EP2291619A1 - Verfahren und messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch ein messrohr - Google Patents

Verfahren und messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch ein messrohr

Info

Publication number
EP2291619A1
EP2291619A1 EP09769099A EP09769099A EP2291619A1 EP 2291619 A1 EP2291619 A1 EP 2291619A1 EP 09769099 A EP09769099 A EP 09769099A EP 09769099 A EP09769099 A EP 09769099A EP 2291619 A1 EP2291619 A1 EP 2291619A1
Authority
EP
European Patent Office
Prior art keywords
ultrasonic
ultrasound
electromechanical
sensor
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09769099A
Other languages
English (en)
French (fr)
Inventor
Andreas Berger
Achim Wiest
Finn Bloch Jensen
Rolf Sonderkamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP2291619A1 publication Critical patent/EP2291619A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • G01F1/668Compensating or correcting for variations in velocity of sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Definitions

  • the present invention relates to methods for determining and / or monitoring the flow of a measuring medium through a measuring tube having a first ultrasonic sensor and at least one second ultrasonic sensor, which first ultrasonic sensor at least one eiektromechanisches ultrasonic Wandierelement and is mounted in a first region of the measuring tube and softer second Ultrasonic sensor has at least two electromechanical ultrasonic transducer elements and is mounted in a second region of the measuring tube so that the ultrasound signals transmitted by the first ultrasonic sensor are received by the second ultrasonic sensor and that the Uitraschallsignale sent by the second Uftraschailsensor are received by the first ultrasonic sensor , and with at least one control / evaluation unit, which sin based on the Uitraschail- measuring signals or on the basis of measurement data derived from the ultrasonic measurement signals d, the volume flow and / or the mass flow of the measuring medium flowing in the measuring tube are determined by means of a transit time difference method and a corresponding measuring system.
  • Uitraschall flowmeters are widely used in process and automation technology. They allow in a simple way to determine the volume flow and / or mass flow in a pipeline.
  • ultrasonic pulses are sent at a certain angle to the pipe axis both with and against the flow. From the transit time difference The flow rate and thus the known diameter of the piping section can be used to determine the volume flow.
  • Contaminants are present in this, so this principle is mainly used in contaminated liquids use.
  • the Ultraschallwelien be generated or received with the help of so-called ultrasonic transducer.
  • ultrasonic transducers are firmly attached to the pipe wall of the pipe section in question.
  • Ciamp-on ultrasonic flowmeter systems are also available. In these systems, the ultrasonic transducers are pressed against the pipe wall only with a tension lock. Such systems are for. Example, from EP 686 255 B1, US-A 44 84 478 or US-A 45 98 593 known.
  • a big advantage of clamp-on ultrasonic flowmeters is that they do not touch the medium being measured and are mounted on an existing pipeline.
  • a disadvantage is a high expenditure in the assembly of the clamp-on systems in order to align the individual Ultraschallwandier each other, which of many parameters, such as. Pipe wall thickness, pipe diameter, speed of sound in the medium to be measured.
  • the ultrasonic transducers usually consist of an electromechanical
  • the Converter in industrial process measurement usually a piezoceramic, and a Coupling layer, also called coupling wedge or rare precursor body.
  • the coupling layer is usually made of plastic.
  • the ultrasonic waves are generated and guided via the coupling layer to the pipe wall and from there into the liquid. Since the speeds of sound in liquids and plastics are different, the ultrasonic waves are refracted during the transition from one medium to another.
  • the angle of refraction is determined in a first approximation by the Sneil ''s law. The angle of refraction is thus dependent on the ratio of the propagation velocities in the media.
  • the adaptation layer assumes the function of the transmission of the ultrasonic signal and at the same time the reduction of a reflection caused by different acoustic impedances at boundary layers between two materials.
  • the flow rate of a measuring medium in a measuring tube on the drift of an ultrasonic signal is determined by the flow of the measuring medium in the measuring tube.
  • an ultrasonic flowmeter is disclosed with at least one Uitraschaliwandler in a first region of the measuring tube and at least two UltraschallaNwandlind in a second area. Due to the different distances of the transducers in the second region to that in the first region, a transit time difference of the ultrasonic signals results. This difference in transit time is used to calculate the flow.
  • the disadvantage is that the ultrasound transducer in the first region of the measuring tube an energy-intensive signal with high signal strength and wide
  • DE 102 21 771 A1 shows an ultrasonic sensor for an ultrasonic flowmeter with a plurality of piezoelectric elements, which are combined to form what is known as a piezo-array, which piezoelectric elements can be actuated with a time delay.
  • This makes it possible, with an ultrasonic sensor mounted flat on the measuring tube wall, to achieve different angles of the ultrasonic signal radiated into the measuring medium with a width front to the measuring tube axis.
  • the time-delayed driving is very computationally intensive. Even the change of the angle makes sense only in a limited area. If the ultrasound signal is radiated very flatly, longitudinal waves may be excited and the transmission through the tube wall is reduced and a significant portion of the sound wave is reflected.
  • the object of the invention is to provide a method and a corresponding flow measuring system whose sensors can be attached to a pipeline and require no complex mutual alignment.
  • the object is achieved by a method for determining and / or monitoring the flow of a measuring medium through a measuring tube with a first ultrasonic sensor and at least one second ultrasonic sensor, which first ultrasonic sensor has at least one electromechanical ultrasonic transducer element and is mounted in a first region of the measuring tube and which second ultrasound sensor has at least two electromechanical ultrasound transducer elements and is mounted in a second region of the measuring tube in such a way that the ultrasound signals transmitted by the first ultrasound sensor through the measurement medium are received by the second ultrasound sensor and if the ultrasound signal transmitted by the second ultrasound sensor through the measurement medium is received by the first ultrasound sensor are received, and with at least one control / evaluation unit, which sin based on the Uitraschall- or on the basis of measurement data derived from the ultrasonic measurement signals d, determines the volume flow and / or the mass flow of the measuring medium flowing in the measuring tube by means of a transit time difference method, wherein ultrasound signals are transmitted from the first ultrasonic sensor through the measuring medium to the second ultrasonic sensor
  • the ultrasonic sensors have coupling elements which bring about an angle between the ultrasonic wall-mounted elements mounted on them and the main flow direction of the measuring medium in the measuring tube, which usually runs approximately axially to the central axis of the measuring tube. This is how the ultrasound signal gets! between the sensors, a directional component in and / or against the main flow direction of the measuring medium in the measuring tube.
  • an ultrasound signal! Irradiate perpendicular to the pipe wall or pipe axis and yet can be determined by means of the transit time difference method, the flow.
  • the sensors are mounted or installed in different areas of the measuring tube.
  • the sensors are mounted on opposite sides of the measuring tube outer wall from the outside or they are located on the same side of the measuring tube and the signal is reflected on the opposite side of the measuring tube wall, preferably with a
  • Reflector on the inside of the measuring tube For inline systems, the sensors are usually located in fixed locations, fixed in or with the measuring tube wall.
  • the process variables determined during the diagnostic phase are, in particular, the signal strength of the received ultrasound signal, its amplitude, its amplitude
  • Phase position, the envelope or the transfer function Phase position, the envelope or the transfer function.
  • Derivable quantities are eg the intensity or the transit time of the ultrasonic signal.
  • the electromechanical ultrasonic transducer element is preferably a piezoelectric element.
  • eietrostrictive and / or magnetostrictive elements are also capable of generating and / or receiving suitable ultrasound signals.
  • a first ultrasonic sensor with at least one electromechanical ultrasonic transducer element is mounted in a first region of the measuring tube.
  • a second ultrasonic sensor is mounted in a second region of the measuring tube.
  • both sensors are attached to the outside of the measuring tube wall. The sensors are roughly aligned, i. their spacing is governed by a specific rule, e.g. at a distance from the size of the diameter of the measuring tube, roughly or in coarse steps. The cost of this device is very low compared to the prior art.
  • the optimum combination of ultrasonic transducer elements of the sensors for the measurement is determined. Even a non-optimal combination can be used for the measurement, but this measurement would be associated with a greater uncertainty.
  • exactly one ultrasound transducer element alternately transmits ultrasound signals.
  • the parameters determined and / or derived from the received ultrasound signals are determined individually for the receiving ultrasound transducer elements. This can be done in only one direction, ie from the first to the second ultrasonic sensor.
  • ultrasonic signals in both directions upstream and downstream can be included in the diagnostics because of a phase shift between the directional component signal in the main flow direction of the measurement medium in the measuring tube and the ultrasound signal! with directional component counter to the main flow direction of the medium to be evaluated in the measuring tube.
  • the diagnostic phase then consists of determining and / or deriving the process variables of all possible combinations of ultrasound transducer elements in both directions.
  • This phase there is a record with a description of the measurement results of all combinations during the diagnostic phase.
  • the best possible combination is selected and the process variables saved as reference values. These are now always available for comparison with a current measurement.
  • the diagnostic phase is possible before and after each measurement, but even during a measurement phase, the selection of active electromechanical ultrasonic transducer elements in the subsequent measurement phase can take place. By means of other transmission frequencies and / or other pulse sequences, this selection is possible, for example, without disturbing the measuring operation. Since a flow measurement takes place with the evaluation of individual ultrasound packets, either these measurements can be compared directly with the stored reference variables, or one or more measurements are taken for diagnosis between two parcels of the flow measurement.
  • This arrangement also allows the speed of sound in the medium to be determined easily. In the case of a known measuring medium, it is thus possible to determine its temperature or, if the temperature is known, it is thus possible to detect a change in the measuring medium.
  • the diagnosis can take place both in the case of flowing measuring medium and in the case of a so-called zero flow, ie, when the measuring medium is stationary in the measuring tube.
  • the diagnosis is advantageously carried out with a measuring medium flowing in the measuring tube, since in this case an interference signal, for example caused by a so-called tube wave, ie an ultrasound signal in the measuring tube itself or the measuring tube wall, can be better distinguished from the useful signal, ie the ultrasonic signal for diagnosis.
  • An advantageous development of the method according to the invention provides that, during the diagnostic phase, the electromechanical ultrasonic transducer elements of the second ultrasound sensor active in the subsequent measurement phase are selected for the greatest signal strength of the received ultrasound signals.
  • the ultrasound transducer element or ultrasound transducer elements having the largest received signal strength are selected.
  • a variant is that the Uitraschall transducer element is selected, which receives the largest signal strength.
  • many ultrasound transducer elements can be combined to both transmit and / or receive ultrasound signals, it is very advantageous to combine a plurality of ultrasound transducer elements together, in particular the selected ultrasound transducer and its direct neighbors and / or further ultrasound juxtaposed - Transducer elements.
  • the ultrasonic sensors each have matching layers between coupling elements and ultrasonic transducer elements, which, like a filter, are designed such that the proportions of the ultrasonic measuring signals, which in Ein standing. Direction of the Uitraschall measuring signals are oriented pass the matching layers approximately undisturbed, while the proportions of the ultrasonic measuring signals, which are oriented transversely to the input and / or Ausstrahlraum, are largely attenuated by the matching layers.
  • the first ultrasonic sensor has at least two electromechanical ultrasonic transducer elements and during the diagnostic phase the electromechanical ultrasonic transducer elements of the first ultrasonic sensor active in a subsequent measuring phase are selected.
  • the selection is made e.g. on the basis of the signal intensity of the ultrasound signals of the first sensor received by the second ultrasound sensor and / or the signal strength of the ultrasound signals received from the first ultrasound sensor which were transmitted by the second ultrasound sensor.
  • the electromechanical ultrasound transducer elements of the second ultrasound sensor active in the subsequent measurement phase are selected for the optimum phase difference between transmission and reception of the received ultrasound signal.
  • the electromechanical ultrasonic transducer elements of the second ultrasonic sensor active in the subsequent measuring phase are selected for the optimum phase difference between the ultrasonic signal received from the second ultrasonic sensor and the ultrasonic signal received from the first ultrasonic sensor.
  • the ultrasonic signal emitted by the first ultrasonic sensor Sent and received by the second ultrasound sensor it has at least one directional component in or against the
  • Main flow direction of the measuring medium in the measuring tube and the ultrasonic signal, which is sent from the second ultrasonic sensor and received by the first ultrasonic sensor is in opposite directions. It is used in this case that due to the flow of the measuring medium, phase differences occur in certain time segments of the two ultrasonic signals, in and against the flow.
