WO2004046657A1 - Verfahren und vorrichtung zur bestimmung und/oder überwachung eines volumen- und/oder massenstroms - Google Patents
Verfahren und vorrichtung zur bestimmung und/oder überwachung eines volumen- und/oder massenstroms Download PDFInfo
- Publication number
- WO2004046657A1 WO2004046657A1 PCT/EP2003/012860 EP0312860W WO2004046657A1 WO 2004046657 A1 WO2004046657 A1 WO 2004046657A1 EP 0312860 W EP0312860 W EP 0312860W WO 2004046657 A1 WO2004046657 A1 WO 2004046657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement signals
- container
- measurement data
- target
- actual
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02836—Flow rate, liquid level
Definitions
- the invention relates to a method for determining and / or monitoring the volume and / or mass flow of a medium flowing through a container, wherein measurement signals are emitted from an ultrasound transducer attached to the container in a first position and from one in a second position the measurement signals are received on the ultrasound transducer attached to the container, and information about the volume flow and / or the mass flow of the medium in the container is provided on the basis of the measurement signals or on the basis of the measurement data determined from the measurement signals.
- the container is usually a tube.
- Ultrasonic flowmeters are widely used in process and automation technology. They allow the volume and / or mass flow of a medium in a pipe to be determined without contact.
- the known ultrasonic flow meters work either on the Doppler principle or on the time difference principle.
- the transit time difference principle the different transit times of ultrasonic measurement signals in the flow direction and against the flow direction of the medium are evaluated.
- the ultrasonic measuring signals are alternately transmitted or received by the ultrasonic transducers in the flow direction and counter to the flow direction of the medium.
- the flow rate and thus the volume flow rate with a known pipe diameter or the mass flow rate with a known medium density can be determined.
- ultrasonic measurement signals are injected into the flowing medium at a predetermined frequency.
- the ultrasound measurement signals reflected in the medium are evaluated.
- the flow velocity can also be determined on the basis of a frequency shift occurring between the coupled-in and the reflected ultrasound measurement signal. Determine speed of the medium or the volume and / or mass flow.
- the use of flowmeters that work according to the Doppler principle is only possible if there are air bubbles or contaminants in the medium on which the ultrasonic measurement signals are reflected. The use of such ultrasonic flowmeters is therefore rather limited in comparison to the ultrasonic flowmeters, which operate according to the time difference principle.
- ultrasonic flow sensors which are used in the pipeline
- clamp-on flow meters in which the ultrasonic transducers are pressed onto the pipeline from the outside by means of a tension lock.
- Clamp-on flowmeters are described, for example, in EP 0 686 255 B1, US Pat. No. 4,484,478 or US Pat. No. 4,598,593.
- the ultrasonic measurement signals are irradiated and / or received at a predetermined angle in the tube in which the flowing medium is located.
- the ultrasound measurement signals are coupled into and out of the tube by means of a lead body or a coupling wedge in clamp-on flowmeters.
- the coupling wedges from a suitable refractive material, e.g. to manufacture from plastic.
- the main component of an ultrasound transducer is usually at least one piezoelectric element which generates and / or receives the ultrasound measurement signals.
- the container or tube is empty - for some reason there is no medium in the tube.
- the invention is based on the object of proposing a method and a device which make it possible, in addition to determining the volume flow or mass flow of a medium, to detect a malfunction of another system and / or process variable.
- the object is achieved in that currently measured actual measurement signals or the corresponding actual measurement data are compared with corresponding stored desired measurement signals or desired measurement data, and that a message is output when a discrepancy between the desired Measurement signals or TARGET measurement data and the actual measurement signals or actual measurement data occurs.
- a deviation between the TARGET measurement signals or TARGET measurement data and the ACTUAL measurement signals or ACTUAL measurement data is preferably carried out in the case of a clamp-on flowmeter which operates according to the transit time difference principle.
