EP2289122A1 - Protonenleitende membran und deren verwendung - Google Patents

Protonenleitende membran und deren verwendung

Info

Publication number
EP2289122A1
EP2289122A1 EP09745506A EP09745506A EP2289122A1 EP 2289122 A1 EP2289122 A1 EP 2289122A1 EP 09745506 A EP09745506 A EP 09745506A EP 09745506 A EP09745506 A EP 09745506A EP 2289122 A1 EP2289122 A1 EP 2289122A1
Authority
EP
European Patent Office
Prior art keywords
group
acid
formula
aromatic
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09745506A
Other languages
English (en)
French (fr)
Inventor
Oemer Uensal
Lucas Montag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09745506A priority Critical patent/EP2289122A1/de
Publication of EP2289122A1 publication Critical patent/EP2289122A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Protonenleitende Polymermembran, umfassend mindestens ein Polyazol, mindestens eine ionische Flüssigkeit sowie mindestens eine Verbindung der Formel (P1) RI 4POH (P1) wobei RI, jeweils unabhängig voneinander, ein Rest ist, der C, O und/oder H sowie ggf. weitere hiervon verschiedene Atome umfasst, wobei zwei Reste RI ggf. miteinander verbunden sein können. Die Membran zeichnet sich insbesondere durch eine hohe mechanische Stabilität sowie eine hohe Leitfähigkeit aus und eignet sich daher insbesondere Polymer- Elektrolyt-Membran für Brennstoffzellenanwendungen.

Description

Beschreibung
Protonenleitende Membran und deren Verwendung
Die vorliegende Erfindung betrifft eine neuartige protonenleitende Polymermembran auf Basis von Polyazolen, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen eignet.
Polymer-Elektrolyt-Membranen (PEM) sind bereits bekannt und werden insbesondere in Brennstoffzellen eingesetzt. Dabei finden häufig Sulfonsäure- modifizierte Polymere, insbesondere perfluorierte Polymere Anwendung. Prominentes Beispiel hierfür ist Nafion™ von DuPont de Nemours, Willmington USA. Für die Protonenleitung ist ein relativ hoher Wassergehalt in der Membran erforderlich, der typischerweise bei 4 - 20 Molekülen Wasser pro Sulfonsäuregruppe liegt. Der notwendige Wassergehalt, aber auch die Stabilität des Polymers in Verbindung mit saurem Wasser und den Reaktionsgasen Wasserstoff und Sauerstoff, limitiert die Betriebstemperatur des PEM-Brennstoffzellenstacks üblicherweise auf 80 - 100 0C. Unter Druck kann die Betriebstemperaturen auf >120 0C erhöht werden. Ansonsten können höhere Betriebstemperaturen ohne einen Leistungsverlust der Brennstoffzelle nicht realisiert werden.
Aus systemtechnischen Gründen sind aber höhere Betriebstemperaturen als 100 CC in der Brennstoffzelle wünschenswert. Die Aktivität der in der Membran- Elektroden-Einheit (MEE) enthaltenen Katalysatoren auf Edelmetallbasis ist bei hohen Betriebstemperaturen wesentlich besser. Insbesondere sind bei der Verwendung von sogenannten Reformaten aus Kohlenwasserstoffen deutliche Mengen an Kohlenmonoxid im Reformergas enthalten, die üblicherweise durch eine aufwendige Gasaufbereitung bzw. Gasreinigung entfernt werden müssen. Bei hohen Betriebstemperaturen steigt die Toleranz der Katalysatoren gegenüber den CO- Verunreinigungen.
Des Weiteren entsteht Wärme beim Betrieb von Brennstoffzellen. Eine Kühlung dieser Systeme auf unter 800C kann jedoch sehr aufwendig sein. Je nach Leistungsabgabe können die Kühlvorrichtungen wesentlich einfacher gestaltet werden. Das bedeutet, dass in Brennstoffzellensystemen, die bei Temperaturen über 1000C betrieben werden, die Abwärme deutlich besser nutzbar gemacht und somit die Brennstoffzellensystem-Effizienz durch Strom-Wärmekopplung gesteigert werden kann.
Um diese Temperaturen zu erreichen, werden im Allgemeinen Membranen mit neuen Leitfähigkeitsmechanismen verwendet. Ein Ansatz hierfür ist der Einsatz von Membranen, die ohne den Einsatz von Wasser eine Protonen-Leitfähigkeit zeigen. Die erste erfolgversprechende Entwicklung in diese Richtung ist in der Schrift WO 96/13872 dargelegt. Sie schlägt insbesondere die Verwendung von säuredotierten Polybenzimidazol-Membranen vor, die durch ein Gießverfahren hergestellt werden.
Eine Weiterentwicklung dieses Membrantyps wird in der WO 02/088219 beschrieben. Sie lehrt den Einsatz von protonenleitenden Polymermembranen auf Basis von Polyazolen, erhältlich durch ein Verfahren, umfassend die Schritte
A) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion
B) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf einem Träger,
C) Erwärmen des flächigen Gebildes/Schicht erhältlich gemäß Schritt B) unter Inertgas auf Temperaturen von bis zu 3500C, vorzugsweise bis zu 2800C unter Ausbildung des Polyazol-Polymeren .
D) Behandlung der in Schritt C) gebildeten Membran bis diese selbsttragend ist.
Die auf diese Weise erhältlichen, mit Säure dotierten Polymermembranen auf Basis von Polyazolen zeigen bereits ein günstiges Eigenschaftsprofil. Aufgrund der für PEM-Brennstoffzellen angestrebten Anwendungen, insbesondere im Automobilbereich und der dezentralen Strom- und Wärmeerzeugung (Stationärbereich), sind diese jedoch insgesamt noch zu verbessern. So sind derartige Membranen immer noch relativ weich und daher nur begrenzt mechanisch belastbar, wobei die mechanische Stabilität mit steigender Temperatur abnimmt, was bereits im oberen Bereich des typischen Betriebsfensters (ca. 160°C-1800C) zu Haltbarkeitsproblemen führen kann. Wünschenswert ist daher die Verbesserung der mechanischen Eigenschaften, insbesondere der Membranstabilität, bei gleichzeitig hoher Leitfähigkeit. Auch die Verwendung von ionischen Flüssigkeiten für Polymer-Elektrolyt- Membranen ist an sich bekannt. So beschreibt die Veröffentlichung R. Scheffler et al. Präparation und Evaluation neuer Hybrid-Protonenleiter - Teil 1: Ionische Flüssigkeiten als Modifikator in Nafion-Hybridmembranen Chemie Ingenieur Technik 2007, 79, No. 8, 1175-1182 die Herstellung und Evaluation von Nafion-basierten Hybridmaterialien als Protonen leitende Membran für Brennstoffzellen. Dabei wurde eine kommerzielle Nafion-Dispersion mit bestimmten ionischen Flüssigkeiten versetzt, die jeweiligen Gemische homogenisiert und geräkelt. Die Protonenleitfähigkeit der erhaltenen Hybridmembranen wurde durch Impedanzspektroskopie charakterisiert. Obwohl bei Raumtemperatur die Protonenleitfähigkeit der ionischen Flüssigkeiten als Einzelstoffe unter derjenigen von Nafion liegt, ergaben sich für einige Hybridmaterialien Verbesserungen der Protonenfähigkeit im höheren Temperaturbereich.
Die Veröffentlichung T. Greaves et al. Protic lonic Liquids: Properties and Applications Chem. Rev. 2008, 108. 206-237 diskutiert die Eigenschaften und die Anwendungsmöglichkeiten von protischen ionischen Flüssigkeiten, d. h. solchen ionischen Flüssigkeiten, die durch Übergang eines Protons von einer Bronsted- Säure auf eine Bronsted-Base erhalten werden. Dabei werden auch Einsatzmöglichkeiten in Polymermembran-Brennstoffzellen erörtert.
Nachteilig an den bisher bekannten Polymer-Elektrolytmembranen unter Verwendung ionischer Flüssigkeiten ist jedoch die vergleichsweise geringe Leitfähigkeit.
Aufgabe der vorliegenden Erfindung war es daher, Polymer-Elektrolyt-Membranen mit einem verbesserten Eigenschaftsprofil bereitzustellen. Dabei wurden insbesondere möglichst gute mechanische Eigenschaften und gleichzeitig möglichst gute Leitfähigkeitseigenschaften angestrebt. Die Membranen sollten einerseits die anwendungstechnischen Vorteile der Polymermembran auf Basis von Polyazolen aufweisen und andererseits eine gesteigerte spezifische Leitfähigkeit, insbesondere bei Betriebstemperaturen oberhalb von 1000C, zeigen und möglichst ohne Brenngasbefeuchtung auskommen. Weiterhin sollten die Membranen auf vergleichsweise einfache Art und Weise möglichst kostengünstig herstellbar sein.
Gelöst werden diese Aufgaben durch eine protonenleitende Polymermembran mit allen Merkmalen des Anspruchs 1. Gegenstand der vorliegenden Erfindung ist dementsprechend eine protonenleitende Polymermembran, umfassend mindestens ein Polyazol, mindestens eine ionische Flüssigkeit sowie mindestens eine Verbindung der Formel (P1)
R'4POH (P1) wobei R1, jeweils unabhängig voneinander, ein Rest ist, der C, O und/oder H sowie ggf. weitere hiervon verschiedene Atome umfasst, wobei zwei Reste R1 ggf. miteinander verbunden sein können.
Das Polyazol enthält vorzugsweise wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II) und/oder (III) und/oder (IV) und/oder (V) und/oder (VI) und/oder (VII) und/oder (VIII) und/oder (IX) und/oder (X) und/oder (Xl) und/oder (XII) und/oder (XIII) und/oder (XIV) und/oder (XV) und/oder (XVI) und/oder (XVII) und/oder (XVIII) und/oder (XIX) und/oder (XX) und/oder (XXI) und/oder (XXII)
worin
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, Ar3 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, Ar4 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, Ar5 gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, Ar6 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, Ar7 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, Ar8 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, Ar9 gleich oder verschieden sind und für eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, Ar10 gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, Ar11 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann, X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine
Aminogruppe steht, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte
Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt R in allen Formeln außer Formel (XX) gleich oder verschieden für Wasserstoff, eine Alkylgruppe oder eine aromatische Gruppe und in Formel (XX) für eine
Alkylengruppe oder eine aromatische Gruppe steht und n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist.
Bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Chinolin, Pyridin, Bipyridin, Pyridazin, Pyrimidin, Pyrazin, Triazin, Tetrazin, Pyrol, Pyrazol, Anthracen, Benzopyrrol, Benzotriazol, Benzooxathiadiazol, Benzooxadiazol, Benzopyridin, Benzopyrazin, Benzopyrazidin, Benzopyrimidin, Benzopyrazin, Benzotriazin, Indolizin, Chinolizin, Pyridopyridin, Imidazopyrimidin, Pyraziπopyrimidin, Carbazol, Aciridin, Phenazin, Benzochinolin, Phenoxazin, Phenothiazin, Acridizin, Benzopteridin, Phenanthrolin und Phenanthren, die gegebenenfalls auch substituiert sein können, ab. Dabei ist das Substitionsmuster von Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 beliebig, im Falle vom Phenylen beispielsweise kann Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 Ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.
Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.
Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.
Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen, Hydroxygruppen oder kurzkettige Alkylgruppen, wie z. B. Methyl- oder Ethylgruppen.
Bevorzugt sind Polyazole mit wiederkehrenden Einheiten der Formel (I), bei denen die Reste X innerhalb einer wiederkehrenden Einheit gleich sind.
Die Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.
Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Polyquinoxalines, Polythiadiazole Poly(pyridine), Poly(pyrimidine) und Poly(tetrazapyrene).
In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Polyazol ein Copolymer, das mindestens zwei Einheiten der Formel (I) bis (XXII) enthält, die sich voneinander unterscheiden. Die Polymere können als Blockcopolymere (Diblock, Triblock), statistische Copolymere, periodische Copolymere und/oder alternierende Polymere vorliegen.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Polyazol ein Homopolymer, das nur Einheiten der Formel (I) und/oder (II) enthält.
Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 100 wiederkehrende Azoleinheiten. Im Rahmen der vorliegenden Erfindung sind Polymere enthaltend wiederkehrenden Benzimidazoleinheiten bevorzugt. Einige Beispiele der äußerst zweckmäßigen Polymere enthaltend wiederkehrende Benzimidazoleinheiten werden durch die nachfolgende Formeln wiedergegeben:
wobei n und m ganze Zahlen größer gleich 10, vorzugsweise größer gleich 100, sind.
Im Rahmen einer besonders bevorzugten Variante der vorliegenden Erfindung weisen die Polyazole mindestens eine Sulfonsäure- und/oder Phosphonsäuregruppe auf. Derartige Polymere werden in der Druckschrift DE 102 46 459 A1 beschrieben, deren Offenbarung hiermit durch Bezugnahme mit aufgenommen wird. Die eingesetzten Polyazole, insbesondere jedoch die Polybenzimidazole zeichnen sich durch ein hohes Molekulargewicht aus. Gemessen als intrinsische Viskosität beträgt diese mindestens 0,2 dl/g, vorzugsweise 0,8 bis 10 dl/g, insbesondere 1 bis 10 dl/g.
Bevorzugte Polybenzimidazole sind unter dem Handelsnamen ©Celazole kommerziell erhältlich.
Neben dem Polyazol enthält die protonenleitende Polymermembran der vorliegenden Erfindung weiterhin mindestens eine ionische Flüssigkeit. Hierunter sind solche Substanzen zu verstehen, die ausschließlich Ionen enthalten und somit als flüssige Salze vorliegen, ohne dass das Salz dabei in einem Lösungsmittel wie Wasser gelöst wird.
Ionische Flüssigkeiten im Sinne der vorliegenden Erfindung sind vorzugsweise Salze der allgemeinen Formel
(A) Salze der allgemeinen Formel (IL-I)
[A]n + [Y]n- (IL-I),
in der n für 1 , 2, 3 oder 4 steht, [A]+ für ein quartäres Ammonium-Kation, ein Oxonium-Kation, ein Sulfonium-Kation oder ein Phosphonium-Kation und [Y]n~ für ein ein-, zwei-, drei- oder vierwertiges Anion steht;
(B) gemischte Salze der allgemeinen Formeln (IL-II)
[A1J+[A2I+ [Y]n" (IL-IIa), wobei n = 2;
[A1]+[A2]+[A3]+ [Y]n" (IL-IIb), wobei n = 3; oder
[A1]+[A2]+[A3]+[A4]+ [Y]π- (IL-IIc), wobei n = 4 und
wobei [A1]+, [A2J+, [A3]+ und [A4]+ unabhängig voneinander aus den für [A]+ genannten Gruppen ausgewählt sind und [Y]n" die unter (A) genannte Bedeutung besitzt; oder
(C) gemischte Salze der allgemeinen Formeln (IL-III)
[A1]+[A2]+[A3]+[M1]+ [Yf (IL-IIIa), wobei n = 4; [A1]+[A2]+[M1]+[M2]+ [Y]n- (IL-IIIb), wobei n = 4;
[A1]+[M1]+[M2]+[M3]+ [Yf (IL-IIIc), wobei n = 4;
[A1]+[A2]+[M1 ]+ [Yf (IL-IIId)1 wobei n = 3;
[A1]+[M1]+[M2]+ [Yf (IL-IIIe), wobei n = 3;
[A1]+[M1]+ [Yf (IL-IIIf), wobei n = 2;
[A1J+[A2I+[M4J2+ [Yf (IL-IIIg), wobei n = 4;
[A1]+[M1]+[M4]2+ [Yf (IL-IIIh), wobei n = 4;
[A1]+[M5]3+ [Yf (IL-IIIi), wobei n = 4; oder
[A1]+[M4]2+ [Yf (IL-IIIj), wobei n = 3 und
wobei [A1]+, [A2]+ und [A3J+ unabhängig voneinander aus den für [A]+ genannten Gruppen ausgewählt sind, [Yf die unter (A) genannte Bedeutung besitzt und [M1J+, [M2]+, [M3J+ einwertige Metallkationen, [M4J2+ zweiwertige Metallkationen und [M5J3+ dreiwertige Metallkationen bedeuten.
Vorzugsweise besitzen die ionischen Flüssigkeiten einen Schmelzpunkt von weniger als 18O0C. Weiterhin bevorzugt liegt der Schmelzpunkt in einem Bereich von -500C bis 15O0C, mehr bevorzugt im Bereich von -200C bis 1200C und weiterhin mehr bevorzugt unter 1000C. Die Messung des Schmelzpunktes kann dabei auf an sich bekannte Weise erfolgen. Besonders bewährt hat sich die Methode der Dynamische Differenzkalorimetrie (DSC), insbesondere unter Verwendung einer Heizrate von 10 K/min.
Bei den erfindungsgemäßen ionischen Flüssigkeiten handelt es sich um organische Verbindungen, d.h. dass mindestens ein Kation oder ein Anion der ionischen Flüssigkeit einen organischen Rest enthält.
Verbindungen, die sich zur Bildung des Kations [A]+ von ionischen Flüssigkeiten eignen, sind z. B. aus DE 102 02 838 A1 bekannt. So können solche Verbindungen Sauerstoff-, Phosphor-, Schwefel- oder insbesondere Stickstoffatome enthalten, beispielsweise mindestens ein Stickstoffatom, bevorzugt 1 -10 Stickstoff atome, besonders bevorzugt 1-5, ganz besonders bevorzugt 1 -3 und insbesondere 1-2 Stickstoffatome. Gegebenenfalls können auch weitere Heteroatome wie Sauerstoff-, Schwefel- oder Phosphoratome enthalten sein. Das Stickstoffatom ist ein geeigneter Träger der positiven Ladung im Kation der ionischen Flüssigkeit, von dem im Gleichgewicht dann ein Proton bzw. ein Alkylrest auf das Anion übergehen kann, um ein elektrisch neutrales Molekül zu erzeugen. Für den Fall, dass das Stickstoffatom der Träger der positiven Ladung im Kation der ionischen Flüssigkeit ist, kann bei der Synthese der ionischen Flüssigkeiten zunächst durch Quaternisierung am Stickstoffatom etwa eines Amins oder Stickstoff- Heterocyclus' ein Kation erzeugt werden. Die Quaternisierung kann durch Alkylierung des Stickstoffatoms erfolgen. Je nach verwendetem Alkylierungsreagens werden Salze mit unterschiedlichen Anionen erhalten. In Fällen, in denen es nicht möglich ist, das gewünschte Anion bereits bei der Quaternisierung zu bilden, kann dies in einem weiteren Syntheseschritt erfolgen. Ausgehend beispielsweise von einem Ammoniumhalogenid kann das Halogenid mit einer Lewissäure umgesetzt werden, wobei aus Halogenid und Lewissäure ein komplexes Anion gebildet wird. Alternativ dazu ist der Austausch eines Halogenidions gegen das gewünschte Anion möglich. Dies kann durch Zugabe eines Metallsalzes unter Ausfällung des gebildeten Metallhalogenids, über einen Ionenaustauscher oder durch Verdrängung des Halogenidions durch eine starke Säure (unter Freisetzung der Halogenwasserstoffsäure) geschehen. Geeignete Verfahren sind beispielsweise in Angew. Chem. 2000, 112, S. 3926 - 3945 und der darin zitierten Literatur beschrieben.
Geeignete Alkylreste, mit denen das Stickstoffatom in den Aminen oder Stickstoff- Heterocyclen beispielsweise quatemisiert sein kann, sind Ci-Ci8-Alkyl, bevorzugt Cr Cio-Alkyl, besonders bevorzugt Ci-Cβ-Alkyl und ganz besonders bevorzugt Methyl. Die Alkylgruppe kann unsubstituiert sein oder einen oder mehrere gleiche oder verschiedene Substituenten aufweisen.
Bevorzugt sind solche Verbindungen, die mindestens einen fünf- bis sechsgliedrigen Heterocyclus, insbesondere einen fünfgliedrigen Heterocyclus, enthalten, der mindestens ein Stickstoffatom sowie gegebenenfalls ein Sauerstoff- oder Schwefelatom aufweist, besonders bevorzugt sind solche Verbindungen, die mindestens einen fünf- bis sechsgliedrigen Heterocyclus enthalten, der ein, zwei oder drei Stickstoffatome und ein Schwefel- oder ein Sauerstoffatom aufweist, ganz besonders bevorzugt solche mit zwei Stickstoffatomen. Weiterhin bevorzugt sind aromatische Heterocyclen.
Besonders bevorzugte Verbindungen sind solche, die ein Molgewicht unter 1000 g/mol aufweisen, ganz besonders bevorzugt unter 500 g/mol.
Weiterhin sind solche Kationen bevorzugt, die ausgewählt sind aus den Verbindungen der Formeln (IL-IVa) bis (IL-IVw),
sowie Oligomere, die diese Strukturen enthalten.
