EP2311360B1 - Staubsaugerfilterbeutel - Google Patents

Staubsaugerfilterbeutel Download PDF

Info

Publication number
EP2311360B1
EP2311360B1 EP09013176.4A EP09013176A EP2311360B1 EP 2311360 B1 EP2311360 B1 EP 2311360B1 EP 09013176 A EP09013176 A EP 09013176A EP 2311360 B1 EP2311360 B1 EP 2311360B1
Authority
EP
European Patent Office
Prior art keywords
vacuum cleaner
filter bag
nonwoven
bag
cleaner filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09013176.4A
Other languages
English (en)
French (fr)
Other versions
EP2311360A1 (de
Inventor
Ralf Sauer
Jan Schultink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eurofilters Holding NV
Original Assignee
Eurofilters Holding NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL09013176T priority Critical patent/PL2311360T3/pl
Application filed by Eurofilters Holding NV filed Critical Eurofilters Holding NV
Priority to EP09013176.4A priority patent/EP2311360B1/de
Priority to ES09013176.4T priority patent/ES2508265T3/es
Priority to DK09013176.4T priority patent/DK2311360T3/da
Priority to RU2012116601/12A priority patent/RU2526777C2/ru
Priority to PCT/EP2010/005779 priority patent/WO2011047765A1/de
Priority to AU2010310184A priority patent/AU2010310184B2/en
Priority to US13/502,176 priority patent/US8979961B2/en
Priority to CN201080053011.6A priority patent/CN102665516B/zh
Publication of EP2311360A1 publication Critical patent/EP2311360A1/de
Application granted granted Critical
Publication of EP2311360B1 publication Critical patent/EP2311360B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/14Bags or the like; Rigid filtering receptacles; Attachment of, or closures for, bags or receptacles