- the TARGET measurement signals or the TARGET measurement data or those mentioned below Signatures are stored in a storage unit in the form of tables and / or functions.
- the comparison between the TARGET measurement signals or the TARGET measurement data and the ACTUAL measurement signals or ACTUAL measurement data is preferably carried out via a correlation.
- the current measurement signals / measurement data can be compared successively or in parallel with a plurality of TARGET measurement signals or TARGET measurement data that were determined under different faulty conditions. If at least one predefined degree of similarity occurs between the target measurement signals or TARGET measurement data and the ACTUAL measurement signals or ACTUAL measurement data, for example the correlation coefficient is exceeded or undershot by a predetermined tolerance value, the cause of the interruption can be determined of the sound path. This cause for the interruption of the sound path is specifically defined and output. This enables the operating personnel to specifically correct an error that has occurred without having to search for the cause of the error for a long time.
- a signature is derived from the ACTUAL measurement signals or ACTUAL measurement data and the TARGET measurement signals or the TARGED measurement data, the signature providing the information about the volume or
- Mass flow of the medium is described with sufficient accuracy. This measure results in a reduction in the measurement data without the essential details of its information content being reduced.
- the reduction leads to a reduction in the computing power of the control / evaluation unit, in particular when comparing the TARGET with the ACTUAL measurement signals / measurement data, i.e. less powerful microprocessors can be used.
- the TARGET measurement signals are preferably determined both when the container is not filled and when the container is filled.
- a preferred embodiment of the method according to the invention proposes the following: the ACTUAL measuring signals or the TARGET measuring signals and / or the corresponding signatures are digitized and stored; the ACTUAL measurement signals / ACTUAL measurement data or the signatures determined on the basis of the ACTUAL measurement signals / ACTUAL measurement data are compared with the corresponding TARGET measurement signals / TARGET measurement data or the corresponding signatures of the TARGET measurement signals / measurement data; an error message is issued to the operating personnel with a specific indication of the cause of the error that has occurred as soon as there is a discrepancy between the ACTUAL and TARGET measurement signals / measurement data or the ACTUAL and TARGET signatures; the error message is preferably only output when the deviation lies outside a predetermined tolerance value.
- corrective and countermeasures can also be initiated directly using the control / evaluation unit. These measures include, for example, checking valves, initiating a cleaning process or an emergency stop of the process plant.
- an advantageous embodiment of the method according to the invention provides that the comparison of the ACTUAL measurement signals / ACTUAL measurement data or the comparison of the signatures of the ACTUAL measurement signals / ACTUAL measurement data with the TARGET measurement signals / TARGET measurement data or the corresponding signatures of the TARGET measurement signals / TARGET measurement data, a statement is made as to which system and / or process error is causing the deviation.
- an essential source of error is the interruption of the sound path that the ultrasound measurement signals take from the transmit to the receive ultrasound transducer.
- the configuration according to the invention now makes it possible to carry out a so-called advanced diagnostic, i.e. not only to indicate to the operating personnel that an error has occurred somewhere on the measuring device or in the process, but also what the cause of the error that has occurred is concrete.
- the deviation is used to identify whether the container is not filled with the medium and / or whether the coupling of the ultrasound transducers to the container is faulty, and / or whether the damping of the measurement signals by the medium in the container has a predetermined maximum value exceeds, and / or whether an air layer is present between the container and a liner applied to the inner surface of the container, and / or whether the damping of the measurement signals in the wall of the container exceeds a maximum predetermined dimension.
- This not only informs the operating personnel that a system and / or process error has occurred, but also provides a reliable indication of where to look for the error.
- the repair or countermeasures can be initiated in a targeted manner without major time delays and time-consuming investigations.
