EP2309106A1 - circuit de refroidissement - Google Patents

circuit de refroidissement Download PDF

Info

Publication number
EP2309106A1
EP2309106A1 EP09166864A EP09166864A EP2309106A1 EP 2309106 A1 EP2309106 A1 EP 2309106A1 EP 09166864 A EP09166864 A EP 09166864A EP 09166864 A EP09166864 A EP 09166864A EP 2309106 A1 EP2309106 A1 EP 2309106A1
Authority
EP
European Patent Office
Prior art keywords
coolant
region
block
outlet
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09166864A
Other languages
German (de)
English (en)
Other versions
EP2309106B1 (fr
Inventor
Guenther Bartsch
Richard Fritsche
Urban Morawitz
Ingo Lenz
Jeroen Slotman
Bernd Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP09166864.0A priority Critical patent/EP2309106B1/fr
Priority to US12/846,339 priority patent/US8061309B2/en
Priority to CN2010202788331U priority patent/CN201802469U/zh
Publication of EP2309106A1 publication Critical patent/EP2309106A1/fr
Application granted granted Critical
Publication of EP2309106B1 publication Critical patent/EP2309106B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/12Turbo charger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the invention relates to an internal combustion engine having a coolant circuit which is divided into a cylinder block side coolant region and a cylinder head side coolant region, wherein the cylinder block side coolant region has at least one block thermostat.
  • the EP 1 375 857 A discloses a cooling device for an internal combustion engine.
  • the cooling device has a plurality of cooling cells in a cylinder head, which are separated from each other and can be traversed by a cooling liquid.
  • the cooling device further comprises at least first and second means for controlling the flow rate, wherein the means for controlling the flow rate to at least a first cooling cell of the cylinder head and at least a second cooling cell of the cylinder head are connected.
  • the first and second means are capable of controlling the amount of cooling liquid flowing through each first cooling cell and every second cooling cell, respectively.
  • the DE 10 2005 033 338 A1 relates to an internal combustion engine having a cylinder housing with a plurality of juxtaposed cylinders and a cylinder head.
  • the cylinder head closes off the cylinder housing on a cover surface, a cylinder head gasket being arranged between these two components.
  • a first main liquid space is arranged, which serves the cooling of the cylinder and the coolant transport.
  • a first cooling liquid gap is arranged at or near the top surface of the cylinder housing as a flow connection, which extends in a land area between two cylinders.
  • the cooling in the region of the cylinder land and the cylinder head gasket should be substantially improved.
  • the second cooling liquid gap is in flow communication with a main liquid space in the cylinder head.
  • the EP 0 197 365 A2 discloses a device for the technical production of a cooling device of webs between adjacent, extremely closely cogged cylinders of a cylinder block of an internal combustion engine, the cylinder walls are surrounded on both longitudinal sides and end faces of the cylinder block of a cooling water jacket, with a core for forming the cooling water jacket.
  • the EP 1 217 198 B1 is concerned with a cooling system for cooling a cylinder web, wherein at least one water channel extends exclusively on one side of a vertical axis through the center of the cylinder web.
  • the EP 1 698 770 A1 deals with the split-cooling system, not only cylinder block and cylinder head are controlled separately by coolant technology, but also the cylinder head is divided into separate cooling areas. This is advantageous in that a well controllable and optimized heat balance, in particular of the cylinder head, is achieved, the warm-up behavior of the internal combustion engine being decisively improved.
  • the invention has for its object to provide an internal combustion engine of the type mentioned above, the cooling or warm-up behavior is further improved by simple means.
  • the object is achieved by an internal combustion engine having the features of claim 1, wherein the cylinder-side coolant region has an outlet-side cooling region and an inlet-side cooling region, wherein coolant from the inlet-side cooling region can be guided into an outlet housing in which the outlet-side cooling region opens, wherein a coolant pump outlet is arranged in front of the block thermostat at least one branch, which leads a first partial flow toward the outlet side cooling region of the cylinder head side coolant region, the at least one branch is connected directly to the coolant pump outlet, wherein the flows through the block thermostat flowing coolant flow through the cylinder block side coolant region and from here into the inlet side cooling region of the cylinder head side K wherein the cylinder block-side coolant region communicates with the inlet-side cooling region through a cylinder head gasket, the outlet housing having a control element, and wherein the coolant flows flowing out of the outlet-side and inlet-side cooling regions mix in the flow direction upstream of the control element in the outlet housing two entering into the outlet housing cool