Definitions

  • the invention relates to a vacuum cleaner filter bag with a bag wall.
  • the invention particularly relates to a disposable filter bag.
  • Nonwoven fabric vacuum cleaner bags typically have a bag wall made up of multiple layers of filter material.
  • the filter material layers may be, for example, layers of filter paper or nonwoven fabric.
  • different filter material layers are combined.
  • the different filter material layers can be connected to each other or lie loosely on each other.
  • a compound of the layers can be done for example by gluing, welding (calendering) or needling.
  • a multilayer filter bag is for example from the US 4,589,894 known.
  • the individual filter material layers can have different functions.
  • protective layers, capacitance layers, fine filter layers and reinforcing layers can be combined.
  • a protective or reinforcing layers are thermally bonded filament spunbonded nonwovens (EP 0 161 790 ), thermally bonded nonwoven fabrics ( US 5,647,881 ), Networks ( EP 2 011 556 or EP 2 011 555 ) or perforated films ( EP 1 795 248 ) used.
  • the fine filter layers used are microfiber spunbonded nonwovens (eg meltblown nonwovens) (see, for example, US Pat. EP 0 161 790 ). Nanofiber webs have been proposed as Feinstfilterlagen ( DE 199 19 809 ).
  • Coarse filter layers can be made, for example, of nonwoven fabrics (carded or aerodynamically laid) or filamentviasives ( EP 0 960 645 ) or of loose staple fibers ( DE 10 2005 059 214 ) consist. Foam has also been proposed as a material for capacity layers ( DE 10 2004 020 555 ).
  • a dust filter consisting of two layers known, wherein a layer thereby has a very high air permeability and carrier function.
  • the carrier material is paper with high air permeability.
  • the second layer consists of a non-woven, ie of loose and non-solidified fibers.
  • a multi-ply vacuum cleaner bag having at least one layer responsible for the particle capture activity.
  • the DE 195 44 790 also claims that if this active layer was strong enough to withstand the stresses of manufacture and use, further layers could be dispensed with.
  • this active layer has a basis weight of less than 20 g / m 2 and a fiber diameter of about 1 micron. With this grammage and fineness, however, a sufficiently stable material can not actually be produced. In operation, bags of such a material would rupture immediately, so that in fact the vacuum cleaner bags known from this document are always multi-layered.
  • the object underlying the present invention is to provide a vacuum cleaner filter bag, on the one hand has a sufficient Abscheidebericht and on the other hand can be produced inexpensively. This object is achieved by a vacuum cleaner filter bag according to claim 1.
  • the invention provides a vacuum cleaner filter bag having a bag wall, the bag wall comprising precisely one nonwoven fabric layer in the form of a melt-spun microfiber nonwoven layer, and having the features contained in claim 1.
  • the present inventors have found that it is possible to produce a vacuum cleaner filter bag having just one nonwoven fabric layer in the form of a melt-spun microfiber nonwoven layer, ie, a nonwoven fabric layer of melt spun microfiber nonwoven fabric having sufficient separation performance. Since exactly one nonwoven fabric layer and not several nonwoven fabric layers are provided for the bag wall, no different processes for the production of nonwoven fabric are required and a connection of different nonwoven fabric layers can be dispensed with. As a result, the vacuum cleaner filter bag can be produced more cost-effectively than multi-layer vacuum cleaner filter bags.
  • nonwoven is defined as ISO standard IS09092: 1988 or CEM standard EN29092 used.
  • nonwoven fabric or nonwoven and nonwoven fabric in the field of production of nonwovens such follows each other delimited and to understand so in the sense of the present invention.
  • To produce a nonwoven fabric fibers and / or filaments are used.
  • the loose or loose and still unbound fibers and / or filaments are referred to as fleece or nonwoven web.
  • non-woven binding step such a nonwoven fabric finally forms a nonwoven which has sufficient strength to be wound into rolls, for example.
  • a nonwoven fabric is self-supporting by the solidification.
  • the nonwoven layer corresponds to a layer of a nonwoven fabric which is an extrusion nonwoven fabric, namely a melt spun microfiber spunbonded fabric ("meltblown" nonwoven fabric).
  • a melt spun microfiber spunbonded fabric melt spun microfiber spunbonded fabric
  • the nonwoven layer according to the invention is a melt spun microfiber spunbonded nonwoven layer.
  • the bag wall comprises exactly one filter-active layer, which corresponds exactly to a filter-active layer of the nonwoven fabric layer.
  • a filter-active layer here for the filtering of the air stream to be filtered relevant location is referred to.
  • the bag wall may also comprise a net.
  • the net can serve for the aesthetic design, for example for color design, of the filter bag.
  • the net can also serve to improve the stability of the filter bag.
  • the network may be, for example, an extruded net or a woven net.
  • the mesh may have a mesh size of at least 1 mm, in particular at least 3 mm.
  • the bag wall may consist of a nonwoven layer in the form of a melt-spun microfiber nonwoven layer.
  • the vacuum cleaner filter bag can be a single-layered filter bag, with the single layer corresponding to the nonwoven layer, ie the layer of melt-spun microfiber nonwoven fabric.
  • no support layer or reinforcing layer is provided for the nonwoven fabric layer in this case.
  • the nonwoven layer can be designed to withstand the usual stresses of manufacture and use.
  • the nonwoven fabric is a calendered nonwoven, in particular a thermally or ultrasonically calendered nonwoven.
  • the initially unconsolidated web can be passed between two rolls, of which at least one of the fibers is heated to the melting temperature of the web forming fibers. At least one of the Calender rolls can have elevations. As a result, melt zone areas or weld points can be formed.
  • Ultrasonic calendering or ultrasonic solidification is based on the conversion of electrical energy into mechanical vibration energy. This hardening horns are put into vibration, wherein the fibers are softened at the intersection points in the fleece at the vibration points and welded together. As a result, welds can be formed.
  • the welds themselves may be formed in different geometries. Thus, punctiform, linear, star-shaped, circular, elliptical, square or bar-shaped welded joints can be formed.
  • the pressing surface portion of the calendered nonwoven fabric is 3% to 50%, in particular 10% to 30%. This means that a roller engraving used for calendering the nonwoven fabric has a pressing surface portion of 3% to 50%, in particular 10% to 30%.
  • the nonwoven fabric has a number density of weld points of 5 / cm 2 to 50 / cm 2 , in particular 15 / cm 2 to 40 / cm 2 , on.
  • the number density is referred to here as the number of spot welds per unit area.
  • Such a calendered nonwoven fabric may have sufficient strength for use as a bag wall of a vacuum cleaner filter bag.
  • the welds or welds can be evenly distributed, in particular at equal intervals, or even unevenly over the entire surface of the bag wall.
  • the welds may be disposed on the nonwoven fabric in the machine direction or at an angle greater than 0 ° and less than 180 ° to the machine direction.
  • the welds can also be arranged transversely to the machine direction, ie at an angle of 90 ° to the machine direction.
  • the nonwoven fabric layer has a basis weight of 30 g / m 2 to 200 g / m 2 , in particular 40 g / m 2 to 150 g / m 2 , in particular 120 g / m 2 .
  • the nonwoven fabric layer has a maximum machine direction tensile force of greater than 40N, especially greater than 60N. It may also have a maximum tensile force in the transverse direction of more than 30 N, in particular more than 50 N.
  • the thickness of the nonwoven fabric layer may be between 0.2 mm and 1 mm, in particular between 0.4 mm and 0.8 mm.
  • the nonwoven fabric layer can have an air permeability of from 40 l / (m 2 s) to 500 l / (m 2 s), in particular from 50 l / (m 2 s) to 300 l / (m 2 s), in particular of 80 l / ( m 2 s) to 200 l / (m 2 s).
  • the penetration of the nonwoven layer may be less than 60%, in particular less than 50%, in particular less than 15%.
  • the material may be a polymer, in particular polypropylene, and / or polyester and / or a biodegradable plastic, in particular PLA (polylactic acid, polylactide) and / or polycaprolactone (PCL).
  • the nonwoven layer can only consist of plastic, in particular of biodegradable plastic.
  • Biodegradable plastics can be removed from the environment through biodegradation and fed into the mineral material cycle.
  • biodegradable plastics refer to plastics that meet the criteria of the European standards EN 13432 and / or EN 14995.
  • Biodegradable plastics which can be processed into nonwovens, for example, from the US 6,207,601 and the EP 0 885 321 known.
