WO2005090929A1 - Ultraschall-strömungssensor mit wandlerarray und reflextionsfläche - Google Patents

Ultraschall-strömungssensor mit wandlerarray und reflextionsfläche Download PDF

Info

Publication number
WO2005090929A1
WO2005090929A1 PCT/EP2005/050287 EP2005050287W WO2005090929A1 WO 2005090929 A1 WO2005090929 A1 WO 2005090929A1 EP 2005050287 W EP2005050287 W EP 2005050287W WO 2005090929 A1 WO2005090929 A1 WO 2005090929A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
flow sensor
reflection surface
transducer array
sensor according
Prior art date
Application number
PCT/EP2005/050287
Other languages
English (en)
French (fr)
Inventor
Tobias Lang
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP05701594A priority Critical patent/EP1728054A1/de
Priority to JP2007503316A priority patent/JP2007529725A/ja
Priority to US10/593,143 priority patent/US7503225B2/en
Publication of WO2005090929A1 publication Critical patent/WO2005090929A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/665Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters of the drag-type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/245Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the invention relates to an ultrasonic flow sensor, in particular for measuring the volume or mass flow of a fluid, according to the preamble of patent claim 1.
  • Ultrasonic flow sensors are used in particular to measure the volume or mass flow or the flow rate of a gaseous or liquid medium flowing through a pipeline.
  • a typical ultrasound flow sensor comprises two ultrasound transducers arranged offset in the flow direction, which generate ultrasound signals and send them out to the other ultrasound transducer that they are receiving. Depending on the direction of radiation, the ultrasound signals are either accelerated or slowed down by the flow. The ultrasound signals are therefore received by the two transducers after different transit times. From the transit time difference of the ultrasonic signal in the direction of flow and the
  • An ultrasound signal in the opposite direction can finally be evaluated by an electronic evaluation system the desired measured variable.
  • Another type of ultrasonic flow sensor uses the effect of the jet drift.
  • This type usually comprises two transducer arrays (a series arrangement of several transducers) arranged opposite one another on a pipeline, one of which works as a transmitting array and the other as a receiving array.
  • the transmission array sends an ultrasound signal to the opposite reception array, where the signal is detected. If a fluid flows through the pipeline at a flow velocity v, the sound waves emitted transversely to the direction of flow are carried along by the flow and thereby deflected in the direction of flow (jet drift).
  • v flow velocity
  • the construction of such an ultrasonic flow sensor with two transducer arrays is relatively complex and complicated.
  • An essential aspect of the invention is to realize an ultrasonic flow sensor with only a single transducer array and an opposite reflection surface, and to operate the flow sensor in such a way that the transducer array emits ultrasonic signals to the opposite reflection surface and receives the reflected signals again.
  • the extent of the jet drift is a measure of the flow velocity of the flowing medium.
  • transducer array is understood here in particular to mean a series arrangement of a plurality of ultrasound transducers, which are preferably arranged directly adjacent to one another.
  • the individual transducers are preferably arranged in alignment and produce e.g. flat or cylindrical
  • the converter array can also be used in this way be formed so that spherical, ellipsoidal or otherwise curved wave fronts are generated.
  • the converter array according to the invention is preferably operated in a pulsed manner. This means that the individual ultrasound transducers of the transducer array are electrically excited in a pulsed manner and generate a corresponding ultrasound signal that is received again by the transducers after its transit time - which essentially depends on the tube diameter and the speed of sound in the fluid.
  • the frequency of the suggestions per time i.e. the number of ultrasound signals that run through the measurement section at the same time is in principle freely selectable. It should only be taken into account here that conventional converters cannot send and receive at the same time, and thus transmission and reception must not coincide at one time.
  • the sensor may, according to a first mode of operation, for example, similarly as in ⁇ sing-around "(Note: sing-around refers generally to the fact that transit time measurement is performed) processes are operated, wherein the reception of an ultrasound signal at the transducer array in each case the generation of a new ultrasonic signal This causes the ultrasound signals to run back and forth continuously.
  • sing-around refers generally to the fact that transit time measurement is performed
  • the generation of the ultrasound signals is periodically triggered by an oscillator in such a way that a new ultrasound signal is only ever sent after an ultrasound signal has been received.
  • the transducer array is controlled in such a way that it sends a sequence of several ultrasound signals within one round trip time (ie the time that an ultrasound signal would need from the transducer array to the reflection surface and back).
  • a sequence of several ultrasound signals within one round trip time (ie the time that an ultrasound signal would need from the transducer array to the reflection surface and back).
  • the transducer array before the first of the ultrasound signals becomes the transducer array has reached again, coupled at least one further signal into the measuring section.
  • the number of measurements per time can be increased significantly and thus the measurement accuracy can be increased, the measurement duration being significantly shorter compared to n individual measurements.
  • the time interval between the individual ultrasound signals of a sequence is to be selected so that a transducer is ready to receive, ie does not exactly work in the transmission mode when a reflected ultrasound signal arrives at the transducer.