  • the invention is based on the finding that the split-cooling system can be improved in that the cooling system is not only divided into a cylinder block area and a cylinder head area, but also the cylinder head is divided into an outlet-side cooling area and an inlet-side cooling area.
  • skilful cooling strategy so different areas of the engine, especially in its warm-up phase can be controlled by controls. For example, a coolant flow in a first phase has a magnitude of zero, wherein in a second phase, the outlet side of the cylinder head is cooled. Only in a third phase of the cylinder block is cooled. This has proven to be practical proved as the internal combustion engine can be led to the required operating temperature as soon as possible.
  • the coolant flow through the cylinder block is controlled by means of a block thermostat. But flows z. B. during the warm-up phase, no coolant through the cylinder block, because the block thermostat is closed, the resulting heat, such as frictional heat, which is not dissipated, a warming example of lubricant, which is indeed desirable to improve the warm-up properties.
  • the coolant can be warmed up so far that vapor bubbles arise, which collect in the upper region of the cylinder block, and displace there actually existing coolant.
  • the so-called cylinder web or cylinder block web is arranged, which separates adjacent liners from each other.
  • this can be provided with a bore or a slot, wherein the slot can be connected directly to the block water jacket.
  • the vapor bubbles now displace the coolant just in this cooling device within the web or in the upper region of the cylinder block-side coolant region.
  • the block thermostat must be opened in order to avoid displacing the coolant in the upper area. With the solution according to the invention, however, it is possible to keep the block thermostat, especially in the warm-up phase of the internal combustion engine longer closed because the resulting vapor bubbles can be derived from the upper region of the cylinder block.
  • the cylinder-head-side coolant region preferably its inlet-side cooling region is coupled to the block water jacket; because the block water jacket is z. B. via a transfer in the cylinder head, z. B. the cooling slot in cylinder web and z.
  • a crossing for cross-section seen opposite arranged outlet in the cylinder head indirectly in conjunction with the cylinder head side coolant region, or preferably with the inlet side cooling region, so that a derivation of the vapor bubbles in the cylinder head is possible, even if the block thermostat is closed.
  • the resulting vapor bubbles are thus transported into the cylinder head, in particular in the inlet-side cooling region.
  • the cylinder block side cooling area can also by the Cylinder head gasket through with the inlet side coolant directly communicate.
  • a plurality of such compounds may be provided from the cylinder block side cooling region to the inlet side coolant region.
  • Another advantage of the invention lies in the fact that when the block thermostat is open a significantly improved cooling of the cylinder web is achievable.
  • the coolant can follow the previously described path from the block water jacket, via the crossing, the cooling slot and the outlet into the cylinder-head-side coolant region or its inlet-side cooling region.
  • the coolant cools the cylinder head or preferably the inlet side of the cylinder head, and enters the outlet housing without first having contact with the coolant jacket of the outlet-side cooling region or the water jacket there.
  • the coolant for cooling the outlet side flows through z. B. the upper and lower shell of the outlet side cooling region and then also enters the outlet housing, in which mixes the coolant flow from the inlet-side cooling region and from the outlet-side cooling region.
  • the block thermostat controls the coolant flow through the cylinder block, wherein the coolant flow is divided before the block thermostat at least in a partial flow, which enters the outlet side cooling region of the cylinder head side coolant region.
  • a control element for example a thermostat, may be arranged in the respective branch to the outlet-side coolant region.
  • a favorable embodiment can be provided to arrange two branches in front of the block thermostat, wherein a partial flow is passed through the first branch to the outlet side coolant region, and wherein the second branch z. B. is connected to a turbocharger. Both branches are preferably connected to the coolant pump outlet. Of course, the second branch may branch off from the first.
  • block thermostat is integrated with its housing in the cylinder block, but can also be designed as a separate component.
  • the outlet housing is designed as a separate housing in which the two partial flows open out of the outlet-side and inlet-side coolant area.