  • the electromechanical ultrasonic transducer elements of the second ultrasonic sensor active in the subsequent measuring phase selected according to the optimum transfer function of the received ultrasonic signals.
  • a plurality of electromechanical ultrasound transducer elements of the first ultrasound sensor are activated simultaneously and / or a plurality of electromechanical ultrasound transducer elements of the second ultrasound sensor are simultaneously activated. This is particularly advantageous for directly adjacent ultrasound transducer elements.
  • the respectively active electromechanical ultrasonic transducer elements are switched by at least one M ultiplexer, wherein the multiplexer is controlled by the control / evaluation unit and wherein the electromechanical ultrasonic transducer elements of the first ultrasonic sensor and the electromechanical ultrasonic Wandierimplantation of the second ultrasonic sensor are connected to the control / evaluation unit.
  • a multiplexer is also a switch unit of a plurality of independently controllable individual switches.
  • An advantageous embodiment of the method according to the invention is that the process variable detected during the diagnostic phase is stored and that during the measurement phase the stored process variable is compared with the currently detected process variable, wherein when a certain deviation of the stored process variable from the currently detected process variable is exceeded, a renewed Diagnosis phase is initiated.
  • the comparison is possible with one and / or with several recorded process variables.
  • the flow can be calculated, for example, by means of the phase shift from transmitter to receiver in and against the direction of flow, while the optimum combination of ultrasound transducer elements is determined by means of the signal strength.
  • the combination of the ultrasonic Wandieretti can also be determined with the phase shift.
  • the object underlying the invention is achieved by a measuring system for determining and / or monitoring the flow of a measuring medium through a measuring tube having a first Uitraschatlsensor and at least a second ultrasonic sensor, which first Uitraschallsensor at least one eiektromechanisches ultrasonic transducer element and in a first region of the measuring tube is attachable and which second Uitraschallsensor has at least two eiektromechanische ultrasonic transducer elements and in a second region of the measuring tube is attachable so that the first Uitraschallsensor sendable by the measuring medium ultrasonic signals from the second Uitraschallsensor are receivable and that of the second Uitraschallsensor by the measuring medium sendable ultrasonic signals from the first ultrasonic sensor are receivable, and with at least one control / evaluation unit, which on the basis of the ultrasonic measurement signals or on the basis of measurement data, which from the Ultras Chall-measuring signals are derived,
  • the ultrasonic transducer elements are controlled by the control / evaluation unit. With several ultrasonic transducer elements on a Uitraschallsensor the signals are passed, for example via at least one Multipiexer. This Multipiexer is then also controlled by the control / evaluation.
  • the first ultrasonic sensor has at least two electromechanical ultrasonic transducer elements and during the diagnostic phase they are in one subsequent measurement phase active eieelektromechanischen ultrasonic transducer elements of the first Ultraschallaüsensors selectable.
  • a very advantageous development of the measuring system according to the invention is the fact that the measurement signals of eiektromechanischen ultrasonic wall leriata or the derivable from the measurement signals measurement data of exactly one Rege! - / Evaluation unit are evaluated, the active eiektromechanischen ultrasonic transducer elements by means of at least one Multiplexers of the control / evaluation are controllable.
  • the circuit of the active ultrasonic transducer elements is controllable by at least one multiplexer.
  • the control / evaluation unit which receives and processes the signals of the ultrasonic transducer elements, controls the multiplexer.
  • the combination of the active ultrasonic transducer elements is obtained according to the described method.
  • the individual ultrasonic wall elements sequentially transmit a predetermined signal.
  • the acquired process parameters are evaluated and the control / evaluation unit decides based on the specified criteria, soft combination of ultrasonic transducer elements is activated in the measurement phase.
  • a multiplexer is also a switch unit of a plurality of independently controllable individual switches.
  • the first ultrasonic sensor and the second ultrasonic sensor can be connected to one another via a detachable connection.
  • the first ultrasonic sensor and the second ultrasonic sensor in a common housing.
  • the housing can correspond to a defined housing protection, for example, it is dust, gas and / or waterproof.
  • the housing can not have any external moving parts.
  • the second coupling element is an integral part of the first Koppeieiements. Both ultrasonic sensors thus have a single monolithic coupling element.
  • the electromechanical ultrasonic transducer elements of the first ultrasonic sensor each have a first surface for transmitting and / or receiving ultrasonic signals, which first surfaces has a first surface area, and which electromechanical ultrasonic transducer elements of the second ultrasonic sensor each a second surface for transmitting and / or receiving ultrasound signals, the second surface having a second surface area, wherein the first surface area is unequal to the second surface area.
  • a plurality of electromechanical ultrasonic transducer elements of the second ultrasonic sensor taken together the surface of an electromechanical ultrasonic transducer element of the first ultrasonic sensor.
  • the magnitudes of the areas of the electromechanical ultrasound transducer elements of the first ultrasound sensor and those of the electro-mechanical ultrasound transducer elements of the second ultrasound sensor are in a ratio not equal to one another.
  • Preferred ratios are e.g. nine to ten or nineteen to twenty, etc.
  • a further advantageous development of the measuring system according to the invention provides that the electromechanical ultrasonic transducer elements of the first ultrasonic sensor have approximately constant first distances and that the electromechanical ultrasonic transducer elements of the second ultrasonic sensor have approximately constant second distances, wherein the first distances are not equal to the second distances.
  • the distances are usually based on the surface ridge points of U ⁇ traschall Wandlere ⁇ emente.
  • the center of area in this context is the geographical center or the center of gravity of the area. It is not so much the calculation of the centroid as such, but rather, that the area centers are calculated equally for all ultrasound transducer elements.
  • a plurality of electromechanical ultrasonic transducer elements can be activated simultaneously.
  • electromechanical ultrasonic transducer elements are then activated simultaneously, i. they are ready to send and / or ready to receive.
  • the first ultrasonic sensor has a coupling element which is designed such that an ultrasound signal transmitted by the electromechanical Uitraschail transducer element has a directional component in or against the main flow direction of the measuring medium in the measuring tube and / or that the second Ultrasonic sensor has a coupling element, which is designed so that an ultrasound signal sent from the electromechanical ultrasonic transducer element has a directional component in or against the main flow direction of the measuring medium in the measuring tube.
  • An advantageous embodiment of the invention provides that the active in the measuring phase electromechanical ultrasonic transducer elements of the first UltraschallaNsensors and / or the second ultrasonic sensor, from the outside, ie from an external unit, are selectable, for example by the user himself via a corresponding interface or an external field device, via a analog frequency or current input, electromechanical via switch or digitally adjustable via a signal.
  • Fig. 1 shows a longitudinal section of a measuring tube with inventive measuring system
  • Fig. 2 shows a distributor circuit according to the invention
  • Fig. 3 shows in longitudinal section two ultrasonic sensors of an inventive
  • FIG. 4 shows a flowchart of the method according to the invention
  • FIG. 5 shows a further distributing circuit according to the invention.
  • FIG. 1 an inventive measuring system 1 with two ultrasonic sensors 2, 3, which are mounted on a measuring tube 4, shown. Both ultrasonic sensors 2, 3 have a plurality of ultrasonic transducer elements 6.1-6.6, 7.1 -7.6. So these are so called
  • Transducer arrays not to be confused with arrays in individual sensors. With a single combination of individually operable ultrasonic transducer elements 6.1 - 6.6, 7.1 - 7.6, the flow measurement can be performed. The selection and positioning of the sensors 2, 3 is facilitated by the variety of possible combinations.
  • the ultrasonic sensors 2, 3 are mounted on the same outside of the measuring tube 4. Their ultrasound Wandier instituten 6.1 -6.6, 7.1-7.6 face each other at an angle so that the ultrasound signal emitted by them 10 is passed through the measuring medium 5 to the respective other ultrasonic sensor 2, 3. A directional component of the ultrasound signal 10 points in the direction of the main flow direction of the measuring medium 5 in the measuring tube 4. Thus, a transit time difference can be measured with mutual transmission and reception, via which the flow velocity of the measuring medium 5 in the measuring tube 4 and thus the flow can be determined.
  • the UltraschallaSI transducer elements 6.1-6.6 have a distance 11 to each other.
  • the ultrasonic transducer elements 7.1-7.6, however, have a distance 12 to each other.
  • the distances 11, 12 are considered to be approximately constant, are but not the same. In this embodiment, the distances 11 are 10mm and the distances 12 9mm.
  • the diagnostic phase of the measuring system 1 is preceded by the structure of the measuring system 1.
  • the clam-on ultrasonic sensors 2, 3 on the outside of the measuring system 1 are preceded by the structure of the measuring system 1.
  • one after the other of the ultrasonic transducer elements 6.1-6.6 is activated or activated and excited to transmit a presettable Uitraschalisignals.
  • a presettable Uitraschalisignals e.g. the signal strength of the received ultrasonic signals for each ultrasonic transducer element 7.1-7.6 measured individually.
  • This can be done both sequentially, i. by sequentially measuring all possible Kombinatäonen, as well as done simultaneously.
  • the illustrated embodiment of the measuring system 1 according to the invention only the sequential measurement is possible.
  • the same procedure may be repeated in the other direction, ie, transmit the ultrasonic transducer elements 7.1-7.6 and receive the Uitraschall transducer elements 6.1-6.6.
  • the optimal pair which guarantees eg the maximum signal strength, is selected for the measurement.
  • the measured process parameters are stored.
  • only the selected ultrasonic transducer elements 6.1 -6.6, 7.1 -7.6 are activated to determine the flow.
  • the other ultrasonic Wandieretti 6.1-6.6, 7.1-7.6 continue to be excited, for example, with a significantly different frequency to the measurement frequency.
  • the information about the ongoing measurement and / or diagnosis phases and / or their results or findings can also be provided, e.g. on a display, or an alarm signal can be output if the measurement conditions change.
  • the ultrasonic sensors 2, 3 are, as shown in FIG. 2, connected to multiplexers 9.1-9.4, which respectively activate two opposing ultrasonic transducer elements 6.1-6.6, 7.1-7.6.
  • the multiplexers 9.1 - 9.4 are controlled by the control / evaluation unit 8.
  • the ultrasonic transducer elements 6.1-6.6, 7.1-7.6 are shown in Fig. 2 only schematically. There is only one combination, i. a pair of ultrasonic transducer elements 6.1-6.6, 7.1-7.6 are activated, i. sends only one ultrasonic Wandiereiement 6.1 -6.6 and receives an ultrasonic transducer element 7.1-7.6 and / or vice versa.
  • the advantage lies in the small amount of data to be processed.
  • the control / evaluation unit 8 must always process only one signal.
  • the control of the multiplexer 9.1-9.4 is also control / evaluation 8 taken over.
  • FIG. 3 discloses an inventive measuring system 1 with two opposing, mounted on the same side of the measuring tube 4 Ultraschallaüsensoren 2, 3. Again, the coupling elements 13, 14 an angle between the ultrasonic wall lerimplantationn 6, 7.7-7.21 and the measuring tube. 4 , so that the UStraschallsignale, not shown here for clarity, have a direction component in the main flow direction of the measuring medium in the measuring tube 4.
  • the ultrasonic transducer 2 transmits ultrasonic signals to the ultrasonic transducer 3 and vice versa.
  • the signal strengths and / or further process parameters received by the ultrasound transducer elements 7.7-7.21 are compared with each other and the ultrasound transducer element 7.7-7.21 at which the process parameters most suitable for the measurement are applied are selected for the measurement and thus the signal path for the measurement is determined , But also the combination of several adjacent elements 7.7-7.21 is conceivable.
  • the ultrasonic transducers 2, 3 have different sized Ultraschallail-Wandlausemente 6, 7.7-7.21.
  • the approximately square ultrasound transducer element 6 measures 8x8mm by way of example, while the size of the ultrasound transducer elements 7.7-7.21 is 2x8mm in each case.
  • four adjacent ultrasonic transducer elements 7.7-7.21 are switched together active. This is usually done with the direct neighbors of the Uitraschall- transducer element 7.7-7.21 with the most suitable process parameters.
  • the ultrasonic transducers 2, 3 have different sized Ultraschallail-Wandlereiemente 6, 7.7-7.21.
  • the approximately square ultrasound transducer element 6 measures 8x8mm by way of example, while the size of the ultrasound transducer elements 7.7-7.21 is 2x8mm in each case.
  • four adjacent ultrasonic transducer elements 7.7-7.21 are switched together active. This is usually done with the direct neighbors of the Uitraschall- transducer element 7.7-7.
  • FIG. 4 shows a flow chart of the method described.
  • the start of the diagnostic phase is preceded by the installation and coarse positioning of the ultrasonic sensors 2, 3.
  • Analogous to Fig. 1 would have the Wandlereiemente of first ultrasonic sensor 2 with 6.i and the transducer elements of the second Uitraschailsensors be denoted by 7.j.
  • the comparison of the process parameters P 1 all combinations provides the most suitable combination of ultrasonic transducer elements. With these, the measurement is completed.
  • the measurement can then be interrupted again from diagnosis phases from time to time, eg, time-controlled and / or user-controlled and / or process-controlled.
  • diagnosis may take place during the measurement phase and / or by the evaluation of the measurement signals themselves.
  • Electromechanical Ultrasonic Transducer Elements 6 Electromechanical Ultrasound Transducer Elements