  • the ultrasound flow sensor preferably comprises transmission electronics with which the individual ultrasound transducers can be excited individually and independently of one another. This makes it possible to set the path differences of the individual signals emitted by the ultrasound transducers in such a way that a global ultrasound wave with a definable wavefront is generated by interference. For example, an essentially cylindrical or spherical wavefront is generated, which is reflected on the opposite reflection surface and hits the transducer array in a focused manner.
  • the reflecting surface can simply be part of the inner wall of the tube, without the wall having to be specially adapted.
  • the individual transducers of the transducer array are excited synchronously, so that a wave with a flat wavefront is produced by interference of the individual signals.
  • the reflection surface is preferably curved such that the plane wave is focused and hits the transducer array in bundles.
  • the reflection surface should also be designed in such a way that it offers little resistance to the flow and does not generate any turbulence.
  • the reflection surface can be used, for example, as a bulge located in the inner tube wall can be realized.
  • a shielding device is provided on the side of the reflection surface, which causes that part of the
  • Ultrasonic signal that strikes the dimming device is not reflected or only reflected back onto the transducer array.
  • the dimming device can e.g. be realized in such a way that the incident ultrasound signal is absorbed, scattered or reflected out of the sound path of the useful signal. As a result, an intensity pattern is mapped on the transducer array, the limits of which are relatively sharp and can therefore be detected well.
  • the dimming device can e.g. an area of
  • Inner wall surface which e.g. is roughened or provided with fine grooves in order to diffusely scatter the ultrasonic signal.
  • the grooves are preferably aligned in the direction of flow.
  • the transducer array is preferably mounted flush with the inner wall of the pipeline. As a result, the flow of the fluid is not disturbed and, in particular, there is no turbulence.
  • the transducer array according to the invention is moreover preferably mounted in the upper half of a pipeline. This has the advantage that only a little dust or suspended matter can collect on the transducer array. If the transducer array and the reflection surface are arranged laterally opposite on the pipeline, both elements are contaminated relatively little.
  • the ultrasound flow sensor preferably includes a transmitter and receiver electronics that the transducer array in stimulates as desired and the reflected ultrasound signal is detected and evaluated.
  • FIG. 1 shows a schematic view of an ultrasonic flow sensor according to a first embodiment of the invention
  • FIG. 2 is a schematic view of an ultrasound
  • Fig. 3 is a schematic view of an ultrasonic flow sensor according to a third embodiment of the invention.
  • the flow sensor essentially comprises an ultrasound transducer array 2 comprising a plurality of individual, strip-shaped ultrasound transducers 2a-2n arranged in parallel, each of which generates ultrasound signals and emits them to an opposite reflection surface 4. Interference of the individual signals creates a global wavefront 7, which propagates through the flowing fluid 1 transversely to the direction of flow, is reflected on the reflection surface 4 and then hits the transducer array 2 again.
  • the position of the pixel P is a measure of the flow velocity v of the fluid 1.
  • the individual ultrasound transducers 2a-2n of the transducer array 2 are controlled separately, so that, due to the path differences of the individual signals, an approximately cylindrical wavefront 7 is formed which is concavely curved in the radiation direction Edge areas 8 first meet the reflection surface 4.
  • the shaft 7 is thereby focused and strikes the transducer array 2 essentially at a point P, depending on the flow velocity v, the image point P moves more or less strongly in the direction of flow 12 (effect of the jet drift).
  • Flow velocity v is indicated by dashed lines and a pixel P '.
  • a reception electronics 6 evaluates the ultrasound signal detected at the ultrasound transducers 2a-2n and calculates the desired measurement variable therefrom.
  • the reflection surface 4 is merely a section of the inner tube wall opposite the transducer array 2.
  • the inner tube wall in the area of the reflection surface 4 could e.g. polished or provided with a special reflective layer.
  • the transducer array 2 is mounted here on the pipe 3 to prevent dust or
  • Fig. 2 shows a schematic representation of another
  • the transmission and evaluation circuits 5 and _ 6 are omitted for reasons of clarity.
  • the same components are identified by the same reference symbols.
  • the individual ultrasonic transducers 2a-2n of the transducer array 2 are controlled in such a way that a plane wavefront 7, which runs in the direction of the reflection surface 4, is produced by interference of the individual signals.
  • the reflection surface 4 is curved in such a way that the ultrasound signal 7 is focused and strikes the transducer array 2 approximately in the form of a line or point. Precise pinpoint focusing is not absolutely necessary.
  • the reflection surface 4 is formed as a bulge in the tube wall of the tube 3 in order not to hinder the flow of the fluid 1 and, in particular, to cause turbulence that is as small as possible.
  • FIG. 3 shows a further embodiment of an ultrasonic flow sensor with a small transducer array 2 and an opposite reflection surface 4.
  • the extension of the reflection surface 4 is in this. Embodiment less than the length of the transducer array 2. Adjacent to
  • a reflecting device 11 is provided on the reflection surface 4, which attenuates or filters the incident sound signal. That that part of an ultrasonic signal 7 which strikes the anti-dazzle device 11 is not reflected back or only reflected back onto the transducer array 2.
  • the dimming device 11 can e.g. as a wall area with a particularly rough surface or e.g. be realized as a grooved area of the inner tube wall.
  • sicfi thus produces a pattern with high sound intensity due to that on reflection surface 4 reflected part of signal 7 and lower
  • the limits of this pattern in turn shift depending on the flow velocity v of the fluid 1.
  • the desired measured variable can again be determined from the position of the pattern.