- the following can be said: In order to be able to compare the TARGET data and the ACTUAL data, the TARGET data are recorded and stored before the actual measuring operation is started with an empty pipe. This "teaches" the device how the ultrasound measurement signals should look when the pipe is empty. In the actual measuring operation of the ultrasonic flow measuring device, the stored target data are no longer of interest. Only in the event of a fault, when the acoustic measuring section is interrupted, are the currently measured ACTUAL data compared with the stored TARGET data. If the data largely agree, then the statement can be made that the pipe is most likely empty. If the data do not match sufficiently enough, there is obviously another reason for the interruption of the acoustic sound path and the associated incorrect measurement. Through a successive comparison procedure, it is subsequently possible to narrow down the cause of the error and ultimately to make reliable statements regarding the cause of the error.
- the object is achieved in that the control / evaluation unit compares the currently measured ACTUAL measurement signals or the corresponding ACTUAL measurement data with corresponding stored TARGET measurement signals or TARGET measurement data and that the control / evaluation unit detects a deviation between outputs the TARGET measurement signals or TARGET measurement data and the ACTUAL measurement signals or ACTUAL measurement data.
- An advantageous embodiment of the device according to the invention provides that the control / evaluation unit provides information as to which system and / or process error is causing the deviation.
- the arrangement of the ultrasonic transducers is preferably a one-crosshead arrangement or a multiple-crosshead arrangement.
- a traverse defines the section of a sound path on which an ultrasonic measurement signal crosses the container in which the measurement is carried out.
- chordial traverses can also be implemented in a simple manner by means of a corresponding transducer arrangement, possibly with the aid of reflector elements.
- An embodiment of the device according to the invention is preferably used, in which at least the two ultrasound transducers, which are at the greatest distance from one another, work alternately in the transmitting and in the receiving mode.
- the ultrasonic transducers are preferably — but not exclusively — mounted on the container using the clamp-on method.
- FIG. 8 shows a graphic representation of the transit time of an ultrasonic measurement signal in the two-crosshead arrangement shown in FIG. 1 when the ultrasonic transducer is incorrectly coupled to the tube and
- FIG. 9 the course of the ultrasonic measurement signals shown in FIG. 8 with a larger amplification factor.
- a clamp-on flowmeter in the preferred two-crosshead arrangement 2 is shown schematically.
- the measuring device determines the volume flow rate and / or the mass flow rate of the medium 10 in the tube 7 according to the known transit time difference method.
- the two ultrasonic transducers 3, 4 are attached to the pipe 7 by means of a fastening device (not shown separately in FIG. 1).
- a fastening device (not shown separately in FIG. 1).
- Corresponding fastening devices are well known from the prior art and are also offered and sold by the applicant.
- Medium 10 flows through tube 7 with a predetermined inside diameter di in flow direction S.
- An ultrasound transducer 3; 4 has at least one piezoelectric element 5; 6, which generates and / or receives the ultrasound measurement signals, and a coupling wedge or a lead body 11; 12 on.
- the ultrasonic measurement signals are coupled via the coupling wedges 11, 12 into the pipe 7 through which the medium 10 flows, or are coupled out of the pipe 7.
- the coupling wedges 11; 12 determine the direction of irradiation or emission of the ultrasonic measurement signals from the tube or from the medium; they can also be used to optimize impedance matching.
- the two ultrasound transducers 3, 4 are positioned on the tube 7 in such a way that a high energy component of the emitted ultrasound measurement signals is received in the other ultrasound transducer 4, 3.
- the mutual positioning depends on different system and / or process sizes. These system and process variables are, for example, the inside diameter di of the tube 7, the thickness w of the tube wall 8, the speed of sound c R of the material from which the tube 7 is made, or the speed of sound c ⁇ of the
- the distance L between the two ultrasound transducers 3, 4 is dimensioned such that the ultrasound measurement signals, which are transmitted and received alternately by the two ultrasound transducers 3, 4 in accordance with the transit time difference method, via the sound path SP1 in that of the medium 10 Spread out the flowed tube 7.
- the sound path SP1 has two trusses.