  • the control is arranged in the outlet housing, and preferably designed as an electrically controllable thermostat. In the flow direction behind the control further components of a cooling system of a motor vehicle are arranged.
  • the outlet-side coolant region is arranged in the sense of the invention on the outlet side or exhaust side, wherein the inlet-side coolant region in the meaning of the invention is assigned to the rest of the cylinder head so the respective combustion chamber and the inlet side.
  • FIG. 1 shows an internal combustion engine 1, which has a coolant circuit 2.
  • the coolant circuit 2 is divided into a cylinder block-side coolant region 3 or cylinder block water jacket and into a cylinder head-side coolant region 4 or headwater jacket, so that a split-cooling system is formed.
  • the cylinder-head-side coolant area 4 is further divided by way of example into an outlet-side cooling area 6 and an inlet-side cooling area 7, which of course is not intended to be limiting, wherein a coolant flow in the respective cooling or coolant area 2, 3, 4, 6, 7 is separately controllable ,
  • the coolant circuit 2 according to FIG. 1 a coolant pump 13.
  • a block thermostat 14 is integrated, wherein in front of the block thermostat 14, for example, two branches 16, 17 are arranged.
  • the block thermostat 14 is z. B. executed as a wax element, which allows the coolant flow to pass only in one direction, so that a backflow of the coolant in the closed block thermostats in the direction of the coolant pump 13 is avoided.
  • an electrically controlled block thermostat is conceivable.
  • One of the branches 16 is directly connected to a turbocharger 18, wherein an output connection 19 of the turbocharger 18 opens into a connecting line 21, which opens into a surge tank 25.
  • the connecting line 21 is designed as a vent line, shown dotted and is based on a thermostat 22.
  • the other branch 17 is connected to the outlet side cooling portion 6 of the cylinder head.
  • the block thermostat 14 is meaningfully required for the split-cooling system.
  • the coolant which passes through this block thermostat 14 (arrow 26) flows through the cylinder block-side cooling region 3, passes through the cylinder head gasket 5 into the cylinder head, in particular into the inlet-side cooling region 7, flows through the inlet-side cooling region 7, thereby cooling, inter alia, the inlet side 27 of the internal combustion engine 1, and without first making contact with the coolant (water jacket) flowing in the outlet-side cooling section 6, enters an outlet housing 28 (arrow 29).
  • the coolant for cooling the outlet side 31 of the cylinder head flows through the outlet-side cooling region 6 and also enters the outlet housing 28 (arrow 32).
  • both coolant streams are mixed in front of the thermostat 22.
  • a return of the coolant can then take place, for example via a vent valve 34, an EGR cooler 36, a cabin heater 37, an oil heat exchanger 38 and main cooler 39 back to the coolant pump 13.
  • this return should only be exemplary, with a different order or bypass lines as in FIG. 1 shown are conceivable.
  • the thermostat 22 may also be connected, as shown, to the main radiator 39, which is connected to the coolant pump inlet 23 via a connecting line 41. It is also possible, the thermostat 22 connect via a bypass 42 with the coolant pump inlet 23. As shown, the oil heat exchanger 38 also opens into the coolant pump inlet 23. Dotted is a connection 43 from the main cooler 39 to the expansion tank 22.
  • the thermostat 22 can be electrically controlled, or z. B. be executed as a map thermostat.
  • the housing of the block thermostat 14 is integrated in the cylinder block.
  • the block thermostat 14 can also be designed as a separate component.
  • the coolant pump outlet is connected with the interposition of the block thermostat 14 directly to the cylinder block, or the cylinder block side coolant area 3.
  • the line for supplying the exhaust side 31 of the cylinder head and also the turbocharger 18 (branch 16, 17) is connected directly to thedemittepumpenaustritt.
  • the outlet housing 28, however, is exemplified as a separate component, but may still have an EGR valve with corresponding lines to supply the EGR cooler.
  • the block thermostat 14 can remain closed longer, since possibly forming vapor bubbles from the cylinder block or its upper portion in the cylinder head or in the inlet-side cooling region 7 can be derived.
  • a warm-up behavior of the internal combustion engine is decidedly improved because the block thermostat 14 must be opened only when an exchange of the coolant in the cylinder block side coolant area 3 or in the water jacket is actually required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
EP09166864.0A 2009-07-30 2009-07-30 circuit de refroidissement Active EP2309106B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09166864.0A EP2309106B1 (fr) 2009-07-30 2009-07-30 circuit de refroidissement
US12/846,339 US8061309B2 (en) 2009-07-30 2010-07-29 Cooling system
CN2010202788331U CN201802469U (zh) 2009-07-30 2010-07-30 冷却系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09166864.0A EP2309106B1 (fr) 2009-07-30 2009-07-30 circuit de refroidissement

