EP2316979A1 - Ferritic stainless steel for use in producing urea water tank - Google Patents

Ferritic stainless steel for use in producing urea water tank Download PDF

Info

Publication number
EP2316979A1
EP2316979A1 EP09800430A EP09800430A EP2316979A1 EP 2316979 A1 EP2316979 A1 EP 2316979A1 EP 09800430 A EP09800430 A EP 09800430A EP 09800430 A EP09800430 A EP 09800430A EP 2316979 A1 EP2316979 A1 EP 2316979A1
Authority
EP
European Patent Office
Prior art keywords
less
urea water
stainless steel
mass
effective amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09800430A
Other languages
German (de)
French (fr)
Other versions
EP2316979A4 (en
Inventor
Nobuhiko Hiraide
Haruhiko Kajimura
Akihiko Takahashi
Shigeru Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Publication of EP2316979A1 publication Critical patent/EP2316979A1/en
Publication of EP2316979A4 publication Critical patent/EP2316979A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a ferrite stainless steel being used for a device that reduces NO x from exhaust gas by using a urea aqueous solution (urea water) in an internal combustion engine, mainly in a diesel engine, and, in particular, for equipments in a urea-Selective Catalytic Reduction (SCR) system for vehicles and the like, specifically, for a urea water tank that is utilized when storing, producing, and transporting urea water.
  • urea aqueous solution urea water
  • SCR urea-Selective Catalytic Reduction
  • the urea SCR system is one of the NO x reducing systems and in which urea water is used as a NO x reducing agent.
  • urea water has an advantage of being safe and relatively easy to treat; and as a result, it is being examined for application to stationary NO x reducing systems for distributed power-supply facilities installed in urban areas and the like, as well as automobiles.
  • the urea water sprayed into the exhaust gas is decomposed by heat and moisture so as to produce ammonia.
  • the urea water used in the above-described case is a urea aqueous solution (urea water) having a high concentration of 25 to 45%.
  • a urea aqueous solution having a concentration of about 32.5% and the lowest freezing point is used, which is prescribed in "NO x reduction additive in diesel engines -AUS 32- Part 1: Properties" by JIS K2247-1 (The Automotive Standards JASO E502 is also a similar standard).
  • the standards also strictly prescribe the concentration of impurity elements, and elements in relation to stainless steel are prescribed to fulfill Fe: less than 0.5, Cr: less than 0.2, Ni: less than 0.2, Cu: less than 0.2 (all in the units of mg/kg).
  • Any material being used for a urea water tank needs to have extremely high corrosion resistance. Because it is not permitted that the concentration of impurities in the urea water exceeds the range prescribed in the above-mentioned regulations due to elution from materials used in equipments for storing, producing, and transporting the urea water. In addition, since the tank is normally used outside, as in automobiles, and for a long time period of ten years or more, there is a concern that the tank is penetrated by rainwater, sea-salt particles and the like, which may lead to leakage of the urea water in the tank. Since leakage of the urea water may cause a deterioration in function of the NO x reducing system, this needs to be avoided. Therefore, any material being used for the urea water tank needs to have an excellent corrosion resistance against salt damage on the outside surface.
  • Patent Document 1 discloses a supply device of high grade urea water and a method for supplying high grade urea water using the same.
  • Patent Document 1 discloses a supply device which includes: an electromotive pump having a high grade urea water supply port equipped with an air-removing mechanism and an exhaust hose equipped with a gun nozzle; and a high-density polyethylene intermediate bulk container (IBC) tank having a net volume of 1200 to 1500L.
  • the electromotive pump is preferably made of reinforced plastic and the pump shaft is preferably made of one of stainless alloy (SUS304), Hastelloy, and Inconel alloy.
  • SUSS304 refers to austenite stainless steel, and in Patent Document 1, there is not any direct description regarding ferrite stainless steel.
  • Patent Document 2 discloses two-phase stainless steel for a urea-producing plant, welding materials, a urea-producing plant and equipment thereof.
  • Patent Document 2 discloses two-phase stainless steel containing Cr: 26% or more and less than 28%, Ni: 6 to 10%, Mo: 0.2 to 1.7%, and W: more than 2% and 3% or less.
  • Urea is synthesized from ammonia and carbon dioxide gas under high temperatures and high pressures. Urea has highly corrosive nature due to the existence of intermediate products of the synthesis reaction such as ammonium carbamate and the like. Therefore, it is necessary to use materials that can endure corrosion wastage so as to prevent internal substances from being leaked.
  • Patent Document 3 discloses ferrite stainless steel having excellent brazeability. It is disclosed that the ferrite stainless steel is suitable for members having complicated shapes and produced by brazed welding, such as a urea water tank or the like being used for a urea SCR system for vehicles.
  • the present invention aims to provide a ferrite stainless steel suitable for a device that reduces NO x from exhaust gas by using urea water in an internal combustion engine, mainly in a diesel engine, and, in particular, for equipments in a urea SCR system for vehicles and the like, specifically, a urea water tank that is utilized when storing, producing, and transporting urea water.
  • An elution amount of consitituent elements eluted from the ferrite stainless steel into a high-concentration urea aqueous a solution (urea water) is small, and the ferrite stainless steel has an excellent corrosion resistance against salt damage.
  • the inventors of the present invention have found that it is important to form a passive film containing Cr in the surface of a steel in order to reduce an elution amount of the constituent elements of the steel into a urea aqueous solution having a high concentration of 25 to 45% on the inside surface and to attain an excellent corrosion resistance against salt damage on the outside surface, and consequently, it is necessary to contain an appropriate amount of Cr. It is well known that the corrosion resistance of the steel is improved by forming a passive film containing Cr on the steel surface.
  • the passive film formed on the steel used for the urea water tank may elute or the steel located below the passive film may elute, at the instant when the tank in a normal pre-use state of being exposed to air is exposed to a high-concentration urea aqueous solution.
  • a ferrite stainless steel containing 10% or more of Cr can form a uniform passive film that can suppress an elution of the passive film formed on the surface of the steel and an elution of the steel located below the passive film via the passive film in the urea water having a high concentration of 25 to 45% used in the urea water tank (Japanese Patent Application No. 2008-62598 ).
  • the forming of the uniform passive film capable of suppressing the elution is also important to enhance the resistance against chloride ions contained in sea-salt particles and the like; and thereby, the occurrence of the corrosion is suppressed.
  • the urea water tank which is the subject of the present invention is normally joined and assembled by welding or brazing.
  • an oxide film is formed on the surface of a steel in the welded (or brazed) portions. Even in the case where the oxide film is formed, it is still necessary to suppress an elution of the constituent elements from the steel into a high-concentration urea water on the inside surface and to suppress a corrosion due to the salt damage on the outside surface. Since the diffusion rate of Cr in a ferrite stainless steel is greater than that in an austenite stainless steel, a lack of Cr just below the oxide film can be suppressed.
  • the amount of Cr necessary to suppress the elution from the welded (or brazed) portions in the ferrite stainless steel can be made smaller than that in the austenite stainless steel.
  • the inventors of the present invention have found that the effective amount of Cr as expressed by any one of the following Equations (I), (II), and (II) needs to be 10% or more so as to secure the amount of Cr just below the oxide film and to fulfill the regulation in relation to the elution of the constituent elements into a high-concentration urea water (Fe: ⁇ 0.5, Cr: ⁇ 0.2, Ni: ⁇ 0.2, Cu: ⁇ 0.2 (all in the units of mg/kg)) in the case where the oxide film is formed (herein, the atomic symbols in Equations (I) to (III) represent the contents of the elements (expressed by mass %), and the numerical values shown in front of the atomic symbols represent constant numbers). In addition, it has been found that the effective amount of Cr needs to be 15% or more so as to suppress a corrosion due to the salt damage that is severer than the high-concentration urea water.
  • Equations (I) to (III) are alloy element indices where an influence of Si, Mn, Ti, and Nb contained in the steel on an effect of improving corrosion resistance due to Cr is taken into consideration, and are utilized for calculating a numerical value as an index of an effective amount of Cr that contributes to the improvement of the corrosion resistance of the steel.
  • Si is a useful element that forms an oxide just below chromium oxide so as to suppress the oxidation of Cr.
  • Mn accelerates the generation of a spinel type oxide containing Cr and Mn so as to reduce the effective amount of Cr.
  • Ti remarkably accelerates the growth of Cr oxide so as to considerably reduce the effective amount of Cr.
  • Nb has an effect to reduce the effect of Ti of accelerating the growth of chromium oxide so as to suppress the decrease in the effective amount of Cr due to Ti.
  • molten brazing metal needs to adhere and spread out on the surface of a stainless steel.
  • the wettability of brazing metal is affected by a surface film formed on the stainless steel in a brazing atmosphere.
  • Ti and Al which are oxidized more easily than Fe and Cr, form oxides so as to hinder the adhering and spreading out of the brazing metal; and thereby, the brazeability is degraded.
  • Ti and Al solid solutions contribute to a formation of such an oxide film.
  • the Ti and Al solid solutions exist as relatively stable nitrides even at the brazing temperature, the Ti and Al solid solutions do not contribute to the film formation; and therefore, the Ti and Al solid solutions do not hinder the adhering and spreading out of the brazing metal. From these viewpoints, the relationship between the contents of Ti and Al and the adhering-and-spreading-out property (wettability) of the brazing metal has been studied.
  • the urea water tank which is the subject of the present invention needs to have a strength, it is desirable to suppress the decrease in the strength after brazing.
  • brazing is conducted at high temperatures within a range of 1000 to 1100°C such as Ni brazing and Cu brazing, it has been considered that it is important to suppress the decrease in the strength induced by grain coarsening.
  • the present invention aims to provide a ferrite stainless steel for use in producing a urea water tank which has an improved corrosion resistance against salt damage together with the properties described in the previous two Japanese Patent Applications. That is, the present invention aims to provide the ferrite stainless steel showing a small degree of elution of constituent elements into a high-concentration urea water and an excellent corrosion resistance against salt damage.
  • a ferrite stainless steel showing a small degree of elution of constituent elements into a high-concentration urea water and an excellent corrosion resistance against salt damage. Therefore, it is possible to provide a preferred material used for a device that reduces NO x from exhaust gas by using urea water in an internal combustion engine, mainly in a diesel engine, and, in particular, a device related to a urea SCR system for vehicles, and preferred for a tank being used when storing, producing, and transporting urea water.
  • C Since C degrades intergranular corrosion resistance and formability, it is necessary to adjust the content of C to be at a low level. Therefore, the content of C is set to be in a range of 0.05% or less. However, since an excessively low content leads to the increase in refining cost, it is desirable to set the content of C to be in a range of 0.002% or more.
  • N is a useful element for pitting corrosion resistance; however, N degrades the intergranular corrosion resistance and the formability. Therefore, it is necessary to adjust the content ofN to be at a low level. Accordingly, the content ofN is set to be in a range of 0.05% or less. However, since an excessively low content leads to an increase in refining cost, it is desirable to set the content of N to be in a range of 0.002% or more.
  • Si is useful as a deoxidization element, and is also an effective element for corrosion resistance; however, Si degrades the formability. Therefore, the content of Si is set to be in a range of 0.02 to 1.5%.
  • Mn is useful as a deoxidization element; however, Mn degrades corrosion resistance when an excessive content of Mn is included. Therefore, the content of Mn is set to be in a range of 0.02 to 2%.
  • Cr is the most important element in the present invention, and the content of Cr needs to be at least 15% or more so as to reduce an elution amount of constituent elements into high-concentration urea water and to attain an excellent corrosion resistance against salt damage.
  • the upper limit of the content of Cr is set to 23% or less.
  • the content of Cr is preferably in a range of 16% or more, and more preferably in a range of 18% or more.
  • Nb and Ti A urea water tank which is the subject of the present invention is often jointed and assembled by welding or brazing.
  • Nb and Ti are useful elements having the effects of fixing C and N and improving the intergranular corrosion resistance in welded (or brazed) portions.