- FIGS. 2 and 3 the amplitude of the ultrasound measurement signals propagating in the tube wall 8 and - if present - the medium 10 is shown against time using two diagrams. Reference is made to the two-beam arrangement 2 of the ultrasonic transducers 3, 4 shown in FIG. 1. While FIG. 2 relates to the 'error case that the tube 7 is empty, FIG. 3 shows the' normal case 'when medium 10 flows through tube 7. At least the information about the 'error case, but preferably also about the' normal case ', must be stored in the control / evaluation unit 9 in some form as the SET value.
- the ultrasonic measurement signal - as can be seen in FIG. 1 - only has the possibility of spreading over the pipe wall 8.
- An ultrasound measurement signal transmitted by the first ultrasound transducer 3 at the time “zero” is received by the second ultrasound transducer 4 after a time t1.
- the transit time of the ultrasound measurement signal can either be measured or calculated.
- a calculation of the transit time is at least approximately possible if the geometric data of the pipe (d and w) and the acoustic properties of the pipe and the medium (c ⁇ and c M ) are known.
- the Snellius law applies to the calculation.
- a corresponding measurement can be made, for Commissioning of the ultrasonic measuring device can be carried out, which then embodies the target measuring signal for an empty pipe. If the corresponding case then occurs after the ultrasound measuring device has been put into operation, a clear statement is possible based on the correspondence between the actual measurement signal and the SET measurement signal found by the control / evaluation unit 9 that no medium 10 is present in the tube 7.
- the pipe 7 is flowed through by the medium 10, the majority of that from one of the two ultrasonic transducers 3; 4 emitted ultrasound measurement signal coupled into the medium 10 and passes through the sound path SP1, which crosses the tube 7 and thus the flowing medium twice, to the other ultrasound transducer 4; 3. Because of the longer running distance on the sound path SP1, an ultrasound measurement signal - as can be seen in FIG. 3 - only after the longer period t2 in the other ultrasound transducer 4; 3 received. In addition, the speed of sound c M of the medium 10 is lower than the speed of sound c R of the material of the tube wall 8 in many applications. This also leads to a delayed arrival of the measurement signal, which provides information about the volume flow or the mass flow of the medium 10 in the tube 7 includes.
- a clamp-on flowmeter is shown schematically in a one-crosshead arrangement 1.
- the measuring device also determines the volume flow rate and / or the mass flow rate of the medium 10 in the tube 7 according to the known transit time difference method.
- the two ultrasonic transducers 3, 4 are mounted offset on opposite sides of the tube 7.
- the ultrasound transducers 3, 4 are positioned so that the largest possible proportion of one of a first ultrasound transducer 3; 4 transmitted ultrasonic measurement signal in the other ultrasonic transducer 4; 3 is received.
- FIGS. 5 and 6 the amplitude of the ultrasound measurement signals propagating in the tube wall 8 and - if present - the medium 10 is shown against time using two diagrams.
- an ultrasonic measurement signal can only spread over the pipe wall 8. Therefore one of the first ultrasonic transducers 3; 4 emitted ultrasound measurement signal in the second ultrasound transducer 4; 3 as a noisy signal - as can be seen in FIG. 5.
- the time t3, which elapses until the transmitted ultrasound measurement signal is received, is in turn predetermined by the distance between the ultrasound sensors 3, 4 and by the speed of sound of the material of the tube 7.
- a transmitted measurement signal is transmitted after a period of time t4 in the other ultrasonic transducer 4; 3 received.
- the actual measurement signals with the target measurement signals clearly indicate whether the tube 7 is filled with medium 10 or whether the tube 7 is empty.
- a correlation is preferably carried out for the purpose of comparison. If the correlation coefficient between the TARGET data and the ACTUAL data falls below or exceeds a predetermined value, the message indicating the specific error is output.
- FIGS. 7 and 8 likewise show graphical representations of the transit time of ultrasound measurement signals in the two-crosshead arrangement 2 shown in FIG. 1.