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Messsystem (1) und Verfahren zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums (5) durch ein Messrohr (4) mit einem ersten Ultraschallsensor (2) und zumindest einem zweiten Ultraschallsensor (3), welcher erste Ultraschallsensor (2) mindestens ein elektromechanisches Ultraschall-Wandlerelement (6.1-6.6) aufweist und welcher zweite Ultraschallsensor (3) mindestens zwei elektromechanische Ultraschall-Wandlerelemente (7.1-7.6) aufweist. Die vom ersten Ultraschallsensor (2) durch das Messmedium (5) sendbaren Ultraschallsignale sind vom zweiten Ultraschallsensor (3) empfangbar und die vom zweiten Ultraschallsensor (3) durch das Messmedium sendbare Ultraschallsignale sind vom ersten Uitraschallsensor (2) empfangbar. Mindestens einer Regel-/Auswerteeinheit ermittelt den Volumen- und/oder den Massenstrom des in dem Messrohr (4) strömenden Messmediums (5) mittels eines Laufzeitdifferenzverfahrens. Während einer Diagnosephase werden Ultraschallsignale vom ersten Ultraschallsensor (2) durch das Messmedium(5) zum zweiten Ultraschallsensor (3) gesendet und von den empfangenen Ultraschallsignalen für jedes elektromechanische Ultraschall-Wandlerelement (7.1-7.6) des zweiten Ultraschallsensors (3) wird mindestens eine Prozessgröße ermittelt und aufgrund der Prozessgröße der empfangenen Ultraschallsignale wird das in einer nachfolgenden Messphase aktive elektromechanische Ultraschall-Wandlerelement (7.1-7.6) des zweiten Ultraschallsensors (3) ausgewählt.