Abstract

Die Erfindung betrifft einen Ultraschall-Strömungssensor, insbesondere zum Messen des Volumen- oder Massestroms eines Fluids (1) in einer Rohrleitung (3), mit wenigstens einem Ultraschallwandler (2a-2n), der in der Lage ist, Ultraschallsignale (7) auszusenden und zu empfangen. Ein besonders einfach aufgebauter und kostengünstiger Ultraschall-Strömungssensor, der nach dem Prinzip der Strahlverwehung arbeitet, umfasst ein Array (2) aus mehreren Ultraschallwandlern (2a-2n), das an einer Seite der Rohrleitung (3) angeordnet ist, und eine dem Array (2) gegenüberliegende Reflexionsfläche (4), an der die ausgesendeten Ultraschallsignale (7) reflektiert werden, und eine Empfangselektronik (6), die das von den Ultraschall­wandlern (2a-2n) empfangene Ultraschallsignal (9) auswertet.

Description

Beschreibung
Ultraschall-Strömungssensor mit Wandlerarray und Reflexionsfläche
Die Erfindung betrifft einen Ultraschall-Strömungssensor, insbesondere zum Messen des Volumen- oder Massestroms eines Fluids, gemäß dem Oberbegriff des Patentanspruchs 1.
Ultraschall-Strömungssensoren werden insbesondere eingesetzt, um den Volumen- oder Massestrom oder die Strömungsgeschwin- digkeit eines gasförmigen oder flüssigen Mediums zu messen, das durch eine Rohrleitung fließt. Ein typischer Ultraschall- Strömungssensor umfasst zwei in Strömungsrichtung versetzt angeordnete Ultraschallwandler, die Ultraschallsignale erzeugen und diese an den jeweils anderen Ultraschallwandler aussenden, d§r sie empfängt. Je nach Ausstrahlungsrichtung werden die Ultraschallsignale von der Strömung entweder beschleunigt oder verlangsamt. Die Ultraschallsignale werden daher von den beiden Wandlern nach unterschiedlichen Laufzeiten empfangen. Aus dem Laufzeitunterschied des Ultraschallsignals in Strömungsrichtung und des
Ultraschallsignals in der Gegenrichtung kann eine Auswerteelektronik schließlich die gewünschte Messgröße berechnen .
Ein anderer Typ von Ultraschall-Strömungssensoren nutzt den Effekt der Strahlverwehung. Dieser Typ umfasst in der Regel zwei an einer Rohrleitung gegenüberliegend angeordnete Wandlerarrays (Reihenanordnung mehrerer Wandler) , von denen das eine als Sendearray und das andere als Empfangsarray arbeitet. Das Sendearray sendet dabei ein Ultraschallsignal an das gegenüberliegende Empfangsarray, wo das Signal detektiert wird. Fließt durch die Rohrleitung ein Fluid mit einer Strömungsgeschwindigkeit v, so werden die quer zur Strömungsrichtung ausgesendeten Schallwellen von der Strömung mitgeführt und dadurch in Strömungsrichtung abgelenkt (Strahlverwehung) . Der Aufbau eines solchen Ultraschall- Strömungssensors mit zwei Wandlerarrays ist relativ aufwändig und kompliziert.
Es ist daher die Aufgabe der vorliegenden Erfindung, einen Ultraschall-Strömungssensor, der nach dem Prinzip der Strahlverwehung arbeitet, zu schaffen, der einfach aufgebaut ist und wesentlich kostengünstiger realisiert werden kann.
Gelöst wird diese Aufgabe gemäß der Erfindung durch die im Patentanspruch 1 angegebenen Merkmale . Weitere Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.
Ein wesentlicher Aspekt der Erfindung besteht darin, einen Ultraschall-Strömungssensor mit nur einem einzigen Wandlerarray und einer gegenüberliegenden Reflexionsfläche zu realisieren, und den Strömungssensor derart zu betreiben, dass das Wandlerarray Ultraschallsignale an die gegenüberliegende Reflexions läche aussendet und die reflektierten Signale wieder empfängt . Das Ausmaß der Strahlverwehung ist dabei ein Maß für die Strömungsgeschwindigkeit des strömenden Mediums. Ein wesentlicher Vorteil dieses Strömungssensors besteht darin, dass nur ein einziges Wandlerarray erforderlich ist und ein derartiger Sensor besonders kostengünstig hergestellt werden kann.
Unter dem Begriff "Wandlerarray" wird hier im besonderen eine Reihenanordnung von mehreren Ultraschallwandlern verstanden, die vorzugsweise unmittelbar aneinander angrenzend angeordnet sind. Die einzelnen Wandler sind vorzugsweise fluchtend angeordnet und erzeugen z.B. ebene oder zylinderförmige
Ultraschallwellen. Das Wandlerarray kann aber auch derart gebildet sein, dass kugelförmige, ellipsoidförmige oder auf sonstige Weise gekrümmte Wellenfronten erzeugt werden.
Das erfindungsgemäße Wandlerarray wird vorzugsweise gepulst betrieben. D.h., die einzelnen Ultraschallwandler des Wandlerarrays werden pulsartig elektrisch angeregt und erzeugen ein entsprechendes Ultraschallsignal, das nach seiner Laufzeit - die im wesentlichen vom Rohrdurchmesser und der Schallgeschwindigkeit im Fluid abhängig ist - wieder von den Wandlern empfangen wird.
Die Häufigkeit der Anregungen pro Zeit, d.h. die Anzahl der Ultraschallsignale, die gleichzeitig die Messstrecke durchlaufen, ist prinzipiell frei wählbar. Dabei ist nur zu berücksichtigen, dass herkömmliche Wandler nicht gleichzeitig senden und empfangen können und somit Senden und Empfangen nicht auf einen Zeitpunkt zusammen fallen dürfen.