- the first peak corresponds to the proportion of the measurement signals which propagate through the tube 7. while the second peak represents the proportion of the ultrasound measurement signals that propagate over the medium 10.
- Fig. 7 shows ultrasonic measurement signals as they occur in normal, undisturbed measuring operation.
- Fig. 8 relates to the case that the coupling medium 11, 12 is largely removed from the tube 7, so that the
- FIG. 9 shows the same signal curve as can also be seen in FIG. 8. However, the gain in FIG. 9 is chosen to be approximately a factor 4 larger. As a result, the actual measurement signals emerge better from the noise.
- the TARGET data are after the installation of the clamp-on flow meter during of normal operation.
- the ACTUAL data is then continuously compared with the TARGET data. Based on a comparison of the TARGET data with the ACTUAL data, it can be seen that the amplitude of the measurement signals which propagate over the medium 10 decreases over time more than the amplitude of the
- Measurement signals that propagate through the tube 7 this is a clear indication that the error has its cause in the transmission in the tube 7 / medium 10 arrangement. If, on the other hand, the amplitudes of both measurement signals decrease, this is a clear indication that the coupling between an ultrasound transducer 3; 4 and the pipe 7 has become worse. In general, it can be said that a change in the amplitude relationships between the measurement signals is most suitable for detecting an error in the pipe 7 / medium 10 coupling or in the coupling between the ultrasonic transducers 3, 4 and pipe 7. LIST OF REFERENCE NUMBERS
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Measuring Volume Flow (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003282098A AU2003282098A1 (en) | 2002-11-19 | 2003-11-17 | Method and device for determining and/or monitoring a volume and/or mass flow |
US10/535,675 US7236912B2 (en) | 2002-11-19 | 2003-11-17 | Method and device for determining and/or monitoring a volume and/or mass flow |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10254053.5A DE10254053B4 (de) | 2002-11-19 | 2002-11-19 | Verfahren und Vorrichtung zur Bestimmung und/oder Überwachung eines Volumen- und/oder Massenstroms |
DE10254053.5 | 2002-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004046657A1 true WO2004046657A1 (de) | 2004-06-03 |
Family
ID=32240187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/012860 WO2004046657A1 (de) | 2002-11-19 | 2003-11-17 | Verfahren und vorrichtung zur bestimmung und/oder überwachung eines volumen- und/oder massenstroms |
Country Status (5)
Country | Link |
---|---|
US (1) | US7236912B2 (de) |
AU (1) | AU2003282098A1 (de) |
DE (1) | DE10254053B4 (de) |
RU (1) | RU2316733C2 (de) |
WO (1) | WO2004046657A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007019689A1 (de) | 2007-04-24 | 2008-10-30 | Endress + Hauser Flowtec Ag | Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massedurchflusses eines Mediums |
US8156792B2 (en) | 2005-05-23 | 2012-04-17 | Endress + Hauser Flowtec Ag | Method and apparatus for ascertaining and/or monitoring a process variable |
WO2023006398A1 (en) * | 2021-07-27 | 2023-02-02 | Belimo Holding Ag | Method and system for self-diagnosing of preassembled ultrasonic flowmeter |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7827870B2 (en) * | 2005-04-26 | 2010-11-09 | Severn Trent Metering Services Limited | Meter |