Description

Verfahren und Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr
Die vorliegende Erfindung betrifft Verfahren zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr mit einem ersten Ultraschaüsensor und zumindest einem zweiten UltraschalSsensor, welcher erste Ultraschaiisensor mindestens ein eiektromechanisches Ultraschall-Wandierelement aufweist und in einem ersten Bereich des Messrohrs angebracht ist und weicher zweite Ultraschallsensor mindestens zwei elektromechanische Ultraschall- Wandlerelemente aufweist und in einem zweiten Bereich des Messrohrs so angebracht ist, dass die vom ersten Ultraschallsensor durch das Messmedium gesendeten Ultraschallsignale vom zweiten Ultraschallsensor empfangen werden und dass die vom zweiten Uftraschailsensor durch das Messmedium gesendeten Uitraschallsignale vom ersten Ultraschailsensor empfangen werden, und mit mindestens einer Regel-/Auswerteeinheit, welche anhand der Uitraschail- Messsignale bzw. anhand von Messdaten, welche aus den Ultraschall-Messsignalen abgeleitet sind, den Volumen- und/oder den Massenstrom des in dem Messrohr strömenden Messmediums mittels eines Laufzeitdifferenzverfahrens ermittelt und ein entsprechendes Messεystem.
Uitraschall-Durchflussmessgeräte werden vielfach in der Prozess- und Automatisierungstechnik eingesetzt. Sie erlauben in einfacher Weise, den Volumendurchfiuss und/oder Massendurchfluss in einer Rohrleitung zu bestimmen.
Die bekannten Uitraschall-Durchflussmessgeräte arbeiten häufig nach dem Doppieroder nach dem Laufzeitdifferenz-Prinzip.
Beim Laufzeitdifferenz-Prinzip werden die unterschiedlichen Laufzeiten von Ultraschailimpulsen relativ zur Strömungsrichtung der Flüssigkeit ausgewertet.
Hierzu werden Ultraschallimpulse in einem bestimmten Winkel zur Rohrachse sowohl mit als auch entgegen der Strömung gesendet. Aus der Laufzeitdifferenz lässt sich die Fließgeschwindigkeit und damit bei bekanntem Durchmesser des Rohrieitungsabschnitts der Volumendurchfluss bestimmen.
Beim Doppier-Prinzip werden Ultraschailwellen mit einer bestimmten Frequenz in die Flüssigkeit eingekoppelt und die von der Flüssigkeit reflektierten Ultraschallwellen ausgewertet. Aus der Frequenzverschiebung zwischen άen eingekoppeiten und reflektierten Wellen lässt sich ebenfalls die Fließgeschwindigkeit der Flüssigkeit bestimmen.
Reflexionen in der Flüssigkeit treten jedoch nur auf, wenn Luftbiäschen oder
Verunreinigungen in dieser vorhanden sind, so dass dieses Prinzip hauptsächlich bei verunreinigten Flüssigkeiten Verwendung findet.
Die Ultraschallwelien werden mit Hilfe so genannter Ultraschallwandler erzeugt bzw. empfangen. Hierfür sind Ultraschallwandler an der Rohrwandung des betreffenden Rohrieitungsabschnitts fest angebracht. Seit neuerem sind auch Ciamp-on- Ultraschall-Durchflussmesssysteme erhältlich. Bei diesen Systemen werden die Ultraschallwandler nur noch mit einem Spannverschluss an die Rohrwandung gepresst. Derartige Systeme sind z. B. aus der EP 686 255 B1 , US-A 44 84 478 oder US-A 45 98 593 bekannt.
Ein weiteres Ultraschall-Durchflussmessgerät, das nach dem Laufzeitdifferenz- Prinzip arbeitet, ist aus der US-A 50 52 230 bekannt. Die Laufzeit wird hier mittels kurzen Ultraschailimpulsen ermittelt.
Ein großer Vorteil von Clamp-On-Uitraschall-Durchflussmesssystemen ist, dass sie das Messmedium nicht berühren und auf eine bereits bestehende Rohrleitung angebracht werden. Nachteilig ist ein hoher Aufwand bei der Montage der Clamp- On-Systeme, um die einzelnen Ultraschallwandier gegenseitig auszurichten, was von vielen Parametern, wie z.B. Rohrwanddicke, Rohrdurchmesser, Schallgeschwindigkeit im Messmedium, abhängt.
Die Ultraschallwandler bestehen normalerweise aus einem elektromechanischen
Wandler, in der industriellen Prozessmesstechnik meist eine Piezokeramik, und einer Koppelschicht, auch Koppelkeil oder seltener Vorlaufkörper genannt. Die Koppelschicht ist dabei meist aus Kunststoff gefertigt. Im elektromechanischen Wandlerelement werden die UltraschallweNen erzeugt und über die Koppelschicht zur Rohrwandung geführt und von dort in die Flüssigkeit geleitet. Da die Schallgeschwindigkeiten in Flüssigkeiten und Kunststoffen unterschiedlich sind, werden die Ultraschallwellen beim Übergang von einem zum anderen Medium gebrochen. Der Brechungswinkel bestimmt sich in erster Näherung nach dem Sneil'schen Gesetz. Der Brechungswinkel ist somit abhängig von dem Verhältnis der Ausbreitungsgeschwindigkeiten in den Medien.
Zwischen dem piezoelektrischen Element und der Koppetschicht kann eine weitere Koppelschicht angeordnet sein, eine so genannte Anpassungsschicht. Die Anpassungsschicht übernimmt dabei die Funktion der Transmission des UltraschaNsignals und gleichzeitig die Reduktion einer durch unterschiedliche akustische Impedanzen verursachte Reflektion an Grenzschichten zwischen zwei Materialen.
In zahlreichen Quellen, z.B. in der DE 10 2006 029 199 B3, wird die Durchflussgeschwindigkeit eines Messmediums in einem Messrohr über die Verwehung eines Ultraschalisignals durch die Strömung des Messmediums im Messrohr bestimmt.
In der WO 2007/039394 A2 ist ein Ultraschalldurchflussmessgerät offenbart mit zumindest einem Uitraschaliwandler in einem ersten Bereich des Messrohrs und zumindest zwei UltraschaNwandlern in einem zweiten Bereich. Aufgrund der unterschiedlichen Abstände der Wandler im zweiten Bereich zu dem im ersten Bereich ergibt sich ein Laufzeitunterschied der Ultraschallsignale. Dieser Laufzeitunterschied wird zur Berechnung des Durchflusses herangezogen. Nachteilig ist, dass der Ultraschailwandler im ersten Bereich des Messrohrs ein energieaufwendiges Signal mit großer Signalstärke und breitem
Signalöffnungswinkel erzeugen muss, damit das Signa! die beiden anderen Ultraschallwandler im zweiten Bereich des Messrohrs erreicht. Die DE 102 21 771 A1 zeigt einen Ultraschallsensor für ein Ultraschalldurchflussmessgerät mit mehreren Piezoelementen, weiche zu so genannten einem Piezo-Array zusammengefasst sind, welche Piezoelemente zeitversetzt ansteuerbar sind. Dadurch ist es möglich, mit einem flach auf die Messrohrwand angebrachten Ultraschallsensor, unterschiedliche Winkel des in das Messmedium eingestrahlten Ultraschallsignals mit einer Weitenfront zur Messrohrsachse zu erreichen. Das zeitversetzte Ansteuern ist jedoch sehr rechenaufwendig. Auch die Veränderung des Winkels ist nur in einem eingeschränkten Bereich sinnvoll. Wird das Ultraschalisignai sehr flach eingestrahlt, kann es zur Anregung von Longitudinalweüen kommen und die Transmission durch die Rohrwand verringert sich und ein wesentlicher Anteil der Schallwelle wird reflektiert.
Die Aufgabe der Erfindung besteht darin, ein Verfahren und ein entsprechendes Durchfluss-Messsystem bereit zu stellen, dessen Sensoren an einer Rohrleitung anbringbar sind und keiner aufwendigen gegenseitigen Ausrichtung bedürfen.
Die Aufgabe wird gelöst durch ein Verfahren zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr mit einem ersten Ultraschallsensor und zumindest einem zweiten Ultraschalisensor, welcher erste Ultraschallsensor mindestens ein elektromechanisches Ultraschall- Wandlerelement aufweist und in einem ersten Bereich des Messrohrs angebracht ist und welcher zweite Ultraschalisensor mindestens zwei elektromechanische UltraschaJi-Wandierelemente aufweist und in einem zweiten Bereich des Messrohrs so angebracht ist, dass die vom ersten Ultraschallsensor durch das Messmedium gesendeten Ultraschallsignale vom zweiten Ultraschalisensor empfangen werden und dass die vom zweiten Ultraschalisensor durch das Messmedium gesendeten UftraschallsignaSe vom ersten Ultraschalisensor empfangen werden, und mit mindestens einer Regel-/Auswerteeinheit, welche anhand der Uitraschall- Messsignale bzw. anhand von Messdaten, welche aus den Ultraschali-Messsignalen abgeleitet sind, den Volumen- und/oder den Massenstrom des in dem Messrohr strömenden Messmediums mittels eines Laufzeitdifferenzverfahrens ermittelt, wobei während einer Diagnosephase Ultraschallsignale vom ersten Ultraschailsensor durch das Messmedäum zum zweiten Ultraschalfsensor gesendet werden und von den empfangenen Ultraschallsignalen für jedes elektromechanische Ultraschall- Wandierelement des zweiten Ultraschallsensors mindestens eine Prozessgröße ermittelt und/oder abgeleitet wird und aufgrund der Prozessgröße der empfangenen Ultraschallsignale die in einer nachfolgenden Messphase aktiven elektromechanischen Ultraschall-Wandlerelemente des zweiten Uitraschallsensors ausgewählt werden. Es wird also zwischen einer Diagnosephase und einer Messphase unterschieden. In der Diagnosephase werden die Ultraschall- Wandlerelemente, welche während der Messphase für die Messung Ultraschallsignale senden und/oder empfangen bestimmt.
Üblicherweise weisen die Ultraschallsensoren Koppelelemente auf, die einen Winkel zwischen den auf ihnen angebrachten Ultraschall-WandSerelementen und der Hauptströmungsrichtung des Messmediums im Messrohr, welche meist näherungsweise axial zur Mittelachse des Messrohrs verläuft, herbeiführen. So erhält das Ultraschallsigna! zwischen den Sensoren eine Richtungskomponente in und/oder entgegen der Hauptströmungsrichtung des Messmediums im Messrohr. In bestimmten Formen konditionierter Strömung lässt sich ein Ultraschallsigna! senkrecht zur Rohrwand oder Rohrachse einstrahlen und dennoch kann mittels des Laufzeitdifferenzverfahrens der Durchfluss bestimmt werden.
Die Sensoren werden in verschiedenen Bereichen des Messrohrs montiert bzw. installiert. Bei Clamp-On-Systemen werden die Sensoren auf gegenüberliegenden Seiten der Messrohraußenwand von außen angebracht oder sie befinden sich auf der gleichen Seite des Messrohrs und das Signal wird auf der den Sensoren gegenüberliegenden Seite der Messrohrwand reflektiert, bevorzugt mit einem
Reflektor auf der Innenseite des Messrohrs. Bei Inline-Systemen befinden sich die Sensoren meist auf festen Plätzen, fest in oder mit der Messrohrwand verbunden.
Die während der Diagnosephase ermittelten Prozessgrößen sind insbesondere die Signalstärke des empfangenen Ultraschallsignals, dessen Amplitude, dessen
Phasenlage, die Einhüllende oder die Übertragungsfunktion. Ableitbare Größen sind z.B. die Intensität oder die Laufzeit des Ultraschallsignals. Bei dem elektromechanischen Ultraschall-Wandlerelement handelt es sich bevorzugt um ein piezoelektrisches Element. Es sind aber auch eietrostriktive und/oder magnetostriktive Elemente in der Lage, geeignete Ultraschallsignale zu erzeugen und/oder zu empfangen.
Ein erster Ultraschallsensor mit mindestens einem elektromechanischen Ultraschall- Wandlerelement wird in einem ersten Bereich des Messrohrs angebracht. Relativ dazu wird ein zweiter Uitraschallsensor in einem zweiten Bereich des Messrohrs angebracht. Bei Clamp-On-Systemen werden beide Sensoren außen an der Messrohrwand befestigt. Die Sensoren werden grob zueinander ausgerichtet, d.h. ihr Abstand wird nach einer bestimmten Vorschrift, z.B. im Abstand von der Größe des Durchmessers des Messrohrs, grob bzw. in groben Schritten eingestellt. Der Aufwand für diese Einrichtung ist sehr gering im Vergleich zum Stand der Technik.
Durch Änderungen von Messmediumsparametern, z.B. des Messmediums selbst oder dessen Temperatur, verändern sich nun u.a. die Brechungswinkel der Ultraschallsignale. Dies würde im Stand der Technik eine Neuausrichtung der Sensoren zueinander erfordern. Alternativ wäre die Signalintensität zur Bestimmung des Durchflusses geringer und/oder die Messergebnisse mit einem größeren Fehler behaftet.
Hier wird jedoch die optimale Kombination von Ultraschall-Wandlerelementen der Sensoren für die Messung bestimmt. Bereits eine nicht optimale Kombination kann für die Messung benutzt werden, jedoch äst diese Messung mit einer größeren Unsicherheit behaftet.
Während der Diagnosephase sendet z.B. alternierend genau ein Ultraschall- Wandlerelement Ultraschallsignale ab. Die aus den empfangenen Ultraschallsignalen ermittelten und/oder abgeleiteten Parameter werden für die empfangenden Ultraschall-Wandlerelemente einzeln bestimmt. Dies kann in lediglich einer Richtung, d.h. also vom ersten zum zweiten Ultraschallsensor, geschehen. Alternativ dazu können Ultraschallsignale in beiden Richtungen stromaufwärts und stromabwärts in die Diagnose einfließen, da eine Phasenverschiebung zwischen dem Signal mit Richtungskomponente in Hauptströmungsrichtung des Messmediums im Messrohr und dem UltraschaNsigna! mit Richtungskomponente entgegen Hauptströmungsrichtung des Messmediums im Messrohr auswertbar ist.
Die Diagnosephase besteht dann darin, die Prozessgrößen aller möglichen Kombinationen von Ultraschall-Wandlerelementen in beide Richtungen zu ermitteln und/oder abzuleiten. Somit ist am Ende dieser Phase ein Datensatz mit einer Beschreibung der Messergebnisse aller Kombinationen während der Diagnosephase vorhanden. Mittels der gewünschten Prozessgrößen wird nun die bestmögliche Kombination ausgewählt und die Prozessgrößen als Referenzwerte gespeichert. Diese stehen nun immer zum Vergleich mit einer aktuellen Messung zur Verfügung.