Der Sensor kann gemäß einer ersten Betriebsart z.B. ähnlich wie im Λsing-around" (Anmerkung: sing-around bezieht sich normalerweise darauf, dass Laufzeitmessung durchgeführt wird) Verfahren betrieben werden, bei dem der Empfang eines Ultraschallsignals am Wandlerarray jeweils die Erzeugung eines neuen Ultraschallsignals auslöst. Dadurch laufen die Ultraschallsignale fortlaufend hin und her.
Gemäß einer zweiten Betriebsart wird die Erzeugung der Ultraschallsignale von einem Oszillator gesteuert periodisch so ausgelöst, dass immer erst nach dem Empfang eines Ultraschallsignals ein neues Ultraschallsignal gesendet wird.
Gemäß einer dritten Betriebsart wird das Wandlerarray derart angesteuert, dass es innerhalb einer Umlaufzeit (d.h. die Zeit, die ein Ultraschallsignal vom Wandlerarray zur Reflexionsfläche und zurück benötigen würde) eine Sequenz aus mehreren Ultraschallsignalen sendet. In diesem Fall wird, noch bevor das erste der Ultras.σhallsignale das Wandlerarray wieder erreicht hat, wenigstens ein weiteres Signal in die Messstrecke eingekoppelt. Dadurch kann die Anzahl der Messungen pro Zeit wesentlich erhöht und somit auch die Messgenauigkeit gesteigert werden, wobei die Messdauer gegenüber n Einzelmessungen wesentlich kürzer ist. Der zeitliche Abstand zwischen den einzelnen Ultraschallsignalen einer Sequenz ist dabei so zu wählen, dass ein Wandler empfangsbereit ist, d.h. nicht gerade im Sendebetrieb arbeitet, wenn ein reflektiertes Ultraschallsignal am Wandler eintrifft .
Der Ultraschall-Strömungssensor umfasst vorzugsweise eine Sendeelektronik, mit der die einzelnen Ultraschallwandler individuell und unabhängig voneinander angeregt werden können. Dadurch wird es möglich, die Gangunterschiede der einzelnen, von den Ultraschallwandlern ausgesendeten Signale derart einzustellen, dass durch Interferenz eine globale Ultraschallwelle mit vorgebbarer Wellenfront entsteht. So kann z.B. eine im wesentlichen zylinderförmige oder kugelförmige Wellenfront erzeugt werden, die an der gegenüberliegenden Reflexionsfläche reflektiprt wird und fokussiert wieder auf das Wandlerarray trifft. Die Reflexionsfläche kann in diesem Fall einfach ein Teil der Rohrinnenwand sein, ohne dass eine spezielle Anpassung der Wand erforderlich wäre.
Gemäß einer anderen Ausführungsform der Erfindung werden die einzelnen Wandler des Wandlerarrays synchron angeregt, so dass durch Interferenz der Einzelsignale eine Welle mit ebener Wellenfront entsteht. In diesem Fall ist die Reflexionsfläche vorzugsweise derart gekrümmt, dass die ebene Welle fokussiert wird und gebündelt auf das Wandlerarray trifft. Um die Strömung möglichst wenig zu behindern, sollte die Reflexionsfläche außerdem derart gestaltet sein, dass sie der Strömung wenig Widerstand bietet und keine Turbulenzen erzeugt. Die Reflexionsfläche kann zu diesem Zweck z.B. als eine in der Rohrinnenwand befindliche Ausbuchtung realisiert sein.
Gemäß einer weiteren Ausführungsform der Er indung ist auf der Seite der Reflexionsfläche eine Abblendeinrichtung vorgesehen, die bewirkt, dass derjenige Teil des
Ultraschallsignals, der auf die Abblendeinrichtung trifft, nicht oder nur gedämpft auf das Wandlerarray zurück reflektiert wird. Die Abblendeinrichtung kann z.B. derart realisiert sein, dass das auftreffende Ultraschallsignal absorbiert, gestreut oder aus dem Schallweg des Nutzsignals heraus reflektiert wird. Dadurch wird auf dem Wandlerarray ein Intensitätsmuster abgebildet, dessen Grenzen relativ scharf sind und somit gut erfasst werden kann.
Die Abblendeinrichtung kann z.B. ein Bereich der
Innenwandfläche sein, der z.B. aufgeraut oder mit feinen Rillen versehen ist, um das Ultraschallsignal diffus zu streuen. Die Rillen sind aus strömungstechnischen Gründen vorzugsweise in Strömungsrichtung ausgerichtet.
Das Wandlerarray ist vorzugsweise bündig mit der Innenwand der Rohrleitung montiert. Dadurch wird die Strömung des Fluids nicht gestört und es treten insbesondere keine Turbulenzen auf.
Das erfindungsgemäße Wandlerarray ist darüber hinaus vorzugsweise in der oberen Hälfte einer Rohrleitung montiert, Dies hat den Vorteil, dass sich am Wandlerarray nur wenig Staub oder Schwebstoffe ansammeln können. Sofern das Wandlerarray und die Reflexionsfläche seitlich gegenüberliegend an der Rohrleitung angeordnet sind, werden beide Elemente relativ wenig verschmutzt.
Der Ultraschall-Strömungssensor umfasst vorzugsweise eine Sende- und Empfangselektronik, die das Wandlerarray in gewünschter Weise anregt und das reflektierte Ultraschallsignal detektiert und auswertet.
Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen beispielhaft näher erläutert. Es zeigen:
Fig. 1 eine schematische Ansicht eines Ultraschall- Strömungssensors gemäß einer ersten Ausführungsform der Erfindung;
Fig. 2 eine schematische Ansicht eines Ultraschall-
Strömungssensors gemäß einer zweiten Ausführungsform der Erfindung; und
Fig. 3 eine schematische Ansicht eines Ultraschall- Strömungssensors gemäß einer dritten Ausführungsform der Erfindung.