Weitere geeignete Kationen sind Verbindungen der allgemeinen Formel (IL-IVx) und (IL-IVy)
sowie Oligomere, die diese Struktur enthalten. In den oben genannten Formeln (IL-IVa) bis (IL-IVy) stehen
• der Rest R für Wasserstoff, einen Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 20 Kohlenstoffatomen; und
• die Reste R1 bis R9 unabhängig voneinander für Wasserstoff oder einen Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 20 Kohlenstoffatomen, wobei die Reste R1 bis R9, welche in den oben genannten Formeln (IL-IV) an ein Kohlenstoffatom (und nicht an ein Heteroatom) gebunden sind, zusätzlich auch für F oder eine funktionelle Gruppe stehen können; oder
zwei benachbarte Reste aus der Reihe R1 bis R9 zusammen auch für einen zweibindigen, Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 30 Kohlenstoffatomen.
Als Heteroatome kommen bei der Definition der Reste R und R1 bis R9 prinzipiell alle Heteroatome in Frage, welche in der Lage sind, formell eine -CH2-, eine -CH=, eine -C≡ oder eine =C= -Gruppe zu ersetzen. Enthält der Kohlenstoff enthaltende Rest Heteroatome, so sind Sauerstoff, Stickstoff, Schwefel, Phosphor und Silizium bevorzugt. Als bevorzugte Gruppen seien insbesondere -O-, -SO-, -SO2-, -NR'-, - N=, -PR'-, -PR'2 und -SiR2- genannt, wobei es sich bei den Resten R' um den verbleibenden Teil des Kohlenstoff enthaltenden Rests handelt. Die Reste R1 bis R9 können dabei in den Fällen, in denen diese in den oben genannten Formeln (IL-IV) an ein Kohlenstoffatom (und nicht an ein Heteroatom) gebunden sind, auch direkt über das Heteroatom gebunden sein. Als funktionelle Gruppen kommen prinzipiell alle funktionellen Gruppen in Frage, welche an ein Kohlenstoffatom oder ein Heteroatom gebunden sein können. Als geeignete Beispiele seien -OH (Hydroxy), =0 (insbesondere als Carbonylgruppe), - NH2 (Amino), -NHR1, -NR2' =NH (Imino), -COOH (Carboxy), -CONH2 (Carboxamid), -SO3H (Sulfo) und -CN (Cyano) genannt. Funktionelle Gruppen und Heteroatome können auch direkt benachbart sein, so dass auch Kombinationen aus mehreren benachbarten Atomen, wie etwa -O- (Ether), -COO- (Ester), -CONH- (sekundäres Amid) oder -CONR'- (tertiäres Amid), mit umfasst sind, beispielsweise Di-(CrC4- Alkyl)-amino, d-C4-Alkyloxycarbonyl oder Ci-C4-Alkyloxy. Bei den Resten R1 handelt es sich um den verbleibenden Teil des Kohlenstoff enthaltenden Restes.
Bevorzugt steht der Rest R für
• unverzweigtes oder verzweigtes, unsubstituiertes oder ein bis mehrfach mit Hydroxy, Halogen, Phenyl, Cyano, CrC6-Alkoxycarbonyl und/oder SO3H substituiertes Ci-C18-Alkyl mit insgesamt 1 bis 20 Kohlenstoffatomen, wie beispielsweise Methyl, Ethyl, 1-Propyl, 2-Propyl, 1 -Butyl, 2-Butyl, 2-Methyl-1- propyl (Isobutyl), 2-Methyl-2-propyl (tert.-Butyl), 1-Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1-butyl, 3-Methyl-1 -butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Di- methyM-propyl, 1 -Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-1 -pentyl, 3-Methyl-1 - pentyl, 4-Methyl-i -pentyl, 2-Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2- pentyl, 2-Methyl-3-pentyl, 3-Methyl-3-pentyl, 2,2-Dimethyl-1 -butyl, 2,3- Dimethyl-1 -butyl, 3,3-Dimethyl-1 -butyl, 2-Ethyl-1 -butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, 1-Heptyl, 1-Octyl, 1-Nonyl, 1 -Decyl, 1 -Undecyl, 1- Dodecyl, 1 -Tetradecyl, 1-Hexadecyl, 1-Octadecyl, Benzyl, 3-Phenylpropyl, 2- Hydroxyethyl, 2-Cyanoethyl, 2-(Methoxycarbonyl)-ethyl, 2-(Ethoxycarbonyl)- ethyl, 2-(n-Butoxy-carbonyl)-ethyl, Trifluormethyl, Difluormethyl, Fluormethyl, Pentafluorethyl, Heptafluorpropyl, Heptafluorisopropyl, Nonafluorbutyl, Nonafluorisobutyl, Undecylfluorpentyl, Undecylfluorisopentyl, 6-Hydroxyhexyl und Propylsulfonsäure;
• Glykole, Butylenglykole und deren Oligomere mit 1 bis 100 Einheiten und einem Wasserstoff oder einem Ci-Cβ-Alkyl als Endgruppe, wie beispielsweise RAO-(CHRB-CH2-O)n-CHRB-CH2- oder
R^)-(CH2CH2CH2CH2O)n-CH2CH2CH2CH2O- mit RA und RB bevorzugt Wasserstoff, Methyl oder Ethyl und n bevorzugt O bis 3, insbesondere 3- Oxabutyl, 3-Oxapentyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl, 3,6,9-Trioxadecyl, 3,6,9-Trioxaundecyl, 3,6,9, 12-Tetraoxatridecyl und 3,6,9,12- Tetraoxatetradecyi; • Vinyl;
• 1-Propen-1-yl, 1 -Propen-2-yl und 1 -Propen-3-yl; und
• N,N-Di-Ci-C6-alkyl-amino, wie beispielsweise N,N-Dimethylamino und N, N- Diethylamino.
Besonders bevorzugt steht der Rest R für unverzweigtes und unsubstituiertes d- Ciβ-Alkyl, wie beispielsweise Methyl, Ethyl, 1-Propyl, 1-Butyl, 1-Pentyl, 1-Hexyl, 1-Heptyl, 1-Octyl, 1 -Decyl, 1 -Dodecyl, 1-Tetradecyl, 1-Hexadecyl, 1-Octadecyl, insbesondere für Methyl, Ethyl, 1 -Butyl und 1-Octyl sowie für CH3O-(CH2CH2O)n- CH2CH2- und CH3CH2O-(CH2CH2O)n-CH2CH2- mit n gleich O bis 3.
Bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für
• Wasserstoff;
• F;
• eine funktionelle Gruppe;
• gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes und/oder durch ein oder mehrere Sauerstoffatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes Ci-Ciβ-Alkyl;
• gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes und/oder durch ein oder mehrere Sauerstoffatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes C2-C18-Alkenyl;
• gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes C6-Ci2-Aryl;
• gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkyl; • gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes C5-C12-Cycloalkenyl; oder
• einen gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituierten fünf- bis sechsgliedrigen, Sauerstoff und/oder Stickstoffatome aufweisenden Heterocyclus bedeuten; oder
zwei benachbarte Reste zusammen mit den Atomen, an welchen sie gebunden sind, für
• einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituierten und gegebenenfalls durch ein oder mehrere Sauerstoffatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenen Ring.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F1 Heteroatome und/oder Heterocyclen substituiertem C-rCiβ-Alkyl handelt es sich bevorzugt um Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methyl-1-propyl (Isobutyl), 2-Methyl-2-propyl (tert.-Butyl), 1-Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1- butyl, 3-Methyl-1-butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl-i-propyl, 1- Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-i-pentyl, 3-Methyl-1-pentyl, 4-Methyl-1-pentyl, 2- Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2-pentyl, 2-Methyl-3-pentyl, 3-Methyl-3- pentyl, 2,2-Dimethyl-1-butyl, 2,3-Dimethyl-1-butyl, 3,3-Dimethyl-1 -butyl, 2-Ethyl-1- butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, Heptyl, Octyl, 2-Etylhexyl, 2,4,4- Trimethylpentyl, 1 ,1 ,3,3-Tetramethylbutyl, 1-Nonyl, 1-Decyl, 1-Undecyl, 1-Dodecyl, 1 -Tridecyl, 1 -Tetradecyl, 1-Pentadecyl, 1-Hexadecyl, 1 -Heptadecyl, 1-Octadecyl, Cyclopentylmethyl, 2-Cyclopentylethyl, 3-Cyclopentylpropyl, Cyclohexylmethyl, 2- Cyclohexylethyl, 3-Cyclohexylpropyl, Benzyl (Phenylmethyl), Diphenylmethyl (Benzhydryl), Triphenylmethyl, 1-Phenylethyl, 2-Phenylethyl, 3-Phenylpropyl, α,α- Dimethylbenzyl, p-Tolylmethyl, 1-(p-Butylphenyl)-ethyl, p-Methoxybenzyl, m-Ethoxybenzyl, 2-Cyanoethyl, 2-Cyanopropyl, 2-Methoxycarbonylethyl, 2-Ethoxy- carbonylethyl, 2-Butoxycarbonylpropyl, 1 ,2-Di-(methoxycarbonyl)-ethyl, Methoxy, Ethoxy, Formyl, 1 ,3-Dioxolan-2-yl, 1 ,3-Dioxan-2-yl, 2-Methyl-1 ,3-dioxolan-2-yl, A- Methyl-1 ,3-dioxolan-2-yl, 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, A- Hydroxybutyl, 6-Hydroxyhexyl, 2-Aminoethyl, 2-Aminopropyl, 3-Aminopropyl, A- Aminobutyl, 6-Aminohexyl, 2-Methylaminoethyl, 2-Methylaminopropyl, 3- Methyiaminopropyi, 4-Methyiaminobutyi, 6-Methyiaminohexyi, 2-Dimethyiaminoethyl, 2-Dimethylaminopropyl, 3-Dimethylaminopropyl, 4-Dimethylaminobutyl, 6- Dimethylaminohθxyl, 2-Hydroxy-2,2-dimethylethyl, 2-Phenoxyethyl, 2- Phenoxypropyl, 3-Phenoxypropyl, 4-Phenoxybutyl, 6-Phenoxyhexyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxypropyl, 4-Methoxybutyl, 6-Methoxyhexyl, 2-Ethoxyethyl, 2-Ethoxypropyl, 3-Ethoxypropyl, 4-Ethoxybutyl, 6-Ethoxyhexyl, Acetyl, CnF2(n-a)+(i- b)H2a+b mit n gleich 1 bis 30, 0 < a < n und b = 0 oder 1 (beispielsweise CF3, C2F5, CH2CH2-C(n.2)F2(n-2)+i. C6F13, C8F17, C10F2I, Ci2F25), Methoxymethyl, 2-Butoxyethyl, Diethoxymethyl, Diethoxyethyl, 2-lsopropoxyethyl, 2-Butoxypropyl, 2-Octyloxyethyl, 2-Methoxyisopropyl, 2-(Methoxycarbonyl)-ethyl, 2-(Ethoxycarbonyl)-ethyl, 2-(n- Butoxycarbonyl)-ethyl, Butylthiomethyl, 2-Dodecylthioethyl, 2-Phenylthioethyl, 5- Hydroxy-3-oxa-pentyl, 8-Hydroxy-3,6-dioxa-octyl, 11 -Hydroxy-3,6,9-trioxa-undecyl, 7-Hydroxy-4-oxa-heptyl, 11 -Hydroxy-4,8-dioxa-undecyl, 15-Hydroxy-4,8,12-trioxa- pentadecyl, 9-Hydroxy-5-oxa-nonyl, 14-Hydroxy-5,10-dioxa-tetradecyl, 5-Methoxy-3- oxa-pentyl, 8-Methoxy-3,6-dioxa-octyl, 11 -Methoxy-3,6,9-trioxa-undecyl, 7-Methoxy- 4-oxa-heptyl, 11-Methoxy-4,8-dioxa-undecyl, 15-Methoxy-4,8,12-trioxa-pentadecyl, 9-Methoxy-5-oxa-nonyl, 14-Methoxy-5,10-dioxa-tetradecyl, 5-Ethoxy-3-oxa-pentyl, 8- Ethoxy-3,6-dioxa-octyl, 11-Ethoxy-3,6,9-trioxa-undecyl, 7-Ethoxy-4-oxa-heptyl, 11 - Ethoxy-4,8-dioxa-undecyl, 15-Ethoxy-4,8, 12-trioxa-pentadecyl, 9-Ethoxy-5-oxa-nonyl ode r 14- Ethoxy-5 , 10-oxa-tetradecyl .