Erst nach Festlegung der für die Messung aktiven Sensoren beginnt die eigentliche Messung. Die Diagnosephase ist vor und nach jeder Messung möglich, aber auch während einer Messphase kann die Auswahl άer in der nachfolgenden Messphase aktiven elektromechanischen Ultraschall-Wandlerelemente erfolgen. Mittels anderer Sendefrequenzen und/oder anderen Pulsfolgen ist diese Auswahl beispielsweise möglich, ohne den Messbetrieb zu stören. Da eine Durchflussmessung mit der Auswertung einzelner Ultraschall-Pakete erfolgt, können entweder diese Messungen direkt mit den gespeicherten Referenzgrößen verglichen werden oder es erfolgt zwischen zwei Paketen der Durchflussmessung ein oder mehrere Messungen zur Diagnose.
Durch diese Anordnung lässt sich zusätzlich die Schallgeschwindigkeit im Messmedium leicht bestimmen. Bei bekanntem Messmedium kann so auf dessen Temperatur geschlossen werden oder bei bekannter Temperatur kann somit eine Messmediumsänderung detektiert werden.
Weitere Strategien zur beschleunigten Diagnose bestehen u.a. darin, dass nicht alle Kombinationen an Uitraschall-Wandlerelementen gemessen werden. Bei zwei Ultraschallsensoren mit sehr vielen Wandlerelementen bietet sich an, die
Kombination mit dem geringsten Abstand senkrecht zur Rohrachse zueinander, die Kombination mit dem größten Abstand senkrecht zur Rohrachse zueinander und eine dazu mittlere Kombination auszuwählen. Die Abstände werden dann iterativ auf der Seite der günstigeren Prozessgrößen halbiert. Die Diagnose kann sowohl bei fließendem Messmedium, als auch bei einem so genannten Nulldurchfluss, d.h. also bei stehendem Messmedium im Messrohr stattfinden. Vorteilhaft wird die Diagnose bei einem im Messrohr strömenden Messmedium vorgenommen, da hierbei ein Störsignal, z.B. hervorgerufen durch eine so genannte Rohrwelle, also ein Ultraschailsignal im Messrohr selbst bzw. der Messrohrwand, von dem Nutzsignal, also dem Ultraschallsignal zur Diagnose, besser unterscheidbar ist.
Eine vorteilhafte Weiterbildung des erfindungsgemäßen Verfahrens sieht vor, dass während der Diagnosephase die in der nachfolgenden Messphase aktiven elektromechanischen Ultraschall-Wandlereiemente des zweiten Ultraschailsensors nach der größten Signalstärke der empfangenen Ultraschallsignale ausgewählt werden.
Das Uitraschall-Wandlerelement oder die Ultraschail-Wandlerelemente mit der größten empfangenen Signalstärke werden ausgewählt. Eine Variante besteht darin, dass das Uitraschall-Wandlerelement ausgewählt wird, welches die größte Signalstärke empfängt. Da sich viele Ultraschall-Wandlerelemente aber sowohl zum senden und/oder zum Empfangen von Ultraschallsignalen zusammenschließen lassen, ist es sehr vorteilhaft, mehrere Uitraschall-Wandlerelemente zusammen zu schließen, insbesondere das ausgewählte Ultraschall-Wandiereiement und seine direkten Nachbarn und/oder weitere nebeneinander liegende Ultraschall- Wandlerelemente.
Besonders vorteilhaft weisen die Ultraschallsensoren jeweils Anpassungsschichten zwischen Koppelelementen und Ultraschall-Wandlerelementen auf, welche, wie ein Filter, so ausgestaltet sind, dass die Anteile der Ultraschall-Messsignale, die in Einbzw. Ausstrahlrichtung der Uitraschall-Messsignale orientiert sind, die Anpassungsschichten näherungsweise ungestört passieren, während die Anteile der Ultraschall-Messsignale, die quer zur Ein- und/oder Ausstrahlrichtung orientiert sind, von den Anpassungsschichten weitgehend gedämpft werden. Eine sehr vorteilhafte Weiterbildung der erfindungsgemäßen Lösung ist darin zu sehen, dass der erste Ultraschallsensor mindestens zwei eiektromechanische Ultraschall-Wandlerelemente aufweist und während der Diagnosephase die in einer nachfolgenden Messphase aktiven elektromechanischen Ultraschall- Wandlerelemente des ersten Ultraschallsensors ausgewählt werden.
Die Auswahl erfolgt z.B. aufgrund der Sägnalstärke der vom zweiten Ultraschallsensor empfangenen Ultraschallsignale des ersten Sensors und/oder der Signalstarke der vom ersten Ultraschallsensor empfangenen Ultraschallsignale, welche vom zweiten Ultraschallsensor gesendet wurden.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung werden während der Diagnosephase die in der nachfolgenden Messphase aktiven elektromechanischen Ultraschail-Wandlereiemente des zweiten Ultraschallsensors nach der optimalen Phasendifferenz zwischen Senden und Empfangen der empfangenen Ultraschallsignaie ausgewählt.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung werden während der Diagnosephase die in der nachfolgenden Messphase aktiven elektromechanischen Ultraschall-Wandlerelemente des zweiten Ultraschallsensors nach der optimalen Phasendifferenz zwischen dem vom zweiten Ultraschallsensor empfangenen Ultraschallsignal und dem vom ersten Ultraschallsensor empfangenen Ultraschallsignal ausgewählt Das Ultraschallsignal, welches vom ersten Ultraschallsensor gesendet und vom zweiten Ultraschailsensor empfangen wird, hat dabei mindestens eine Richtungskomponente in oder entgegen der
Hauptströmungsrichtung des Messmediums im Messrohr und das Ultraschallsignal, welches vom zweiten Ultraschallsensor gesendet und vom ersten Ultraschallsensor empfangen wird, ist dem gegenläufig. Genutzt wird dabei, dass es durch die Strömung des Messmediums zu Phasendifferenzen in bestimmten zeitlichen Abschnitten der beiden Ultraschalisignale, in und entgegen der Strömung, kommt.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung werden während der Diagnosephase die in der nachfolgenden Messphase aktiven elektromechanischen Ultraschall-Wandlerelemente des zweiten Ultraschallsensors nach der optimalen Übertragungsfunktion der empfangenen Ultraschallsignale ausgewählt.
Gemäß einer weiteren vorteilhaften Weiterbildung der erfindungsgemäßen Lösung werden mehrere elektromechanische Ultraschail-Wandlerelemente des ersten Ultraschallsensors gleichzeitig aktiviert und/oder mehrere elektromechanische Ultraschall-Wandierelemente des zweiten Ultraschallsensors werden gleichzeitig aktiviert. Dies ist besonders vorteilhaft bei direkt nebeneinander liegenden Ultraschall-Wandlerelementen.
Gemäß einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens werden die jeweils aktiven elektromechanischen Ultraschall- Wandlerelemente von mindestens einem M ultiplexer geschaltet, wobei der Multiplexer von der Regel-/Auswerteeinheit gesteuert wird und wobei die elektromechanischen Ultraschail-Wandlerelemente des ersten Ultraschallsensors und die elektromechanischen Ultraschall-Wandierelemente des zweiten Ultraschallsensors mit der Regel-/Auswerteeinheit verbunden sind. Neben dem bekannten Selektionsschaltnetz, zur Auswahl eines einzigen Signals, ist ein Multiplexer hierbei auch eine Schaltereinheit aus mehreren, unabhängig voneinander steuerbaren einzelnen Schaltern.
Eine vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, dass die während der Diagnosephase erfasste Prozessgröße gespeichert wird und dass während der Messphase die gespeicherte Prozessgröße mit der aktuell erfassten Prozessgröße verglichen wird, wobei bei Überschreiten einer bestimmten Abweichung der gespeicherten Prozessgröße von der aktuell erfassten Prozessgröße eine erneute Diagnosephase eingeleitet wird. Der Vergleich ist mit einer und/oder mit mehreren erfassten Prozessgrößen möglich. Die Berechnung des Durchflusses kann beispielsweise mittels der Phasenverschiebung von Sender zu Empfänger jeweils in und entgegen der Durchflussrichtung erfolgen, während die optimale Kombination an Ultraschail-Wandlerelementen mittels der Signalstärke bestimmt wird. Wie oben beschrieben, kann die Kombination der Ultraschall- Wandierelemente aber auch mit der Phasenverschiebung ermittelt werden. Weiter wird die der Erfindung zugrunde liegende Aufgabe gelöst durch ein Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr mit einem ersten Uitraschatlsensor und zumindest einem zweiten Ultraschallsensor, welcher erste Uitraschallsensor mindestens ein eiektromechanisches Ultraschall-Wandlerelement aufweist und in einem ersten Bereich des Messrohrs anbringbar ist und welcher zweite Uitraschallsensor mindestens zwei eiektromechanische Ultraschall-Wandlerelemente aufweist und in einem zweiten Bereich des Messrohrs so anbringbar ist, dass die vom ersten Uitraschallsensor durch das Messmedium sendbaren Ultraschallsignale vom zweiten Uitraschallsensor empfangbar sind und dass die vom zweiten Uitraschallsensor durch das Messmedium sendbare Ultraschallsignale vom ersten Ultraschaflsensor empfangbar sind, und mit mindestens einer Regel-/Auswerteeinheit, welche anhand der Ultraschall-Messsignale bzw. anhand von Messdaten, welche aus den Ultraschall-Messsignalen abgeleitet sind, den Volumen- und/oder den Massenstrom des in dem Messrohr strömenden Messmediums mittels eines
Laufzeitdifferenzverfahrens ermittelt, wobei während einer Diagnosephase UitraschaSIsignale vom ersten Uitraschallsensor durch das Messmedium zum zweiten Uitraschallsensor sendbar sind und von den empfangbaren UStraschallsignalen für jedes eiektromechanische Ultraschall-Wandlerelement des zweiten Uttraschallsensors mindestens eine Prozessgröße ermittelbar und/oder ableitbar ist und aufgrund der Prozessgröße der empfangbaren Ultraschallsignale die in einer nachfolgenden Messphase aktiven elektromechanischen Ultraschall- Wandlereiemente des zweiten Ultraschalisensors auswählbar sind.
Dabei werden die Ultraschall-Wandlerelemente von der Regel-/Auswerteeinheit angesteuert. Bei mehreren Ultraschall-Wandlerelementen auf einem Uitraschallsensor werden die Signale beispielsweise über mindestens einen Multipiexer geleitet. Dieser Multipiexer wird dann ebenfalls von der Regel- /Auswerteeinheit gesteuert.
Gemäß einer vorteilhaften Weiterbildung des erfindungsgemäßen Messsystems weist der erste Ultraschallsensor mindestens zwei eiektromechanische Ultraschali- Wandlerelemente auf und während der Diagnosephase sind die in einer nachfolgenden Messphase aktiven eiektromechanischen Ultraschall- Wandlerelemente des ersten Ultraschaüsensors auswählbar.
Eine sehr vorteilhafte Weiterbildung des erfindungsgemäßen Messsystems ist darin zu sehen, dass die Messsignale der eiektromechanischen Ultraschall- Wand lerelemente bzw. die von den Messsignalen ableitbaren Messdaten von genau einer Rege!-/Auswerteeinheit auswertbar sind, wobei die aktiven eiektromechanischen Ultraschall-Wandlerelemente mittels mindestens eines Multiplexers von der Regel-/Auswerteeinheit steuerbar sind.
Die Schaltung der aktiven Ultraschall-Wandlerelemente ist von mindestens einem Multiplexer steuerbar. Die Regel-/Auswerteeinheit, welche die Signale der UltraschaN-Wandlerelemente empfängt und verarbeitet, steuert den Multiplexer. Die Kombination der aktiven Ultraschall-Wandlerelemente wird gemäß dem beschriebenen Verfahren erhalten. Die einzelnen Ultraschali-WandSereiemente senden nacheinander ein vorgegebenes Signal aus. Die erfassten Prozessparameter werden ausgewertet und die Regel-/Auswerteeinheit entscheidet aufgrund der festgelegten Kriterien, weiche Kombination an Ultraschall-Wandlerelementen in der Messphase aktiviert wird. Neben dem bekannten Selektionsschaltnetz, zur Auswahl eines einzigen Signals, ist ein Multiplexer hierbei auch eine Schaltereinheit aus mehreren, unabhängig voneinander steuerbaren einzelnen Schaltern.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung sind der erste Ultraschallsensor und der zweite Ultraschallsensor über eine lösbare Verbindung miteinander verbindbar.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung weisen der erste Ultraschallsensor und der zweite Ultraschallsensor in gemeinsames Gehäuse auf. Damit wird lediglich das Gehäuse parallel zur Rohrachse und senkrecht über der Rohrmitte ausgerichtet. Das Gehäuse kann dabei einer definierten Gehäuseschutzart entsprechen, z.B. ist es staub-, gas- und/oder wasserdicht. Zusätzlich kann das Gehäuse keine außen liegende bewegliche Teile aufweisen. Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das zweite Koppelelement integraler Bestandteil des ersten Koppeieiements. Beide Ultraschallsensoren verfügen somit über ein einziges monolithisches Koppelelement.
Eine vorteilhafte Weiterbildung des erfindungsgemäßen Messsystems schlägt vor, dass die elektromechanischen Ultraschall-Wandlerelemente des ersten Ultraschallsensors je eine erste Fläche zum Senden und/oder Empfangen von Ultraschallsignalen aufweisen, welche erste Flächen einen ersten Flächeninhalt aufweist, und welche elektromechanischen Ultraschall-Wandlerelemente des zweiten Ultraschallsensors je eine zweite Fläche zum Senden und/oder Empfangen von Uitraschallsignalen aufweisen, welche zweiten Flächen einen zweiten Flächeninhalt aufweist, wobei der erste Flächeninhalt ungleich des zweiten Flächeninhalt ist. So bilden z.B. mehrere elektromechanischen Ultraschall-Wandlerelemente des zweiten Ultraschallsensors zusammen genommen die Fläche eines elektromechanischen Ultraschall-Wandlerelements des ersten Ultraschallsensors. Die Größen der Flächen der elektromechanischen Uitraschall-Wandleretemente des ersten Ultraschallsensors und die der elektromechanischen Ultraschall-Wandlerelemente des zweiten Ultraschallsensors stehen in einem Verhältnis ungleich eins zueinander. Bevorzugte Verhältnis betragen z.B. neun zu zehn oder neunzehn zu zwanzig usw.