  • Nb and Ti cause a negative effect on the formability and the manufacturability. Therefore, the content of either one or both ofNb and Ti is set to be in a range of 8(C+N) to 1%, and preferably in a range of 8(C+N) to 0.6% (herein, C and N represent the contents of C and N (expressed by mass %); respectively, and the numerical values shown in front of the atomic symbols represent constant numbers).
  • the content of Ti needs to be controlled to fulfill Ti-3N ⁇ 0.03 so as to secure a satisfactory brazeability (herein, the atomic symbols in the equation represent the contents of the elements (expressed by mass %), and the numerical values shown in front of the atomic symbols represent constant numbers).
  • the value of Ti-3N is preferably in a range of 0.02% or less.
  • the effective amount of Cr expressed by any one of Equations (I), (II), and (III) is set to be in a range of 15% or more (herein, the atomic symbols in Equations (I) to (III) represent the contents of the elements (expressed by mass %); and the numerical values shown in front of the atomic symbols represent constant numbers).
  • the effective amount of Cr Cr+4Si-2Mn (I)
  • the effective amount of Cr Cr+4Si-2Mm-10Ti (II)
  • the effective amount of Cr Cr+4Si-2Mm-(10Ti-3Nb) (III)
  • the effective amount of Cr calculated by the Equations (I) to (III) is necessary to set to be in a range of 10% or more so as to obtain a ferrite stainless steel showing a remarkably small degree of elution of constituent elements into high-concentration urea water and an excellent corrosion resistance that fulfills JIS K2247-1 by securing the amount of Cr just below an oxide film under conditions where the oxide film is formed in the steel surface, such as the case where the steel is subjected to welding or brazed jointing.
  • the present invention demands the corrosion resistance against salt damage on the outside surface, and it is necessary to set the effective amount of Cr to be in a range of 15% or more, preferably in a range of 16% or more, and more preferably in a range of 18% or more so as to be compatible with the corrosion resistance in high-concentration urea water.
  • Mo If necessary, it is possible to contain 3% or less of Mo so as to improve the corrosion resistance.
  • the content of Mo needs to be 0.3% or more so as to obtain a stable effect. If an excessive content of Mo is included, Mo degrades the formability, and Mo leads to an increase in cost since Mo is expensive. Therefore, it is preferable to contain Mo at a content within a range of 0.3 to 3%.
  • Ni If necessary, it is possible to contain 3% or less of Ni so as to improve the corrosion resistance.
  • the content ofNi needs to be 0.2% or more so as to obtain a stable effect. If an excessive content ofNi is included, Ni degrades the formability, and Ni leads to an increase in cost since Ni is expensive. Therefore, it is preferable to contain Ni at a content within a range of 0.2 to 3%.
  • Cu If necessary, it is possible to contain 3% or less of Cu so as to improve the corrosion resistance.
  • the content of Cu needs to be 0.2% or more so as to obtain a stable effect. If an excessive content of Cu is included, Cu degrades the formability, and Cu leads to an increase in cost since Cu is expensive. Therefore, it is preferable to contain Cu at a content within a range of 0.2 to 3%.
  • V If necessary, it is possible to contain 3% or less of V so as to improve the corrosion resistance.
  • the content of V needs to be 0.2% or more so as to obtain a stable effect. If an excessive content of V is included, V degrades the formability, and V leads to an increase in cost since V is expensive. Therefore, it is preferable to contain V at a content within a range of 0.2 to 3%.
  • W If necessary, it is possible to contain 5% or less of W so as to improve the corrosion resistance.
  • the content of W needs to be 0.5% or more so as to obtain a stable effect. If an excessive content of W is included, W degrades the formability, and W leads to an increase in cost since W is expensive. Therefore, it is preferable to contain W at a content within a range of 0.5 to 5%.
  • Ca has a deoxidization effect and the like, and is a useful element for refining; and therefore, if necessary, Ca may be included at a content within a range of 0.002% or less. If Ca is contained, it is preferable to contain 0.0002% or more of Ca so as to obtain a stable effect.
  • Mg Mg has a deoxidization effect and the like, and is a useful element for refining, and Mg also refines the microstructure and is useful for improving the formability and toughness. Therefore, if necessary, Mg may be included at a content within a range of 0.002% or less. If Mg is contained, it is preferable to contain 0.0002% or more of Mg so as to obtain a stable effect.
  • B is a useful element for improving the secondary formability. Therefore, if necessary, B may be included at a content within a range of 0.005% or less. If B is contained, it is preferable to contain 0.0002% or more of B so as to obtain a stable effect.
  • C+N In the case where a brazed jointing is conducted to assemble a urea water tank, the content of C+N needs to be in a range of 0.015% or more, and preferably in a range of 0.02% or more so as to suppress a decrease in strength due to grain coarsening which occurs when being brazed. If an excessive content of C and N is included, C and N degrade the intergranular corrosion resistance and the formability. Therefore, it is preferable to set the upper limit of C+N to 0.04% or less.
  • Al has a deoxidization effect and the like, and is a useful element for refining, and Al also has an effect of improving the formability. Therefore, if necessary, Al may be included. In the case where a brazed jointing is conducted to assemble a urea water tank, it is necessary to secure a satisfactory brazeability; and therefore, it is preferable to set the content ofAl to be in a range of 0.5% or less.
  • an unavoidable impurity of P it is preferable to set the content of P to be in a range of 0.04% or less from the perspective of the weldability.
  • S it is preferable to set the content of S to be in a range of 0.01 % or less from the perspective of the corrosion resistance.
  • a molten steel is prepared in a converter or an electric furnace, and the molten steel is refined in an AOD furnace, a VOD furnace, or the like, and the refined molten steel is subjected to a continuous casting or an ingot-making method so as to obtain a slab, and then the slab is subjected to a process of hot rolling-annealing of a hot-rolled steel sheet-pickling-cold rolling-final annealing-pickling so as to manufacture a ferrite stainless steel. If necessity, the annealing of the hot-rolled steel sheet may be omitted, and the process of cold rolling-final annealing-pickling may be repeated.
  • test specimen having a width of 50mm and a length of 70mm was cut off from a cold rolled steel sheet, and one surface of the specimen was subjected to wet-polishing by emery paper down to 400-grit. Then, 0.1g of Ni brazing alloy was placed on the polished surface, and the test specimen was heated at 1100°C in a vacuum atmosphere of 5 x 10 -3 torr (about 0.6666Pa) for ten minutes. After cooling down to room temperature, the area of the brazing metal after heating was measured.
  • the brazeability was evaluated as good if the area of the brazing metal after heating is twice or more of the area of the brazing metal before heating, and the brazeability was evaluated as bad if the area of the brazing metal after heating is less than twice of the area of the brazing metal before heating.
  • Equation (IV) Equation (V) C+N (mass%) 8(C+N) (mass%) Ti+Nb (mass%) 1 -0.050 -0.48 0.03 0.24 0.394 2 -0.043 -0.43 0.028 0.224 0.552 3 -0.026 -0.22 0.016 0.128 0.424 4 -0.021 -0.17 0.03 0.24 0.3 81 5 -0.015 -0.14 0.016 0.128 0.232 6 -0.030 -0.25 0.029 0.232, 0.375 7 0.012 0.17 0.025 0.2 0.442 8 0.021 0.30 0.031 0.248 0.486 9 0.005 0.40 0.027 0.216 0.422 10 0.220 2.24 0.018 0.144 0.252 11 0.084 0.90 0.019 0.152 0.34 12 -0.038 0.20 0.026 0.208 0.354 13 0.026 0.62 0.022 0.176 0.065 14 0.049 0.53 0.019 0.152 0.323
  • the effective amount of Cr column in Table 4 with the symbol of * 1 represents the value of Cr+4Si-2Mn when containing only Nb, the value of Cr+4Si-2Mn-10Ti when containing only Ti, and the value of Cr+4Si-2Mn-(10Ti-3Nb) when containing both of Nb and Ti.
  • the column of Equation IV in Table 4 with the symbol of *2 represents the value of Ti-3N
  • the column of Equation V with the symbol of *3 represents the value of 10(Ti-3N)+Al.
  • the underlined values in Tables 3 and 4 represent values outside the range of the present invention.
  • Example of the Invention 1 17.7 -0.05 -0.54 0.032 0.256
  • Example of the Invention 2 15.6 0.19 1.92 0.01 0.08
  • Example of the Invention 3 17.2 -0.036 -0.36 0.021 0.168
  • Example of the Invention 4 20.2 -0.045 -0.45 0.034 0.272
  • Example of the Invention 5 22.3 0.09 0.87 0.017 0.136
  • Example of the Invention 6 20.1 -0.03 -0.3 0.02 0.16
  • Example of the Invention 7 15.4 -0.10 -0.99 0.059 0.472
  • Example of the Invention 8 20.3 -0.05 -0.45 0.032 0.256
  • Example of the Invention 9 21.3 -0.04 -0.40 0.025 0.2
  • Example of the Invention 10 23.3 -0.03 -0.26 0.017 0.136
  • Example of the Invention 9 21.3 -0.04 -0.40 0.025 0.2
  • Example of the Invention 10 23.3 -0.03
  • test specimen having a width of 20mm and a length of 40mm was cut off from the cold rolled steel sheet, and was subjected to wet-polishing by emery paper down to 600-grit. Then, the test specimen was subjected to a thermal treatment at 700°C in air for one second to simulate welding for obtaining a mock surface status of a welded heat-affected zone. Next, corrosion tests were carried out in which the thermally-treated test specimens of Testing Examples 1 to 14 were immersed in a urea aqueous solution having a concentration of 30% at 60°C for 144 hours.
  • the ratio of the solution volume to the test specimen area was set to 3.6ml ⁇ cm -2 in accordance with the metal corrosion test in "an anti-freezing liquid" of JIS K 2234, and a special grade reagent was used for urea being used for the preparation of the urea aqueous solution. After the completion of the corrosion tests, the corrosion rate was measured by weighing the test specimen, and a solution analysis was carried out by ICPS. The analyzed elements were Fe, Cr, Ni, and Cu.
  • test specimen having a width of 70mm and a length of 150mm was cut off from the cold rolled steel sheet, and were subjected to wet-polished by emery paper down to 320-grit. Then, the test specimen was subjected to a thermal treatment at 700°C in air for one second to simulate welding for obtaining a mock surface status of a welded heat-affected zone. Next, the edge faces and the rear surfaces of the thermally-treated test specimens of Testing Examples 1 to 14 were coated with sealing tapes, and repetitive wet-dry cycle tests were carried out under conditions shown in FIG. 3 . After the completion of 180 cycles, the corrosion product was removed, and the corrosion depths in the corroded areas were measured by the depth of focus of a microscope method.
  • the conditions prescribed in JASO M609-91 were applied.
  • the adhering-and-spreading-out property of brazing metal was measured. Then, the microstructures of the cross sections of the test specimens were observed. The number of crystal grains existing in the sheet depth direction was measured in a 20mm-long range parallel to the rolling direction, and the brazeability was evaluated as good if two or more crystal grains existed in the sheet depth direction, and the brazeability was evaluated as bad if only one crystal grain existed.
  • the steels of Testing Examples 1 to 11 showed the maximum corrosion depths of less than 1 mm in the cyclic corrosion tests; and therefore, the steels of Testing Examples 1 to 11 were evaluated as good in the corrosion resistance against salt damage. Furthermore, the steels of Testing Examples 1 to 11 showed the corrosion rates of less than 0.001g ⁇ m -2 ⁇ h -1 in the immersion tests in the urea aqueous solution, and the amounts of Fe, Cr, Cu, and Ni in the solution after the tests fulfilled the standards of JIS K 2247-1. Therefore, the steels of Testing Examples 1 to 11 were evaluated as good in the corrosion resistance on the inside surface.
  • the steels of Testing Examples 1, 3, 4, 6, 7, 8, 9, 10, and 11 showed the value of C+N of 0.015 or more and fulfilled the Equations (IV) and (V) of the present invention. These steels were evaluated as good in the adhering-and-spreading-out property of brazing metal, and the coarsening of crystal grains was suppressed when being brazed.
  • the steel of Testing Example 5 showed the value of C+N of 0.015 or more; however, this steel did not fulfill the Equations (IV) and (V) of the present invention. In this steel, the coarsening of crystal grains was suppressed; however, this steel was evaluated as bad in the adhering-and-spreading-out property of brazing metal.
  • the steel of Testing Example 2 showed the value of C+N of less than 0.015 and did not fulfill the Equations (IV) and (V) of the present invention.
  • the coarsening of crystal grains occurred remarkably, and this steel was evaluated as bad in the adhering-and-spreading-out property of brazing metal.
  • the steel of Testing Example 12 showed less than 10% in both of the amount of Cr and the effective amount of Cr. This steel showed a low corrosion rate of 0.005g ⁇ m -2 ⁇ h -1 or less in the immersion test in the urea aqueous solution; however, the amounts of Fe and Cr in the solution after the test failed to fulfill the standards of JIS K 2247-1.
  • the steel of Testing Example 13 showed both of the amount of Cr and the effective amount of Cr outside the ranges of the present invention, and the steel of Testing Example 14 showed the effective amount of Cr outside the range of the present invention. These steels fulfilled the standards of JIS K 2247-1, and were evaluated as good in elution characteristics against the urea aqueous solution. However, these steels showed the maximum corrosion depths of 1mm or more in the cyclic corrosion tests; and therefore, these steels had bad corrosion resistances against salt damage.
  • the ferrite stainless steel of the present invention is a prefered material for a device that reduces NO x from exhaust gas by using urea water in an internal combustion engine, mainly in a diesel engine, and in particular, a device related to a urea SCR system for vehicles, and preferred for a tank being used when storing, producing, and transporting urea water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