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes und/oder durch ein oder mehrere Sauerstoffatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes C2-C18-Alkenyl handelt es sich bevorzugt um Vinyl, 2- Propenyl, 3-Butenyl, cis-2-Butenyl, trans-2-Butenyl oder CnF2(n-a)-(i-b)H2a-b mit n < 30, 0 < a < n und b = 0 oder 1.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes C6-C12-Aryl handelt es sich bevorzugt um Phenyl, ToIyI, XyIyI, α-Naphthyl, ß-Naphthyl, 4-Diphenylyl, Difluorphenyl, Methylphenyl, Dimethylphenyl, Trimethylphenyl, Ethylphenyl, Diethylphenyl, /so-Propylphenyl, tert.-Butylphenyl, Dodecylphenyl, Methoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, Methylnaphthyl, Isopropylnaphthyl, Ethoxynaphthyl, 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2,6- Dimethoxyphenyl, 2-Nitrophenyl, 4-Nitrophenyl, 2,4-Dinitrophenyl, 2,6-Dinitrophenyl, 4-Dimethylaminophenyl, 4-Acetylphenyl, Methoxyethylphenyl, Ethoxymethylphenyl oder C-6F(5.a)Ha mit 0 < a < 5. Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes C5-Ci 2-Cycloalkyl handelt es sich bevorzugt um Cyclopentyl, Cyclohexyl, Cyclooctyl, Cyclododecyl, Methylcyclopentyl, Dimethylcyclopentyl, Methylcyclohexyl, Dimethylcyclohexyl, Diethylcyclohexyl, Butylcyclohexyl, Methoxycyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl, CnF2(n.a)-(i-b)H2a-b mit n < 30, 0 < a < n und b = 0 oder 1 sowie ein gesättigtes oder ungesättigtes bicyclisches System wie z.B. Norbornyl oder Norbornenyl.
Bei gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes C5-Ci2-Cycloalkenyl handelt es sich bevorzugt um 3-Cyclopentenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, 2,5- Cyclohexadienyl oder CnF2(n-a)-3(i-b)H2a-3b mit n < 30, 0 < a < n und b = 0 oder 1.
Bei einen gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituierten fünf- bis sechsgliedrigen, Sauerstoff- und/oder Stickstoffatome aufweisenden Heterocyclus handelt es sich bevorzugt um Furyl, Pyrryl, Pyridyl, Indolyl, Benzoxazolyl, Dioxolyl, Dioxyl, Benzimidazolyl, Dimethylpyridyl, Methylchinolyl, Dimethylpyrryl, Methoxyfuryl, Dimethoxypyridyl oder Difluorpyridyl.
Bilden zwei benachbarte Reste gemeinsam einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituierten und gegebenenfalls durch ein oder mehrere Sauerstoffatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenen Ring, so handelt es sich bevorzugt um 1 ,3-Propylen, 1 ,4-Butylen, 1 ,5-Pentylen, 2-Oxa-1 ,3-propylen, 1-Oxa- 1 ,3-propylen, 2-Oxa-1 ,3-propylen, 1 -Oxa-1 ,3-propenylen, 3-Oxa-1 ,5-pentylen, 1 - Aza-1 ,3-propenylen, i-d-CA-Alkyl-i-aza-I .S-propenylen, 1 ,4-Buta-1 ,3-dienylen, 1- Aza-1 ,4-buta-1 ,3-dienylen oder 2-Aza-1 ,4-buta-1 ,3-dienylen.
Enthalten die oben genannten Reste Sauerstoffatome und/oder substituierte oder unsubstituierte Iminogruppen, so ist die Anzahl der Sauerstoffatome und/oder Iminogruppen nicht beschränkt. In der Regel beträgt sie nicht mehr als 5 in dem Rest, bevorzugt nicht mehr als 4 und ganz besonders bevorzugt nicht mehr als 3.
Enthalten die oben genannten Reste Heteroatome, so befinden sich zwischen zwei Heteroatomen in der Regel mindestens ein Kohlenstoffatom, bevorzugt mindestens zwei Kohlenstoffatome. Besonders bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für
• Wasserstoff;
• unverzweigtes oder verzweigtes, unsubstituiertes oder ein bis mehrfach mit Hydroxy, F, Phenyl, Cyano, Ci-C6-Alkoxycarbonyl und/oder SO3H substituiertes Ci-Ci8-Alkyl mit insgesamt 1 bis 20 Kohlenstoffatomen, wie beispielsweise Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 2-Methyl-1 - propyl (Isobutyl), 2-Methyl-2-propyl (tert.-Butyl), 1-Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1-butyl, 3-Methyl-1-butyl, 2-Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Di- methyl-1-propyl, 1 -Hexyl, 2-Hexyl, 3-Hexyl, 2-Methyl-1-pentyl, 3-Methyl-1 - pentyl, 4-Methyl-1-pentyl, 2-Methyl-2-pentyl, 3-Methyl-2-pentyl, 4-Methyl-2- pentyl, 2-Methyl-3-pentyl, 3-Methyl-3-pentyl, 2,2-Dimethyl-1 -butyl, 2,3- Dimethyl-1 -butyl, 3,3-Dimethyl-i -butyl, 2-Ethyl-1-butyl, 2,3-Dimethyl-2-butyl, 3,3-Dimethyl-2-butyl, 1-Heptyl, 1 -Octyl, 1-Nonyl, 1-Decyl, 1 -Undecyl, 1 - Dodecyl, 1-Tetradecyl, 1 -Hexadecyl, 1 -Octadecyl, Benzyl, 3-Phenylpropyl, 2- Hydroxyethyl, 2-Cyanoethyl, 2-(Methoxycarbonyl)-ethyl, 2-(Ethoxycarbonyl)- ethyl, 2-(n-Butoxy-carbonyl)-ethyl, Trifluormethyl, Difluormethyl, Fluormethyl, Pentafluorethyl, Heptafluorpropyl, Heptafluorisopropyl, Nonafluorbutyl, Nonafluorisobutyl, Undecylfluorpentyl, Undecylfluorisopentyl, 6-Hydroxyhexyl und Propylsulfonsäure;
• Glykole, Butylenglykole und deren Oligomere mit 1 bis 100 Einheiten und einem Wasserstoff oder einem d- bis C8-Alkyl als Endgruppe, wie beispielsweise RAO-(CHRB-CH2-O)n-CHRB-CH2- oder R^-(CH2CH2CH2CH2O)n-CH2CH2CH2CH2O- mit RA und RB bevorzugt Wasserstoff, Methyl oder Ethyl und n bevorzugt 0 bis 3, insbesondere 3- Oxabutyl, 3-Oxapentyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl, 3,6,9-Trioxadecyl, 3,6,9-Trioxaundecyl, 3,6,9, 12-Tetraoxatridecyl und 3,6,9,12- Tetraoxatetradecyl ;
• Vinyl;
• 1-Propen-1yl, 1-Propen-2-yl und 1-Propen-3yl; und
• N,N-Di-Ci-C6-alkyl-amino, wie beispielsweise N,N-Dimethylamino und N1N- Diethylamino. Ganz besonders bevorzugt stehen die Reste R1 bis R9 unabhängig voneinander für Wasserstoff oder d-C18-Alkyl, wie beispielsweise Methyl, Ethyl, 1-Butyl, 1-Pentyl, 1- Hexyl, 1 -Heptyl, 1-Octyl, für Phenyl, für 2-Hydroxyethyl, für 2-Cyanoethyl, für 2-(Methoxycarbonyl)ethyl, für 2-(Ethoxycarbonyl)ethyl, für 2-(n-Butoxycarbonyl)ethyl, für N,N-Dimethylamino, für N,N-Diethylamino sowie für CH3O-(CH2CH2O)n-CH2CH2- und CH3CH2O-(CH2CH2O)n-CH2CH2- mit n gleich O bis 3.
Ganz besonders bevorzugt setzt man als Pyridiniumionen (IL-IVa) solche ein, bei denen
• einer der Reste R1 bis R5 Methyl oder Ethyl ist und die verbleibenden Reste R1 bis R5 Wasserstoff sind;
• R3 Dimethylamino ist und die verbleibenden Reste R1, R2, R4 und R5 Wasserstoff sind;
• alle Reste R1 bis R5 Wasserstoff sind;
• R2 Carboxy oder Carboxamid ist und die verbleibenden Reste R1, R2, R4 und R5 Wasserstoff sind; oder
• R1 und R2 oder R2 und R3 1 ,4-Buta-1 ,3-dienylen ist und die verbleibenden . Reste R1, R2, R4 und R5 Wasserstoff sind;
und insbesondere solche, bei denen
• R1 bis R5 Wasserstoff sind; oder
• einer der Reste R1 bis R5 Methyl oder Ethyl ist und die verbleibenden Reste R1 bis R5 Wasserstoff sind.