Fig. 1 zeigt einen Ultraschall-Strömungssensor zum Messen des Volumen- oder Massestroms eines Fluids 1, das durch eine Rohrleitung 3 strömt. Der Strömungssensor umfasst im wesentlichen ein Ultraschall-Wandlerarray 2 aus mehreren einzelnen, parallel angeordneten streifenförmigen Ultraschallwandlern 2a-2n, die jeweils Ultraschallsignale erzeugen und diese an eine gegenüberliegende Reflexionsfläche 4 aussenden. Durch Interferenz der Einzelsignale entsteht eine globale Wellenfront 7, die sich durch das strömende Fluid 1 quer zur Strömungsrichtung ausbreitet, an der Reflexionsfläche 4 reflektiert wird und dann wieder auf das Wandlerarray 2 trifft. Die Lage des Bildpunktes P ist dabei ein Maß für die Strömungsgeschwindigkeit v des Fluids 1.
In diesem Ausführungsbeispiel werden die einzelnen Ultraschallwandler 2a-2n des Wandlerarrays 2 separat angesteuert, so dass aufgrund der Gangunterschiede der Einzelsignale eine in Strahlungsrichtung konkav gekrümmte, etwa zylinderförmige Wellenfront 7 entsteht, deren Randbereiche 8 zuerst auf die Reflexionsfläche 4 treffen. Die Welle 7 wird dadurch fokussiert und trifft im wesentlichen linienförmig an einem Punkt P auf das Wandlerarray 2. Je nach Strömungsgeschwindigkeit v wandert der Bildpunkt P mehr oder weniger stark in Strömungsrichtung 12 (Effekt der Strahlverwehung) . Der Strahlverlauf bei höherer
Strömungsgeschwindigkeit v ist durch gestrichelte Linien und einen Bildpunkt P' gekennzeichnet.
Fig. 1 zeigt rechts oben die Intensitätsverteilung 10 bzw.10' eines empfangenen Ultraschallsignals 9 bei unterschiedlichen Strömungsgeschwindigkeiten v. Bei geringer
Strömungsgeschwindigkeit (bzw. ohne Strömung) ergibt sich am Wandlerarray 2 eine Intensitätsverteilung 10, deren Maximum etwa in der Mitte des Wandlerarrays 2 liegt. Bei hoher Strömungsgeschwindigkeit verschiebt sich dieses Maximum näher an den Rand des Wandlerarrays 2. Die zugehörige Intensitätsverteilung der Schallintensität ist hier mit dem Bezugszeichen 10' gekennzeichnet. Eine Empfangselektronik 6 wertet das an den Ultraschallwandlern 2a-2n detektierte Ultraschallsignal aus und berechnet daraus die gewünschte Messgröße.
Die Reflexionsfläche 4 ist in diesem Ausführungsbeispiel lediglich ein dem Wandlerarray 2 gegenüberliegender Abschnitt der RohrInnenwand. Zur Verbesserung der Reflexionseigenschaften könnte die Rohrinnenwand im Bereich der Reflexionsfläche 4 z.B. poliert oder mit einer speziellen Reflexionsschicht versehen werden. Das Wandlerarray 2 ist hier oben auf der Rohrleitung 3 angebracht, um zu verhindern, dass sich Staub oder
Schwebstoffe am Wandlerarray ansammeln. Alternativ könnte das Wandlerarray 2 auch seitlich an der Rohrleitung 3 montiert werden, so dass der reflektierende Wandbereich ebenfalls seitlich an der Rohrleitung 3 liegen und folglich weniger verschmutzen würde. Fig. 2 zeigt eine schematisclie Darstellung einer anderen
Ausführungsform eines Ultraschall-Strömungssensors mit einem einzelnen Wandlerarray 2 und einer gegenüberliegenden Reflexionsfläche 4. Die Sende- und Auswerteschaltungen 5 bzw _ 6 sind aus Gründen der Übersichtlichkeit weggelassen. Gleiche Bestandteile sind mit gleichen Bezugszeichen gekennzeichnet. Bei diesem Ausführungsbeispiel werden die einzelnen Ultraschallwandler 2a-2n des Wandlerarrays 2 derart angesteuert, dass durch Interferenz der Einzelsignale eine ebene Wellenfront 7 entsteht, die in Richtung der Reflexionsfläche 4 läuft. Die Reflexionsfläche 4 ist derart gekrümmt, dass das UltraschalLlsignal 7 fokussiert wird und etwa linienförmig oder punktförmig auf das Wandlerarray 2 trifft. Eine exakt punktförnrige Fokussierung ist nicht zwingend notwendig.
Im Ausführungsbeispiel von FrLg. 2 ist die Reflexionsfläche 4 als eine Ausbuchtung in der Rohrwand des Rohres 3 gebildet, um die Strömung des Fluids 1 nicht zu behindern und insbesondere möglichst gerincge Turbulenzen hervorzurufen.
Fig. 3 zeigt eine weitere Ausführungsform eines Ultraschall- Strömungssensors mit einem erlnzigen Wandlerarray 2 und einer gegenüberliegenden ReflexionΞfläche 4. Die Ausdehnung der Reflexionsfläche 4 ist in diesem. Ausführungsbeispiel kleiner als die Länge des Wandlerarrays 2. Angrenzend an die
Reflexionsfläche 4 ist eine Äbblendeinrichtung 11 vorgesehen, die das auftreffende Schallszignal dämpft bzw. filtert. D.h. der auf die Abblendeinrichtuπtg 11 auftreffende Teil eines Ultraschallsignals 7 wird nicht oder nur gedämpft auf das Wandlerarray 2 zurück reflektiert. Die Abblendeinrichtung 11 kann z.B. als Wandbereich mit besonderes rauher Oberfläche oder z.B. als ein mit Rillen versehener Bereich der Rohrinnenwand realisiert sein.
Am Wandlerarray 2 ergibt sicfi somit ein Muster mit hoher Schallintensität durch den an der Reflexionsfläche 4 reflektierten Teil des Signals 7 und mit niedriger
Schallintensität durch den an der Abblendeinrichtung 11 gedämpften Teil des Signals 7. Die Grenzen dieses Musters verschieben sich wiederum in Abhängigkeit von der Strömungsgeschwindigkeit v des Fluids 1. Aus der Position des Musters kann wiederum die gewünschte Messgröße ermittelt werden.
Bezugszeichenliste
1 Fluid
2 Wandlerarray 2a-2n Ultraschallwandler
3 Rohrleitung 4 Reflexionsfläche
5 Sendeelektronik
6 Empfangselektronik
7 gesendete Welle
8 Wellengrenzen 9 reflektierte Welle
10,10' Intensitätsverteilung
10 Abblendeinrichtung
11 Strömungsrichtung P,P' Bildpunkt