This ferrite stainless steel for use in producing a urea water tank includes: in terms of mass %, C: 0.05% or less; N: 0.05% or less; Si: 0.02 to 1.5%; Mn: 0.02 to 2%; Cr: 15 to 23%; and either one or both of Nb and Ti at a content within a range of 8(C+N) to 1% (herein, C and N represent the contents of C and N (expressed by mass %), respectively, and the numerical values shown in front of the atomic symbols represent constant numbers), with the remainder being iron and unavoidable impurities, wherein an effective amount of Cr expressed by any one of the following Equations (I), (II), and (III) is 15% or more (herein, the atomic symbols in Equations (I) to (III) represent the contents of the elements (expressed by mass %), and the numerical values shown in front of the atomic symbols represent constant numbers). Here, the effective amount of Cr = Cr+4Si-2Mn in the case where only Nb is contained, the effective amount of Cr = Cr+4Si-2Mn-10Ti in the case where only Ti is contained, and the effective amount of Cr = Cr+4Si-2Mn-(10Ti-3Nb) in the case where both of Nb and Ti are contained.

Description

    TECHNICAL FIELD
  • The present invention relates to a ferrite stainless steel being used for a device that reduces NOx from exhaust gas by using a urea aqueous solution (urea water) in an internal combustion engine, mainly in a diesel engine, and, in particular, for equipments in a urea-Selective Catalytic Reduction (SCR) system for vehicles and the like, specifically, for a urea water tank that is utilized when storing, producing, and transporting urea water.
    The present application claims priority on Japanese Patent Application No. 2008-190065, filed on July 23, 2008 , the content of which is incorporated herein by reference.
  • BACKGROUND ART
  • In recent years, as a result of increased concern about environmental issues, exhaust gas emission regulations are becoming stricter, and major efforts are being made to suppress carbon dioxide emission. In the automotive industry, in addition to efforts made to provide fuels such as bio-ethanol and biodiesel fuel, a variety of efforts are being made to improve fuel efficiency by reducing automobile weight or installing a heat exchanger that recovers exhaust heat, and to install an exhaust gas treatment device such as an exhaust gas recirculation (EGR), a diesel particulate filter (DPF), a urea SCR system, and the like.
  • Among the exhaust gas treatment devices, the urea SCR system is one of the NOx reducing systems and in which urea water is used as a NOx reducing agent. Compared with the case where liquid ammonia or ammonia water is used as a reducing agent, urea water has an advantage of being safe and relatively easy to treat; and as a result, it is being examined for application to stationary NOx reducing systems for distributed power-supply facilities installed in urban areas and the like, as well as automobiles.
    In the urea SCR system, the urea water sprayed into the exhaust gas is decomposed by heat and moisture so as to produce ammonia. Then, the ammonia and NOx are selectively reduced on a catalyst so as to be decomposed into innocuous nitrogen. The urea water used in the above-described case is a urea aqueous solution (urea water) having a high concentration of 25 to 45%. In general, in the urea SCR system for vehicles, a urea aqueous solution having a concentration of about 32.5% and the lowest freezing point is used, which is prescribed in "NOx reduction additive in diesel engines -AUS 32- Part 1: Properties" by JIS K2247-1 (The Automotive Standards JASO E502 is also a similar standard). The standards also strictly prescribe the concentration of impurity elements, and elements in relation to stainless steel are prescribed to fulfill Fe: less than 0.5, Cr: less than 0.2, Ni: less than 0.2, Cu: less than 0.2 (all in the units of mg/kg).
  • Any material being used for a urea water tank needs to have extremely high corrosion resistance. Because it is not permitted that the concentration of impurities in the urea water exceeds the range prescribed in the above-mentioned regulations due to elution from materials used in equipments for storing, producing, and transporting the urea water.
    In addition, since the tank is normally used outside, as in automobiles, and for a long time period of ten years or more, there is a concern that the tank is penetrated by rainwater, sea-salt particles and the like, which may lead to leakage of the urea water in the tank. Since leakage of the urea water may cause a deterioration in function of the NOx reducing system, this needs to be avoided. Therefore, any material being used for the urea water tank needs to have an excellent corrosion resistance against salt damage on the outside surface.
  • Patent Document 1 discloses a supply device of high grade urea water and a method for supplying high grade urea water using the same. Patent Document 1 discloses a supply device which includes: an electromotive pump having a high grade urea water supply port equipped with an air-removing mechanism and an exhaust hose equipped with a gun nozzle; and a high-density polyethylene intermediate bulk container (IBC) tank having a net volume of 1200 to 1500L. It is also disclosed that the electromotive pump is preferably made of reinforced plastic and the pump shaft is preferably made of one of stainless alloy (SUS304), Hastelloy, and Inconel alloy. SUSS304 refers to austenite stainless steel, and in Patent Document 1, there is not any direct description regarding ferrite stainless steel.
  • Patent Document 2 discloses two-phase stainless steel for a urea-producing plant, welding materials, a urea-producing plant and equipment thereof. Patent Document 2 discloses two-phase stainless steel containing Cr: 26% or more and less than 28%, Ni: 6 to 10%, Mo: 0.2 to 1.7%, and W: more than 2% and 3% or less. Urea is synthesized from ammonia and carbon dioxide gas under high temperatures and high pressures. Urea has highly corrosive nature due to the existence of intermediate products of the synthesis reaction such as ammonium carbamate and the like. Therefore, it is necessary to use materials that can endure corrosion wastage so as to prevent internal substances from being leaked.
  • Compared with the corrosive environments under high temperatures and high pressures in the urea-synthesizing plants, environments of a high-concentration urea water which is used near room temperature in the urea SCR system and the like are mild because of the lower temperature and the absence of the intermediate products of the synthesis reaction. However, it is necessary to suppress elution of stainless steel elements such as Fe, Cr, Ni, Cu, and the like so as to fulfill the above-described JIS standard; and therefore, the material needs to have an excellent corrosion resistance on the inside surface for elution suppression and the like. In addition, the material needs to have a corrosion resistance against salt damage induced by rainwater, sea-salt particles, and the like on the outside surface.
  • Patent Document 3 discloses ferrite stainless steel having excellent brazeability. It is disclosed that the ferrite stainless steel is suitable for members having complicated shapes and produced by brazed welding, such as a urea water tank or the like being used for a urea SCR system for vehicles.
  • PRIOR ART DOCUMENTS Patent Documents
    • Patent Document 1: Japanese Unexamined Patent Application, First Publication No. 2007-113484
    • Patent Document 2: Japanese Unexamined Patent Application, First Publication No. 2003-301241
    • Patent Document 3: PCT International Publication No. WO2009/084526
    DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
  • The present invention aims to provide a ferrite stainless steel suitable for a device that reduces NOx from exhaust gas by using urea water in an internal combustion engine, mainly in a diesel engine, and, in particular, for equipments in a urea SCR system for vehicles and the like, specifically, a urea water tank that is utilized when storing, producing, and transporting urea water. An elution amount of consitituent elements eluted from the ferrite stainless steel into a high-concentration urea aqueous a solution (urea water) is small, and the ferrite stainless steel has an excellent corrosion resistance against salt damage.
  • Means for Solving the Problems
  • As a result of dedicated studies to solve the above problem, the inventors of the present invention have found that it is important to form a passive film containing Cr in the surface of a steel in order to reduce an elution amount of the constituent elements of the steel into a urea aqueous solution having a high concentration of 25 to 45% on the inside surface and to attain an excellent corrosion resistance against salt damage on the outside surface, and consequently, it is necessary to contain an appropriate amount of Cr.
    It is well known that the corrosion resistance of the steel is improved by forming a passive film containing Cr on the steel surface. However, for instance, in a urea water tank used for a urea SCR system for vehicles, there is a concern that the passive film formed on the steel used for the urea water tank may elute or the steel located below the passive film may elute, at the instant when the tank in a normal pre-use state of being exposed to air is exposed to a high-concentration urea aqueous solution.
  • The inventors of the present invention have found that a ferrite stainless steel containing 10% or more of Cr can form a uniform passive film that can suppress an elution of the passive film formed on the surface of the steel and an elution of the steel located below the passive film via the passive film in the urea water having a high concentration of 25 to 45% used in the urea water tank (Japanese Patent Application No. 2008-62598 ).
    Meanwhile, in terms of the corrosion resistance against salt damage, the forming of the uniform passive film capable of suppressing the elution is also important to enhance the resistance against chloride ions contained in sea-salt particles and the like; and thereby, the occurrence of the corrosion is suppressed. In the outdoor environment, since wet and dry cycles are repeated, the repeated wet and dry cycles make the amount of the chloride ions concentrated. This results in a high-concentration chloride ion environment, which is more corrosive than the high-concentration urea aqueous solution environment. Therefore, a larger amount of Cr is required to form a uniform and stable passive film. In the present invention, it has been found that the lower limit of the Cr amount should be 15%.
  • The urea water tank which is the subject of the present invention is normally joined and assembled by welding or brazing. There are some cases where an oxide film is formed on the surface of a steel in the welded (or brazed) portions. Even in the case where the oxide film is formed, it is still necessary to suppress an elution of the constituent elements from the steel into a high-concentration urea water on the inside surface and to suppress a corrosion due to the salt damage on the outside surface. Since the diffusion rate of Cr in a ferrite stainless steel is greater than that in an austenite stainless steel, a lack of Cr just below the oxide film can be suppressed. Since it is important to retain a large amount of Cr just below the oxide film so as to suppress an elution of constituent elements from the steel having the oxide film into a high-concentration urea aqueous solution, the amount of Cr necessary to suppress the elution from the welded (or brazed) portions in the ferrite stainless steel can be made smaller than that in the austenite stainless steel.
  • Furthermore, from the dedicated studies, the inventors of the present invention have found that the effective amount of Cr as expressed by any one of the following Equations (I), (II), and (II) needs to be 10% or more so as to secure the amount of Cr just below the oxide film and to fulfill the regulation in relation to the elution of the constituent elements into a high-concentration urea water (Fe: <0.5, Cr: <0.2, Ni: <0.2, Cu: <0.2 (all in the units of mg/kg)) in the case where the oxide film is formed (herein, the atomic symbols in Equations (I) to (III) represent the contents of the elements (expressed by mass %), and the numerical values shown in front of the atomic symbols represent constant numbers). In addition, it has been found that the effective amount of Cr needs to be 15% or more so as to suppress a corrosion due to the salt damage that is severer than the high-concentration urea water.
  • In the case where only Nb is contained,

            the effective amount of Cr=Cr+4Si-2Mn     (I)

    In the case where only Ti is contained,

            the effective amount of Cr=Cr+4Si-2Mm-10Ti     (II)

    In the case where Nb and Ti are contained,

            the effective amount of Cr=Cr+4Si-2Mm-(10Ti-3Nb)     (III)

  • Equations (I) to (III) are alloy element indices where an influence of Si, Mn, Ti, and Nb contained in the steel on an effect of improving corrosion resistance due to Cr is taken into consideration, and are utilized for calculating a numerical value as an index of an effective amount of Cr that contributes to the improvement of the corrosion resistance of the steel.
    Although the effects of Si, Mn, Ti, and Nb included in Equations (I) to (III) are not fully understood, the effects of the respective elements are considered as follows:
  • Si is a useful element that forms an oxide just below chromium oxide so as to suppress the oxidation of Cr. Mn accelerates the generation of a spinel type oxide containing Cr and Mn so as to reduce the effective amount of Cr. Ti remarkably accelerates the growth of Cr oxide so as to considerably reduce the effective amount of Cr. Nb has an effect to reduce the effect of Ti of accelerating the growth of chromium oxide so as to suppress the decrease in the effective amount of Cr due to Ti.
  • In addition, in the case where a brazed jointing is conducted to assemble a urea water tank, brazeability relative to brazing metals ofNi and Cu is demanded. As a result of dedicated studies on the effect of alloy elements on brazeability, the inventors of the present invention have found that there are maximum values in the content of Ti which is frequently added to improve the formability or intergranular corrosion property in a ferrite stainless steel, and the content of Al which is added for deoxidation, in order to secure a satisfactory brazeability as shown in the following Equations (IV) and (V) (herein, the atomic symbols in Equations (IV) and (V) represent the contents of the elements (expressed by mass %), and the numerical values shown in front of the atomic symbols represent constant numbers).

            Ti-3N≤0.03     (IV)

            10(Ti-3N)+Al≤0.5     (V)

  • In order to obtain a satisfactory brazeability, molten brazing metal needs to adhere and spread out on the surface of a stainless steel. The wettability of brazing metal is affected by a surface film formed on the stainless steel in a brazing atmosphere.
    In the brazing atmosphere, even in the case where conditions allowing the reduction of iron and chromium oxides can be maintained, Ti and Al, which are oxidized more easily than Fe and Cr, form oxides so as to hinder the adhering and spreading out of the brazing metal; and thereby, the brazeability is degraded. Ti and Al solid solutions contribute to a formation of such an oxide film. If the Ti and Al solid solutions exist as relatively stable nitrides even at the brazing temperature, the Ti and Al solid solutions do not contribute to the film formation; and therefore, the Ti and Al solid solutions do not hinder the adhering and spreading out of the brazing metal. From these viewpoints, the relationship between the contents of Ti and Al and the adhering-and-spreading-out property (wettability) of the brazing metal has been studied.
  • As a result, as shown in the examples described later, it has been confirmed that the adhering-and-spreading-out property becomes satisfactory in the case where the conditions of Ti-3N ≤ 0.03, Al ≤ 0.5%, and 10(Ti-3N)+Al ≤ 0.5 are fulfilled. With regard to steels of which the contents of Ti and Al did not fulfill the above-described conditions, the surface films after the thermal treatment of brazing were analyzed. As a result, it was revealed that oxide films including concentrated Ti and Al were uniformly formed within a thickness of several tens of nanometers to several hundreds of nanometers. It is considered that such a film formation hinders the adhering-and-spreading-out property of the brazing metal.
  • Furthermore, since the urea water tank which is the subject of the present invention needs to have a strength, it is desirable to suppress the decrease in the strength after brazing. In the case where brazing is conducted at high temperatures within a range of 1000 to 1100°C such as Ni brazing and Cu brazing, it has been considered that it is important to suppress the decrease in the strength induced by grain coarsening.
  • Pinning effect due to precipitates is useful to suppress the grain coarsening, and the inventors of the present invention have found that the amount of precipitates and the stability of carbonitrides that are useful for the suppression of grain coarsening can be secured by utilizing Ti and Nb carbonitrides as the precipitates and by setting the total amount of C and N (expressed by mass %) to be in a range of 0.015% or more (Japanese Patent Application No. 2007-339732 ).
  • The present invention aims to provide a ferrite stainless steel for use in producing a urea water tank which has an improved corrosion resistance against salt damage together with the properties described in the previous two Japanese Patent Applications. That is, the present invention aims to provide the ferrite stainless steel showing a small degree of elution of constituent elements into a high-concentration urea water and an excellent corrosion resistance against salt damage. The summary of the present invention is as follows as described in the claims:
    1. (1) A ferrite stainless steel for use in producing a urea water tank includes: in terms of mass %, C: 0.05% or less; N: 0.05% or less; Si: 0.02 to 1.5%; Mn: 0.02 to 2%; Cr: 15 to 23%; and either one or both of Nb and Ti at a content within a range of 8(C+N) to 1% (herein, C and N represent the contents of C and N (expressed by mass %), respectively, and the numerical values shown in front of the atomic symbols represent constant numbers); with the remainder being iron and unavoidable impurities, wherein an effective amount of Cr expressed by any one of the following Equations (I) to (III) is 15% or more (herein, the atomic symbols in Equations (I) to (III) represent the contents of the elements (expressed by mass %), respectively, and the numerical values shown in front of the atomic symbols represent constant numbers).
      In the case where only Nb is contained,

              the effective amount of Cr=Cr+4Si-2Mn     (I)