  • the nonwoven layer can be electrostatically charged.
  • the fibers may be electrostatically charged prior to solidification and / or the nonwoven fabric, ie after solidification.
  • the nonwoven layer can be electrostatically charged by a corona process. In doing so, the web is centered in an approximately 3.8 cm (1.5 inches) to 7.6 cm (3 inches) wide area between two DC voltage electrodes for corona discharge. In this case, one of the electrodes can have a positive DC voltage of 20 to 30 kV while the second electrode has a negative DC voltage of 20 to 30 kV.
  • the nonwoven layer may be formed by a method according to the teaching of US 5,401,446 be electrostatically charged.
  • the vacuum cleaner filter bag may be a flat bag. Alternatively, the vacuum cleaner filter bag may also be a block bottom bag.
  • the vacuum cleaner filter bag may include an inflow port through which the air to be cleaned flows into the filter bag.
  • the filter bag may further comprise a holding plate, which serves to fix the vacuum cleaner filter bag in a chamber of a vacuum cleaner, and is arranged in the region of the inflow opening.
  • the retaining plate can in particular be made of a plastic.
  • the holding plate can be connected to the bag wall and have a through hole in the region of the inflow opening.
  • the bag wall may include a front and a back, which are interconnected by a circumferential weld.
  • the front and back can be rectangular, square or circular.
  • the front and back may consist of a nonwoven fabric layer described above.
  • the vacuum cleaner filter bag may be a disposable vacuum cleaner bag.
  • the abovementioned parameters can be adapted in particular to the size and / or the intended use of the vacuum cleaner filter bag.
  • the air permeability is determined according to DIN EN IS09237: 1995-12. In particular, a differential pressure of 200 Pa and a test area of 20 cm 2 are used . For the Determination of air permeability, the air permeability tester FX3300 Texttest AG was used.
  • the basis weight is determined according to DIN EN 29073-1: 1992-08.
  • the method according to standard DIN EN ISO 9073-2: 1997-02 is used, using method A.
  • the determination of the maximum tensile force is carried out in accordance with DIN EN29073-3: 1992-08. In particular, a strip width of 50 mm is used.
  • Penetration NaCl permeability
  • TSI 8130 tester a TSI 8130 tester.
  • 0.3 ⁇ m sodium chloride is used at 86 L / min.
  • the measurement of the number density of the welding points is carried out as follows. First, five mutually non-overlapping faces of the bag wall are selected, each of the faces is 10 cm 2 in size and is completely enclosed by flow-through surface of the bag wall. In other words, none of the partial area directly adjoins the holding plate, the inflow opening and / or possibly existing weld seams. Each of the faces is surrounded by a square with a side of 3.16 cm. All partial surfaces may be arranged on the front side or the rear side of the filter bag, or one or more partial surfaces on the front side and one or more partial surfaces on the rear side.
  • the welding spots arranged on the partial surface are then counted, and the ratio of the number of welding points to the total surface of the partial surface is formed for each of the partial surfaces. In other words, for each of the patches, the number of welds is divided by 10 cm 2 .
  • a welding point is arranged on the subarea when at least part of the surface of the welding point lies within the square surrounding the subarea.
  • the arithmetic mean is then formed, i. the five values are added and then divided by five.
  • the value thus obtained corresponds to the number density of the weld spots of the nonwoven fabric layer.
  • the determination of the pressing surface portion of the welding points is carried out as follows. First, five non-overlapping partial surfaces of the bag wall are selected, wherein each of the faces is 10 cm 2 in size and is completely enclosed by the flow-through surface of the bag wall. In other words, none of the partial area directly adjoins the holding plate, the inflow opening and / or possibly existing weld seams. Each of the faces is surrounded by a square with a side of 3.16 cm. All partial surfaces may be arranged on the front side or the rear side of the filter bag, or one or more partial surfaces on the front side and one or more partial surfaces on the rear side.
  • the total area of the welding spots that is to say the sum of the welding spot areas arranged on the sub-area, is then determined.
  • the total area of the spot welds is determined by means of a measuring microscope and / or by means of image analysis.
  • the ratio of the total area of the welding spots to the total area of the partial area is then formed.
  • the total area of the welds is divided by 10 cm 2 .
  • the arithmetic mean is then formed, ie the five values are added and then divided by five. The value thus obtained corresponds to the pressing surface portion of the welding points of the nonwoven fabric layer.
  • Fig. 1 shows the schematic structure of an exemplary vacuum cleaner filter bag 101.
  • the filter bag 101 comprises an inflow opening 102 through which the air to be filtered flows into the filter bag 101.
  • the exemplary filter bag 101 also includes a holding plate 103, which serves to fix the vacuum cleaner filter bag 101 in a chamber of a vacuum cleaner.
  • the holding plate 103 is made of a plastic.
  • FIG. 1 the bag wall 104, wherein the bag wall 104 comprises exactly one nonwoven fabric layer in the form of a melt spun microfiber nonwoven layer.
  • the exemplary filter bag 101 is formed as a flat bag.
  • the filter bag 101 is a single-layer, consisting of a nonwoven fabric layer of melt-spun microfiber spunbonded nonwoven fabric ("meltblown" nonwoven fabric), which was solidified pointwise by means of thermal calendering.
  • the nonwoven fabric layer of the exemplary filter bag 101 is made of PLA (polylactide).
  • PLA polylactide
  • PLA can be purchased from Galactic Laboratories (Belgium), Cargill Dow Polymers LLC, Toyobo (Japan), Dai-Nippon, etc.
  • the basis weight or basis weight of the exemplary filter bag 101 is 85 g / m 2 .
  • the embossed pattern of the bag wall 104 has a density of 25 spots per cm 2 .
  • the pressing surface portion of the embossing pattern is 17%.
  • the pattern may be, for example, a pattern arranged at an angle of 45 ° to the machine direction.
  • meltblown microfiber spunbonded nonwoven produced in this way achieves sufficient strength with satisfactory separation efficiency and air permeability.
  • a single-layer filter bag such as those associated with FIG. 1 described exemplary filter bag 101, can be produced or sold more cheaply and therefore is better suited for such a short service life.
  • FIG. 2 shows a cross section of an exemplary filter bag 201.
  • the filter bag 201 includes a front 205 and a back 206, which are interconnected by a circumferential weld 207.
  • an inflow opening 202 is provided, through which the sucked air can flow into the filter bag 201.
  • a holding plate 203 which serves to fix the vacuum cleaner filter bag 201 in a chamber of a vacuum cleaner, is arranged in the region of the inflow opening 202 and connected to the bag wall of the filter bag 201.
  • a cutout 308 of the bag wall of an exemplary filter bag is shown in FIG Fig. 3 shown.
  • the exemplary cutout 308 of the bag wall has a plurality of welds or welds 309 which have been formed by calender thermal consolidation on an embossing calender.
  • Weld points 309 correspond to melt zone areas.
  • the embossing pattern has a density of 25 spots per cm 2 .
  • the pressing surface portion of the embossing pattern is 17%.
  • the spot welds are distributed uniformly, ie at equal intervals, over the exemplary cutout 308 of the bag wall.
  • the weld spots can be distributed over the entire surface of the bag wall through the entire surface.
  • Full surface does not mean in this context that all the fibers are completely connected to each other, for example, fused, resulting in a film. Rather, it means that the nonwoven layer is welded at a plurality of discrete locations, these locations being evenly distributed over the entire area of the nonwoven layer. The locations may be predetermined, for example in the case of a dot or gravure calender.
  • Nonwoven fabric 1 Nonwoven fabric 2
  • Nonwoven fabric 3 Nonwoven fabric 4
  • Pressing area [%] none none 20 17 Welding points [points / cm 2 ] none none 25
  • Areal mass [g / m 2 ] 85 100 86 89
  • Thickness [mm] 1.2 0.99 0.65 0.62
  • Air permeability [l / (m 2 s)] 210 213 130 134
  • 86 60 Penetration (TSI 8130, 0.3 ⁇ m, 86 l / min) [%] 5.5 (corona charged) 48 (uncharged) 44 (uncharged) 46 (uncharged) 16 (corona charged)
  • All nonwovens shown in the table are made of polypropylene and are meltblown nonwovens, ie spun-bonded microfiber nonwovens.
  • the exemplary nonwoven fabric 3 was in particular biaxially stretched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filtering Materials (AREA)
  • Filters For Electric Vacuum Cleaners (AREA)