Claims

Patentansprüche
1. Ultraschall-Strömungssensor, insbesondere zum Messen des Volumen- oder Massestroms eines Fluids (1) , das in einer Rohrleitung (3) strömt, mit wenigstens einem Ultraschallwandler (2a-2n) zum Aussenden und Empfangen von Ultraschallsignalen (7,9), gekennzeichnet durch ein Array (2) aus mehreren Ultraschallwandlern (2a-2n) , das an der Rohrleitung (3) angeordnet ist und Ultraschallsignale (7) aussendet, die durch das Fluid (1) laufen, - eine dem Array (2) gegenüberliegende Reflexionsfläche (4), und eine Empfangselektronik (6) , die ein an der Reflexionsfläche (4) reflektiertes und am Array (2) empfangenes Ultraschallsignal (9) detektiert und auswertet.
2. Ultraschall-Strömungssensor nach Anspruch 1, dadurch gekennzeichnet, dass das Wandlerarray (2) gepulst betrieben wird.
3. Ultraschall-Strömungssensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Sendeelektronik (5) vorgesehen ist, mit der die einzelnen Ultraschallwandler (2a- 2n) individuell und unabhängig voneinander angesteuert werden können .
4. Ultraschall-Strömungssensor nach Anspruch 3, dadurch gekennzeichnet, dass die einzelnen Ultraschallwandler (2a-2n) derart betrieben werden, dass eine Ultraschallwelle (7) mit einer im wesentlichen zylinderförmigen, kugelförmigen, ellipsoidförmigen oder sonstig gekrümmten Wellenfront erzeugt wird.
5. Ultraschall-Strömungssensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die einzelnen Ultraschallwandler (2a-2n) derart betrieben werden, dass eine Ultraschallwelle mit einer im wesentlichen ebenen Wellenfront erzeugt wird.
6. Ultraschall-Strömungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wandlerarray bündig mit der Innenwand der Rohrleitung (3) montiert ist.
7. Ultraschall-Strömungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wandlerarray in der oberen Hälfte oder seitlich an der Rohrleitung (3) montiert ist.
8. Ultraschall-Strömungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reflexionsfläche (4) ein Teil der Rohrinnenwand ist, wobei die Gestalt der Reflexionsfläche gegenüber anderen Rohrabschnitten nicht modifiziert ist.
9. Ultraschall-Strömungssensor nach einem der vorhergehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die
Reflexionsfläche (4) an einer Ausbuchtung der Rohrinnenwand vorgesehen ist.
10. Ultraschall-Strömungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine
Abblendvorrichtung (11) nahe der Reflexionsfläche (4) vorgesehen ist.
11. Ultraschall-Strömungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wandler (2a-2n) des Wandlerarrays (2) derart angesteuert werden, dass die an der Reflexionsfläche (4) reflektierte Welle (9) im wesentlichen punktförmig oder linienförmig -auf das Wandlerarray (2) auftrifft.
PCT/EP2005/050287 2004-03-18 2005-01-24 Ultraschall-strömungssensor mit wandlerarray und reflextionsfläche WO2005090929A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05701594A EP1728054A1 (de) 2004-03-18 2005-01-24 Ultraschall-str mungssensor mit wandlerarray und reflextionsfläche
JP2007503316A JP2007529725A (ja) 2004-03-18 2005-01-24 変換器アレイおよび反射面を伴う超音波流速流量センサ
US10/593,143 US7503225B2 (en) 2004-03-18 2005-01-24 Ultrasonic flow sensor having a transducer array and reflective surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004013251A DE102004013251A1 (de) 2004-03-18 2004-03-18 Ultraschall-Strömungssensor mit Wandlerarray und Reflexionsfläche
DE102004013251.8 2004-03-18

Publications (1)

Publication Number Publication Date
WO2005090929A1 true WO2005090929A1 (de) 2005-09-29