DE102005045485A1 (de) | 2005-09-22 | 2007-04-12 | Endress + Hauser Flowtec Ag | Verfahren zur System- und/oder Prozessüberwachung bei einem Ultraschall-Durchflussmessgerät |
US7963177B2 (en) * | 2008-04-10 | 2011-06-21 | Expro Meters, Inc. | Apparatus for attenuating ultrasonic waves propagating within a pipe wall |
CA2723673C (en) * | 2008-04-10 | 2016-11-15 | Expro Meters, Inc. | Apparatus for attenuating ultrasonic waves propagating within a pipe wall |
DE102009026893A1 (de) | 2009-06-10 | 2010-12-16 | Endress + Hauser Flowtec Ag | Verfahren und Messsystem zur Bestimmung von Zustandsgrößen eines Messmediums |
DE102010043706A1 (de) * | 2010-07-05 | 2012-01-05 | Endress + Hauser Gmbh + Co. Kg | Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße |
DE102012104042B4 (de) * | 2012-05-09 | 2021-09-16 | Endress + Hauser Flowtec Ag | Verfahren zur Überwachung des Betriebszustandes eines Ultraschallwandlers in einem Ultraschall-Durchflussmessgerät |
DE102012019217B4 (de) | 2012-10-01 | 2014-08-07 | Rosen Swiss Ag | Akustischer Durchflussmesser und Verfahren zur Bestimmung des Flusses in einem Objekt |
DE102012112516A1 (de) * | 2012-12-18 | 2014-06-18 | Endress + Hauser Flowtec Ag | Verfahren zur Verifizierung der Zuverlässigkeit von ermittelten Messdaten einer Ultraschall-Durchflussmessung nach der Laufzeitdifferenz-Methode und Ultraschalldurchflussmessgerät |
DE102015107753A1 (de) * | 2015-05-18 | 2016-11-24 | Endress + Hauser Flowtec Ag | Verfahren zur Ermittlung einer charakteristischen Größe zur Bewertung einer Messanordnung umfassend ein Clamp-On-Ultraschall- Durchflussmessgerät und ein Rohr und/oder zur Bewertung des Messbetriebs dieser Messanordnung |
US10823597B2 (en) | 2017-12-14 | 2020-11-03 | Arad Ltd. | Ultrasonic water meter including a metallic outer body and polymeric inner lining sleeve |
PL3505071T3 (pl) * | 2017-12-28 | 2022-05-02 | Przedsiębiorstwo Wdrożeniowo-Produkcyjne Sonomed sp. z o. o. | Głowica ultradźwiękowa do urządzenia dopplerowskiego fali ciągłej i jej zastosowanie |
DE102020002048A1 (de) | 2020-03-31 | 2021-09-30 | Diehl Metering Gmbh | Messeinrichtung zur Ermittlung einer Fluidgröße und Verfahren zur Überwachung des Betriebs einer Messeinrichtung |
DE102020123311A1 (de) | 2020-09-07 | 2022-03-10 | Endress+Hauser Flow Deutschland Ag | Ultraschall-Messgerät und Verwendung eines Ultraschall-Messgeräts |
TWI782450B (zh) * | 2021-03-19 | 2022-11-01 | 和旺昌噴霧股份有限公司 | 管路液體之監測裝置 |
DE102021115546A1 (de) | 2021-06-16 | 2022-12-22 | Endress+Hauser Flowtec Ag | Anordnung von Ultraschallwandlern, Clamp-On-Ultraschall- Messgerät mit einer solchen Anordnung und Verfahren zum Einstellen des Ultraschallmessgeräts |
CN114459576B (zh) * | 2022-02-23 | 2022-11-29 | 浙江迪元仪表有限公司 | 一种应用于超声水表的信号诊断装置的控制方法 |
DE102022104681A1 (de) | 2022-03-09 | 2023-09-14 | Endress+Hauser Flowtec Ag | Ultraschallwandleranordnung, Ultraschallmessgerät und Verfahren zum Einstellen einer Ultraschallwandleranordnung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19626865A1 (de) * | 1996-07-04 | 1998-01-08 | Suedrohrbau Gmbh & Co | Verfahren zur Messung der Laufzeiten von Schallsignalen in einem Fluid sowie Schaltungsanordnung zur Messung der Laufzeiten von Schallsignalen |