      In the case where only Ti is contained,

              the effective amount of Cr=Cr+4Si-2Mm-10Ti     (II)

      In the case where both of Nb and Ti are contained,

              the effective amount of Cr=Cr+4Si-2Mm-(10Ti-3Nb)     (III)

    • (2) The ferrite stainless steel for use in producing a urea water tank according to (1), which further includes, in terms of mass %, one or more selected from Mo: 3% or less, Ni: 3% or less, Cu: 3% or less, V: 3% or less, and W: 5% or less.
    • (3) The ferrite stainless steel for use in producing a urea water tank according to any one of (1) and (2), which further includes, in terms of mass %, one or more selected from Ca: 0.002% or less, Mg: 0.002% or less, and B: 0.005% or less.
    • (4) The ferrite stainless steel for use in producing a urea water tank according to any one of (1) to (3) wherein a content of C+N is in a range of 0.015% or more.
    • (5) The ferrite stainless steel for use in producing a urea water tank according to any one of (1) to (4), which further comprises, in terms of mass %, Al: 0.5% or less; and wherein Equations (IV) and (V) are fulfilled (herein, the atomic symbols in Equations (IV) and (V) represent the contents of the elements (expressed by mass %); and the numerical values shown in front of the atomic symbols represent constant numbers).

              Ti-3N≤0.03     (IV)

              10(Ti-3N)+Al≤0.5     (V)

    Effects of the Invention
  • In accordance with the present invention, it is possible to provide a ferrite stainless steel showing a small degree of elution of constituent elements into a high-concentration urea water and an excellent corrosion resistance against salt damage. Therefore, it is possible to provide a preferred material used for a device that reduces NOx from exhaust gas by using urea water in an internal combustion engine, mainly in a diesel engine, and, in particular, a device related to a urea SCR system for vehicles, and preferred for a tank being used when storing, producing, and transporting urea water.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG 1 is a figure showing the relationship between the adhering-and-spreading-out property of brazing metal and the amounts of Ti and Al.
    • FIG 2 is a figure showing the relationship between the effective amount of Cr and the maximum corrosion depths in a cyclic corrosion test.
    • FIG. 3 is a figure showing the conditions of the cyclic corrosion test.
    BEST MODE FOR CARRYING OUT THE INVENTION
  • The present invention has been made based on the above-described findings. Hereinafter, the chemical compositions defined by the present invention will be described in more detail.
  • C: Since C degrades intergranular corrosion resistance and formability, it is necessary to adjust the content of C to be at a low level. Therefore, the content of C is set to be in a range of 0.05% or less. However, since an excessively low content leads to the increase in refining cost, it is desirable to set the content of C to be in a range of 0.002% or more.
  • N: N is a useful element for pitting corrosion resistance; however, N degrades the intergranular corrosion resistance and the formability. Therefore, it is necessary to adjust the content ofN to be at a low level. Accordingly, the content ofN is set to be in a range of 0.05% or less. However, since an excessively low content leads to an increase in refining cost, it is desirable to set the content of N to be in a range of 0.002% or more.
  • Si: Si is useful as a deoxidization element, and is also an effective element for corrosion resistance; however, Si degrades the formability. Therefore, the content of Si is set to be in a range of 0.02 to 1.5%.
  • Mn: Mn is useful as a deoxidization element; however, Mn degrades corrosion resistance when an excessive content of Mn is included. Therefore, the content of Mn is set to be in a range of 0.02 to 2%.
  • Cr: Cr is the most important element in the present invention, and the content of Cr needs to be at least 15% or more so as to reduce an elution amount of constituent elements into high-concentration urea water and to attain an excellent corrosion resistance against salt damage. When the content of Cr increases, elution characteristics become more stable; however, the formability and the manufacturability deteriorate. Consequently, the upper limit of the content of Cr is set to 23% or less. The content of Cr is preferably in a range of 16% or more, and more preferably in a range of 18% or more.
  • Nb and Ti: A urea water tank which is the subject of the present invention is often jointed and assembled by welding or brazing. Nb and Ti are useful elements having the effects of fixing C and N and improving the intergranular corrosion resistance in welded (or brazed) portions. However, when an excessive content ofNb and Ti are included, Nb and Ti cause a negative effect on the formability and the manufacturability. Therefore, the content of either one or both ofNb and Ti is set to be in a range of 8(C+N) to 1%, and preferably in a range of 8(C+N) to 0.6% (herein, C and N represent the contents of C and N (expressed by mass %); respectively, and the numerical values shown in front of the atomic symbols represent constant numbers).
    In the case where a brazed jointing is conducted to assemble a urea water tank, the content of Ti needs to be controlled to fulfill Ti-3N ≤ 0.03 so as to secure a satisfactory brazeability (herein, the atomic symbols in the equation represent the contents of the elements (expressed by mass %), and the numerical values shown in front of the atomic symbols represent constant numbers). The value of Ti-3N is preferably in a range of 0.02% or less. However, since the formability deteriorates when the content of Ti is excessively low, it is preferable to adjust the content of Ti so as to fulfill the value of Ti-3N to be in a range of -0.08% or more. In the case where the formability and the like are not particularly required, Ti may not be included.
  • Effective amount of Cr: In the present invention, the effective amount of Cr expressed by any one of Equations (I), (II), and (III) is set to be in a range of 15% or more (herein, the atomic symbols in Equations (I) to (III) represent the contents of the elements (expressed by mass %); and the numerical values shown in front of the atomic symbols represent constant numbers).
    In the case where only Nb is contained,

            the effective amount of Cr=Cr+4Si-2Mn     (I)

    In the case where only Ti is contained,

            the effective amount of Cr=Cr+4Si-2Mm-10Ti     (II)

    In the case where both of Nb and Ti are contained,

            the effective amount of Cr=Cr+4Si-2Mm-(10Ti-3Nb)     (III)