Family

ID=34960123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/050287 WO2005090929A1 (de) 2004-03-18 2005-01-24 Ultraschall-strömungssensor mit wandlerarray und reflextionsfläche

Country Status (6)

Country Link
US (1) US7503225B2 (de)
EP (1) EP1728054A1 (de)
JP (1) JP2007529725A (de)
KR (1) KR20070004723A (de)
DE (1) DE102004013251A1 (de)
WO (1) WO2005090929A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000577A1 (de) * 2006-06-26 2008-01-03 Continental Automotive Gmbh Verfahren und vorrichtung zum messen eines luftmassenstroms mittels ultraschall
EP2154491A1 (de) * 2008-08-07 2010-02-17 UAB Minatech Ultraschallflussmesser, Wandlerbaugruppe und entsprechendes Verfahren
DE102013101950A1 (de) 2012-05-03 2013-11-07 Technische Universität Dresden Anordnung und Verfahren zur Messung einer Strömungsgeschwindigkeit fluider Medien
WO2019206507A1 (de) * 2018-04-24 2019-10-31 Endress+Hauser Flowtec Ag Ultraschallwandler und durchflussmessgerät

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765383B1 (ko) * 2007-03-16 2007-10-10 (주)제노정보시스템 수막 갈라짐 검출장치
GB0722256D0 (en) * 2007-11-13 2007-12-27 Johnson Matthey Plc Level measurement system
WO2010015073A1 (en) * 2008-08-04 2010-02-11 Mcgill University Ultrasonic measurement of ph in fluids
DE102008058376A1 (de) * 2008-11-20 2010-06-02 Nivus Gmbh Verfahren und Vorrichtung zur Fluidströmungsmessung
DE102009046468A1 (de) * 2009-11-06 2011-05-12 Robert Bosch Gmbh Ultraschallströmungssensor zum Einsatz in einem fluiden Medium
DE102012101098A1 (de) * 2012-02-10 2013-08-14 Endress + Hauser Flowtec Ag Ultraschall-Durchflussmessgerät und Verfahren zur Ermittlung der Fließgeschwindigkeit bzw. des Volumendurchflusses eines Fluids
WO2014029404A1 (en) * 2012-08-22 2014-02-27 Miitors Aps A compact ultrasonic flow meter
DE102013105922A1 (de) * 2013-06-07 2014-12-11 Endress + Hauser Flowtec Ag Ultraschall-Durchflussmessgerät
DE102014106429A1 (de) 2013-07-10 2015-01-15 Sick Ag Durchflussmessvorrichtung und Verfahren zum Messen der Strömungsgeschwindigkeit eines Fluids
US9343898B2 (en) * 2013-07-19 2016-05-17 Texas Instruments Incorporated Driver current control apparatus and methods
USD845804S1 (en) 2017-10-13 2019-04-16 Great Plains Industries, Inc. Insertion ultrasonic flow meter
USD845805S1 (en) 2017-10-13 2019-04-16 Great Plains Industries, Inc. Tee housing for ultrasonic sensor module
USD845806S1 (en) 2017-10-14 2019-04-16 Great Plains Industries, Inc. Saddle fitting for ultrasonic sensor module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484478A (en) * 1981-10-19 1984-11-27 Haerkoenen Eino Procedure and means for measuring the flow velocity of a suspension flow, utilizing ultrasonics
US20020083771A1 (en) * 2000-07-14 2002-07-04 Khuri-Yakub Butrus T. Fluidic device with integrated capacitive micromachined ultrasonic transducers
EP1348954A1 (de) * 2002-03-28 2003-10-01 Services Petroliers Schlumberger Vorrichtung und Verfahren zur akustischen Untersuchung eines Bohrlochs mit Hilfe eines phasengesteuerten Ultraschall-Gruppenwandlers
WO2003091671A1 (en) * 2002-04-24 2003-11-06 Cidra Corporation Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281550A (en) * 1979-12-17 1981-08-04 North American Philips Corporation Curved array of sequenced ultrasound transducers
US4532812A (en) * 1983-06-30 1985-08-06 Nl Industries, Inc. Parametric acoustic flow meter
US4747411A (en) * 1984-03-28 1988-05-31 National Biochemical Research Foundation Three-dimensional imaging system
US5440937A (en) * 1993-04-30 1995-08-15 Panametrics, Inc. Process and apparatus for ultrasonic measurement of volumeric flow through large-diameter stack
US5426678A (en) * 1993-07-16 1995-06-20 General Electric Company Method for ultrasonic inspection of a closely packed array of fuel rods surrounded by a thin-walled metallic channel
US5540230A (en) * 1994-04-15 1996-07-30 Echocath, Inc. Diffracting doppler-transducer
US5966169A (en) * 1997-03-15 1999-10-12 Bullis; James K. Three dimensional beamformed television
US6029518A (en) * 1997-09-17 2000-02-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Manipulation of liquids using phased array generation of acoustic radiation pressure
US5987991A (en) * 1998-01-02 1999-11-23 General Electric Company Determination of Rayleigh wave critical angle
US5974889A (en) * 1998-01-02 1999-11-02 General Electric Company Ultrasonic multi-transducer rotatable scanning apparatus and method of use thereof
DE19924319C2 (de) 1999-05-27 2001-05-17 Bosch Gmbh Robert Gasmeßfühler
US6584860B1 (en) * 2002-01-14 2003-07-01 Murray F. Feller Flow probe insertion gauge
AU2003900878A0 (en) * 2003-02-26 2003-03-13 Tele-Ip Limited Improved sodar sounding in the lower atmosphere
DE10361763A1 (de) * 2003-12-29 2005-07-28 Robert Bosch Gmbh Ultraschallströmungssensor mit verschränkten Sende- und Empfangselementen
US7305885B2 (en) * 2004-09-30 2007-12-11 General Electric Company Method and apparatus for phased array based ultrasonic evaluation of rail

