態にある場合に実施する
    エンジン冷却装置。
  2. 前記弁体の動作位置毎の前記耐圧限界回転数の情報が記憶された記憶部が設けられており、かつ前記制御部は、前記記憶部に記憶された情報に基づき前記耐圧限界回転数が現在のエンジン回転数よりも高くなる弁体の動作位置を求めるとともにその求めた動作位置を前記目標動作位置として設定することで前記保護制御を実施する請求項1に記載のエンジン冷却装置。
  3. 前記制御部は、前記弁体の現在の動作位置における前記耐圧限界回転数よりも現在のエンジン回転数が高い状態が既定時間以上継続している場合にエンジントルクの低下の必要があると判定することで前記エンジントルクの低下の要否を判定する請求項1又は請求項2に記載のエンジン冷却装置。
  4. 前記制御部は、前記車載電源の給電圧が電圧低下判定値以下であることをもって前記給電圧が低下した状態にあると判定し、かつエンジン始動後の経過時間が既定時間未満の場合には同経過時間が既定時間以上の場合よりも高い電圧を前記電圧低下判定値の値として設定する請求項1~請求項3のいずれか1項に記載のエンジン冷却装置。
  5. 前記制御部は、前記冷却水の温度が既定の低水温判定値以下の場合にも前記退避制御を実施する請求項1~請求項4のいずれか1項に記載のエンジン冷却装置。
  6. 前記制御部は、エンジン回転数が既定の退避開始回転数以上の場合にも前記退避制御を実施する請求項1~請求項5のいずれか1項に記載のエンジン冷却装置。
  7. 当該エンジン冷却装置は、車両に搭載されたエンジンに適用されるものであって、前記制御部は、前記エンジンと車輪との間の動力伝達が切断されている場合には、同動力伝達が切断されていない場合よりも低い回転数を前記退避開始回転数として設定する請求項6に記載のエンジン冷却装置。
  8. 当該エンジン冷却装置は、車両に搭載されたエンジンに適用されるものであって、前記制御部は、前記車両が惰性走行中である場合にも前記退避制御を実施する請求項1~請求項7のいずれか1項に記載のエンジン冷却装置。
JP2019170211A 2019-09-19 2019-09-19 エンジン冷却装置 Active JP7215379B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019170211A JP7215379B2 (ja) 2019-09-19 2019-09-19 エンジン冷却装置
US16/996,973 US11028763B2 (en) 2019-09-19 2020-08-19 Engine cooling device
CN202010877744.7A CN112523856B (zh) 2019-09-19 2020-08-27 发动机冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170211A JP7215379B2 (ja) 2019-09-19 2019-09-19 エンジン冷却装置

Publications (2)

Publication Number Publication Date
JP2021046829A JP2021046829A (ja) 2021-03-25
JP7215379B2 true JP7215379B2 (ja) 2023-01-31

Family

ID=74878052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170211A Active JP7215379B2 (ja) 2019-09-19 2019-09-19 エンジン冷却装置

Country Status (3)

Country Link
US (1) US11028763B2 (ja)
JP (1) JP7215379B2 (ja)
CN (1) CN112523856B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113487959B (zh) * 2021-07-31 2022-06-10 北京智扬北方国际教育科技有限公司 一种发动机热管理系统教具模型