  • It is necessary to set the effective amount of Cr calculated by the Equations (I) to (III) to be in a range of 10% or more so as to obtain a ferrite stainless steel showing a remarkably small degree of elution of constituent elements into high-concentration urea water and an excellent corrosion resistance that fulfills JIS K2247-1 by securing the amount of Cr just below an oxide film under conditions where the oxide film is formed in the steel surface, such as the case where the steel is subjected to welding or brazed jointing. In addition, the present invention demands the corrosion resistance against salt damage on the outside surface, and it is necessary to set the effective amount of Cr to be in a range of 15% or more, preferably in a range of 16% or more, and more preferably in a range of 18% or more so as to be compatible with the corrosion resistance in high-concentration urea water.
  • Mo: If necessary, it is possible to contain 3% or less of Mo so as to improve the corrosion resistance. The content of Mo needs to be 0.3% or more so as to obtain a stable effect. If an excessive content of Mo is included, Mo degrades the formability, and Mo leads to an increase in cost since Mo is expensive. Therefore, it is preferable to contain Mo at a content within a range of 0.3 to 3%.
  • Ni: If necessary, it is possible to contain 3% or less of Ni so as to improve the corrosion resistance. The content ofNi needs to be 0.2% or more so as to obtain a stable effect. If an excessive content ofNi is included, Ni degrades the formability, and Ni leads to an increase in cost since Ni is expensive. Therefore, it is preferable to contain Ni at a content within a range of 0.2 to 3%.
  • Cu: If necessary, it is possible to contain 3% or less of Cu so as to improve the corrosion resistance. The content of Cu needs to be 0.2% or more so as to obtain a stable effect. If an excessive content of Cu is included, Cu degrades the formability, and Cu leads to an increase in cost since Cu is expensive. Therefore, it is preferable to contain Cu at a content within a range of 0.2 to 3%.
  • V: If necessary, it is possible to contain 3% or less of V so as to improve the corrosion resistance. The content of V needs to be 0.2% or more so as to obtain a stable effect. If an excessive content of V is included, V degrades the formability, and V leads to an increase in cost since V is expensive. Therefore, it is preferable to contain V at a content within a range of 0.2 to 3%.
  • W: If necessary, it is possible to contain 5% or less of W so as to improve the corrosion resistance. The content of W needs to be 0.5% or more so as to obtain a stable effect. If an excessive content of W is included, W degrades the formability, and W leads to an increase in cost since W is expensive. Therefore, it is preferable to contain W at a content within a range of 0.5 to 5%.
  • Ca: Ca has a deoxidization effect and the like, and is a useful element for refining; and therefore, if necessary, Ca may be included at a content within a range of 0.002% or less. If Ca is contained, it is preferable to contain 0.0002% or more of Ca so as to obtain a stable effect.
    Mg: Mg has a deoxidization effect and the like, and is a useful element for refining, and Mg also refines the microstructure and is useful for improving the formability and toughness. Therefore, if necessary, Mg may be included at a content within a range of 0.002% or less. If Mg is contained, it is preferable to contain 0.0002% or more of Mg so as to obtain a stable effect.
    B: B is a useful element for improving the secondary formability. Therefore, if necessary, B may be included at a content within a range of 0.005% or less. If B is contained, it is preferable to contain 0.0002% or more of B so as to obtain a stable effect.
  • C+N: In the case where a brazed jointing is conducted to assemble a urea water tank, the content of C+N needs to be in a range of 0.015% or more, and preferably in a range of 0.02% or more so as to suppress a decrease in strength due to grain coarsening which occurs when being brazed. If an excessive content of C and N is included, C and N degrade the intergranular corrosion resistance and the formability. Therefore, it is preferable to set the upper limit of C+N to 0.04% or less.
  • Al: Al has a deoxidization effect and the like, and is a useful element for refining, and Al also has an effect of improving the formability. Therefore, if necessary, Al may be included. In the case where a brazed jointing is conducted to assemble a urea water tank, it is necessary to secure a satisfactory brazeability; and therefore, it is preferable to set the content ofAl to be in a range of 0.5% or less.
    In addition, in terms of the relationship with Ti that affects the brazeability similarly to Al, it is preferable to fulfill the equation of 10(Ti-3N)+Al ≤ 0.5 so as to secure a satisfactory brazeability (herein, the atomic symbols in the equation represent the contents of the elements (expressed by mass %), and the numerical values shown in front of the atomic symbols represent constant numbers).
  • With regard to an unavoidable impurity of P, it is preferable to set the content of P to be in a range of 0.04% or less from the perspective of the weldability. In addition, with regard to S, it is preferable to set the content of S to be in a range of 0.01 % or less from the perspective of the corrosion resistance.
  • As a method for manufacturing the stainless steel of the present invention, it is possible to apply a general method for manufacturing a ferrite stainless steel. In general, a molten steel is prepared in a converter or an electric furnace, and the molten steel is refined in an AOD furnace, a VOD furnace, or the like, and the refined molten steel is subjected to a continuous casting or an ingot-making method so as to obtain a slab, and then the slab is subjected to a process of hot rolling-annealing of a hot-rolled steel sheet-pickling-cold rolling-final annealing-pickling so as to manufacture a ferrite stainless steel. If necessity, the annealing of the hot-rolled steel sheet may be omitted, and the process of cold rolling-final annealing-pickling may be repeated.
  • EXAMPLES
  • With regard to cold-rolled steel sheets having the chemical compositions of Nos. 1 to 14 shown in Tables 1 and 2, adhering-and-spreading-out properties of brazing metal were evaluated Here, the column of Equation (IV) in Table 2 represents the value of Ti-3N, the column of Equation (V) in Table 2 represents the value of 10(Ti-3N)+Al.
  • (The adhering-and-spreading-out property of the brazing metal)
  • A test specimen having a width of 50mm and a length of 70mm was cut off from a cold rolled steel sheet, and one surface of the specimen was subjected to wet-polishing by emery paper down to 400-grit. Then, 0.1g of Ni brazing alloy was placed on the polished surface, and the test specimen was heated at 1100°C in a vacuum atmosphere of 5 x 10-3 torr (about 0.6666Pa) for ten minutes.
    After cooling down to room temperature, the area of the brazing metal after heating was measured. The brazeability was evaluated as good if the area of the brazing metal after heating is twice or more of the area of the brazing metal before heating, and the brazeability was evaluated as bad if the area of the brazing metal after heating is less than twice of the area of the brazing metal before heating.
  • Table 1
    No. Chemical Composition (mass%)
    C Si Mn P S Cr Ti Nb Al N Other
    1 0.012 0.42 0.15 0.028 0.0015 19.42 0.004 0.39 0.025 0.018 0.42Cu,0.32Ni, 0.0010Ca
    2 0.013 0.55 0.45 0.029 0.0008 16.58 0.002 0.55 0.004 0.015 0.32Ni,0.35Cu
    3 0.006 0.12 0.19 0.022 0.0010 18.84 0.004 0.42 0.036 0.010 1.86Mo,0.0003B
    4 0.016 0.25 0.18 0.029 0.0011 18.23 0.021 0.36 0.036 0.014 0.52Cu,1.02Mo
    5 0.007 0.16 0.15 0.022 0.0008 20.25 0.012 0.22 0.015 0.009 1.03Ni,1.08Mo
    6 0.014 0.33 0.45 0.030 0.0014 18.15 0.015 0.36 0.055 0.015 2.15W,0.35V
    7 0.015 0.40 0.32 0.025 0.0019 20.88 0.042 0.40 0.046 0.010 0.34Ni
    8 0.016 0.41 0.29 0.024 0.0016 19.19 0.066 0.42 0.086 0.015 1.88W,0.0005Mg
    9 0.018 0.39 0.33 0.023 0.0015 19.34 0.032 0.39 0.35 0.009 0.56Ni,0.38V, 0.0004Ca
    10 0.008 0.18 0.15 0.026 0.0011 17.25 0.25 0.002 0.042 0.010 1.12Mo,0.0005B
    11 0.007 0.11 0.12 0.025 0.0012 18.85 0.12 0.22 0.056 0.012 1.80Mo,0.0004B
    12 0.012 0.33 0.25 0.025 0.0012 18.22 0.004 0.35 0.58 0.014 0.29Ni
    13 0.010 0.42 0.36 0.026 0.0007 16.89 0.062 0.003 0.36 0.012
    14 0.011 0.15 0.22 0.028 0.0009 19.12 0.073 0.25 0.041 0.008 1.90Mo
  • Table 2
    No. Equation (IV) Equation (V) C+N (mass%) 8(C+N) (mass%) Ti+Nb (mass%)
    1 -0.050 -0.48 0.03 0.24 0.394
    2 -0.043 -0.43 0.028 0.224 0.552
    3 -0.026 -0.22 0.016 0.128 0.424
    4 -0.021 -0.17 0.03 0.24 0.3 81
    5 -0.015 -0.14 0.016 0.128 0.232
    6 -0.030 -0.25 0.029 0.232, 0.375
    7 0.012 0.17 0.025 0.2 0.442
    8 0.021 0.30 0.031 0.248 0.486
    9 0.005 0.40 0.027 0.216 0.422
    10 0.220 2.24 0.018 0.144 0.252
    11 0.084 0.90 0.019 0.152 0.34
    12 -0.038 0.20 0.026 0.208 0.354
    13 0.026 0.62 0.022 0.176 0.065
    14 0.049 0.53 0.019 0.152 0.323