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484478A (en) * 1981-10-19 1984-11-27 Haerkoenen Eino Procedure and means for measuring the flow velocity of a suspension flow, utilizing ultrasonics
US20020083771A1 (en) * 2000-07-14 2002-07-04 Khuri-Yakub Butrus T. Fluidic device with integrated capacitive micromachined ultrasonic transducers
EP1348954A1 (de) * 2002-03-28 2003-10-01 Services Petroliers Schlumberger Vorrichtung und Verfahren zur akustischen Untersuchung eines Bohrlochs mit Hilfe eines phasengesteuerten Ultraschall-Gruppenwandlers
WO2003091671A1 (en) * 2002-04-24 2003-11-06 Cidra Corporation Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOORU NOMURA ET AL: "MEASUREMENT OF VELOCITY AND VISCOSITY OF LIQUID USING SURFACE ACOUSTIC WAVE DELAY LINE", JAPANESE JOURNAL OF APPLIED PHYSICS, PUBLICATION OFFICE JAPANESE JOURNAL OF APPLIED PHYSICS. TOKYO, JP, vol. 29, no. SUPPL 29 - 1, January 1990 (1990-01-01), pages 140 - 143, XP000266245, ISSN: 0021-4922 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000577A1 (de) * 2006-06-26 2008-01-03 Continental Automotive Gmbh Verfahren und vorrichtung zum messen eines luftmassenstroms mittels ultraschall
EP2154491A1 (de) * 2008-08-07 2010-02-17 UAB Minatech Ultraschallflussmesser, Wandlerbaugruppe und entsprechendes Verfahren
DE102013101950A1 (de) 2012-05-03 2013-11-07 Technische Universität Dresden Anordnung und Verfahren zur Messung einer Strömungsgeschwindigkeit fluider Medien
WO2019206507A1 (de) * 2018-04-24 2019-10-31 Endress+Hauser Flowtec Ag Ultraschallwandler und durchflussmessgerät

Also Published As

Publication number Publication date
EP1728054A1 (de) 2006-12-06
DE102004013251A1 (de) 2005-10-06
JP2007529725A (ja) 2007-10-25
US20070261501A1 (en) 2007-11-15
US7503225B2 (en) 2009-03-17
KR20070004723A (ko) 2007-01-09

Similar Documents

Publication Publication Date Title
EP1728054A1 (de) Ultraschall-str mungssensor mit wandlerarray und reflextionsfläche
EP2386835B1 (de) Ultraschallmessung der Strömungsgeschwindigkeit eines Fluids in einer Rohrleitung
DE102019110514B4 (de) Fluidmesseinrichtung
DE19549162C2 (de) Ultraschall-Durchflußmesser
EP2291619A1 (de) Verfahren und messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch ein messrohr
EP2440888B1 (de) Verfahren zum messen einer messgrösse
EP2710337A1 (de) Ultraschall-durchflussmessgerät
WO2009147128A1 (de) Messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch ein messrohr
EP3209976B1 (de) Verfahren zur ultraschall-clamp-on-durchflussmessung und schaltungsanordnung zur steuerung einer ultraschall-clamp-on-durchflussmessung
EP3940346B1 (de) Durchflussmessgerät und verfahren zur messung des durchflusses eines fluids
DE102008013224A1 (de) Messsystem und Verfahren zur Bestimmung und/oder Überwachung eines Durchflusses eines Messmediums durch ein Messrohr
EP3343185B1 (de) Ultraschalldurchflussmessgerät und verfahren zur messung des durchflusses
DE102017110736A1 (de) Messeinrichtung
EP3867636B1 (de) Verfahren und vorrichtung zur nichtinvasiven bestimmung von eigenschaften eines multiphasenstroms
DE19944411A1 (de) Ultraschall-Durchflußmesser
EP0138017B1 (de) Verfahren zur Ultraschall-Durchflussmessung nach dem Dopplerprinzip mit verbesserter Ortsauflösung
EP0650035B1 (de) Vorrichtung zur Durchflussmessung
DE19633558C2 (de) Ultraschall-Durchflußmeßverfahren
DE202019003218U1 (de) Messrohr und Ultraschall-Durchflussmengenmesser
WO2010015234A2 (de) Verfahren und vorrichtung zur bestimmung einer durchflussmenge eines fluids
EP3855134B1 (de) Vorrichtung zur messung der flussgeschwindigkeit eines fluids
WO2005031369A2 (de) Ultraschallsensor und verfahren zur messung von strömungsgeschwindigkeiten
DE202020104105U1 (de) Durchflussmessgerät zur Messung des Durchflusses eines Fluids
DE102016116070A1 (de) Verfahren zur Erkennung von Fremdkörpern bei einem Vortex-Durchflussmessgerät, ein Vortex-Durchflussmessgerät, eine Anordnung mit einem Vortex-Durchflussmessgerät und eine Abfüllanlage mit einer Anordnung
DE10106308C1 (de) Verfahren und Einrichtung zur Messung der Laufzeit eines akustischen Signals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005701594

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007503316

Country of ref document: JP

Ref document number: 1020067018909

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005701594

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067018909

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10593143

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10593143

Country of ref document: US