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234605A (ja) 2012-05-09 2013-11-21 Nissan Motor Co Ltd エンジン冷却システムの制御装置及び制御方法
JP2015178824A (ja) 2014-03-19 2015-10-08 日立オートモティブシステムズ株式会社 内燃機関の冷却装置
JP2017067045A (ja) 2015-10-01 2017-04-06 トヨタ自動車株式会社 内燃機関の制御装置
JP2018035779A (ja) 2016-09-01 2018-03-08 トヨタ自動車株式会社 エンジン冷却システムの制御装置
US20180258830A1 (en) 2017-03-09 2018-09-13 GM Global Technology Operations LLC Cooling system having variable coolant flow paths for exhaust gas recirculation system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008035961A1 (de) * 2008-07-31 2010-02-04 Schaeffler Kg Wärmemanagementmodul des Kühlsystems einer Verbrennungskraftmaschine
DE102012024207A1 (de) * 2012-12-05 2014-06-05 Hydac Fluidtechnik Gmbh Vorrichtung zur Steuerung des Betriebs eines mittels eines Hydromotors antreibbaren Lüfters einer Kühleinrichtung
CN106030071B (zh) * 2014-03-06 2018-05-25 日立汽车系统株式会社 内燃机的控制装置以及冷却装置的控制方法
DE102014110231B3 (de) * 2014-07-21 2015-09-10 Nidec Gpm Gmbh Kühlmittelpumpe mit integrierter Regelung
DE102014219252A1 (de) * 2014-09-24 2016-04-07 Volkswagen Aktiengesellschaft Brennkraftmaschine
DE102015107926A1 (de) * 2015-05-20 2016-11-24 Volkswagen Aktiengesellschaft Brennkraftmaschine und Kraftfahrzeug
JP6225949B2 (ja) 2015-06-23 2017-11-08 トヨタ自動車株式会社 内燃機関の冷却装置
JP2017067016A (ja) * 2015-09-30 2017-04-06 アイシン精機株式会社 冷却制御装置
DE102015119097B4 (de) * 2015-11-06 2019-03-21 Pierburg Gmbh Kühlmittelpumpe für eine Verbrennungskraftmaschine
JP6604349B2 (ja) * 2017-03-16 2019-11-13 トヨタ自動車株式会社 機関冷却システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234605A (ja) 2012-05-09 2013-11-21 Nissan Motor Co Ltd エンジン冷却システムの制御装置及び制御方法
JP2015178824A (ja) 2014-03-19 2015-10-08 日立オートモティブシステムズ株式会社 内燃機関の冷却装置
JP2017067045A (ja) 2015-10-01 2017-04-06 トヨタ自動車株式会社 内燃機関の制御装置
JP2018035779A (ja) 2016-09-01 2018-03-08 トヨタ自動車株式会社 エンジン冷却システムの制御装置
US20180258830A1 (en) 2017-03-09 2018-09-13 GM Global Technology Operations LLC Cooling system having variable coolant flow paths for exhaust gas recirculation system

Also Published As

Publication number Publication date
US20210087964A1 (en) 2021-03-25
CN112523856B (zh) 2022-03-15
CN112523856A (zh) 2021-03-19
US11028763B2 (en) 2021-06-08
JP2021046829A (ja) 2021-03-25

Similar Documents

Publication Publication Date Title
EP3130777B1 (en) Cooling device for internal combustion engine
CN109899145B (zh) 流量控制阀
JP6330768B2 (ja) エンジン冷却装置
US8463495B2 (en) Method for controlling exhaust gas heat recovery systems in vehicles
JP6264348B2 (ja) エンジン冷却装置
CN108019270B (zh) 用于快速发动机冷却剂暖机的系统和方法
EP3369907B1 (en) Cooling system for an internal combustion engine of a motor-vehicle
CN103867683B (zh) 用于变速器液的贮存器
WO2017056904A1 (ja) 冷却制御装置
JP7215379B2 (ja) エンジン冷却装置
EP3246541B1 (en) Cooling system for an internal combustion engine of a motor vehicle
JP4604858B2 (ja) 車両の暖房装置
US10794260B2 (en) Coolant pump for vehicle, cooling system provided with the same and control method for the same
CN110214222B (zh) 发动机的冷却装置
CN111434903B (zh) 发动机冷却装置及方法
JP2016210298A (ja) 内燃機関の冷却装置
WO2017199866A1 (ja) 車両用冷却装置
JP6812785B2 (ja) 冷却システム
JP2006161745A (ja) 車両の制御装置
JP2019027313A (ja) 内燃機関の制御装置
JP2006161743A (ja) 車両の制御装置
JP2024017098A (ja) エンジン冷却装置
CN115789226A (zh) 车辆
GB2401931A (en) Automotive hvac system
JP2009209708A (ja) 自動車用冷却水回路及び自動車用冷却水回路の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R151 Written notification of patent or utility model registration

Ref document number: 7215379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151