  • The results are shown in FIG 1, and it has been confirmed that, among Nos. 1 to 14 shown in Tables 1 and 2, steels fulfilling the conditions of Ti-3N ≤ 0.03, Al ≤ 0.5%, 10(Ti-3N)+Al ≤ 0.5 are evaluated as having good brazeability. Here, the underlined values in Tables 1 and 2 represent values which do not fulfill the above-described conditions.
  • Steels having chemical compositions shown in Tables 3 and 4 were melted and were subjected o a process of normal hot rolling, cold rolling, and annealing to manufacture steel sheets having a thickness of 1mm. With regard to these cold rolled steel sheets, the corrosion resistance was evaluated by corrosion tests, and the brazeability was also evaluated. As the corrosion tests, an immersion test in a urea aqueous solution (urea water) was carried out for the inside surface and a cyclic corrosion test was carried out for the outside surface. The results are shown in Table 5 and FIG. 2.
    Here, the effective amount of Cr column in Table 4 with the symbol of * 1 represents the value of Cr+4Si-2Mn when containing only Nb, the value of Cr+4Si-2Mn-10Ti when containing only Ti, and the value of Cr+4Si-2Mn-(10Ti-3Nb) when containing both of Nb and Ti.
    In addition, the column of Equation IV in Table 4 with the symbol of *2 represents the value of Ti-3N, and the column of Equation V with the symbol of *3 represents the value of 10(Ti-3N)+Al.
    The underlined values in Tables 3 and 4 represent values outside the range of the present invention.
  • Figure imgb0001
    Figure imgb0002
  • Table 4
    Testing Example No. Effective Amount of Cr *1 (mass%) Equation iv *2 (mass%) Equation v*3 (mass%) C+N (mass%) 8(C+N) (mass%)
    Example of the Invention 1 17.7 -0.05 -0.54 0.032 0.256
    Example of the Invention 2 15.6 0.19 1.92 0.01 0.08
    Example of the Invention 3 17.2 -0.036 -0.36 0.021 0.168
    Example of the Invention 4 20.2 -0.045 -0.45 0.034 0.272
    Example of the Invention 5 22.3 0.09 0.87 0.017 0.136
    Example of the Invention 6 20.1 -0.03 -0.3 0.02 0.16
    Example of the Invention 7 15.4 -0.10 -0.99 0.059 0.472
    Example of the Invention 8 20.3 -0.05 -0.45 0.032 0.256
    Example of the Invention 9 21.3 -0.04 -0.40 0.025 0.2
    Example of the Invention 10 23.3 -0.03 -0.26 0.017 0.136
    Example of the Invention 11 18.1 -0.04 -0.33 0.017 0.136
    Comparative Example 12 9.3 0.16 1.59 0.022 0.176
    Comparative Example 13 14.3 -0.04 -0.36 0.022 0.176
    Comparative Example 14 12.9 0.28 2.76 0.02 0.16
  • Table 5
    Testing Example No. Immersion Test in a Urea Aqueous Solution Cyclic corrosion Test Adhereing Property of Brass
    Corrosion rate (g•m-2•h-1) Solution Analysis (unit: mg/kg) Maximum Corrosion Depth (µm) Spreadability of brazing metal Microstructure
    Fe Cr Ni Cu
    Example of the Invention 1 <0.001 0.30 0.12 <0.05 <0.05 849 Good Good
    Example of the Invention 2 <0.001 0.35 0.15 <0.05 <0.05 887 Bad Bad
    Example of the Invention 3 <0.001 0.32 0.13 <0.05 <0.05 878 Good Good
    Example of the Invention 4 <0.001 0.25 0.06 <0.05 <0.05 663 Good Good
    Example of the Invention 5 <0,001 0.15 <0.05 <0.05 <0.05 431 Bad Good
    Example of the Invention 6 <0,001 0.20 0.06 <0.05 <0.05 598 Good Good
    Example of the Invention 7 <0.001 0.37 0.16 <0.05 <0.05 865 Good Good
    Example of the Invention 8 <0.001 0.26 0.06 <0.05 <0.05 585 Good Good
    Example of the Invention 9 <0.001 0.21 <0.05 <0.05 <0.05 323 Good Good
    Example of the Invention 10 <0.001 0.08 <0,05 <0.05 <0.05 354 Good Good
    Example of the Invention 11 <0.001 0.29 0.10 <0.05 <0.05 813 Good Good
    Comparative Example 12 0.005 0.88 0.29 <0.05 <0.05 >1000 Bad Good
    Comparative Example 13 <0.001 0.40 0.16 <0.05 <0.05 >1000 Good Good
    Comparative Example 14 <0.001 0.42 0.17 <0.05 <0.05 >1000 Bad Good
  • (The immersion test in a urea aqueous solution)
  • A test specimen having a width of 20mm and a length of 40mm was cut off from the cold rolled steel sheet, and was subjected to wet-polishing by emery paper down to 600-grit. Then, the test specimen was subjected to a thermal treatment at 700°C in air for one second to simulate welding for obtaining a mock surface status of a welded heat-affected zone.
    Next, corrosion tests were carried out in which the thermally-treated test specimens of Testing Examples 1 to 14 were immersed in a urea aqueous solution having a concentration of 30% at 60°C for 144 hours. The ratio of the solution volume to the test specimen area was set to 3.6ml·cm-2 in accordance with the metal corrosion test in "an anti-freezing liquid" of JIS K 2234, and a special grade reagent was used for urea being used for the preparation of the urea aqueous solution. After the completion of the corrosion tests, the corrosion rate was measured by weighing the test specimen, and a solution analysis was carried out by ICPS. The analyzed elements were Fe, Cr, Ni, and Cu.
  • (The cyclic corrosion test)
  • A test specimen having a width of 70mm and a length of 150mm was cut off from the cold rolled steel sheet, and were subjected to wet-polished by emery paper down to 320-grit. Then, the test specimen was subjected to a thermal treatment at 700°C in air for one second to simulate welding for obtaining a mock surface status of a welded heat-affected zone.
    Next, the edge faces and the rear surfaces of the thermally-treated test specimens of Testing Examples 1 to 14 were coated with sealing tapes, and repetitive wet-dry cycle tests were carried out under conditions shown in FIG. 3. After the completion of 180 cycles, the corrosion product was removed, and the corrosion depths in the corroded areas were measured by the depth of focus of a microscope method. Here, with regard to conditions which are not defined in this specification, the conditions prescribed in JASO M609-91 were applied.
  • (Brazeability)
  • In a similar manner to the above-described "adhering-and-spreading-out property of brazing metal", the adhering-and-spreading-out property of brazing metal was measured. Then, the microstructures of the cross sections of the test specimens were observed. The number of crystal grains existing in the sheet depth direction was measured in a 20mm-long range parallel to the rolling direction, and the brazeability was evaluated as good if two or more crystal grains existed in the sheet depth direction, and the brazeability was evaluated as bad if only one crystal grain existed.
  • As shown in Table 5 and FIG. 2, the steels of Testing Examples 1 to 11 showed the maximum corrosion depths of less than 1 mm in the cyclic corrosion tests; and therefore, the steels of Testing Examples 1 to 11 were evaluated as good in the corrosion resistance against salt damage. Furthermore, the steels of Testing Examples 1 to 11 showed the corrosion rates of less than 0.001g·m-2·h-1 in the immersion tests in the urea aqueous solution, and the amounts of Fe, Cr, Cu, and Ni in the solution after the tests fulfilled the standards of JIS K 2247-1. Therefore, the steels of Testing Examples 1 to 11 were evaluated as good in the corrosion resistance on the inside surface.
    Among the steels, the steels of Testing Examples 1, 3, 4, 6, 7, 8, 9, 10, and 11 showed the value of C+N of 0.015 or more and fulfilled the Equations (IV) and (V) of the present invention. These steels were evaluated as good in the adhering-and-spreading-out property of brazing metal, and the coarsening of crystal grains was suppressed when being brazed. In addition, the steel of Testing Example 5 showed the value of C+N of 0.015 or more; however, this steel did not fulfill the Equations (IV) and (V) of the present invention. In this steel, the coarsening of crystal grains was suppressed; however, this steel was evaluated as bad in the adhering-and-spreading-out property of brazing metal.
    In addition, the steel of Testing Example 2 showed the value of C+N of less than 0.015 and did not fulfill the Equations (IV) and (V) of the present invention. In this steel, the coarsening of crystal grains occurred remarkably, and this steel was evaluated as bad in the adhering-and-spreading-out property of brazing metal.
  • The steel of Testing Example 12 showed less than 10% in both of the amount of Cr and the effective amount of Cr. This steel showed a low corrosion rate of 0.005g·m-2·h-1 or less in the immersion test in the urea aqueous solution; however, the amounts of Fe and Cr in the solution after the test failed to fulfill the standards of JIS K 2247-1.
    The steel of Testing Example 13 showed both of the amount of Cr and the effective amount of Cr outside the ranges of the present invention, and the steel of Testing Example 14 showed the effective amount of Cr outside the range of the present invention. These steels fulfilled the standards of JIS K 2247-1, and were evaluated as good in elution characteristics against the urea aqueous solution. However, these steels showed the maximum corrosion depths of 1mm or more in the cyclic corrosion tests; and therefore, these steels had bad corrosion resistances against salt damage.
  • INDUSTRIAL APPLICABILITY
  • The ferrite stainless steel of the present invention is a prefered material for a device that reduces NOx from exhaust gas by using urea water in an internal combustion engine, mainly in a diesel engine, and in particular, a device related to a urea SCR system for vehicles, and preferred for a tank being used when storing, producing, and transporting urea water.