Description

  • Die Erfindung betrifft einen Staubsaugerfilterbeutel mit einer Beutelwand. Die Erfindung betrifft insbesondere einen Wegwerffilterbeutel.
  • Staubsaugerfilterbeutel aus Vliesstoffen weisen üblicherweise eine Beutelwand aus mehreren Filtermateriallagen auf. Bei den Filtermateriallagen kann es sich beispielsweise um Lagen aus Filterpapier oder Vliesstoff handeln. Um die gewünschten Eigenschaften hinsichtlich Abscheideleistung, Staubspeicherfähigkeit (Kapazität) und mechanischer Festigkeit zu erreichen werden unterschiedliche Filtermateriallagen kombiniert. Die unterschiedlichen Filtermateriallagen können dabei miteinander verbunden sein oder lose aufeinander liegen. Eine Verbindung der Lagen kann beispielsweise durch Kleben, Schweißen (Kalandrieren) oder Vernadeln erfolgen. Ein mehrlagiger Filterbeutel ist beispielsweise aus der US 4,589,894 bekannt.
  • Die einzelnen Filtermateriallagen können dabei unterschiedliche Funktionen haben. Beispielsweise können Schutzlagen, Kapazitätslagen, Feinfilterlagen und Verstärkungslagen kombiniert werden. Als Schutz- oder Verstärkungslagen werden thermisch verfestigte Filamentspinnvliesstoffe ( EP 0 161 790 ), thermisch verfestigte Faservliesstoffe ( US 5,647,881 ), Netze ( EP 2 011 556 oder EP 2 011 555 ) oder perforierte Folien ( EP 1 795 248 ) verwendet. Als Feinfilterlagen kommen Mikrofaserspinnvliesstoffe (z.B. Meltblown-Vliesstoffe) zum Einsatz (siehe, z.B., EP 0 161 790 ). Nanofaservliese wurden als Feinstfilterlagen vorgeschlagen ( DE 199 19 809 ). Grobfilterlagen (Kapazitätslagen) können z.B. aus Faservliesstoffen (kardiert oder aerodynamisch gelegt) oder Filamentviiesstoffen ( EP 0 960 645 ) oder aus losen Stapelfasern ( DE 10 2005 059 214 ) bestehen. Auch Schaumstoff wurde als Material für Kapazitätslagen vorgeschlagen ( DE 10 2004 020 555 ).
  • Aus der DE 74 24 655 ist ein Staubfilter bestehend aus zwei Schichten bekannt, wobei eine Schicht dabei eine sehr hohe Luftdurchlässigkeit aufweist und Trägerfunktion hat. Das Trägermaterial ist Papier mit hoher Luftdurchlässigkeit. Die zweite Schicht besteht aus einem Vlies, d. h. aus lockeren und nicht verfestigten Fasern.
  • Aus der DE 195 44 790 ist ein mehrlagiger Staubsaugerbeutel bekannt mit wenigstens einer für die Teilcheneinfangaktivität verantwortlichen Schicht. Die DE 195 44 790 behauptet außerdem, dass, wenn diese aktive Schicht kräftig genug wäre, um den Beanspruchungen bei Herstellung und Gebrauch standzuhalten, auf weitere Schichten verzichtet werden könne.
  • Gemäß der Lehre der DE 195 44 790 hat diese aktive Schicht jedoch ein Flächengewicht von weniger als 20 g/m2 und einen Faserdurchmesser von etwa 1 µm. Mit dieser Grammatur und Feinheit kann ein ausreichend stabiles Material tatsächlich jedoch nicht hergestellt werden. Im Betrieb würden Beutel aus einem solchen Material sofort zerreißen, so dass faktisch die aus diesem Dokument bekannten Staubsaugerbeutel immer mehrlagig sind.
  • Die Fertigung mehrlagiger Staubsaugerfilterbeutel aus mehreren Vliesstofflagen ist jedoch kostenintensiv, da Produktionsanlagen für unterschiedlichste Verfahren zur Vliesstoffherstellung benötigt werden.
  • Daher besteht die der vorliegenden Erfindung zugrundeliegende Aufgabe darin, einen Staubsaugerfilterbeutel bereit zu stellen, der einerseits eine ausreichende Abscheideleistung aufweist und andererseits kostengünstig produziert werden kann. Diese Aufgabe wird durch einen Staubsaugerfilterbeutel nach Anspruch 1 gelöst.
  • Die Erfindung stellt einen Staubsaugerfilterbeutel mit einer Beutelwand bereit, wobei die Beutelwand genau eine Vliesstofflage in Form einer schmelzgesponnenen Mikrofaservliesstofflage umfasst, und wobei sie die in Anspruch 1 enthaltenen Merkmale aufweist.
  • Die Anmelder der vorliegenden Erfindung haben festgestellt, dass es möglich ist, einen Staubsaugerfilterbeutel mit genau einer Vliesstofflage in Form einer schmelzgesponnenen Mikrofaservliesstofflage, also einer Vliesstofflage aus schmelzgesponnenen Mikrofaservliesstoff, herzustellen, der eine ausreichende Abscheideleistung aufweist. Da für die Beutelwand genau eine Vliesstofflage und nicht mehrere Vliesstofflagen vorgesehen sind, sind keine unterschiedlichen Verfahren zur Vliesstoffherstellung nötig und ein Verbinden unterschiedlicher Vliesstofflagen kann entfallen. Dadurch kann der Staubsaugerfilterbeutel kostengünstiger hergestellt werden als mehrlagige Staubsaugerfilterbeutel.
  • Der Begriff Vliesstoff ("Nonwoven") wird gemäß der Definition nach ISO Standard IS09092:1988 bzw. CEM Standard EN29092 verwendet. Insbesondere sind die Begriffe Faservlies oder Vlies und Vliesstoff auf dem Gebiet der Herstellung von Vliesstoffen wie folgt gegeneinander abgegrenzt und auch im Sinne der vorliegenden Erfindung so zu verstehen. Zur Herstellung eines Vliesstoffes werden Fasern und/oder Filamente verwendet. Die lockeren oder losen und noch ungebundenen Fasern und/oder Filamente werden als Vlies oder Faservlies (Web) bezeichnet. Durch einen sog. Vliesbindeschritt entsteht aus einem derartigen Faservlies schließlich ein Vliesstoff, der eine ausreichende Festigkeit aufweist, um z.B. zu Rollen aufgewickelt zu werden. Mit anderen Worten wird ein Vliesstoff durch die Verfestigung selbsttragend ausgebildet. (Details zur Verwendung der hierin beschriebenen Definitionen und/oder Verfahren lassen sich auch dem Standardwerk "Vliesstoffe", W. Albrecht, H. Fuchs, W. Kittelmann, Wiley-VCH, 2000, entnehmen.)
  • Die Vliesstofflage entspricht einer Lage aus einem Vliesstoff, der ein Extrusionsvliesstoff, nämlich ein schmelzgesponnener Mikrofaserspinnvliesstoff ("Meltblown"-Vliesstoff) ist.
  • Die Vliesstofflage ist erfindungsgemäß eine schmelzgesponnene Mikrofaserspinnvliesstofflage.
  • Die Beutelwand umfasst genau eine filteraktive Lage, wobei die genau eine filteraktive Lage der Vliesstofflage entspricht. Als filteraktive Lage wird hier eine für die Filterung des zu filternden Luftstromes relevante Lage bezeichnet. Die Beutelwand kann außerdem ein Netz umfassen. Das Netz kann zur ästhetischen Gestaltung, beispielsweise zur farblichen Gestaltung, des Filterbeutels dienen. Das Netz kann auch zur Verbesserung der Stabilität des Filterbeutels dienen. Das Netz kann beispielsweise ein extrudiertes Netz oder ein gewebtes Netz sein. Das Netz kann eine Maschenweite von wenigstens 1 mm, insbesondere wenigstens 3 mm, aufweisen.
  • Die Beutelwand kann aus einer Vliesstofflage in Form einer schmelzgesponnenen Mikrofaservliesstofflage bestehen. Mit anderen Worten kann der Staubsaugerfilterbeutel ein einlagiger Filterbeutel sein, wobei die einzige Lage der Vliesstofflage, also der Lage aus schmelzgesponnenen Mikrofaservliesstoff, entspricht. Insbesondere ist in diesem Fall keine Stützlage oder Verstärkungslage für die Vliesstofflage vorgesehen. Mit anderen Worten kann die Vliesstofflage derart ausgebildet sein, dass sie den üblichen Beanspruchungen bei Herstellung und Gebrauch standhält.
  • Der Vliesstoff ist ein kalandrierter Vliesstoff, insbesondere ein thermisch oder mittels Ultraschall kalandrierter Vliesstoff. Zum thermischen Kalandrieren kann das zunächst unverfestigte Vlies zwischen zwei Walzen hindurchgeführt werden, von welchen wenigstens eine auf die Schmelztemperatur der das Vlies bildenden Fasern erhitzt ist. Wenigstens eine der Kalandrierwalzen kann Erhebungen aufweisen. Dadurch können Schmelzzonenbereiche oder Schweißpunkte gebildet werden.
  • Ultraschallkalandrierung oder Ultraschallverfestigung beruht auf der Umwandlung elektrischer Energie in mechanische Vibrationsenergie. Dabei werden Verfestigungshörner in Vibration versetzt, wobei an den Vibrationsstellen die Fasern an ihren Kreuzungsstellen im Vlies erweicht und miteinander verschweißt werden. Dadurch können Schweißpunkte gebildet werden.