Publications (2)

Publication Number Publication Date
EP2309106A1 true EP2309106A1 (fr) 2011-04-13
EP2309106B1 EP2309106B1 (fr) 2017-06-07

Family

ID=41800590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09166864.0A Active EP2309106B1 (fr) 2009-07-30 2009-07-30 circuit de refroidissement

Country Status (3)

Country Link
US (1) US8061309B2 (fr)
EP (1) EP2309106B1 (fr)
CN (1) CN201802469U (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016104442U1 (de) 2016-08-02 2016-08-18 Ford Global Technologies, Llc Zylinderblock für einen mehrzylindrigen Verbrennungsmotor
DE102015121632A1 (de) 2015-12-11 2017-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Kühlen einer Brennkraftmaschine
DE102016214224A1 (de) 2016-08-02 2018-02-08 Ford Global Technologies, Llc Zylinderblock für einen mehrzylindrigen Verbrennungsmotor
DE102016214226A1 (de) 2016-08-02 2018-02-08 Ford Global Technologies, Llc Zylinderblock für einen mehrzylindrigen Verbrennungsmotor
DE102017206716A1 (de) 2017-04-21 2018-10-25 Ford Global Technologies, Llc Zylinderblock eines Verbrennungsmotors
EP2392794B1 (fr) * 2010-06-07 2019-02-27 Ford Global Technologies, LLC Turbosoufflante refroidie séparément pour le maintien d'une stratégie sans écoulement d'une enveloppe de réfrigérant à bloc cylindre

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130247848A1 (en) * 2010-12-13 2013-09-26 Toyota Jidosha Kabushiki Kaisha Engine cooling apparatus
US8739745B2 (en) * 2011-08-23 2014-06-03 Ford Global Technologies, Llc Cooling system and method
RU2492334C1 (ru) * 2012-01-11 2013-09-10 Государственное образовательное учреждение среднего профессионального образования Самарский машиностроительный колледж Раздельная жидкостная система охлаждения двигателя внутреннего сгорания
US8997483B2 (en) * 2012-05-21 2015-04-07 GM Global Technology Operations LLC Engine thermal management system and method for split cooling and integrated exhaust manifold applications
JP6191104B2 (ja) * 2012-09-07 2017-09-06 富士通株式会社 冷媒供給ユニット、冷却ユニット及び電子機器
US9243545B2 (en) * 2013-01-11 2016-01-26 Ford Global Technologies, Llc Liquid-cooled internal combustion engine with liquid-cooled cylinder head and with liquid-cooled cylinder block
JP6051989B2 (ja) * 2013-03-21 2016-12-27 マツダ株式会社 エンジンの冷却装置
KR101393582B1 (ko) * 2013-03-26 2014-05-09 기아자동차 주식회사 엔진의 냉각수 순환장치
US10866603B2 (en) 2014-10-21 2020-12-15 Ford Global Technologies, Llc Wax thermostat
CN104454127A (zh) * 2014-11-10 2015-03-25 上海中船三井造船柴油机有限公司 一种柴油机缸套用防冷腐蚀旁通式冷却水系统管路
US10202886B1 (en) * 2015-05-02 2019-02-12 Darius Teslovich Engine temperature control system
US10794336B2 (en) * 2016-04-14 2020-10-06 Ford Global Technologies, Llc Methods and systems for an exhaust gas recirculation cooler
KR20180019410A (ko) * 2016-08-16 2018-02-26 현대자동차주식회사 냉각수 제어밸브 유닛을 갖는 엔진시스템
CN108757139B (zh) * 2018-06-21 2019-12-20 浙江吉利控股集团有限公司 一种发动机冷却方法及发动机、车辆
TR202006982A2 (tr) 2020-05-05 2021-11-22 Kirpart Otomotiv Parcalari Sanayi Ve Ticaret A S Termo-elemanin termostat çikiş sicakliğini algilamasini sağlayan bi̇r valf yapisi ve buna i̇li̇şki̇n bi̇r termostat terti̇bati
RU2762814C1 (ru) * 2021-02-12 2021-12-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный аграрный университет" Способ работы жидкостной системы охлаждения двигателя внутреннего сгорания