Claims (5)

  1. A ferrite stainless steel for use in producing a urea water tank, comprising: in terms of mass %,
    C: 0.05% or less;
    N: 0.05% or less;
    Si: 0.02 to 1.5%;
    Mn: 0.02 to 2%;
    Cr: 15 to 23%; and
    either one or both of Nb and Ti at a content within a range of 8(C+N) to 1% (herein, C and N represent the contents of C and N (expressed by mass %), respectively, and the numerical values shown in front of the atomic symbols represent constant numbers),
    with the remainder being iron and unavoidable impurities,
    wherein an effective amount of Cr expressed by any one of the following Equations (I), (II), and (III) is 15% or more (herein, the atomic symbols in Equations (I) to (III) represent the contents of the elements (expressed by mass %), respectively, and numerical values shown in front of the atomic symbols represent constant numbers),
    in the case where only Nb is contained,

            the effective amount of Cr=Cr+4Si-2Mn     (I)

    in the case where only Ti is contained,

            the effective amount of Cr=Cr+4Si-2Mm-10Ti     (II)

    in the case where both of Nb and Ti are contained,

            the effective amount of Cr=Cr+4Si-2Mm-(10Ti-3Nb)     (III)

  2. The ferrite stainless steel for use in producing a urea water tank according to Claim 1,
    which further comprises, in terms of mass %, one or more selected from Mo: 3% or less, Ni: 3% or less, Cu: 3% or less, V: 3% or less, and W: 5% or less.
  3. The ferrite stainless steel for use in producing a urea water tank according to Claim 1,
    which further comprises, in terms of mass %, one or more selected from Ca: 0.002% or less, Mg: 0.002% or less, and B: 0.005% or less.
  4. The ferrite stainless steel for use in producing a urea water tank according to Claim 1, wherein a content of C+N is in a range of 0.015% or more.
  5. The ferrite stainless steel for use in producing a urea water tank according to Claim 1,
    which further comprises, in terms of mass %, Al: 0.5% or less,
    wherein Equations (IV) and (V) are fulfilled (herein, atomic symbols in Equations (IV) and (V) represent contents of the elements (expressed by mass %), and the numerical values shown in front of the atomic symbols represent constant numbers).

            Ti-3N≤0.03     (IV)

            10(Ti-3N)+Al≤0.5     (V)

EP20090800430 2008-07-23 2009-07-23 Ferritic stainless steel for use in producing urea water tank Withdrawn EP2316979A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008190065 2008-07-23
PCT/JP2009/063169 WO2010010916A1 (en) 2008-07-23 2009-07-23 Ferritic stainless steel for use in producing urea water tank

Publications (2)

Publication Number Publication Date
EP2316979A1 true EP2316979A1 (en) 2011-05-04
EP2316979A4 EP2316979A4 (en) 2014-01-22

Family

ID=41570376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090800430 Withdrawn EP2316979A4 (en) 2008-07-23 2009-07-23 Ferritic stainless steel for use in producing urea water tank

Country Status (6)

Country Link
US (1) US20110110812A1 (en)
EP (1) EP2316979A4 (en)
JP (1) JP5588868B2 (en)
KR (1) KR20110018455A (en)
CN (1) CN102099500B (en)
WO (1) WO2010010916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678566A (en) * 2017-05-26 2020-01-10 杰富意钢铁株式会社 Ferritic stainless steel