  • Die Schweißpunkte selbst können in unterschiedlichen Geometrien ausgebildet sein. So können punktförmige, linienförmige, sternförmige, kreisförmige, elliptische, quadratische oder balkenförmige Schweißverbindungen ausgebildet sein.
  • Der Pressflächenanteil des kalandrierten Vliesstoffes beträgt 3% bis 50%, insbesondere 10% bis 30%. Dies bedeutet, dass eine zum Kalandrieren des Vliesstoffes verwendete Walzengravur einen Pressflächenanteil von 3% bis 50%, insbesondere 10% bis 30%, aufweist.
  • Der Vliesstoff weist eine Anzahldichte an Schweißpunkten von 5/cm2 bis 50/cm2, insbesondere 15/cm2 bis 40/cm2, auf. Als Anzahldichte wird hier die Anzahl der Schweißpunkte pro Flächeneinheit bezeichnet.
  • Ein derart kalandrierter Vliesstoff kann eine ausreichende Festigkeit zur Verwendung als Beutelwand eines Staubsaugerfilterbeutels aufweisen.
  • Die Schweißpunkte oder Schweißverbindungen können gleichmäßig, insbesondere in gleichen Abständen, oder aber auch ungleichmäßig über die gesamte Fläche der Beutelwand verteilt sein.
  • Die Schweißpunkte können am Vliesstoff in Maschinenlaufrichtung oder in einem Winkel größer als 0° und kleiner als 180° zur Maschinenlaufrichtung angeordnet sein. Insbesondere können die Schweißpunkte auch quer zur Maschinenlaufrichtung, also in einem Winkel von 90° zur Maschinenlaufrichtung, angeordnet sein.
  • Die Vliesstofflage weist ein Flächengewicht von 30 g/m2 bis 200 g/m2, insbesondere 40 g/m2 bis 150 g/m2, insbesondere 120 g/m2 auf.
  • Die Vliesstofflage weist eine Höchstzugkraft in Maschinenrichtung von mehr als 40 N.insbesondere von mehr als 60 N auf. Sie kann auch eine Höchstzugkraft in Querrichtung von mehr als 30 N, insbesondere mehr als 50 N. aufweisen.
  • Die Dicke der Vliesstofflage kann zwischen 0,2 mm und 1 mm, insbesondere zwischen 0,4 mm und 0,8 mm, betragen.
  • Die Vliesstofflage kann eine Luftdurchlässigkeit von 40 l/(m2s) bis 500 l/(m2s), insbesondere von 50 l/(m2s) bis 300 l/(m2s), insbesondere von 80 l/(m2s) bis 200 l/(m2s), aufweisen.
  • Die Penetration der Vliesstofflage kann kleiner als 60 %, insbesondere kleiner als 50 %, insbesondere kleiner als 15 % sein.
  • Als Material für die Vliesstofflage kommen grundsätzlich verschiedenste Kunststoffe in Frage. Das Material kann ein Polymer, insbesondere Polypropylen, und/oder Polyester und/oder ein biologisch abbaubarer Kunststoff, insbesondere PLA (Polymilchsäure, Polylactid) und/oder Polycaprolacton (PCL), sein. Die Vliesstofflage kann nur aus Kunststoff, insbesondere aus biologisch abbaubaren Kunststoff, bestehen.
  • Biologisch abbaubare Kunststoffe können durch biologischen Abbau aus der Umwelt entfernt und dem mineralischen Stoffkreislauf zugeführt werden. Insbesondere bezeichnen biologisch abbaubare Kunststoffe, Kunststoffe, welche die Kriterien der Europäischen Normen EN 13432 und/oder EN 14995 erfüllen.
  • Biologisch abbaubare Kunststoffe, die sich zu Vliesstoffen verarbeiten lassen sind beispielsweise auch aus der US 6,207,601 und der EP 0 885 321 bekannt.
  • Die Vliesstofflage kann elektrostatisch aufgeladen sein. Es können die Fasern vor dem Verfestigen und/oder der Vliesstoff, also nach dem Verfestigen, elektrostatisch aufgeladen werden.
  • Die Vliesstofflage kann durch ein Koronaverfahren elektrostatisch aufgeladen werden. Dabei wird das Vlies zentriert in einem etwa 3,8 cm (1,5 inches) bis 7,6 cm (3 inches) breitem Bereich zwischen zwei Gleichspannungselektroden für eine Koronaentladung vorbeigeführt. Dabei kann eine der Elektroden eine positive Gleichspannung von 20 bis 30 kV aufweisen während die zweite Elektrode eine negative Gleichspannung von 20 bis 30 kV aufweist. Alternativ oder zusätzlich kann die Vliesstofflage durch ein Verfahren gemäß der Lehre der US 5,401,446 elektrostatisch aufgeladen werden.
  • Der Staubsaugerfilterbeutel kann ein Flachbeutel sein. Alternativ kann der Staubsaugerfilterbeutel auch ein Blockbodenbeutel sein.
  • Der Staubsaugerfilterbeutel kann eine Einströmöffnung umfassen, durch welche die zu reinigende Luft in den Filterbeutel strömt. Der Filterbeutel kann außerdem eine Halteplatte, die zur Fixierung des Staubsaugerfilterbeutels in einer Kammer eines Staubsaugers dient, und im Bereich der Einströmöffnung angeordnet ist, umfassen. Die Halteplatte kann insbesondere aus einem Kunststoff gefertigt sein. Die Halteplatte kann mit der Beutelwand verbunden sein und im Bereich der Einströmöffnung ein Durchgangsloch aufweisen.
  • Die Beutelwand kann eine Vorderseite und eine Rückseite umfassen, welche durch eine umlaufende Schweißnaht miteinander verbunden sind. Die Vorderseite und Rückseite können rechteckig, quadratisch oder kreisförmig sein. Die Vorderseite und Rückseite können aus einer oben beschriebenen Vliesstofflage bestehen.
  • Der Staubsaugerfilterbeutel kann ein Wegwerfstaubsaugerbeutel sein.
  • Die oben genannten Parameter können insbesondere an die Größe und/oder den Einsatzzweck des Staubsaugerfilterbeutels angepasst sein.
  • Nachfolgend wird die Erfindung anhand von Beispielen und der Figuren näher beschrieben. Dabei zeigt
  • Fig. 1
    schematisch den Aufbau eines beispielhaften Staubsaugerfilterbeutels;
    Fig. 2
    einen Querschnitt durch einen beispielhaften Staubsaugerfilterbeutel; und
    Fig. 3
    schematisch einen Ausschnitt der durchströmbaren Fläche der Beutelwand eines beispielhaften Staubsaugerfilterbeutels.
  • Für die Bestimmung der oben und im Folgenden beschriebenen Parameter werden die folgenden Verfahren verwendet.
  • Die Luftdurchlässigkeit wird gemäß DIN EN IS09237:1995-12 bestimmt. Insbesondere wird mit einem Differenzdruck von 200 Pa und einer Prüffläche von 20 cm2 gearbeitet. Für die Bestimmung der Luftdurchlässigkeit wurde das Luftdurchlässigkeitsprüfgerät FX3300 der Texttest AG verwendet.
  • Das Flächengewicht wird gemäß DIN EN 29073-1: 1992-08 bestimmt. Für die Bestimmung der Dicke der Vliesstofflage wird das Verfahren gemäß Norm DIN EN ISO 9073-2: 1997-02 eingesetzt, wobei das Verfahren A verwendet wird.
  • Die Bestimmung der Höchstzugkraft wird gemäß DIN EN29073-3: 1992-08 durchgeführt. Insbesondere wird eine Streifenbreite von 50 mm verwendet.
  • Die Penetration (NaCl-Durchlässigkeit) wird mittels einem TSI 8130 Testgeräts bestimmt. Insbesondere wird 0,3 µm Natriumchlorid bei 86 l/min verwendet.
  • Die Messung der Anzahldichte der Schweißpunkte erfolgt folgendermaßen. Zunächst werden fünf einander nicht überlappende Teilflächen der Beutelwand ausgewählt, wobei jede der Teilflächen 10 cm2 groß ist und vollständig von durchströmbarer Fläche der Beutelwand umschlossen wird. Mit anderen Worten grenzt keine der Teilfläche direkt an die Halteplatte, die Einströmöffnung und/oder evtl. vorhandene Schweißnähte an. Jede der Teilflächen wird von einem Quadrat mit einer Seitenlänge von 3,16 cm umgeben. Es können alle Teilflächen an der Vorderseite oder der Rückseite des Filterbeutels angeordnet sein, oder eine oder mehrere Teilflächen auf der Vorderseite und eine oder mehrere Teilflächen auf der Rückseite.
  • In jeder der Teilflächen werden dann die Schweißpunkte, die auf der Teilfläche angeordnet sind, gezählt, und für jede der Teilflächen das Verhältnis der Anzahl der Schweißpunkte zur Gesamtfläche der Teilfläche gebildet. Mit anderen Worten wird für jede der Teilflächen die Anzahl der Schweißpunkte durch 10 cm2 geteilt. Ein Schweißpunkt ist auf der Teilfläche angeordnet, wenn wenigstens ein Teil der Fläche des Schweißpunktes innerhalb des die Teilfläche umgebenden Quadrates liegt.