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2436878A1 (fr) * 1978-09-23 1980-04-18 Audi Ag Moteur a combustion interne refroidi par un liquide
EP0197365A2 (fr) 1985-04-02 1986-10-15 Halbergerhütte GmbH Dispositif de moulage pour assurer le refroidissement des parois entre les cylindres voisins d'un bloc à cylindres et le bloc à cylindres obtenu par le procédé
EP1375857A1 (fr) 2002-06-27 2004-01-02 Renault s.a.s. Dispositif de refroidissement pour moteur à combustion
US6729133B1 (en) * 2003-02-03 2004-05-04 Chapeau, Inc. Heat transfer system for a co-generation unit
EP1698770A1 (fr) 2005-03-04 2006-09-06 Ford Global Technologies, Inc. Système de refroidissement de culasse avec partition
DE102005033338A1 (de) 2005-07-16 2007-01-25 Daimlerchrysler Ag Brennkraftmaschine und Verfahren zum Kühlen einer Brennkraftmaschine
EP1217198B1 (fr) 2000-12-21 2007-09-05 Petroliam Nasional Berhad Système de refroidissement entre des alésages-cylindre
FR2905423A1 (fr) * 2006-09-06 2008-03-07 Peugeot Citroen Automobiles Sa Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735238A (en) * 1996-10-21 1998-04-07 Ford Global Technologies, Inc. Heat management system for internal combustion engines
JP3775572B2 (ja) * 2001-05-17 2006-05-17 本田技研工業株式会社 水冷式内燃機関
JP4372799B2 (ja) * 2007-02-19 2009-11-25 トヨタ自動車株式会社 内燃機関の制御システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2436878A1 (fr) * 1978-09-23 1980-04-18 Audi Ag Moteur a combustion interne refroidi par un liquide
EP0197365A2 (fr) 1985-04-02 1986-10-15 Halbergerhütte GmbH Dispositif de moulage pour assurer le refroidissement des parois entre les cylindres voisins d'un bloc à cylindres et le bloc à cylindres obtenu par le procédé
EP1217198B1 (fr) 2000-12-21 2007-09-05 Petroliam Nasional Berhad Système de refroidissement entre des alésages-cylindre
EP1375857A1 (fr) 2002-06-27 2004-01-02 Renault s.a.s. Dispositif de refroidissement pour moteur à combustion
US6729133B1 (en) * 2003-02-03 2004-05-04 Chapeau, Inc. Heat transfer system for a co-generation unit
EP1698770A1 (fr) 2005-03-04 2006-09-06 Ford Global Technologies, Inc. Système de refroidissement de culasse avec partition
DE102005033338A1 (de) 2005-07-16 2007-01-25 Daimlerchrysler Ag Brennkraftmaschine und Verfahren zum Kühlen einer Brennkraftmaschine
FR2905423A1 (fr) * 2006-09-06 2008-03-07 Peugeot Citroen Automobiles Sa Dispositif de distribution de liquide de refroidissement dans un moteur de vehicule automobile