Eine weitere vorteilhafte Weiterbildung des erfindungsgemäßen Messsystems sieht vor, dass die elektromechanischen Ultraschall-Wandlerelemente des ersten Ultraschallsensors näherungsweise konstante erste Abstände aufweisen und dass die elektromechanischen Ultraschall-Wandlerelemente des zweiten Ultraschallsensors näherungsweise konstante zweite Abstände aufweisen, wobei die ersten Abstände ungleich der zweiten Abstände sind.
Die Abstände beziehen sich dabei üblicherweise auf die Flächenmättelpunkte der Uϊtraschall-Wandlereϊemente. Als Flächenmitteipunkt wird in diesem Zusammenhang der geografische Mitteipunke oder auch der Schwerpunkt der Fläche bezeichnet. Wächtig ist weniger die Berechnung des Flächenmittelpunkts als solchem, sondern vielmehr, dass die Flächenmittelpunkte für alle Ultraschali-Wandlerelemente gleichermaßen berechnet werden. Dabei stehen die ersten Abstände der elektromechanischen Ultraschall-Wandlerelemente des ersten Ultraschallsensors und die zweiten Abstände der elektromechanischen Ultraschall-Wandlerelemente des zweiten Ultraschallsensors in einem Verhältnis ungleich eins zueinander. Bevorzugte Verhältnis betragen z.B. neun zu zehn oder neunzehn zu zwanzig usw.
Mit den vorgenannten Verhältnissen wird eine Aufteilung nach dem Vorbild eines Nonius erreicht. Es sind durch die vielen Kombinationsmöglichkeiten an aktiven Ultraschatl-Wandlerelementen unterschiedlichste Abstände zwischen diesen realisierbar. So können auch kleine Änderungen von Prozessparametern kompensiert werden, welche im Stand der Technik zu einem Signaigüteverlust führen oder eine Neujustierung der Sensoren zueinander erforderlich machen würden.
Bei einer sehr vorteilhaften Weiterbildung der Erfindung sind mehrere eiektromechanische Ultraschall-Wandlerelemente gleichzeitig aktivierbar.
Mehrere, insbesondere nebeneinander liegende, eiektromechanische Ultraschall- Wandlerelemente sind dann gleichzeitig aktivierbar, d.h. sie sind sendebereit und/oder empfangsbereit.
Gemäß einer vorteilhaften Weiterbildung des erfindungsgemäßen Messsystems wird vorgeschlagen, dass der erste Ultraschallsensor ein Koppelelement aufweist, welches so ausgestaltet ist, dass ein vom elektromechanischen Uitraschail- Wandlerelement gesendetes UltraschaNsignal eine Richtungskomponente in oder entgegen der Hauptströmungsrichtung des Messmediums im Messrohr aufweist und/oder dass der zweite Ultraschallsensor ein Koppelelement aufweist, welches so ausgestaltet ist, dass ein vom elektromechanischen Ultraschall-Wandlerelement gesendetes Ultraschaflsignal eine Richtungskomponente in oder entgegen der Hauptströmungsrichtung des Messmediums im Messrohr aufweist.
Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, dass die in der Messphase aktiven elektromechanischen Ultraschall-Wandlerelemente des ersten UltraschaNsensors und/oder des zweiten Ultraschallsensors, von außen, also von einer externen Einheit, auswählbar sind, z.B. vom Anwender selbst über eine entsprechende Schnittstelle oder von einem externen Feldgerät, über einen analogen Frequenz- oder Stromeingang, elektromechaπisch über Schalter oder digital über ein Signal einstellbar ist.
Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert. Fig. 1 zeigt im Längsschnitt ein Messrohr mit erfindungsgemäßem Messsystem, Fig. 2 zeigt eine erfindungsgemäße Verteilerschaltung, Fig. 3 zeigt im Längsschnitt zwei Ultraschallsensoren eines erfindungsgemäßen
Messsystems,
Fig. 4 zeigt ein Flussdiagramm des erfindungsgemäßen Verfahrens, Fig. 5 zeigt eine weitere erfindungsgemäße Verteiierschaltung.
In Fig. 1 ist ein erfindungsgemäßes Messsystem 1 mit zwei Ultraschalisensoren 2, 3, welche auf einem Messrohr 4 angebracht sind, dargestellt. Beide Ultraschalisensoren 2, 3 verfügen über eine Mehrzahl an Ultraschall- Wandlerelementen 6.1-6.6, 7.1 -7.6. Es handelt sich also um so genannte
Wandlerarrays, nicht zu verwechseln mit Arrays in einzelnen Sensoren. Mit einer einzigen Kombination von einzeln betreibbaren Ultraschail-WandlereSementen 6.1 - 6.6, 7.1 -7.6 lässt sich die Durchflussmessung durchführen. Die Auswahl und Positionierung der Sensoren 2, 3 wird durch die Vielzahl der Kombinationsmöglichkeiten erleichtert.
Die Ultraschalisensoren 2, 3 sind auf der gleichen Außenseite des Messrohrs 4 angebracht. Ihre Ultraschall-Wandierelementen 6.1 -6.6, 7.1-7.6 stehen sich in einem Winkel so gegenüber, dass das von ihnen abgestrahlte Ultraschallsignal 10 durch das Messmedium 5 zum jeweils anderen Ultraschallsensor 2, 3 geleitet wird. Eine Richtungskomponente des Ultraschallsignals 10 zeigt dabei in Richtung der Hauptströmungsrichtung des Messmediums 5 im Messrohr 4. Somit lässt sich bei gegenseitigem Senden und Empfangen eine Laufzeitdifferenz messen, über welche die Strömungsgeschwindigkeit des Messmediums 5 im Messrohr 4 und damit der Durchfluss bestimmt werden kann.
Die UltraschaSI-Wandlerelemente 6.1-6.6 haben dabei einen Abstand 11 zueinander. Die Ultraschall-Wandlerelemente 7.1-7.6 weisen hingegen einen Abstand 12 zueinander auf. Die Abstände 11 , 12 gelten dabei als näherungsweise konstant, sind jedoch nicht gleich. In diesem Ausführungsbeispiel betragen die Abstände 11 10mm und die Abstände 12 9mm.
Der Diagnosephase des Messsystems 1 geht der Aufbau des Messsystems 1 voran. Zuerst werden die Clam-On-Ultraschalisensoren 2, 3 an der Außenseite des
Messrohrs 4 aufgeschnallt. Danach erfolgt das Anschalten und in Betrieb nehmen des Messsystems 1.
Während der Diagnosephase wird einer nach dem anderen der Ultraschall- Wandlerelemente 6.1-6.6 angesteuert bzw. aktiviert und zum Senden eines vorgebaren Uitraschalisignals angeregt. Dabei wird z.B. die Signalstärke der empfangenen Ultraschallsignale für jedes Ultraschall-Wandlerelement 7.1-7.6 einzeln gemessen. Dies kann sowohl zeitlich nacheinander, d.h. durch sequentielles Messen aller möglichen Kombinatäonen, als auch gleichzeitig erfolgen. Es stehen sozusagen alle Ultraschall-Wandierelemente 7.1 -7.6 auf Empfang, während ein bestimmtes Ultraschall-Wandiereϊement 6.1-6.6 sendet. Mit der Dargestellten Ausführung des erfindungsgemäßen Messsystems 1 ist jedoch nur das sequentielle Messen möglich.
Danach kann die gleiche Prozedur in anderer Richtung wiederholt werden, d.h. die Ultraschall-Wandlerelemente 7.1-7.6 senden und die Uitraschall-Wandlerelemente 6.1-6.6 empfangen. Das Optimale Paar, welche z.B. die maximale Signalstärke gewährleistet, wird für die Messung ausgewählt. Die gemessenen Prozessparameter werden gespeichert. Während der Messphase werden lediglich die ausgewählten Ultraschall-Wandlereiemente 6.1 -6.6, 7.1 -7.6 aktiviert, um den Durchfluss zu bestimmen. Gleichzeitig können die anderen Ultraschall-Wandierelemente 6.1-6.6, 7.1-7.6 weiterhin, z.B. mit einer wesentlich zur Messfrequenz unterschiedlichen Frequenz angeregt werden. Somit kann während der Messphase weiter nach Veränderungen der Messbedingungen gesucht werden, die ein Ändern des optimalen UltraschalS-Wandierelemente-Paars erforderlich machen könnte. Eine solche Veränderung der Messbedinungen kann z.B. dadurch erkannt werden, dass die gespeicherten Prozessparameter von den gemessenen in einer gewissen Art und Weise abweichen, z.B. durch Unter- oder Überschreiten eines Schwellwerts, oder dadurch dass ein anderes Paar von Ultraschall-Wandlerelementen 6.1-6.6, 7.1-7.6 Prozessparameter liefert, z.B. eine höhere Signalstärke. Die Diagnose kann aber auch zeitlich getrennt von der Messphase stattfinden.
Die Informationen über die laufenden Mess- und/oder Diagnosephasen und/oder deren Ergebnisse bzw. Erkenntnisse können auch, z.B. auf einem Display, angezeigt werden oder ein Alarmsignal kann ausgegeben werden, falls sich die Messbedingungen ändern.
Die Ultraschallsensoren 2, 3 sind dabei, wie in Fig. 2 gezeigt, mit Multiplexern 9.1-9.4 verbunden, die jeweils zwei gegenüberstehende Ultraschall-Wandlerelemente 6.1 - 6.6, 7.1 -7,6 aktiv schalten. Gesteuert werden die Multiplexer 9.1 -9.4 von der Regel- /Auswerteeinheit 8.
Die Ultraschall-Wandlerelemente 6.1-6.6, 7.1-7.6 sind in Fig. 2 nur schematisch gezeichnet. Es wird jeweils nur eine Kombination, d.h. ein Paar an Ultraschall- Wandlerelementen 6.1-6.6, 7.1-7.6 aktiviert, d.h. nur ein Ultraschall-Wandiereiement 6.1 -6.6 sendet und ein Ultraschall-Wandlerelement 7.1-7.6 empfängt und/oder umgekehrt. Der Vorteil liegt in der geringen zu verarbeitenden Datenmenge. Die Regel-/Auswerteeinheit 8 muss immer nur ein Signal verarbeiten. Die Steuerung der Multiplexer 9.1-9.4 wird ebenfalls Regei-/Auswerteeinheit 8 übernommen. Die
Ansteuerung der einzelnen Ultraschall-Wandiereiemente 6.1 -6.6, 7.1 -7.6 durch die Multiplexer 9.1-9.4 erfolgt jedoch sehr schnell. Dadurch ist dieses System 1 sehr wenig fehleranfällig, kostengünstig und dennoch hochgenau und schnell.
Um mehrere Ultraschall-Wandlerelemente 6.1-6.6, 7.1-7.6 gleichzeitig zu aktivieren, müsste mindestens einer der dargestellten Multiplexer 9.3, 9.4 durch eine Vielzahl von einzeln steuerbaren Schalten ersetzt werden, wie in Fig. 5 gezeigt. Als Muitiplexer wird hier generell eine Schaltereinheit aus mehreren, unabhängig voneinander steuerbaren einzelnen Schaltern verstanden. Zusätzlich verfügt diese Schaltung über eine Schnittstelle 17. Diese ist zur Kommunikation mit einer Steuereinheit, z.B. zum anbinden an einen Bus oder es handelt sich um eine Mensch-Maschine-Schnittstelle. Fig. 3 offenbart ein erfindungsgemäßes Messsystem 1 mit zwei sich gegenüberstehenden, auf derselben Seite des Messrohrs 4 befestigten Ultraschaüsensoren 2, 3. Auch hier weisen die Koppelelemente 13, 14 einen Winkel zwischen den Ultraschall-Wand lerelementen 6, 7.7-7.21 und dem Messrohr 4 auf, so dass die, hier der Übersichtlichkeit halber nicht dargestellten, UStraschallsignale eine Richtungskomponente in Hauptströmungsrichtung des Messmediums im Messrohr 4 aufweisen.
Während der Diagnosephase sendet der Ultraschallwandler 2 Ultraschallsignale zum Ultraschallwandler 3 und umgekehrt. Hier soll der Einfachheit wegen nur der erste Fall betrachtet werden. Die von den Ultraschall-Wandlerelementen 7.7-7.21 empfangenen Signalstärken und/oder weitere Prozessparameter werden miteinander verglichen und das Ultraschall-Wandlerelement 7.7-7.21 an dem die für die Messung geeignetsten Prozessparameter anliegen, wird für die Messung ausgewählt und somit der Signalpfad für die Messung festgelegt. Aber auch der Zusammenschiuss mehrerer nebeneinander liegender Elemente 7.7-7.21 ist denkbar.
Bei dem gezeigten Messsystem verfügen die Ultraschallwandler 2, 3 über verschieden große Ultraschail-Wandlereiemente 6, 7.7-7.21. Das näherungsweise quadratische Ultraschall-Wandlerelement 6 misst beispielhaft 8x8mm, während die Größe der Ultraschall-Wandlerelemente 7.7-7.21 jeweils 2x8mm beträgt. Um die gleiche Fläche wie beim Uitraschall-Wandlerelement 6 zu erhalten, werden vier nebeneinander liegende Ultraschall-Wandlerelemente 7.7-7.21 zusammen aktiv geschaltet. Dies geschieht üblicherweise mit den direkten Nachbarn des Uitraschall- Wandlerelements 7.7-7.21 mit den geeignetsten Prozessparametern. Der
Zusammenschiuss kann für das Senden und/Empfangen gelten, als auch getrennt voneinander stattfinden. Senden können zusammengeschlossene Ultraschall- Wandlerelemente 7.7-7.21 indem sie gleichzeitig angesteuert werden. Dies geschieht wieder über entsprechend ausgestaltete, hier nicht dargestellte Muitiplexer 9.
Fig. 4 zeigt ein Flussdiagramm des beschriebenen Verfahrens. Dem Start der Diagnosephase geht die Installation und die grobe Positionierung der Ultraschallsensoren 2, 3 voraus. Analog zu Fig. 1 müssten die Wandlereiemente des ersten Ultraschallsensors 2 mit 6.i und die Wandlerelemente des zweiten Uitraschailsensors mit 7.j bezeichnet werden. Der Einfachheit wegen werden sie nur mit i und j bezeichnet. Die Kombination (i,j), was analog zu Fig. 1 (6.i,7.j) wäre, wird gemessen, d.h. die Prozessparameter PN ermittelt und/oder abgeleitet. Anschließend werden diese gespeichert. Dies erfolgt für alle Kombinationen von i = 1 bis i = imaχ und j = 1 bis j = jmax. Der Vergleich der Prozessparameter P1, aller Kombinationen liefert die geeignetste Kombination an Ultraschall-Wandlerelementen. Mit diesen wird die Messung vollzogen.
Natürlich äst auch ein anderer als hier dargestellter Ablauf denkbar, wo die aktuel! gemessenen Prozessgrößen mit den im Speicher gehaltenen, bis dato geeignetsten Prozessgrößen verglichen werden.
Die Messung kann dann von Zeit zu Zeit, z.B. zeit- und/oder benutzer- und/oder prozessgesteuert, wieder von Diagnosephasen unterbrochen werden. Alternativ kann die Diagnose während der Messphase stattfinden und/oder durch die Auswertung der Messsignale selbst.
Bezugszeichenliste
I Durchfiuss-Messsystem 2 Erster UJtraschailsensor
3 Zweiter Ultraschalisensor
4 Messrohr
5 Messmedium
6 Elektromechanische Ultraschall-Wandlerelemente 7 Elektromechanische Ultraschail-Wandierelemente
8 Regel-/Auswerteeinheit
9 Multiplexer
10 Ultraschall-Signaipfad
I 1 Abstand der eiektromechanischen Ultraschali-Wandlerelemente 12 Abstand der eiektromechanischen Ultraschall-Wandlerelemente
13 Koppelelement
14 Koppelelement
15 Erste Fläche
16 Zweite Fläche 17 externe Schnittstelle