WO1998031989A1 (en) * | 1997-01-16 | 1998-07-23 | Foster-Miller, Inc. | A flow analysis system and method |
DE19947992A1 (de) * | 1999-10-06 | 2001-05-10 | Alfred Schoepf | Verfahren und Messanlage zur Überprüfung eines Durchflussmessers im eingebauten Zustand |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1572187A (en) * | 1976-04-09 | 1980-07-23 | Elektroflo Syst | Liquid flow measurement |
US4122713A (en) * | 1977-05-19 | 1978-10-31 | Medtronic, Inc. | Liquid velocity measuring system |
FI67627C (fi) * | 1981-10-19 | 1985-04-10 | Eino Haerkoenen | Foerfarande och anordning foer maetning av stroemningshastigheten i stroemmen av uppslamningar genom utnyttjandet av ultraljud |
US4598593A (en) * | 1984-05-14 | 1986-07-08 | The United States Of America As Represented By The United States Department Of Energy | Acoustic cross-correlation flowmeter for solid-gas flow |
EP0499759A1 (de) * | 1991-02-21 | 1992-08-26 | Bp Chemicals S.N.C. | Verfahren zur Überwachung der Strömung in einem pneumatischen Fördersystem |
DE4232526C2 (de) * | 1992-09-29 | 1996-06-20 | Georg F Wagner | Vorrichtung zur Messung kleiner Flüssigkeitsströme mit Hochfrequenz-Ultraschall und deren Verwendung |
ES2143038T3 (es) * | 1993-12-23 | 2000-05-01 | Flowtec Ag | Aparato de medida de caudal volumetrico por ultrasonidos del tipo de pinza. |
US6209388B1 (en) * | 1996-03-11 | 2001-04-03 | Daniel Industries, Inc. | Ultrasonic 2-phase flow apparatus and method |
US6907383B2 (en) * | 1996-03-28 | 2005-06-14 | Rosemount Inc. | Flow diagnostic system |
DE19737394C2 (de) * | 1997-08-27 | 2003-02-27 | Schubert & Salzer Control Syst | Anlage und Verfahren zur Ermittlung einer Störung im Kühlmittelkreislauf |
DE19921984C2 (de) * | 1999-05-12 | 2003-04-10 | Schubert & Salzer Control Syst | Vorrichtung zur Volumenstrommessung nach dem Ultraschall-Laufzeitprinzip |
-
2002
- 2002-11-19 DE DE10254053.5A patent/DE10254053B4/de not_active Expired - Fee Related
-
2003
- 2003-11-17 RU RU2005119202/28A patent/RU2316733C2/ru not_active IP Right Cessation
- 2003-11-17 US US10/535,675 patent/US7236912B2/en not_active Expired - Fee Related
- 2003-11-17 AU AU2003282098A patent/AU2003282098A1/en not_active Abandoned
- 2003-11-17 WO PCT/EP2003/012860 patent/WO2004046657A1/de not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19626865A1 (de) * | 1996-07-04 | 1998-01-08 | Suedrohrbau Gmbh & Co | Verfahren zur Messung der Laufzeiten von Schallsignalen in einem Fluid sowie Schaltungsanordnung zur Messung der Laufzeiten von Schallsignalen |
WO1998031989A1 (en) * | 1997-01-16 | 1998-07-23 | Foster-Miller, Inc. | A flow analysis system and method |
DE19947992A1 (de) * | 1999-10-06 | 2001-05-10 | Alfred Schoepf | Verfahren und Messanlage zur Überprüfung eines Durchflussmessers im eingebauten Zustand |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8156792B2 (en) | 2005-05-23 | 2012-04-17 | Endress + Hauser Flowtec Ag | Method and apparatus for ascertaining and/or monitoring a process variable |
DE102007019689A1 (de) | 2007-04-24 | 2008-10-30 | Endress + Hauser Flowtec Ag | Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massedurchflusses eines Mediums |
WO2023006398A1 (en) * | 2021-07-27 | 2023-02-02 | Belimo Holding Ag | Method and system for self-diagnosing of preassembled ultrasonic flowmeter |
Also Published As
Publication number | Publication date |