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676896B2 (en) * 2009-03-27 2015-02-25 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent local corrosion resistance
JP5610796B2 (en) * 2010-03-08 2014-10-22 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP5684547B2 (en) * 2010-11-26 2015-03-11 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for urea SCR system parts and method for producing the same
JP6071608B2 (en) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP5793459B2 (en) * 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
CN104508168B (en) * 2012-09-24 2017-09-26 杰富意钢铁株式会社 Ferrite-group stainless steel
FI124995B (en) * 2012-11-20 2015-04-15 Outokumpu Oy Ferritic stainless steel
WO2014157576A1 (en) 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
WO2016035241A1 (en) * 2014-09-02 2016-03-10 Jfeスチール株式会社 Ferritic stainless steel sheet for casing for urea-scr
EP3994292A1 (en) * 2019-07-05 2022-05-11 Stamicarbon B.V. Ferritic steel parts in urea plants
CN111057947A (en) * 2019-12-09 2020-04-24 宁波宝新不锈钢有限公司 Ferrite stainless steel with good high-temperature strength and preparation method thereof
EP4126337A1 (en) * 2020-03-25 2023-02-08 Casale Sa Use of ferritic steel in the high pressure section of urea plants
CN118043490A (en) * 2021-09-16 2024-05-14 日铁不锈钢株式会社 Ferritic stainless steel sheet and method for producing ferritic stainless steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478790A1 (en) * 1990-03-24 1992-04-08 Nisshin Steel Co., Ltd. Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
EP0678587A1 (en) * 1994-04-21 1995-10-25 Kawasaki Steel Corporation Hot-rolled ferritic steel for motor vehicle exhaust members
JPH10306350A (en) * 1997-04-28 1998-11-17 Nippon Steel Corp Ammonia-type absorption heat pump
EP1734143A1 (en) * 2004-04-07 2006-12-20 Nippon Steel &amp; Sumikin Stainless Steel Corporation Ferritic stainless steel sheet excellent in formability and method for production thereof
EP1930461A1 (en) * 2006-12-07 2008-06-11 Nisshin Steel Co., Ltd. Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264652A (en) * 1990-02-13 1991-11-25 Sumitomo Metal Ind Ltd Ferritic stainless steel sheet and production thereof
JPH04280947A (en) * 1990-12-28 1992-10-06 Nippon Steel Corp Ferritic stainless steel with high thermal fatigue resistance for automobile exhaust manifold
SE501321C2 (en) * 1993-06-21 1995-01-16 Sandvik Ab Ferrite-austenitic stainless steel and use of the steel
JPH07268554A (en) * 1994-03-28 1995-10-17 Nippon Steel Corp Ferritic stainless steel for automobile exhaust system excellent in formability and heat resistance
JPH08127847A (en) * 1994-10-28 1996-05-21 Nippon Steel Corp Parts excellent in silentness and production thereof
JPH08325672A (en) * 1995-05-25 1996-12-10 Nippon Steel Corp Bellows for high temperature use excellent in cracking resistance and stress corrosion cracking resistance at high temperature
CN1068385C (en) * 1996-10-14 2001-07-11 冶金工业部钢铁研究总院 ultra hypoeutectoid, diphasic stainless steel, and prodn. method thereof
JP4300672B2 (en) * 2000-03-16 2009-07-22 Jfeスチール株式会社 Stainless steel plate for motorcycle disc brakes requiring no quenching and manufacturing method thereof
JP4390962B2 (en) * 2000-04-04 2009-12-24 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent surface properties and corrosion resistance
JP4390169B2 (en) * 2000-06-23 2009-12-24 日新製鋼株式会社 Ferritic stainless steel for gas turbine exhaust gas path members
EP1306258B1 (en) * 2000-08-01 2005-11-09 Nisshin Steel Co., Ltd. Stainless steel fuel tank for automobile
JP2002194505A (en) * 2000-12-22 2002-07-10 Sumitomo Metal Ind Ltd Ferrite stainless steel and its production method of the same
JP2003004714A (en) * 2001-06-22 2003-01-08 Asahi Breweries Ltd Analyzer for component in hermetically closed container
WO2003018861A1 (en) * 2001-08-31 2003-03-06 Dsm Ip Assets B.V. Process for rendering metals corrosion resistant
KR100762151B1 (en) * 2001-10-31 2007-10-01 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet having excellent deep-drawability and brittle resistance to secondary processing and method for making the same
JP3716372B2 (en) 2002-02-05 2005-11-16 住友金属工業株式会社 Duplex stainless steel for urea production plant, welding materials, urea production plant and its equipment
JP4206836B2 (en) * 2002-06-17 2009-01-14 Jfeスチール株式会社 Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
JP4302370B2 (en) * 2002-07-16 2009-07-22 日新製鋼株式会社 Fe-Cr steel sheet with small plastic anisotropy and method for producing the same
EP1637785B9 (en) * 2004-09-15 2011-01-05 Sumitomo Metal Industries, Ltd. Steel tube excellent in exfoliation resistance of scale on inner surface
US7732733B2 (en) * 2005-01-26 2010-06-08 Nippon Welding Rod Co., Ltd. Ferritic stainless steel welding wire and manufacturing method thereof
KR20070116976A (en) * 2005-06-09 2007-12-11 제이에프이 스틸 가부시키가이샤 Ferrite stainless steel sheet for bellows stock pipe
JP4974542B2 (en) * 2005-09-02 2012-07-11 日新製鋼株式会社 Automotive exhaust gas flow path member
JP2007113484A (en) 2005-10-20 2007-05-10 Nissei Sangyo Kk Simple high grade urea water supply device and method for supplying high grade urea water using same
JP4787007B2 (en) * 2005-11-25 2011-10-05 住友金属工業株式会社 Duplex stainless steel for urea production plant, welding materials and urea production plant
JP2007194505A (en) * 2006-01-20 2007-08-02 Fujifilm Corp Organic electroluminescence element
JP4757076B2 (en) * 2006-03-31 2011-08-24 Udトラックス株式会社 Liquid storage tank and engine exhaust purification system
JP4995517B2 (en) 2006-09-11 2012-08-08 株式会社フロウエル Tube material construction device and main body housing case of the construction device
JP4893196B2 (en) * 2006-09-28 2012-03-07 Jfeスチール株式会社 High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JP4767146B2 (en) * 2006-10-18 2011-09-07 日新製鋼株式会社 Stainless steel container for high pressure water
JP2008152162A (en) * 2006-12-20 2008-07-03 Oki Data Corp Image forming apparatus
JP5008127B2 (en) 2007-02-02 2012-08-22 北越紀州製紙株式会社 Dustless paper
EP2134878A2 (en) * 2007-03-06 2009-12-23 ATI Properties, Inc. Method for reducing formation of electrically resistive layer on ferritic stainless steels
JP5390175B2 (en) 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent brazeability
JP5563203B2 (en) * 2008-03-12 2014-07-30 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent corrosion resistance in urea water and ferritic stainless steel for urea SCR system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478790A1 (en) * 1990-03-24 1992-04-08 Nisshin Steel Co., Ltd. Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
EP0678587A1 (en) * 1994-04-21 1995-10-25 Kawasaki Steel Corporation Hot-rolled ferritic steel for motor vehicle exhaust members
JPH10306350A (en) * 1997-04-28 1998-11-17 Nippon Steel Corp Ammonia-type absorption heat pump
EP1734143A1 (en) * 2004-04-07 2006-12-20 Nippon Steel &amp; Sumikin Stainless Steel Corporation Ferritic stainless steel sheet excellent in formability and method for production thereof
EP1930461A1 (en) * 2006-12-07 2008-06-11 Nisshin Steel Co., Ltd. Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIOLA C ET AL: "UTILIZATION OF STAINLESS STEELS AND SPECIAL METALS IN NITRIC ACID AND UREA PRODUCTION PLANTS", MATERIALS AND CORROSION - WERKSTOFFE UND KORROSION, WILEY-VCH, WEINHEIM, DE, vol. 43, no. 8, 1 August 1992 (1992-08-01) , pages 396-401, XP000349762, ISSN: 0947-5117, DOI: 10.1002/MACO.19920430804 *
See also references of WO2010010916A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678566A (en) * 2017-05-26 2020-01-10 杰富意钢铁株式会社 Ferritic stainless steel
EP3604589A4 (en) * 2017-05-26 2020-04-29 JFE Steel Corporation Ferritic stainless steel
US11365467B2 (en) 2017-05-26 2022-06-21 Jfe Steel Corporation Ferritic stainless steel

Also Published As

Publication number Publication date
WO2010010916A1 (en) 2010-01-28
EP2316979A4 (en) 2014-01-22
US20110110812A1 (en) 2011-05-12
KR20110018455A (en) 2011-02-23
CN102099500A (en) 2011-06-15
JPWO2010010916A1 (en) 2012-01-05
JP5588868B2 (en) 2014-09-10
CN102099500B (en) 2013-01-23

Similar Documents

Publication Publication Date Title
EP2316979A1 (en) Ferritic stainless steel for use in producing urea water tank
EP2224030B1 (en) Ferritic stainless steel having excellent brazeability
EP2351868B1 (en) Ferritic stainless steel sheet for egr coolers
EP2980274B1 (en) Ferritic stainless steel sheet having excellent brazeability, heat exchanger, ferritic stainless steel sheet for heat exchangers, ferritic stainless steel, ferritic stainless steel for members of fuel supply systems, and member of fuel supply system
EP3276029B1 (en) Stainless steel having excellent brazeability
US20170275723A1 (en) Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
EP3508597A1 (en) Ferritic stainless steel
WO2003004714A1 (en) Ferritic stainless steel for member of exhaust gas flow passage
EP2460899A1 (en) Ferritic stainless steel for egr cooler and egr cooler
WO1991014796A1 (en) Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
KR20130125823A (en) Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit
JP5684547B2 (en) Ferritic stainless steel sheet for urea SCR system parts and method for producing the same
KR102442836B1 (en) Ferritic stainless steel with excellent salt and corrosion resistance
EP3214198A1 (en) Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
JP5563203B2 (en) Ferritic stainless steel with excellent corrosion resistance in urea water and ferritic stainless steel for urea SCR system
JP5786491B2 (en) Ferritic stainless steel for EGR cooler
EP3521471A1 (en) Ferritic stainless steel having reduced carbon sludge adsorption for exhaust system heat exchanger and method of manufacturing same
EP3733910A1 (en) Ferritic stainless steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20140103

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/58 20060101ALI20131218BHEP

Ipc: C22C 38/38 20060101ALI20131218BHEP

Ipc: C22C 38/00 20060101AFI20131218BHEP

17Q First examination report despatched

Effective date: 20141023

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150602

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAJIMURA, HARUHIKO

Inventor name: HIRAIDE, NOBUHIKO

Inventor name: TAKAHASHI, AKIHIKO

Inventor name: MAEDA, SHIGERU

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151013