  • Von den fünf derart erhaltenen Werten wird dann das arithmetische Mittel gebildet, d.h. die fünf Werte werden addiert und danach durch fünf geteilt. Der so erhaltene Wert entspricht der Anzahldichte der Schweißpunkte der Vliesstofflage.
  • Die Bestimmung des Pressflächenanteils der Schweißpunkte erfolgt folgendermaßen. Zunächst werden fünf einander nicht überlappende Teilflächen der Beutelwand ausgewählt, wobei jede der Teilflächen 10 cm2 groß ist und vollständig von durchströmbarer Fläche der Beutelwand umschlossen wird. Mit anderen Worten grenzt keine der Teilfläche direkt an die Halteplatte, die Einströmöffnung und/oder evtl. vorhandene Schweißnähte an. Jede der Teilflächen wird von einem Quadrat mit einer Seitenlänge von 3,16 cm umgeben. Es können alle Teilflächen an der Vorderseite oder der Rückseite des Filterbeutels angeordnet sein, oder eine oder mehr Teilflächen auf der Vorderseite und eine oder mehr Teilflächen auf der Rückseite.
  • In jeder der Teilflächen wird dann die Gesamtfläche der Schweißpunkte, also die Summe der Schweißpunktflächen, die auf der Teilfläche angeordnet sind, bestimmt. Die Gesamtfläche der Schweißpunkte wird mittels eines Messmikroskops und/oder mittels Bildanalyse bestimmt. Für jede der Teilflächen wird dann das Verhältnis der Gesamtfläche der Schweißpunkte zur Gesamtfläche der Teilfläche gebildet. Mit anderen Worten wird für jede der Teilflächen die Gesamtfläche der Schweißpunkte durch 10 cm2 geteilt. Von den fünf derart erhaltenen Werten wird dann das arithmetische Mittel gebildet, d.h. die fünf Werte werden addiert und danach durch fünf geteilt. Der so erhaltene Wert entspricht dem Pressflächenanteil der Schweißpunkte der Vliesstofflage.
  • Fig. 1 zeigt den schematischen Aufbau eines beispielhaften Staubsaugerfilterbeutels 101. Der Filterbeutel 101 umfasst eine Einströmöffnung 102, durch welche die zu filternde Luft in den Filterbeutel 101 strömt. Der beispielhafte Filterbeutel 101 umfasst außerdem eine Halteplatte 103, die zur Fixierung des Staubsaugerfilterbeutels 101 in einer Kammer eines Staubsaugers dient. Die Halteplatte 103 ist aus einem Kunststoff gefertigt.
  • Außerdem zeigt Fig. 1 die Beutelwand 104, wobei die Beutelwand 104 genau eine Vliesstofflage in Form einer schmelzgesponnenen Mikrofaservliesstofflage umfasst. Der beispielhafte Filterbeutel 101 ist als ein Flachbeutel ausgebildet.
  • Der Filterbeutel 101 ist einlagig, bestehend aus einer Vliesstofflage aus schmelzgesponnener Mikrofaserspinnvliesstoff ("Meltblown"-Vliesstoff), die mittels thermischer Kalanderverfestigung punktförmig verfestigt wurde.
  • Die Vliesstofflage des beispielhaften Filterbeutels 101 besteht aus PLA (Polylactid). PLA kann von Galactic Laboratories (Belgien), Cargill Dow Polymers LLC, Toyobo (Japan), Dai-Nippon etc. bezogen werden.
  • Die flächenbezogene Masse oder das Flächengewicht des beispielhaften Filterbeutels 101 beträgt 85 g/m2.
  • Das Prägemuster der Beutelwand 104 weist eine Dichte von 25 Schweißpunkten pro cm2 auf. Der Pressflächenanteil des Prägemusters beträgt 17 %.
  • Bezüglich der Geometrie oder des Musters der Schweißverbindungen, d.h. der Verteilung der Schweißverbindungen auf der durchströmbaren Fläche der Beutelwand 104, unterliegt die vorliegende Erfindung keinerlei Einschränkungen. Das Muster kann beispielsweise ein in einem Winkel von 45° zur Maschinenlaufrichtung angeordnetes Muster sein.
  • Es hat sich durch Versuche des Anmelders gezeigt, dass ein derartig gefertigter schmelzgeblasener Mikrofaserspinnvliesstoff eine ausreichende Festigkeit bei zufriedenstellender Abscheideleistung und Luftdurchlässigkeit erreicht.
  • In einigen Märkten besteht der Bedarf an Wegwerfstaubsaugerbeuteln, welche schon nach kurzer Benutzungszeit, etwa nach wenigen Tagen, ausgetauscht werden. Insbesondere bei hoher Luftfeuchtigkeit und hoher Temperatur sollte eine Lagerung des Beutels mit dem aufgesaugten Staub möglichst vermieden werden, da eine bei diesen Bedingungen unvermeidliche Vermehrung von Schimmelpilzen und Bakterien im Filterbeutel ansonsten ein hygienisches Problem darstellen können. Filterbeutel aus mehrlagigen Vliesstoffen sind für solche kurzzeitigen Anwendungen üblicherweise zu teuer.
  • Ein einlagiger Filterbeutel, wie beispielsweise der in Zusammenhang mit Figur 1 beschriebene beispielhafte Filterbeutel 101, kann kostengünstiger hergestellt bzw. verkauft werden und eignet sich daher besser für eine derart kurze Nutzungsdauer.
  • Figur 2 zeigt einen Querschnitt eines beispielhaften Filterbeutels 201. Der Filterbeutel 201 umfasst eine Vorderseite 205 und eine Rückseite 206, welche durch eine umlaufende Schweißnaht 207 miteinander verbunden sind. In der Vorderseite 205 des Filterbeutels 201 ist eine Einströmöffnung 202 vorgesehen, durch welches die eingesaugte Luft in den Filterbeutel 201 strömen kann. Eine Halteplatte 203, die zur Fixierung des Staubsaugerfilterbeutels 201 in einer Kammer eines Staubsaugers dient, ist im Bereich der Einströmöffnung 202 angeordnet und mit der Beutelwand des Filterbeutels 201 verbunden.
  • Ein Ausschnitt 308 der Beutelwand eines beispielhaften Filterbeutels ist in Fig. 3 gezeigt. Der beispielhafte Ausschnitt 308 der Beutelwand weist eine Vielzahl von Schweißverbindungen oder Schweißpunkten 309 auf, welche durch thermische Kalanderverfestigung auf einem Prägekalander entstanden sind. Die Schweißpunkte 309 entsprechen Schmelzzonenbereichen.
  • Das Prägemuster weist eine Dichte von 25 Schweißpunkten pro cm2 auf. Der Pressflächenanteil des Prägemusters beträgt 17 %. Die Schweißpunkte sind in diesem Beispiel gleichmäßig, d.h. in gleichen Abständen, über den beispielhaften Ausschnitt 308 der Beutelwand verteilt.
  • Die Schweißpunkte können insbesondere vollflächig über die gesamte durchströmbare Fläche der Beutelwand verteilt sein. Vollflächig bedeutet in diesem Zusammenhang nicht, dass alle Fasern miteinander vollständig verbunden, beispielsweise verschmolzen, sind, wodurch sich ein Film ergäbe. Es bedeutet vielmehr, dass die Vliesstofflage an einer Vielzahl von diskreten Stellen verschweißt ist, wobei diese Stellen gleichmäßig über die gesamte Fläche der Vliesstofflage verteilt ist. Die Stellen können vorherbestimmt sein, beispielsweise im Falle eines Punkt- bzw. Gravurkalanders.
  • In der folgenden Tabelle werden beispielhafte Eigenschaften von Vliesstoffen verglichen, wobei die Vliesstoffe 1 und 2 dem Stand der Technik entsprechen und Vliesstoffe 3 und 4 erfindungsgemäße Vliesstoffe sind.
    Vliesstoff 1 Vliesstoff 2 Vliesstoff 3 Vliesstoff 4
    Pressfläche [%] keine keine 20 17
    Schweißpunkte [Punkte/cm2] keine keine 25 30
    Flächenbezogene Masse [g/m2] 85 100 86 89
    Dicke [mm] 1,2 0,99 0,65 0,62
    Luftdurchlässigkeit [l/(m2s)] 210 213 130 134
    Höchstzugkraft in Maschinenlaufrichtung [N] 31 31 101 98
    Höchstzugkraft quer zur Maschinenlaufrichtung [N] 19 10 86 60
    Penetration (TSI 8130, 0,3 µm, 86l/min) [%] 5,5 (Korona geladen) 48 (ungeladen) 44 (ungeladen) 46 (ungeladen) 16 (Korona geladen)
  • Alle in der Tabelle gezeigten Vliesstoffe bestehen aus Polypropylen und sind Meltblown-Vliesstoffe, also schmelzgesponnene Mikrofaservliesstoffe. Der beispielhafte Vliesstoff 3 wurde insbesondere biaxial gereckt.
  • Es versteht sich, dass in den zuvor beschriebenen Ausführungsbeispielen genannte Merkmale nicht auf diese speziellen Kombinationen beschränkt und auch in beliebigen anderen Kombinationen möglich sind. Weiterhin versteht es sich, dass in den Figuren weder der gezeigte Staubsaugerfilterbeutel in einer realistischen Dimensionierung noch die gezeigten Schweißverbindungen in einer realistischen Verteilung und Anzahldichte wiedergegeben sind.