Als ganz besonders bevorzugte Pyridiniumionen (IL-IVa) seien genannt 1 - Methylpyridinium, 1-Ethylpyridinium, 1-(1-Butyl)pyridinium, 1-(1-Hexyl)pyridinium, 1- (I-Octyl)pyridinium, 1-(1-Hexyl)-pyridinium, 1-(1-Octyl)-pyridinium, 1 -(1 -Dodecyl)- pyridinium, 1 -(1 -Tetradecyl)-pyridinium, 1 -(1 -Hexadecyl)-pyridinium, 1 ,2- Dimethylpyridinium, 1 -Ethyl-2-methylpyridinium, 1-(1-Butyl)-2-methylpyridinium, 1-(1- Hexyl)-2-methylpyridinium, 1 -(1 -Octyl)-2-methylpyridinium, 1 -(1 -Dodecyl)-2- methylpyridinium, 1 -(1 -Tetradecyl)-2-methylpyridinium, 1 -(1 -Hexadecyl)-2- methylpyridinium, 1-Methyl-2-ethylpyridinium, 1 ,2-Diethylpyridinium, 1-(1-Butyl)-2- ethylpyridinium, 1 -(1-Hexyl)-2-ethylpyridinium, 1 -(1-0ctyl)-2-ethylpyridinium, 1-(1- Dodecyl)-2-θthylpyridinium, 1 -(1 -Tetradecyl)-2-ethylpyridinium, 1 -(1 -Hexadecyl)-2- ethylpyridinium, 1 ,2-Dimethyl-5-ethyl-pyridinium, 1 ,5-Diethyl-2-methyl-pyridiniunn, 1- (1-Butyl)-2-methyl-3-ethyl-pyridinium, 1-(1-Hexyl)-2-methyl-3-ethyl-pyridinium und 1 - (1 -OctyO^-methyl-S-ethyl-pyridinium, 1 -(1 -Dodecyl)-2-methyl-3-ethyl-pyridinium, 1 - (1 -Tetradecyl)-2-methyl-3-ethyl-pyridinium und 1 -(1 -Hexadecyl)-2-methyl-3-ethyl- pyridinium.
Ganz besonders bevorzugt setzt man als Pyridaziniumionen (IL-IVb) solche ein, bei denen
• R1 bis R4 Wasserstoff sind; oder
• einer der Reste R1 bis R4 Methyl oder Ethyl ist und die verbleibenden Reste R1 bis R4 Wasserstoff sind.
Ganz besonders bevorzugt setzt man als Pyrimidiniumionen (IL-IVc) solche ein, bei denen
• R1 Wasserstoff, Methyl oder Ethyl ist und R2 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind; oder
• R1 Wasserstoff, Methyl oder Ethyl ist, R2 und R4 Methyl sind und R3 Wasserstoff ist.
Ganz besonders bevorzugt setzt man als Pyraziniumionen (IL-IVd) solche ein, bei denen
• R1 Wasserstoff, Methyl oder Ethyl ist und R2 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind;
• R1 Wasserstoff, Methyl oder Ethyl ist, R2 und R4 Methyl sind und R3 Wasserstoff ist;
• R1 bis R4 Methyl sind; oder
• R1 bis R4 Wasserstoff sind. Ganz besonders bevorzugt setzt man als Imidazoliumionen (IL-IVe) solche ein, bei denen
• R1 Wasserstoff, Methyl, Ethyl, 1-Propyl, 1-Butyl, 1-Pentyl, 1-Hexyl, 1 -Octyl, 2-Hydroxyethyl oder 2-Cyanoethyl und R2 bis R4 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind.
Als ganz besonders bevorzugte Imidazoliumionen (IL-IVe) seien genannt 1- Methylimidazolium, 1 -Ethylimidazolium, 1-(1 -Butyl)-imidazolium, 1 -(1 -Octyl)- imidazolium, 1-(1-Dodecyl)-imidazolium, 1 -(1-Tetradecyl)-imidazolium, 1-(1- Hexadecyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1 -Ethyl-3-methylimidazolium, 1- (1 -Butyl)-3-methylimidazolium, 1 -(1 -Butyl)-3-ethylimidazolium, 1 -(1 -Hexyl)-3-methyl- imidazolium, 1-(1-Hexyl)-3-ethyl-imidazolium, 1-(1-Hexyl)-3-butyl-imidazolium, 1-(1 - Octyl)-3-methylimidazolium, 1 -(1 -Octyl)-3-ethylimidazolium, 1 -(1 -Octyl)-3- butylimidazolium, 1 -(1 -Dodecyl)-3-methylimidazolium, 1 -(1 -Dodecyl)-3- ethylimidazolium, 1 -(1 -Dodecyl)-3-butylimidazolium, 1 -(1 -Dodecyl)-3- octylimidazolium, 1 -(1 -Tetradecyl)-3-methylimidazolium, 1 -(1 -Tetradecyl)-3- ethylimidazolium, 1 -(1 -Tetradecyl)-3-butylimidazolium, 1-(1-Tetradecyl)-3-octylimi- dazolium, 1 -(1 -Hexadecyl)-3-methylimidazolium, 1 -(1 -Hexadecyl)-3- ethylimidazolium, 1 -(1 -Hexadecyl)-3-butylimidazolium, 1 -(1 -Hexadecyl)-3- octylimidazolium, 1 ,2-Dimethylimidazolium, 1 ,2,3-Trimethylimidazolium, 1-Ethyl-2,3- dimethylimidazolium, 1 -(1 -Butyl)-2,3-dimethylimidazolium, 1 -(1 -Hexyl)-2,3-dimethyl- imidazolium, 1-(1-Octyl)-2,3-dimethylimidazolium, 1 ,4-Dimethylimidazolium, 1 ,3,4- Trimethylimidazolium, 1 ,4-Dimethyl-3-ethylimidazolium, 3-butylimidazolium, 1 ,4- Dimethyl-3-octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5- Tetramethylimidazolium, 1 ,4,5-Trimethyl-3-ethylimidazolium, 1 ,4,5-Trimethyl-3- butylimidazolium, 1 ,4,5-Trimethyl-3-octylimidazolium und 1-(Prop-1-en-3-yl)-3- methylimidazolium.
Ganz besonders bevorzugt setzt man als Pyrazoliumionen (IL-IVf), (IL-IVg) beziehungsweise (IL-IVg') solche ein, bei denen
• R1 Wasserstoff, Methyl oder Ethyl ist und R2 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Pyrazoliumionen (IL-IVh) solche ein, bei denen • R1 bis R4 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 1-Pyrazoliniumionen (IL-IVi) solche ein, bei denen
• unabhängig voneinander R1 bis R6 Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 2-Pyrazoliniumionen (IL-IVj) beziehungsweise (IL-IVj') solche ein, bei denen
• R1 Wasserstoff, Methyl, Ethyl oder Phenyl ist und R2 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 3-Pyrazoliniumionen (IL-IVk) beziehungsweise (IL-IVk') solche ein, bei denen
• R1 und R2 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Phenyl sind und R3 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazoliniumionen (IL-IVI) solche ein, bei denen
. • R1 und R2 unabhängig voneinander Wasserstoff, Methyl, Ethyl, 1 -Butyl oder Phenyl sind, R3 und R4 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind und R5 und R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazoliniumionen (IL-IVm) beziehungsweise (IL-IVm') solche ein, bei denen
• R1 und R2 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind und R3 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazoliniumionen (IL-IVn) beziehungsweise (IL-IVn') solche ein, bei denen
• R1 bis R3 unabhängig voneinander Wasserstoff, Methyl oder Ethyl sind und R4 bis R6 unabhängig voneinander Wasserstoff oder Methyl sind. Ganz besonders bevorzugt setzt man als Thiazoliumionen (IL-IVo) beziehungsweise (IL-IVo') sowie als Oxazoliumionen (IL-IVp) solche ein, bei denen
• R1 Wasserstoff, Methyl, Ethyl oder Phenyl ist und R2 und R3 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als 1 ,2,4-Triazoliumionen (IL-IVq), (IL-IVq') beziehungsweise (IL-IVq") solche ein, bei denen
• R1 und R2 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Phenyl sind und R3 Wasserstoff, Methyl oder Phenyl ist.
Ganz besonders bevorzugt setzt man als 1 ,2,3-Triazoliumionen (IL-IVr), (IL-IVr1) beziehungsweise (IL-IVr") solche ein, bei denen
• R1 Wasserstoff, Methyl oder Ethyl ist und R2 und R3 unabhängig voneinander Wasserstoff oder Methyl sind, oder R2 und R3 zusammen 1 ,4-Buta-1 ,3- dienylen ist.
Ganz besonders bevorzugt setzt man als Pyrrolidiniumionen (IL-IVs) solche ein, bei denen
• R1 Wasserstoff, Methyl, Ethyl oder Phenyl ist und R2 bis R9 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Imidazolidiniumionen (IL-IVt) solche ein, bei denen
• R1 und R4 unabhängig voneinander Wasserstoff, Methyl, Ethyl oder Phenyl sind und R2 und R3 sowie R5 bis R8 unabhängig voneinander Wasserstoff oder Methyl sind.
Ganz besonders bevorzugt setzt man als Ammoniumionen (IL-IVu) solche ein, bei denen
• R1 bis R3 unabhängig voneinander d- bis C18-Alkyl sind; oder • R1 und R2 zusammen 1 ,5-Pentylen oder 3-Oxa-1 ,5-pentylen sind und R3 Ci- Cia-Alkyl, 2-Hydroxyethyl oder 2-Cyanoethyl ist.
Als ganz besonders bevorzugte Ammoniumionen (IL-IVu) seien genannt Methyl-tri- (i-butyl)-ammonium, N,N-Dimethylpiperidinium und N,N-Dimethylmorpholinium.