Claims

Patentansprüche
1. Verfahren zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums (5) durch ein Messrohr (4) mit einem ersten Ultraschallsensor
(2) und zumindest einem zweiten Ultraschallsensor (3), weicher erste Ultraschallsensor (2) mindestens ein elektromechanisches Ultraschall- Wandlerelement (6) aufweist und in einem ersten Bereich des Messrohrs (4) angebracht ist und welcher zweite Ultraschallsensor (3) mindestens zwei elektromechanische Ultraschali-Wandierelemente (7) aufweist und in einem zweiten Bereich des Messrohrs (4) so angebracht ist, dass die vom ersten Ultraschalisensor (2) durch das Messmedium (5) gesendeten Ultraschalisignale (10) vom zweiten Ultraschallsensor (3) empfangen werden und dass die vom zweiten Ultraschallsensor (3) durch das Messmedium (5) gesendeten Ultraschallsignale (10) vom ersten Ultraschallsensor (2) empfangen werden, und mit mindestens einer Regel-/Auswerteeinheit (8), welche anhand der Ultraschall-Messsignale bzw. anhand von Messdaten, welche aus den Ultraschail-Messsignalen abgeleitet sind, den Volumen- und/oder den Massenstrom des in dem Messrohr (4) strömenden Messmediums (5) mittels eines Laufzeitdifferenzverfahrens ermittelt, dadurch gekennzeichnet, dass während einer Diagnosephase Ultraschallsignale (10) vom ersten Ultraschailsensor (2) durch das Messmedium (5) zum zweiten Ultraschailsensor (3) gesendet werden und von den empfangenen Ultraschailsignalen (10) für jedes elektromechanische Ultraschal!-
Wandlereiement (7) des zweiten Ultraschailsensors (3) mindestens eine Prozessgröße ermittelt und/oder abgeleitet wird und aufgrund der Prozessgröße der empfangenen Ultraschailsignale (10) die in einer nachfolgenden Messphase aktiven elektromechanischen Ultraschall- Wand lere Ie mente (7) des zweiten Ultraschalisensors (3) ausgewählt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass während der Diagnosephase die in der nachfolgenden Messphase aktiven elektromechanischen Ultraschail-Wandlerelemente (7) des zweiten Ultraschallsensors (3) nach der größten Signaästärke der empfangenen Ultraschaüsignaie (10) ausgewählt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Ultraschalisensor (2) mindestens zwei elektromechanische Ultraschail-Wandlerelemente (6) aufweist und während der Diagnosephase die in einer nachfolgenden Messphase aktiven eiektromechanischen
Ultraschall-Wandlerelemente (6) des ersten Ultraschallsensors (2) ausgewählt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mehrere elektromechanische UltraschalS-Wandlereiemente (6) des ersten UltraschaNsensors (2) gleichzeitig aktiviert werden und/oder dass mehrere elektromechanische Ultraschail-Wandlerelemente (7) des zweiten Ultraschallsensors (3) gleichzeitig aktiviert werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die jeweils aktiven elektromechanischen UltraschalS-Wandlereiemente (6, 7) von mindestens einem Multiplexer (9) geschaltet werden, wobei der Muitiplexer (9) von der Regel-/Auswerteeänheit (8) gesteuert wird und wobei die elektromechanischen Uitraschail-Wandiereäemente (6) des ersten Ultraschalisensors (2) und die eiektromechanischen Uitraschail- Wandlereiemente (7) des zweiten Uitraschallsensors (3) mit der Regei- /Auswerteeinheit (8) verbunden sind.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die während der Diagnosephase erfasste Prozessgröße gespeichert wird und dass während der Messphase die gespeicherte Prozessgröße mit der aktuell erfassten Prozessgröße verglichen wird, wobei bei Überschreiten einer bestimmten Abweichung der gespeicherten Prozessgröße von der aktuell erfassten Prozessgröße eine erneute Diagnosephase eingeleitet wird.
7. Messsystem (1 ) zur Bestimmung und/oder Überwachung des Durchflusses eines Messmedϊums (5) durch ein Messrohr (4) mit einem ersten Uitraschallsensor (2) und zumindest einem zweiten Ultraschaflsensor (3), welcher erste Uitraschaüsensor (2) mindestens ein elektromechanisches Ultraschall-Wandlerelement (6) aufweist und in einem ersten Bereich des Messrohrs (4) anbringbar ist und welcher zweite Ultraschallsensor (3) mindestens zwei elektromechanische Ultraschall-Wandlerelemente (7) aufweist und in einem zweiten Bereich des Messrohrs (4) so anbringbar ist, dass die vom ersten Ultraschallsensor (2) durch das Messmedium (5) sendbaren Ultraschallsignale (10) vom zweiten Uitraschallsensor (3) empfangbar sind und dass die vom zweiten Uitraschallsensor (3) durch das
Messmedium (5) sendbare Ultraschailsignale (10) vom ersten Uitraschallsensor (2) empfangbar sind, und mit mindestens einer Regel- /Auswerteeinheit (8), welche anhand der Ultraschall-Messsignale bzw. anhand von Messdaten, welche aus den Ultraschall-Messsignalen abgeleitet sind, den Volumen- und/oder den Massenstrom des in dem Messrohr (4) strömenden
Messmediums (5) mittels eines Laufzeitdifferenzverfahrens ermittelt, dadurch gekennzeichnet, dass während einer Diagnosephase Ultraschallsignale (10) vom ersten Uitraschallsensor (2) durch das Messmedium (5) zum zweiten Uitraschallsensor (3) sendbar sind und von den empfangbaren
Ultraschallsignalen (10) für jedes elektromechanische Ultraschall- Wandlerelement (7) des zweiten Ultraschallsensors (3) mindestens eine Prozessgröße ermittelbar und/oder ableitbar ist und aufgrund der Prozessgröße der empfangbaren Ultraschallsignale (10) die in einer nachfolgenden Messphase aktiven elektromechanischen Ultraschall-
Wandlerelemente (7) des zweiten Ultraschallsensors (3) auswählbar sind.
8. Messsystem (1 ) nach Anspruch 7, dadurch gekennzeichnet, dass der erste Ultraschailsensor (2) mindestens zwei elektromechanische U!traschall-Wand!ere!emente (6) aufweist und während der Diagnosephase die in einer nachfolgenden Messphase aktiven elektromechanischen Ultraschall-Wandlerelemente (6) des ersten Ultraschallsensors (2) auswählbar sind.
9. Messsystem (1 ) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Messsignale der eiektromechanischen Ultraschall-Wandlerelemente (6, 7) bzw. die von den Messsignalen ableitbaren Messdaten von genau einer
Rege!-/Auswerteeinheit (8) auswertbar sind, wobei die aktiven elektromechanischen Ultraschall-Wandlerelemente (6, 7) mittels mindestens eines Multiplexers (9) von der Regel-/Auswerteeinheit (8) steuerbar sind.
10. Messsystem (1 ) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die elektromechanischen Ultraschall-Wandlerelemente (6) des ersten Ultraschallsensors (2) je eine erste Fläche (15) zum Senden und/oder Empfangen von Ultraschallsignalen aufweisen, welche erste Flächen (15) einen ersten Flächeninhalt aufweist, und welche elektromechanischen
Ultraschall-Wandlerelemente (7) des zweiten Ultraschallsensors (3) je eine zweite Fläche (16) zum Senden und/oder Empfangen von Ultraschallsignalen aufweisen, welche zweiten Flächen (16) einen zweiten Flächeninhalt aufweist, wobei der erste Flächeninhalt ungleich des zweiten Flächeninhalt ist.
11. Messsystem (1 ) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die elektromechanischen Ultraschall-Wandlerelemente (6) des ersten Ultraschallsensors (2) näherungsweise konstante erste Abstände (11 ) aufweisen und dass die elektromechanischen Ultraschall-Wandlerelemente (7) des zweiten UStraschailsensors (3) näherungsweise konstante zweite Abstände (12) aufweisen, wobei die ersten Abstände (11 ) ungleich der zweiten Abstände (12) sind.
12. Messsystem (1 ) nach einem der Ansprüche 7 bis 11 , dadurch gekennzeichnet, dass mehrere elektromechanische UltraschaSI-Wandlerelemente (6, 7) gleichzeitig aktivierbar sind.
13. Messsystem (1 ) nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass der erste Ultraschallsensor (2) ein Koppelelement (13) aufweist, welches so ausgestaltet ist, dass ein vom elektromechanischen Ultraschali- Wandierelement (6) gesendetes Ultraschailsignal (10) eine
Richtungskomponente in oder entgegen der Hauptströmungsrichtung des Messmediums (5) im Messrohr (4) aufweist und/oder dass der zweite Ultraschallsensor (3) ein Koppelelement (14) aufweist, welches so ausgestaltet ist, dass ein vom elektromechanischen Ultraschail- Wandlerelement (7) gesendetes Ultraschallsigna! (10) eine
Richtungskomponente in oder entgegen der Hauptströmungsrichtung des Messmediums (5) im Messrohr (4) aufweist.
EP09769099A 2008-06-25 2009-06-02 Verfahren und messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch ein messrohr Withdrawn EP2291619A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008029772A DE102008029772A1 (de) 2008-06-25 2008-06-25 Verfahren und Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr
PCT/EP2009/056731 WO2009156250A1 (de) 2008-06-25 2009-06-02 Verfahren und messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch ein messrohr

Publications (1)

Publication Number Publication Date
EP2291619A1 true EP2291619A1 (de) 2011-03-09

Family

ID=40910836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09769099A Withdrawn EP2291619A1 (de) 2008-06-25 2009-06-02 Verfahren und messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch ein messrohr

Country Status (6)