Claims (9)

  1. Staubsaugerfilterbeutel (101; 201) mit einer Beutelwand (104),
    wobei die Beutelwand (104; 204) genau eine Vliesstofflage in Form einer schmelzge-sponnenen Mikrofaservliesstofflage umfasst,
    wobei die Vliesstofflage eine Höchstzugkraft in Maschinenrichtung von mehr als 40 N, insbesondere von mehr als 60 N, aufweist;
    wobei der Vliesstoff ein kalandrierter Vliesstoff ist,
    wobei der Pressflächenanteil des kalandrierten Vliesstoffs 3% bis 50%, insbesondere 10% bis 30%, beträgt,
    wobei die Vliesstofflage eine Anzahldichte an Schweißpunkten (309) von 5/cm2 bis 50/cm2, insbesondere 15/cm2 bis 40/cm2, aufweist;
    wobei die Vliesstofflage ein Flächengewicht von 30 g/m2 bis 200 g/m2, insbesondere 40 g/m2 bis 150 g/m2, insbesondere 120 g/m2, aufweist; und
    wobei die Beutelwand (104) aus der Vliesstofflage in Form einer schmelzgesponnenen Mikrofaservliesstofflage besteht, oder
    wobei die Beutelwand genau eine filteraktive Lage in Form der Vliesstofflage und ein Netz umfasst.
  2. Staubsaugerfilterbeutel (101; 201) nach Anspruch 1, wobei der Vliesstoff ein thermisch oder mittels Ultraschall kalandrierter Vliesstoff ist.
  3. Staubsaugerfilterbeutel (101; 201) nach einem der vorangegangenen Ansprüche, wobei die Vliesstofflage eine Höchstzugkraft in Querrichtung von mehr als 30 N, insbesondere mehr als 50 N, aufweist.
  4. Staubsaugerfilterbeutel (101; 201) nach einem der vorangegangenen Ansprüche, wobei die Dicke der Vliesstofflage zwischen 0,2 mm und 1,0 mm, insbesondere zwischen 0,4 mm und 0,8 mm, beträgt.
  5. Staubsaugerfilterbeutel (101; 201) nach einem der vorangegangenen Ansprüche, wobei die Vliesstofflage eine Luftdurchlässigkeit von 40 l/(m2s) bis 500 l/(m2s), insbesondere von 50 l/(m2s) bis 300 l/(m2s), insbesondere von 80 l/(m2s) bis 200 l/(m2s), aufweist.
  6. Staubsaugerfilterbeutel (101; 201) nach einem der vorangegangenen Ansprüche, wobei die Penetration der Vliesstofflage kleiner als 60%, insbesondere kleiner als 50% insbesondere kleiner als 15% ist.
  7. Staubsaugerfilterbeutel (101; 201) nach einem der vorangegangenen Ansprüche, wobei der Vliesstoff ein Polymer, insbesondere Polypropylen, oder einen biologisch abbaubaren Kunststoff, insbesondere PLA (Polyactid), umfasst.
  8. Staubsaugerfilterbeutel (101; 201) nach einem der vorangegangenen Ansprüche, wobei die Vliesstofflage elektrostatisch aufgeladen ist.
  9. Staubsaugerfilterbeutel (101; 201) nach einem der vorangegangenen Ansprüche, wobei der Staubsaugerfilterbeutel (101; 201) ein Flachbeutel ist.
EP09013176.4A 2009-10-19 2009-10-19 Staubsaugerfilterbeutel Active EP2311360B1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP09013176.4A EP2311360B1 (de) 2009-10-19 2009-10-19 Staubsaugerfilterbeutel
ES09013176.4T ES2508265T3 (es) 2009-10-19 2009-10-19 Bolsa de filtro de aspiradora
DK09013176.4T DK2311360T3 (da) 2009-10-19 2009-10-19 Støvsugerfilterpose
PL09013176T PL2311360T3 (pl) 2009-10-19 2009-10-19 Worek filtrujący do odkurzacza
RU2012116601/12A RU2526777C2 (ru) 2009-10-19 2010-09-21 Фильтровальный мешок пылесоса
PCT/EP2010/005779 WO2011047765A1 (de) 2009-10-19 2010-09-21 Staubsaugerfilterbeutel
AU2010310184A AU2010310184B2 (en) 2009-10-19 2010-09-21 Vacuum cleaner filter bag
US13/502,176 US8979961B2 (en) 2009-10-19 2010-09-21 Vacuum cleaner filter bag
CN201080053011.6A CN102665516B (zh) 2009-10-19 2010-09-21 真空清洁器过滤袋

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09013176.4A EP2311360B1 (de) 2009-10-19 2009-10-19 Staubsaugerfilterbeutel

Publications (2)

Publication Number Publication Date
EP2311360A1 EP2311360A1 (de) 2011-04-20
EP2311360B1 true EP2311360B1 (de) 2014-09-03

Family

ID=41809059

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09013176.4A Active EP2311360B1 (de) 2009-10-19 2009-10-19 Staubsaugerfilterbeutel

Country Status (9)

Country Link
US (1) US8979961B2 (de)
EP (1) EP2311360B1 (de)
CN (1) CN102665516B (de)
AU (1) AU2010310184B2 (de)
DK (1) DK2311360T3 (de)
ES (1) ES2508265T3 (de)
PL (1) PL2311360T3 (de)
RU (1) RU2526777C2 (de)
WO (1) WO2011047765A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130055900A1 (en) * 2010-03-19 2013-03-07 Ralf Sauer Vacuum Cleaner Filter Bag
US10590577B2 (en) 2016-08-02 2020-03-17 Fitesa Germany Gmbh System and process for preparing polylactic acid nonwoven fabrics
WO2020254235A1 (de) 2019-06-17 2020-12-24 Eurofilters Holding N.V. Staubsaugerfilterbeutel für einen handstaubsauger
EP3821777A1 (de) 2019-11-12 2021-05-19 Eurofilters Holding N.V. Staubsaugerfilterbeutel für einen handstaubsauger
EP3821776A1 (de) 2019-11-12 2021-05-19 Eurofilters Holding N.V. Staubsaugerfilterbeutel für einen handstaubsauger
EP3838095A1 (de) 2019-12-20 2021-06-23 Eurofilters Holding N.V. Halteplatte für einen staubsaugerfilterbeutel
US11441251B2 (en) 2016-08-16 2022-09-13 Fitesa Germany Gmbh Nonwoven fabrics comprising polylactic acid having improved strength and toughness

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2311360T3 (da) 2009-10-19 2014-10-06 Eurofilters Holding Nv Støvsugerfilterpose
DE102012010313A1 (de) * 2012-05-24 2013-11-28 Neenah Gessner Gmbh Filtermaterial für die Filtration von Prozessflüssigkeiten des Funkenerosionsverfahrens
CN104116462B (zh) * 2013-04-26 2017-06-30 天佑电器(苏州)有限公司 过滤袋及具有该过滤袋的吸尘器
CN105342526A (zh) * 2015-10-15 2016-02-24 苏州市民康过滤器材有限公司 一种干湿两用尘袋