Beispiele für die tertiären Amine, von denen sich die quartären Ammoniumionen der allgemeinen Formel (IL-IVu) durch Quaternisierung mit den genannten Resten R ableiten, sind Diethyl-n-butylamin, Diethyl-tert-butylamin, Diethyl-n-pentylamin, Diethyl-hexylamin, Diethyloctylamin, Diethyl-(2-ethylhexyl)-amin, Di-n- propylbutylamin, Di-n-propyl-n-pentylamin, Di-n-propylhexylamin, Di-n- propyloctylamin, Di-n-propyl-(2-ethylhexyl)-amin, Di-isopropylethylamin, Di-iso- propyl-n-propylamin, Di-isopropyl-butylamin, Di-isopropylpentylamin, Di-iso- propylhexylamin, Di-isopropyloctylamin, Di-iso-propyl-(2-ethylhexyl)-amin, Di-n- butylethylamin, Di-n-butyl-n-propylamin, Di-n-butyl-n-pentylamin, Di-n- butylhexylamin, Di-n-butyloctylamin, Di-n-butyl-(2-ethylhexyl)-amin, N-n-Butyl- pyrrolidin, N-sek-Butylpyrrodidin, N-tert-Butylpyrrolidin, N-n-Pentylpyrrolidin, N, N- Dimethylcyclohexylamin, N,N-Diethylcyclohexylamin, N,N-Di-n-butylcyclohexylamin, N-n-Propylpiperidin, N-iso-Propylpiperidin, N-n-Butyl-piperidin, N-sek-Butylpiperidin, N-tert-Butylpiperidin, N-n-Pentylpiperidin, N-n-Butylmorpholin, N-sek-Butylmorpholin, N-tert-Butylmorpholin, N-n-Pentylmorpholin, N-Benzyl-N-ethylanilin, N-Benzyl-N-n- propylanilin, N-Benzyl-N-iso-propylanilin, N-Benzyl-N-n-butylanilin, N,N-Dimethyl-p- toluidin, N,N-Diethyl-p-toluidin, N,N-Di-n-butyl-p-toluidin, Diethylbenzylamin, Di-n- propylbenzylamin, Di-n-butylbenzylamin, Diethylphenylamin, Di-n-Propylphenylamin und Di-n-Butylphenylamin.
Bevorzugte quartäre Ammoniumsalze der allgemeinen Formel (IL-IVu) sind solche, die sich von folgenden tertiären Aminen durch Quärternisierung mit den genannten Resten R ableiten lassen, wie Di-iso-propylethylamin, Diethyl-tert-butylamin, Di-iso- propylbutylamin, Di-n-butyl-n-pentylamin, N,N-Di-n-butylcyclohexylamin sowie tertiäre Amine aus Pentylisomeren.
Besonders bevorzugte tertiäre Amine sind Di-n-butyl-n-pentylamin und tertiäre Amine aus Pentylisomeren. Ein weiteres bevorzugtes tertiäres Amin, das drei identische Reste aufweist, ist Triallylamin.
Ganz besonders bevorzugt setzt man als Guanidiniumionen (IL-IVv) solche ein, bei denen • R1 bis R5 Methyl sind.
Als ganz besonders bevorzugtes Guanidiniumion (IL-IVv) sei genannt N,N,N',N'IN",N"-Hexamethylguanidinium.
Ganz besonders bevorzugt setzt man als Choliniumionen (IL-IVw) solche ein, bei denen
• R1 und R2 unabhängig voneinander Methyl, Ethyl, 1-Butyl oder 1-Octyl sind und R3 Wasserstoff, Methyl, Ethyl, Acetyl, -SO2OH oder -PO(OH)2 ist;
• R1 Methyl, Ethyl, 1-Butyl oder 1-Octyl ist, R2 eine -CH2-CH2-OR4-Gruppe ist und R3 und R4 unabhängig voneinander Wasserstoff, Methyl, Ethyl, Acetyl, - SO2OH oder -PO(OH)2 sind; oder
• R1 eine -CH2-CH2-OR4-Gruppe ist, R2 eine -CH2-CH2-OR5-Gruppe ist und R3 bis R5 unabhängig voneinander Wasserstoff, Methyl, Ethyl, Acetyl, -SO2OH oder -PO(OH)2 sind.
Besonders bevorzugte Choliniumionen (IL-IVw) sind solche, bei denen R3 ausgewählt ist aus Wasserstoff , Methyl, Ethyl, Acetyl, 5-Methoxy-3-oxa-pentyl, 8- Methoxy-3,6-dioxa-octyl, 11-Methoxy-3,6,9-trioxa-undecyl, 7-Methoxy-4-oxa-heptyl, 11-Methoxy-4,8-dioxa-undecyl, 15-Methoxy-4,8,12-trioxa-pentadecyl, 9-Methoxy-5- oxa-nonyl, 14-Methoxy-5,10-oxa-tetradecyl, 5-Ethoxy-3-oxa-pentyl, 8-Ethoxy-3,6- dioxa-octyl, 11-Ethoxy-3,6,9-trioxa-undecyl, 7-Ethoxy-4-oxa-heptyl, 11 -Ethoxy-4,8- dioxa-undecyl, 15-Ethoxy-4,8,12-trioxa-pentadecyl, 9-Ethoxy-5-oxa-nonyl oder 14- Ethoxy-5,10-oxa-tetradecyl.
Ganz besonders bevorzugt setzt man als Phosphoniumionen (IL-IVx) solche ein, bei denen
• R1 bis R3 unabhängig voneinander Ci-Ci8-Alkyl, insbesondere Butyl, Isobutyl, 1-Hexyl oder 1-Octyl sind.
Unter den vorstehend genannten heterocyclischen Kationen sind die Pyridiniumionen, Pyrazolinium-, Pyrazoliumionen und die Imidazolinium- sowie die Imidazoliumionen bevorzugt. Weiterhin sind Ammoniumionen bevorzugt. Insbesondere bevorzugt sind 1 -Methylpyridinium, 1 -Ethylpyridinium, 1 -(1 -Butyl)pyri- dinium, 1 -(1 -Hexyl)pyridinium, 1 -(1-Octyl)pyridinium, 1-(1-Hexyl)-pyridinium, 1 -(1 - Octyl)-pyridinium, 1-(1 -Dodecyl)-pyridinium, 1-(1-Tetradecyl)-pyridinium, 1 -(1-Hexa- decyl)-pyridinium, 1 ,2-Dimethylpyridinium, 1 -Ethyl-2-methylpyridinium, 1-(1-Butyl)-2- methylpyridinium, 1-(1-Hexyl)-2-methylpyridinium, 1-(1 -Octyl)-2-methylpyridinium, 1 - (1 -Dodecyl)-2-methylpyridinium, 1 -(1 -Tetradecyl)-2-methylpyridinium, 1 -(1 - Hexadecyl)-2-methylpyridinium, 1-Methyl-2-ethylpyridinium, 1 ,2-Diethylpyridinium, 1- (1 -Butyl)-2-ethylpyridinium, 1 -(1 -Hexyl)-2-ethylpyridinium, 1 -(1 -Octyl)-2- ethylpyridinium, 1-(1-Dodecyl)-2-ethylpyridinium, 1 -(1-Tetradecyl)-2-ethylpyridinium, 1 -(1 -Hexadecyl)-2-ethylpyridinium, 1 ,2-Dimethyl-5-ethyl-pyridinium, 1 ,5-Diethyl-2- methyl-pyridinium, 1-(1-Butyl)-2-methyl-3-ethyl-pyridinium, 1-(1 -Hexyl)-2-methyl-3- ethyl-pyridinium, 1 -(1 -Octyl^-methyl-S-ethyl-pyridinium, 1 -(1 -Dodecyl)-2-methyl-3- ethyl-pyridinium, 1 -(1 -Tetradecyl^-methyl-S-ethyl-pyridinium, 1 -(1 -Hexadecyl)-2- methyl-3-ethyl-pyridinium, 1 -Methylimidazolium, 1-Ethylimidazolium, 1-(1 -Butyl)- imidazolium, 1-(1-Octyl)-imidazolium, 1-(1-Dodecyl)-imidazolium, 1-(1-Tetradecyl)- imidazolium, 1 -(1 -Hexadecyl)-imidazolium, 1 ,3-Dimethylimidazolium, 1-Ethyl-3- methylimidazolium, 1 -(1 -Butyl)-3-methylimidazolium, 1 -(1 -Hexyl)-3-methyl- imidazolium, 1 -(1 -Octyl)-3-methylimidazolium, 1-(1-Dodecyl)-3-methylimidazolium, 1 - (1 -Tetradecyl)-3-methylimidazolium, 1 -(1 -Hexadecyl)-3-methylimidazolium, 1 ,2- Dimethylimidazolium, 1 ,2,3-Trimethylimidazolium, 1 -Ethyl-2,3-dimethylimidazolium, 1 -(1 -Butyl)-2,3-dimethylimidazolium, 1-(1-Hexyl)-2,3-dimethyl-imidazolium und 1-(1 - Octyl)-2,3-dimethylimidazolium, 1 ,4-Dimethylimidazolium, 1 ,3,4- Trimethylimidazolium, 1 ,4-Dimethyl-3-ethylimidazolium, 3-Butylimidazolium, 1 ,4- Dimethyl-3-octylimidazolium, 1 ,4,5-Trimethylimidazolium, 1 ,3,4,5- Tetramethylimidazolium, 1 ,4,5-Trimethyl-3-ethylimidazolium, 1 ,4,5-Trimethyl-3- butylimidazolium, 1,4,5-Trimethyl-3-octylimidazolium und 1-(Prop-1-en-3-yl)-3-metyl- imidazolium.
Bei den in den Formeln (lila) bis (MIj) genannten Metallkationen [M1]+, [M2J+, [M3]+, [M4J2+ und [M5J3+ handelt es sich im Allgemeinen um Metallkationen der 1., 2., 6., 7., 8., 9., 10., 11., 12. und 13. Gruppe des Periodensystems. Geeignete Metallkationen sind beispielsweise Li+, Na+, K+, Cs+, und Ag+.
Als Anionen sind prinzipiell alle Anionen einsetzbar.