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392794B1 (fr) * 2010-06-07 2019-02-27 Ford Global Technologies, LLC Turbosoufflante refroidie séparément pour le maintien d'une stratégie sans écoulement d'une enveloppe de réfrigérant à bloc cylindre
DE102015121632A1 (de) 2015-12-11 2017-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Kühlen einer Brennkraftmaschine
DE202016104442U1 (de) 2016-08-02 2016-08-18 Ford Global Technologies, Llc Zylinderblock für einen mehrzylindrigen Verbrennungsmotor
DE102016214224A1 (de) 2016-08-02 2018-02-08 Ford Global Technologies, Llc Zylinderblock für einen mehrzylindrigen Verbrennungsmotor
DE102016214226A1 (de) 2016-08-02 2018-02-08 Ford Global Technologies, Llc Zylinderblock für einen mehrzylindrigen Verbrennungsmotor
DE102017206716A1 (de) 2017-04-21 2018-10-25 Ford Global Technologies, Llc Zylinderblock eines Verbrennungsmotors
US10550753B2 (en) 2017-04-21 2020-02-04 Ford Global Technologies, Llc Cylinder block of an internal combustion engine

Also Published As

Publication number Publication date
EP2309106B1 (fr) 2017-06-07
CN201802469U (zh) 2011-04-20
US20110023797A1 (en) 2011-02-03
US8061309B2 (en) 2011-11-22

Similar Documents

Publication Publication Date Title
EP2309106B1 (fr) circuit de refroidissement
EP2309114B1 (fr) Circuit de refroidissement
DE102015016673B4 (de) Motorkühlsystem
AT519458B1 (de) Zylinderkopf für eine brennkraftmaschine
EP1900919A1 (fr) Circuit de refroidissement
EP2376861A2 (fr) Unité formant échangeur de chaleur
AT514793B1 (de) Kühlsystem für eine Brennkraftmaschine
DE112015000115B4 (de) Abgasrückführungsventil, System zum Auftauen von Abgasrückführungsventil und Motor
EP2562379B1 (fr) Circuit d'agent réfrigérant
DE102013220039A1 (de) Wärmeübertrager
DE102008058856A1 (de) Kühlmittelzirkulations-Kreislauf für einen Motor
DE10047081B4 (de) Verfahren und Vorrichtung zur Kühlung einer Brennkraftmaschine
DE10127219A1 (de) Kühlanlage für einen Verbrennungsmotor
DE102015201240B4 (de) Split-Kühlsystem sowie Brennkraftmaschine mit einem Split-Kühlsystem und entsprechend ausgestattetes Fahrzeug
EP2562378B1 (fr) Stratégie de fonctionnement d'un circuit d'agent réfrigérant séparé
EP2383447A2 (fr) Circuit de refroidissement d'un moteur à combustion
EP2128399A1 (fr) Système de refroidissement de culasse avec partition
DE19701543B4 (de) Kühlanordnung in einem Motorblock
DE19907267B4 (de) Kühlermodul für eine Brennkraftmaschine
DE112019000061T5 (de) Motorkühleinrichtung und motorsystem
AT524566B1 (de) Flüssigkeitsgekühlte Brennkraftmaschine
EP0637680B1 (fr) Moteur à combustion interne à plusieurs cylindres refroidi par liquide
EP2616650B1 (fr) Circuit de liquide de refroidissement pour un moteur à combustion interne
DE102017218834B4 (de) Kühlmittelkanalanordnung für einen Verbrennungsmotor
EP1008471B1 (fr) Circulation de refroidissement et de chauffage et échangeur thérmique pour véhicules avec un dispositif de chauffage du liquide de refroidissement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20111013

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170102

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 899411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014035

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170607

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014035

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 899411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190621

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190626

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200730

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230622

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230707

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230614

Year of fee payment: 15