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7424655U (de) 1974-10-24 Pvg Mbh & Co Kg Staubfilter, insbesondere zur Verwendung als Beutelfilter für Staubsauger
US4589894A (en) * 1984-04-11 1986-05-20 Minnesota Mining And Manufacturing Co. Disposable filter for a vacuum cleaner
DE3812849C3 (de) * 1988-04-18 1996-03-21 Gessner & Co Gmbh Staubfilterbeutel, dessen Herstellung und Verwendung
US5080702A (en) * 1990-02-15 1992-01-14 Home Care Industries, Inc. Disposable two-ply filter
US5401446A (en) * 1992-10-09 1995-03-28 The University Of Tennessee Research Corporation Method and apparatus for the electrostatic charging of a web or film
US5647881A (en) 1995-04-20 1997-07-15 Minnesota Mining And Manufacturing Company Shock resistant high efficiency vacuum cleaner filter bag
DE19544790C2 (de) 1995-11-30 1998-11-26 Kirchhoff International Gmbh M Wegwerfstaubsaugerbeutel
DE19609143C1 (de) 1996-03-08 1997-11-13 Rhodia Ag Rhone Poulenc Melt-blown-Vlies, Verfahren zu dessen Herstellung und dessen Verwendungen
IL139539A0 (en) * 1998-05-11 2004-02-08 Airflo Europe Nv Vacuum cleaner bag and improved vacuum cleaner bag
KR100564345B1 (ko) * 1998-08-11 2006-03-27 도시노부 요시하라 생분해성 플라스틱 성형용 조성물, 이로부터 얻어진생분해성 플라스틱, 그 성형방법 및 생분해성 플라스틱의용도
DE19919809C2 (de) 1999-04-30 2003-02-06 Fibermark Gessner Gmbh & Co Staubfilterbeutel, enthaltend Nanofaservlies
DE10064608A1 (de) * 2000-09-29 2002-04-11 Vorwerk Co Interholding Filterbeutel für einen Staubsager
DE10061073A1 (de) * 2000-12-08 2002-06-20 Vorwerk Co Interholding Filterbeutel für einen Staubsauger
DE102004020555B4 (de) * 2004-04-27 2006-09-21 Fibermark Gessner Gmbh & Co. Staubfilterbeutel, enthaltend Schaumstofflage
DE202005019004U1 (de) 2005-12-06 2007-04-19 Melitta Haushaltsprodukte Gmbh & Co. Kg Filtermaterial und Staubsaugerbeutel
DE102005059214B4 (de) 2005-12-12 2007-10-25 Eurofilters N.V. Filterbeutel für einen Staubsauger
ITBO20060581A1 (it) * 2006-07-31 2008-02-01 Ima Spa Bustina monolobo per prodotti da infusione.
DE202007018375U1 (de) 2007-07-06 2008-07-03 Eurofilters Holding N.V. Staubsaugerfilterbeutel
EP2011556B2 (de) 2007-07-06 2016-11-23 Eurofilters Holding N.V. Staubsaugerfilterbeutel
DK2311360T3 (da) 2009-10-19 2014-10-06 Eurofilters Holding Nv Støvsugerfilterpose

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130061566A1 (en) * 2010-03-19 2013-03-14 Ralf Sauer Vacuum Cleaner Filter Bag
US10178932B2 (en) * 2010-03-19 2019-01-15 Eurofilters Holding N.V. Vacuum cleaner filter bag
US10188248B2 (en) * 2010-03-19 2019-01-29 Eurofilters Holding N.V. Vacuum cleaner filter bag
US20130055900A1 (en) * 2010-03-19 2013-03-07 Ralf Sauer Vacuum Cleaner Filter Bag
US10590577B2 (en) 2016-08-02 2020-03-17 Fitesa Germany Gmbh System and process for preparing polylactic acid nonwoven fabrics
US11441251B2 (en) 2016-08-16 2022-09-13 Fitesa Germany Gmbh Nonwoven fabrics comprising polylactic acid having improved strength and toughness
WO2020254235A1 (de) 2019-06-17 2020-12-24 Eurofilters Holding N.V. Staubsaugerfilterbeutel für einen handstaubsauger
EP3821777A1 (de) 2019-11-12 2021-05-19 Eurofilters Holding N.V. Staubsaugerfilterbeutel für einen handstaubsauger
WO2021094089A1 (de) 2019-11-12 2021-05-20 Eurofilters Holding N.V. Staubsaugerfilterbeutel für einen handstaubsauger
WO2021094090A1 (de) 2019-11-12 2021-05-20 Eurofilters Holding N.V. Staubsaugerfilterbeutel für einen handstaubsauger
EP3821776A1 (de) 2019-11-12 2021-05-19 Eurofilters Holding N.V. Staubsaugerfilterbeutel für einen handstaubsauger
EP3838095A1 (de) 2019-12-20 2021-06-23 Eurofilters Holding N.V. Halteplatte für einen staubsaugerfilterbeutel
WO2021122544A1 (de) 2019-12-20 2021-06-24 Eurofilters Holding N.V. Halteplatte für einen staubsaugerfilterbeutel

Also Published As

Publication number Publication date
CN102665516B (zh) 2015-01-14
US20120216493A1 (en) 2012-08-30
CN102665516A (zh) 2012-09-12
DK2311360T3 (da) 2014-10-06
AU2010310184A1 (en) 2012-05-24
RU2012116601A (ru) 2013-11-27
RU2526777C2 (ru) 2014-08-27
AU2010310184B2 (en) 2013-07-11
EP2311360A1 (de) 2011-04-20
ES2508265T3 (es) 2014-10-16
WO2011047765A1 (de) 2011-04-28
US8979961B2 (en) 2015-03-17
PL2311360T3 (pl) 2015-02-27

Similar Documents

Publication Publication Date Title
EP2311360B1 (de) Staubsaugerfilterbeutel
EP2311359B1 (de) Staubsaugerfilterbeutel
EP2011556B1 (de) Staubsaugerfilterbeutel
EP2011555B2 (de) Staubsaugerfilterbeutel
EP3429720B1 (de) Staubsaugerfilterbeutel mit staub- und/oder faserförmigem recyclierten material und/oder samenfasern
EP3219374B1 (de) Staubsaugerfilterbeutel aus recyclierten kunststoffen
EP3219373B1 (de) Staubsaugerfilterbeutel mit recyclierten textilmaterialien und/oder baumwolllinters
EP1362627A1 (de) Mehrlagiger Filteraufbau und Verwendung eines mehrlagigen Filteraufbaus
EP3669734B1 (de) Staubsaugerfilterbeutel mit verbesserter schweissnahtfestigkeit
EP2060311A1 (de) Luftfiltermedium
WO2005107557A1 (de) Staubfilterbeutel, enthaltend schaumstofflage
DE60129722T2 (de) Elektrostatisch geladenes filterfaserflies und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110519

17Q First examination report despatched

Effective date: 20111212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 685105

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2508265

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141016

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009009881

Country of ref document: DE

Effective date: 20141016

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009881

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

26N No opposition filed

Effective date: 20150604

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 685105

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091019

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141019

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231023

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231023

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231102

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231023

Year of fee payment: 15

Ref country code: IT

Payment date: 20231030

Year of fee payment: 15

Ref country code: FR

Payment date: 20231024

Year of fee payment: 15

Ref country code: DK

Payment date: 20231023

Year of fee payment: 15

Ref country code: DE

Payment date: 20231026

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231006

Year of fee payment: 15

Ref country code: BE

Payment date: 20231023

Year of fee payment: 15