---|---|
AU2003282098A1 (en) | 2004-06-15 |
DE10254053B4 (de) | 2016-12-22 |
RU2316733C2 (ru) | 2008-02-10 |
RU2005119202A (ru) | 2006-12-27 |
DE10254053A1 (de) | 2004-06-03 |
US7236912B2 (en) | 2007-06-26 |
US20060259260A1 (en) | 2006-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10254053B4 (de) | Verfahren und Vorrichtung zur Bestimmung und/oder Überwachung eines Volumen- und/oder Massenstroms | |
DE69529391T2 (de) | Verfahren und Vorrichtung zur Messung mittels Rundsing-Technik | |
EP2732248B1 (de) | Ultraschall-durchflussmessgerät | |
EP3489634A1 (de) | Ultraschall-messvorrichtung und verfahren zur ultraschallmessung an einem strömenden fluid | |
EP2872857B1 (de) | Ultraschall-durchflussmessgerät | |
WO2009156250A1 (de) | Verfahren und messsystem zur bestimmung und/oder überwachung des durchflusses eines messmediums durch ein messrohr | |
DE102005004331B4 (de) | Verfahren zur Bestimmung der Laufzeit eines Ultraschallsignals eines Ultraschallsensors sowie Ultraschallsensor | |
EP2386835A1 (de) | Ultraschallmessung der Strömungsgeschwindigkeit eines Fluids in einer Rohrleitung | |
WO2011072711A1 (de) | Verfahren zum betreiben eines coriolis-massendurchflussmessgeräts sowie coriolis-massendurchflussmessgerät | |
EP3428583A2 (de) | Verfahren zum betrieb eines fluidzählers, und fluidzähler | |
EP3209976B1 (de) | Verfahren zur ultraschall-clamp-on-durchflussmessung und schaltungsanordnung zur steuerung einer ultraschall-clamp-on-durchflussmessung | |
EP3721176B1 (de) | Verfahren zur betriebsüberwachung eines fluidszählers sowie fluidzähler | |
WO2006000546A1 (de) | Verfahren zur kalibrierung von ultraschall-clamp-on-durchflussmessgeräten | |
DE10314916A1 (de) | Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massenstroms eines Mediums | |
EP1573276B1 (de) | Vorrichtung zur positionierung eines clamp-on durchflussmessgeräts an einem behältnis | |
WO2018219492A1 (de) | Verfahren zur bestimmung des drucks eines fluids | |
EP1651931B1 (de) | Massendurchflussmessger t | |
WO2012084391A1 (de) | Koppelelement eines ultraschallwandlers für ein ultraschall-durchflussmessgerät | |
DE19503714A1 (de) | Anordnung zur Bestimmung der Strömungsgeschwindigkeit eines Fluides in Rohren mit kreisförmigem Querschnitt mittels Ultraschall | |
EP0773431A2 (de) | Ultraschalldurchflussmesser für flüssige oder gasförmige Medien | |
WO2023227652A1 (de) | Ultraschall-durchflussmessvorrichtung zum bestimmen eines durchflusses eines fluiden mediums durch eine rohrleitung | |
DE102009035983A1 (de) | Verfahren und Vorrichtung zur Bestimmung einer Durchflussmenge eines Fluids | |
EP3521774A1 (de) | Ultraschall-durchflussmessvorrichtung und verfahren zum bestimmen der strömungsgeschwindigkeit | |
EP1731883B1 (de) | Verfahren zur Erfassung einer Geometrieänderung eines Ultraschalldurchflussmesskanals | |
DE102016116070A1 (de) | Verfahren zur Erkennung von Fremdkörpern bei einem Vortex-Durchflussmessgerät, ein Vortex-Durchflussmessgerät, eine Anordnung mit einem Vortex-Durchflussmessgerät und eine Abfüllanlage mit einer Anordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2005119202 Country of ref document: RU Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006259260 Country of ref document: US Ref document number: 10535675 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 10535675 Country of ref document: US |