Das Anion [Y]n" der ionischen Flüssigkeit ist beispielsweise ausgewählt aus
. F • der Gruppe der Sulfate, Sulfite und Sulfonate der allgemeinen Formel: SO4 2", HSO4 , SO3 2 , HSO3 ', R3OSO3 ", R3SO3 "
• der Gruppe der Phosphate der allgemeinen Formel PO4 3", HPO4 2", H2PO4 ", R3PO4 2", HR3PO4 ", R3R0PO4 "
• der Gruppe der Phosphonate und Phosphinate der allgemeinen Formel: R3HPO3 1R3R13PO2-, R3R13PO3 "
• der Gruppe der Phosphite der allgemeinen Formel: PO3 3", HPO3 2", H2PO3 ", R3PO3 2", R3HPO3 ", R3R13PO3
• der Gruppe der Phosphonite und Phosphinite der allgemeinen Formel: R3RbPO2 ", R3HPO2 ", RaRbPO", R3HPO"
• der Gruppe der Carbonsäuren der allgemeinen Formel: R3COO"
• der Gruppe der Borate der allgemeinen Formel:
BO3 3", HBO3 2", H2BO3 ", R3R13BO3 ", R3HBO3 ", R3BO3 2", B(ORa)(ORb)(ORc)(ORd) , B(HSO4)-, B(R3SO4)-
• der Gruppe der Boronate der allgemeinen Formel: R3BO2 2", R3RbBO"
• der Gruppe der Carbonate und Kohlensäureester der allgemeinen Formel: HCO3 ", CO3 2", R3CO3-
• der Gruppe der Silikate und Kieselsäuresäureester der allgemeinen Formel: SiO4 4", HSiO4 3", H2SiO4 2-, H3SiO4 ", R3SiO4 3", R3R13SiO4 2", R3RbRcSiO4 ", HR3SiO4 2", H2R3SiO4 ", HRaRbSiO4 "
• der Gruppe der Alkyl- bzw. Arylsilan-Salze der allgemeinen Formel: R3SiO3 3", R3R0SiO2 2", R3R13R0SiO", R3R6R0SiO3 ", R3R11R0SiO2 ", RaRbSiO3 2
• der Gruppe der Carbonsäureimide, Bis(sulfonyl)imide, Sulfonylimide und Cyanamid der allgemeinen Formel:
der Gruppe der Methide der allgemeinen Formel:
der Gruppe der Alkoxide und Aryloxide der allgemeinen Formeln: R3O";
Darin bedeuten Ra, Rb, Rc und Rd unabhängig voneinander jeweils Wasserstoff, Ci- C30-Alkyl, gegebenenfalls durch ein oder mehrere nicht-benachbarte Sauerstoffatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes C2-Ci 8-Alkyl, C6-Ci4-An/!, C5-Ci2-Cycloalkyl oder einen fünf- bis sechsgliedrigen, Sauerstoff- und/oder Stickstoffatome aufweisenden Heterocyclus, wobei zwei von ihnen gemeinsam einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch ein oder mehrere Sauerstoffatome und/oder ein oder mehrere unsubstituierte oder substituierte Iminogruppen unterbrochenen Ring bilden können, wobei die genannten Reste jeweils zusätzlich durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiert sein können.
Darin sind gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes CrC18-Alkyl beispielsweise Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl, Octyl, 2-Ethylhexyl, 2,4,4-Trimethylpentyl, Decyl, Dodecyl, Tetradecyl, Hexadecyl, Octadecyl, 1 ,1-Dimethylpropyl, 1 ,1 -Dimethylbutyl, 1 ,1 ,3,3-Tetramethylbutyl, Benzyl, 1 -Phenylethyl, α,α-Dimethylbenzyl, Benzhydryl, p-Tolylmethyl, i-(p-Butylphenyl)- ethyl, p-Methoxybenzyl, m-Ethoxybenzyl, 2-Cyanoethyl, 2-Cyanopropyl, 2- Methoxycarbonethyl, 2-Ethoxycarbonylethyl, 2-Butoxycarbonylpropyl, 1 ,2-Di- (methoxycarbonyl)-ethyl, 2-Methoxyethyl, 2-Ethoxyethyl, 2-Butoxyethyl, Diethoxymethyl, Diethoxyethyl, 1 ,3-Dioxolan-2-yl, 1 ,3-Dioxan-2-yl, 2-Methyl-1 ,3- dioxolan-2-yl, 4-Methyl-1 ,3-dioxolan-2-yl, 2-lsopropoxyethyl, 2-Butoxypropyl, 2- Octyloxyethyl, Trifluormethyl, 1 ,1-Dimethyl-2-chlorethyl, 2-Methoxyisopropyl, 2- Ethoxyethyl, 2,2,2-Trifluorethyl, 2-Hydroxyethyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 4-Hydroxybutyl, 6-Hydroxyhexyl, 2-Aminoethyl, 2-Aminopropyl, 4-Aminobutyl, 6- Aminohexyl, 2-Methylaminoethyl, 2-Methylaminopropyl, 3-Methylaminopropyl, 4- Methylaminobutyl, 6-Methylaminohexyl, 2-Dimethylaminoethyl, 2- Dimethylaminopropyl, 3-Dimethylaminopropyl, 4-Dimethylaminobutyl, 6- Dimethylaminohexyl, 2-Hydroxy-2,2-dimethylethyl, 2-Phenoxyethyl, 2- Phenoxypropyl, 3-Phenoxypropyl, 4-Phenoxybutyl, 6-Phenoxyhexyl, 2-Methoxyethyl, 2-Methoxypropyl, 3-Methoxypropyl, 4-Methoxybutyl, 6-Methoxyhexyl, 2-Ethoxyethyl, 2-Ethoxypropyl, 3-Ethoxypropyl, 4-Ethoxybutyl oder 6-Ethoxyhexyl.
Gegebenenfalls durch ein oder mehrere nicht-benachbarte Sauerstoff- und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenes C-2- Ciβ-Alkyl sind beispielsweise 5-Hydroxy-3-oxapentyl, 8-Hydroxy-3,6-dioxaoctyl, 11 - Hydroxy-3,6,9-trioxaundecyl, 7-Hydroxy-4-oxaheptyl, 11-Hydroxy-4,8-dioxaundecyl, 15-Hydroxy-4,8,12-trioxapentadecyl, 9-Hydroxy-5-oxa-nonyl, 14-Hydroxy-5,10- oxatetradecyl, 5-Methoxy-3-oxapentyl, 8-Methoxy-3,6-dioxa-octyl, 11-Methoxy-3,6,9- trioxaundecyl, 7-Methoxy-4-oxaheptyl, 11 -Methoxy-4,8-dioxa-undecyl, 15-Methoxy- 4,8,12-trioxapentadecyl, 9-Methoxy-5-oxanonyl, 14-Methoxy-5,10-oxatetradecyl, 5- Ethoxy-3-oxapentyl, 8-Ethoxy-3,6-dioxaoctyl, 11-Ethoxy-3,6,9-trioxaundecyl, 7- Ethoxy-4-oxaheptyl, 11-Ethoxy-4,8-dioxaundecyl, 15-Ethoxy-4,8,12-trioxapentadecyl, 9-Ethoxy-5-oxanonyl oder 14-Ethoxy-5,10-oxatetradecyl.
Bilden zwei Reste einen Ring, so können diese Reste gemeinsam beispielsweise als anellierter Baustein 1 ,3-Propylen, 1 ,4-Butylen, 2-Oxa-1 ,3-propylen, 1-Oxa-1 ,3- propylen, 2-Oxa-1 ,3-propenylen, 1 -Aza-1 ,3-propenylen, 1 -d-C4-Alkyl-1-aza-1 ,3- propenylen, 1 ,4-Buta-1 ,3-dienylen, 1 -Aza-1 ,4-buta-1 ,3-dienylen oder 2-Aza-1 ,4-buta- 1 ,3-dienylen bedeuten.
Die Anzahl der nicht-benachbarten Sauerstoff- und/oder Iminogruppen ist grundsätzlich nicht beschränkt, bzw. beschränkt sich automatisch durch die Größe des Rests oder des Ringbausteins. In der Regel beträgt sie nicht mehr als 5 in dem jeweiligen Rest, bevorzugt nicht mehr als 4 oder ganz besonders bevorzugt nicht mehr als 3. Weiterhin befinden sich zwischen zwei Heteroatomen in der Regel mindestens ein, bevorzugt mindestens zwei Kohlenstoffatom(e).
Substituierte und unsubstituierte Iminogruppen können beispielsweise Imino-, Methylimino-, iso-Propylimino, n-Butylimino oder tert-Butylimino sein.
Unter dem Begriff „funktionelle Gruppen" sind beispielsweise die folgenden zu verstehen: Carboxy, Carboxamid, Hydroxy, Di-(Ci -C4-Alkyl)-amino, C1-C4- Alkyloxycarbonyl, Cyano oder d-C4-Alkoxy. Dabei ist Ci bis C4-Alkyl Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl oder tert.-Butyl. Gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, F, Heteroatome und/oder Heterocyclen substituiertes C6-Ci4-Aryl sind beispielsweise Phenyl, ToIyI, XyIyI, α-Naphthyl, ß-Naphthyl, 4-Diphenylyl, Difluorphenyl, Methylphenyl, Dimethylphenyl, Trimethylphenyl, Ethylphenyl, Diethylphenyl, iso- Propylphenyl, tert.-Butylphenyl, Dodecylphenyl, Methoxyphenyl, Dimethoxyphenyl, Ethoxyphenyl, Hexyloxyphenyl, Methylnaphthyl, Isopropylnaphthyl, Ethoxynaphthyl, 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2,6-Dimethoxyphenyl, 2- oder A- Nitrophenyl, 2,4- oder 2,6-Dinitrophenyl, 4-Dimethylaminophenyl, 4-Acetylphenyl, Methoxyethylphenyl oder Ethoxymethylphenyl.
Gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, F, Heteroatome und/oder Heterocyclen substituiertes C5-Ci 2-Cycloalkyl sind beispielsweise Cyclopentyl, Cyclohexyl, Cyclooctyl, Cyclododecyl, Methylcyclopentyl, Dimethylcyclopentyl, Methylcyclohexyl, Dimethylcyclohexyl, Diethylcyclohexyl, Butylcyclohexyl, Methoxycyclohexyl, Dimethoxycyclohexyl, Diethoxycyclohexyl sowie ein gesättigtes oder ungesättigtes bicyclisches System wie Norbornyl oder Norbornenyl.
Ein fünf- bis sechsgliedriger, Sauerstoff- und/oder Stickstoffatome aufweisender Heterocyclus ist beispielsweise Furyl , Pyryl, Pyridyl, Indolyl, Benzoxazolyl, Dioxolyl, Dioxyl, Benzimidazolyl, Dimethylpyridyl, Methylchinolyl, Dimethylpyryl, Methoxyfuryl, Dimethoxypyridyl oder Difluorpyridyl.