Country Link
US (1) US8347734B2 (de)
EP (1) EP2291619A1 (de)
CN (1) CN202092690U (de)
DE (1) DE102008029772A1 (de)
RU (1) RU2478190C2 (de)
WO (1) WO2009156250A1 (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008002166A1 (de) * 2008-06-03 2009-12-10 Endress + Hauser Flowtec Ag Messsystem zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch ein Messrohr
JP5728657B2 (ja) * 2009-10-01 2015-06-03 パナソニックIpマネジメント株式会社 超音波流量計測ユニット
EP2386835B1 (de) 2010-05-12 2015-11-25 SICK Engineering GmbH Ultraschallmessung der Strömungsgeschwindigkeit eines Fluids in einer Rohrleitung
DE102011005170B4 (de) * 2011-03-07 2012-10-11 Flexim Flexible Industriemesstechnik Gmbh Verfahren zur Ultraschall-Clamp-on-Durchflussmessung und Vorrichtung zur Umsetzung des Verfahrens
CN104169692A (zh) * 2011-12-02 2014-11-26 卡姆鲁普股份有限公司 具有数字化欠采样流量测量的超声波流量计
DE102012009076A1 (de) * 2012-05-09 2013-11-14 Sensus Spectrum Llc Messvorrichtung mit einem Fluidzähler
CN104296813B (zh) * 2013-07-19 2019-06-07 德克萨斯仪器德国股份有限公司 单收发器超声流量计设备及方法
US9343898B2 (en) 2013-07-19 2016-05-17 Texas Instruments Incorporated Driver current control apparatus and methods
GB2521661A (en) * 2013-12-27 2015-07-01 Xsens As Apparatus and method for measuring flow
EP2957873A1 (de) * 2014-06-20 2015-12-23 Kamstrup A/S Ultraschallverbrauchszähler mit Dehnungsmesser
DE102014109772B3 (de) 2014-07-11 2015-09-24 Flexim Flexible Industriemesstechnik Gmbh Messkopfanklemmung für Ultraschall-Durchflussmess-Messköpfe
US9347808B2 (en) * 2014-07-24 2016-05-24 Texas Instruments Incorporated Flush mounted ultrasonic transducer arrays for flow measurement
DE102014115203B3 (de) 2014-10-20 2016-03-24 Flexim Flexible Industriemesstechnik Gmbh Verfahren und Anordnung zur Ultraschall-Clamp-on-Durchflussmessung und Schaltungsanordnung zur Steuerung einer Ultraschall-Clamp-on-Durchflussmessung
CN104515626A (zh) * 2014-12-29 2015-04-15 合肥瑞纳表计有限公司 超声波热表相控阵换能器及其检测方法
US10197824B2 (en) * 2015-01-08 2019-02-05 Ecolab Usa Inc. Method of obtaining or maintaining optical transmittance into deaerated liquid
GB2534183A (en) * 2015-01-15 2016-07-20 Titan Entpr Ltd Transit time flow meter apparatus, transducer, flow meter and method
FR3035497B1 (fr) * 2015-04-21 2018-09-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme et procede de mesure d'un debit de fluide par traitement d'ondes acoustiques
DE102015107750A1 (de) 2015-05-18 2016-11-24 Endress + Hauser Flowtec Ag Meßsystem zum Messen wenigstens eines Parameters eines Fluids
NL2015247B1 (en) 2015-07-31 2017-02-20 Berkin Bv A method for determining a flow rate for a fluid in a flow tube of a flow measurement system, as well as a corresponding flow measurement system.
DE102016114963B3 (de) 2016-08-11 2018-01-11 Endress+Hauser Flowtec Ag Sensor für ein thermisches Durchflussmessgerät, ein thermisches Durchflussmessgerät und ein Verfahren zum Herstellen eines Sensors eines thermischen Durchflussmessgeräts
CN107144313B (zh) 2017-05-27 2019-04-05 京东方科技集团股份有限公司 流量测量装置和流量测量方法
DE102017006909A1 (de) * 2017-07-20 2019-01-24 Diehl Metering Gmbh Messmodul zur Ermittlung einer Fluidgröße
US10495499B2 (en) * 2017-10-27 2019-12-03 METER Group, Inc. USA Sonic anemometer
DE102018003311B4 (de) * 2018-04-24 2022-05-12 Diehl Metering Gmbh Verfahren und Messeinrichtung zur Ermittlung einer Messinformation
DE102018006381B4 (de) 2018-08-11 2022-05-12 Diehl Metering Gmbh Verfahren zum Betrieb einer Messeinrichtung
DE102018008393A1 (de) * 2018-10-24 2020-04-30 Diehl Metering Gmbh Verfahren und Messeinrichtung zur Ermittlung einer Fluidgröße
DE102018009754B4 (de) * 2018-12-12 2023-09-21 Diehl Metering Gmbh Messeinrichtung zur Ermittlung einer Fluidgröße
DE102018132055B4 (de) * 2018-12-13 2022-08-25 Endress + Hauser Flowtec Ag Ultraschallwandleranordnung einer Clamp-On-Ultraschall-Durchflussmessstelle, und eine Clamp-On-Ultraschall-Durchflussmessstelle sowie Verfahren zur Inbetriebnahme der Clamp-On-Ultraschall-Durchflussmessstelle
DE102018132053B4 (de) 2018-12-13 2022-08-25 Endress+Hauser Flowtec Ag Ultraschallwandleranordnung einer Clamp-On-Ultraschall-Durchflussmessstelle, und eine Clamp-On-Ultraschall-Durchflussmessstelle sowie Verfahren zur Inbetriebnahme der Clamp-On-Ultraschall-Durchflussmessstelle
CN109459103A (zh) * 2018-12-25 2019-03-12 上海诺自动化工程有限公司 一种超声式气液两相测量装置
CN111398626A (zh) * 2019-12-31 2020-07-10 江苏启泰物联网科技有限公司 铁路用液体流速监测方法
JP7550886B2 (ja) 2020-05-22 2024-09-13 ケイピーアール ユーエス エルエルシー 流れ制御装置用検出システム
DE102021118821A1 (de) 2021-07-21 2023-01-26 Krohne Messtechnik Gmbh Ultraschalldurchflussmessgerät und Verfahren zum Betreiben eines Ultraschalldurchflussmessgeräts
EP4377639A1 (de) * 2021-07-27 2024-06-05 Belimo Holding AG Verfahren und system zur selbstdiagnose von vormontierten ultraschall-durchflussmessern
US11806749B2 (en) * 2021-10-28 2023-11-07 Baker Hughes, A Ge Company, Llc Ultrasonic transducer for flow measurement
FI20226018A1 (en) * 2022-11-11 2024-05-12 Flaektgroup Sweden Ab Device and method for measuring flow rate

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI67627C (fi) 1981-10-19 1985-04-10 Eino Haerkoenen Foerfarande och anordning foer maetning av stroemningshastigheten i stroemmen av uppslamningar genom utnyttjandet av ultraljud
US4598593A (en) 1984-05-14 1986-07-08 The United States Of America As Represented By The United States Department Of Energy Acoustic cross-correlation flowmeter for solid-gas flow
US4882934A (en) * 1986-03-12 1989-11-28 Charles B. Leffert Ultrasonic instrument to measure the gas velocity and/or the solids loading in a flowing gas stream
DE58905910D1 (de) 1988-07-08 1993-11-18 Flowtec Ag Verfahren und anordnung zur durchflussmessung mittels ultraschallwellen.
DE4336370C1 (de) * 1993-10-25 1995-02-02 Siemens Ag Vorrichtung zur Durchflußmessung
ES2143038T3 (es) 1993-12-23 2000-05-01 Flowtec Ag Aparato de medida de caudal volumetrico por ultrasonidos del tipo de pinza.
US6585649B1 (en) * 1998-05-02 2003-07-01 John D. Mendlein Methods and devices for improving ultrasonic measurements using multiple angle interrogation
US6347293B1 (en) * 1999-07-09 2002-02-12 Micro Motion, Inc. Self-characterizing vibrating conduit parameter sensors and methods of operation therefor
DE10118934C2 (de) * 2001-04-18 2003-09-18 Hydrometer Gmbh Verfahren zur Justierung und zur Alterungskontrolle von Messgeräten mit Ultraschallwandlern
DE10221771A1 (de) 2002-05-15 2003-11-27 Flowtec Ag Ultraschallwandler für ein Ultraschall-Durchflußmessgerät
US6843110B2 (en) 2002-06-25 2005-01-18 Fluid Components International Llc Method and apparatus for validating the accuracy of a flowmeter
DE10230607A1 (de) * 2002-07-08 2004-02-05 Abb Patent Gmbh Verfahren zur Überwachung einer Messeinrichtung, insbesondere einer Durchflussmesseinrichtung, sowie eine Messeinrichtung selbst
DE10255698B4 (de) * 2002-11-29 2021-06-24 Abb Ag Verfahren zum Betrieb einer Durchflussmesseinrichtung
DE10258997A1 (de) * 2002-12-16 2004-06-24 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zur Postionierung eines Clamp-On Durchflußmeßgeräts an einem Behältnis
DE10344895A1 (de) 2003-09-26 2005-04-21 Bosch Gmbh Robert Ultraschallströmungssensor mit Wandlerarray
EP1719979A4 (de) * 2004-02-27 2008-02-27 Fuji Electric Systems Co Ltd Sowohl mit der impulsdopplermethode als auch der ausbreitungszeit-differenzmethode kompatibler ultraschall-strömungsmesser, verfahren und programm zur automatischen auswahl der messmethode in dem strömungsmesser und elektronische einrichtung für den strömungsmesser
DE102004053673A1 (de) * 2004-11-03 2006-05-04 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums
DE102005024134A1 (de) * 2005-05-23 2007-01-11 Endress + Hauser Flowtec Ag Verfahren zur Bestimmung und/oder Überwachung einer Prozessgröße
DE102005045485A1 (de) 2005-09-22 2007-04-12 Endress + Hauser Flowtec Ag Verfahren zur System- und/oder Prozessüberwachung bei einem Ultraschall-Durchflussmessgerät
DE102005047790A1 (de) 2005-10-05 2007-04-12 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung oder Überwachung des Volumen- oder Massedurchflusses eines Mediums durch eine Rohrleitung
US7762118B2 (en) * 2006-05-05 2010-07-27 The University Of Southern Mississippi Auto-positioning ultrasonic transducer system
DE102006029199B3 (de) 2006-06-26 2008-01-24 Siemens Ag Verfahren und Vorrichtung zum Messen eines Luftmassenstroms mittels Ultraschall

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009156250A1 *

Also Published As

Publication number Publication date
RU2478190C2 (ru) 2013-03-27
RU2011102597A (ru) 2012-07-27
DE102008029772A1 (de) 2009-12-31
US20110094309A1 (en) 2011-04-28
US8347734B2 (en) 2013-01-08
CN202092690U (zh) 2011-12-28
WO2009156250A1 (de) 2009-12-30

Similar Documents

Publication Publication Date Title
WO2009156250A1 (de) Verfahren und messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch ein messrohr
EP2386835B1 (de) Ultraschallmessung der Strömungsgeschwindigkeit eines Fluids in einer Rohrleitung
EP1554549B1 (de) Durchflussmessgerät
DE69417543T2 (de) Flüssigkeitsströmungsmesser
EP0686255B1 (de) Clamp-on-ultraschall-volumendurchfluss-messgerät
EP2872857B1 (de) Ultraschall-durchflussmessgerät
DE102011005170B4 (de) Verfahren zur Ultraschall-Clamp-on-Durchflussmessung und Vorrichtung zur Umsetzung des Verfahrens
EP2440888B1 (de) Verfahren zum messen einer messgrösse
WO2005090929A1 (de) Ultraschall-strömungssensor mit wandlerarray und reflextionsfläche
DE4311963A1 (de) Füllstandsmeßgerät
DE10254053B4 (de) Verfahren und Vorrichtung zur Bestimmung und/oder Überwachung eines Volumen- und/oder Massenstroms
DE2107586A1 (de) Ultraschall Durchflußmesser
WO2010076151A1 (de) Messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch das messrohr mittels ultraschall
EP3209976A1 (de) Verfahren und anordnung zur ultraschall-clamp-on-durchflussmessung und schaltungsanordnung zur steuerung einer ultraschall-clamp-on-durchflussmessung
EP1573276B1 (de) Vorrichtung zur positionierung eines clamp-on durchflussmessgeräts an einem behältnis
EP3343185B1 (de) Ultraschalldurchflussmessgerät und verfahren zur messung des durchflusses
DE102018003311B4 (de) Verfahren und Messeinrichtung zur Ermittlung einer Messinformation
EP3405780B1 (de) Verfahren zur bestimmung von eigenschaften eines mediums und vorrichtung zur bestimmung von eigenschaften eines mediums
EP3273205A1 (de) Verfahren und anordnung zur ultraschall-clamp-on-durchflussmessung und körper zur realisierung der messung
EP3867636B1 (de) Verfahren und vorrichtung zur nichtinvasiven bestimmung von eigenschaften eines multiphasenstroms
EP0138017B1 (de) Verfahren zur Ultraschall-Durchflussmessung nach dem Dopplerprinzip mit verbesserter Ortsauflösung
EP3855134B1 (de) Vorrichtung zur messung der flussgeschwindigkeit eines fluids
EP3894799B1 (de) Ultraschallwandleranordnung einer clamp-on-ultraschall-durchflussmessstelle, und eine clamp-on-ultraschall-durchflussmessstelle sowie verfahren zur inbetriebnahme der clamp-on-ultraschall-durchflussmessstelle
EP3521774B1 (de) Ultraschall-durchflussmessvorrichtung und verfahren zum bestimmen der strömungsgeschwindigkeit
EP1332339B1 (de) Koppelelement für ein ultraschall-durchflussmessgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERGER, ANDREAS

Inventor name: BLOCH JENSEN, FINN

Inventor name: WIEST, ACHIM

Inventor name: SONDERKAMP, ROLF

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170703