Besonders bevorzugte Anionen sind ausgewählt aus der Gruppe bestehend aus F", BF4 ", PF6 ", CF3SO3 ", (CF3SO3)2N", CF3CO2 ", aus der Gruppe der Sulfate, Sulfite und Sulfonate der allgemeinen Formel: SO4 2", HSO4 ', SO3 2", HSO3 ', RaOSO3 ", R3SO3 ", aus der Gruppe der Phosphate der allgemeinen Formel PO4 3", HPO4 2", H2PO4 ", R3PO4 2", aus der Gruppe der Borate der Formel BO3 3", HBO3 2', H2BO3 ", aus der Gruppe der Silikate und Kieselsäuresäureester der Formel SiO4 4", HSiO4 3", H2SiO4 2", H3SiO4 ", der Carbonsäureimide, Bis(sulfonyl)imide, und Sulfonylimide der oben abgebildeten allgemeinen Formeln, und Mischungen davon, wobei Ra und Rb besonders bevorzugt ausgewählt ist aus Methyl, Ethyl, Propyl oder Butyl.
In einer weiteren bevorzugten Ausführungsform werden ionische Flüssigkeiten der Formel I mit
[A] +: NH4 +, NH3R+, NH2R3 +, NHR3 +, NR4 +, 1-Ethyl-2,3-dimethylimidazolium, P(OH)4 +, P(OR)4 +, PR4 + eingesetzt, wobei R besonders bevorzugt ausgewählt ist aus Methyl, Ethyl, Propyl oder Butyl. Neben dem Polyazol und der ionischen Flüssigkeit weist die erfindungsgemäße Membran darüber hinaus mindestens eine Verbindung der Formel (P1) auf
R'4POH (P1) wobei R1, jeweils unabhängig voneinander, ein Rest ist, der C, O und/oder H sowie ggf. weitere hiervon verschiedene Atome enthält, wobei zwei Reste R1 ggf. miteinander verbunden sein können.
Bevorzugte Reste R1 umfassen =0 (in diesem Fall wären zwei Reste miteinander verbunden), -OH, 1 -20 Kohlenstoffatome aufweisende Gruppen sowie 1 -20 Kohlenstoffatome aufweisende Alkoxygruppen.
Besonders bevorzugt werden in diesem Zusammenhang Verbindungen der Formel (P2),
wobei R" jeweils unabhängig voneinander eine 1-20 Kohlenstoffatome aufweisende Gruppe, bevorzugt eine unverzweigte und unsubstituierte CrCi8-Alkyl, wie beispielsweise Methyl, Ethyl, 1-Propyl, 1-Butyl, 1-Pentyl, 1-Hexyl, 1-Heptyl, 1-Octyl, 1-Decyl, 1-Dodecyl, 1-Tetradecyl, 1-Hexadecyl, 1-Octadecyl, insbesondere für Methyl, Ethyl, 1-Butyl und 1-Octyl, oder einen Rest ORV bedeutet, worin Rv H, eine 1-20 Kohlenstoffatome aufweisende Gruppe, bevorzugt eine unverzweigte und unsubstituierte Ci-Ci8-Alkyl, wie beispielsweise Methyl, Ethyl, 1 - Propyl, 1-Butyl, 1-Pentyl, 1-Hexyl, 1-Heptyl, 1-Octyl, 1 -Decyl, 1 -Dodecyl, 1- Tetradecyl, 1 -Hexadecyl, 1-Octadecyl, insbesondere für Methyl, Ethyl, 1 -Butyl und 1 - Octyl, oder einen Rest der Formel (P3) bedeutet
wobei
R1" jeweils unabhängig voneinander eine 1-20 Kohlenstoffatome aufweisende Gruppe, bevorzugt eine unverzweigte und unsubstituierte CrC18-Alkyl, wie beispielsweise Methyl, Ethyl, 1 -Propyl, 1 -Butyl, 1-Pentyl, 1-Hexyl, 1-Heptyl, 1-Octyl, 1-Decyl, 1-Dodecyl, 1-Tetradecyl, 1-Hexadecyl, 1-Octadecyl, insbesondere für Methyl, Ethyl, 1-Butyl und 1-Octyl, oder einen Rest ORVI bedeutet, Rιv jeweils unabhängig voneinander O oder eine 1-20 Kohlenstoffatome aufweisende Gruppe, bevorzugt eine unverzweigte und unsubstituierte C1-Ci8-AIkVl, wie beispielsweise Methyl, Ethyl, 1 -Propyl, 1 -Butyl, 1-Pentyl, 1 -Hexyl, 1 -Heptyl, 1 - Octyl, 1-Decyl, 1-Dodecyl, 1-Tetradecyl, 1-Hexadecyl, 1-Octadecyl, insbesondere für Methyl, Ethyl, 1 -Butyl und 1 -Octyl, bedeutet,
R jeweils unabhängig voneinander H oder eine 1-20 Kohlenstoffatome aufweisende Gruppe, bevorzugt eine unverzweigte und unsubstituierte Ci-C18-Alkyl, wie beispielsweise Methyl, Ethyl, 1-Propyl, 1-Butyl, 1 -Pentyl, 1-Hexyl, 1-Heptyl, 1-Octyl, 1-Decyl, 1-Dodecyl, 1 -Tetradecyl, 1 -Hexadecyl, 1-Octadecyl, insbesondere für Methyl, Ethyl, 1 -Butyl und 1 -Octyl, bedeutet, q eine Zahl größer oder gleich 1 bedeutet.
Verbindungen der Formel (P1) umfassen insbesondere handelsübliche Phosphorsäure, handelsübliche Polyphosphorsäuren HWPnO3n+I (n>1), die beispielsweise von Riedel-de Haen erhältlich sind und bevorzugt einen Gehalt, berechnet als P2O5 (acidimetrisch), von mindestens 83% aufweisen, sowie bekannte Phosphonsäuren, bevorzugt Ci-Ciβ-Alkylphosphonsäuren.
Die Anteile des Polyazols, der ionischen Flüssigkeit und der Verbindungen der Formel (P1 ) unterliegen grundsätzlich keinen besonderen Beschränkungen und können frei gewählt werden. Besonders günstige Eigenschaften zeigen jedoch Polymermembranen, die, jeweils bezogen auf ihr Gesamtgewicht, a. 0,5 Gew.-% bis 40,0 Gew.% Polyazol, b. 1 ,0 Gew.-% bis 50,0 Gew.% ionische Flüssigkeit und c. 10,0 Gew.-% bis 98,5 Gew.% Verbindung der Formel (P1 ) enthalten.
Weiterhin ist es zweckmäßig, dass das Polyazol und die ionische Flüssigkeit in einem Gewichtsverhältnis im Bereich von 1 :2 bis 1 :100 vorliegen.
Ferner sollte nach Möglichkeit das Gewichtsverhältnis von ionischer Flüssigkeit zu Verbindung der Formel (P1) im Bereich von 1 :1 bis 1:20, insbesondere im Bereich von 1 :5 bis 1 :15, gewählt werden.
Im Rahmen einer sehr bevorzugten Variante enthält die erfindungsgemäße Polymermembran weiterhin mindestens ein Polymer, das kein Polyazol darstellt (Polymer (B). Hierbei liegt das Gewichtsverhältnis von Polyazol zu Polymer (B) bevorzugt im Bereich von 0,1 bis 50, vorzugsweise im Bereich von 0,2 bis 20, besonders bevorzugt im Bereich von 1 bis 10.
Zu den bevorzugten Polymeren gehören unter anderem Polyolefine, wie
Poly(cloropren), Polyacetylen, Polyphenylen, Poly(p-xylylen), Polyarylmethylen,
Polyarmethylen, Polystyrol, Polymethylstyrol, Polyvinylalkohol, Polyvinylacetat,
Polyvinylether, Polyvinylamin, Poly(N-vinylacetamid), Polyvinylimidazol,
Polyvinylcarbazol, Polyvinylpyrrolidon, Polyvinylpyridin, Polyvinylchlorid,
Polyvinylidenchlorid, Polytetrafluorethylen, Polyhexafluorpropylen, Copolymere von
PTFE mit Hexafluoropropylen, mit Perfluorpropylvinylether, mit
Trifluoronitrosomethan, mit Sulfonylfluoridvinylether, mit Carbalkoxy- perfluoralkoxyvinylether, Polychlortrifluorethylen, Polyvinylfluorid,
Polyvinylidenfluorid, Polyacrolein, Polyacrylamid, Polyacrylnitril, Polycyanacrylate,
Polymethacrylimid, Cycloolefinische Copolymere, insbesondere aus Norbornen;
Polymere mit C-O-Bindungen in der Hauptkette, beispielsweise
Polyacetal, Polyoxymethylen, Polyether, Polypropylenoxid, Polyepichlorhydrin,
Polytetrahydrofuran, Polyphenylenoxid, Polyetherketon, Polyester, insbesondere
Polyhydroxyessigsäure, Polyethylenterephthalat, Polybutylenterephthalat,
Polyhydroxybenzoat, Polyhydroxypropionsäure, Polypivalolacton, Polycaprolacton,
Polymalonsäure, Polycarbonat;
Polymere C-S-Bindungen in der Hauptkette, beispielsweise Polysulfidether,
Polyphenylensulfid, Polyethersulfon;
Polymere C-N-Bindungen in der Hauptkette, beispielsweise
Polyimine, Polyisocyanide.Polyetherimin, Polyanilin, Polyamide, Polyhydrazide,
Polyurethane, Polyimide, Polyazole, Polyazine;
Flüssigkristalline Polymere, insbesondere Vectra sowie
Anorganische Polymere, beispielsweise Polysilane, Polycarbosilane, Polysiloxane,
Polykieselsäure, Polysilikate, Silicone, Polyphosphazene und Polythiazyl.
Des Weiteren gehören zu den bevorzugten Polymeren (B) auch Polymere mit kovalent gebundenen Säuregruppen. Diese Säuregruppen umfassen insbesondere Sulfonsäuregruppen. Die mit Sulfonsäuregruppen modifizierten Polymere besitzen vorzugsweise einen Gehalt an Sulfonsäuregruppen im Bereich von 0,5 bis 3 meq/g. Dieser Wert wird über die sog. lonenaustauschkapazität (IEC) bestimmt.
Zur Messung der IEC werden die Sulfonsäuregruppen in die freie Säure überführt. Hierzu wird das Polymere auf bekannte Weise mit Säure behandelt, wobei überschüssige Säure durch Waschen entfernt wird. So wird das sulfonierte Polymer zunächst 2 Stunden in siedendem Wasser behandelt. Anschließend wird überschüssiges Wasser abgetupft und die Probe während 15 Stunden bei 160°C im Vakuumtrockenschrank bei p<1 mbar getrocknet. Dann wird das Trockengewicht der Membran bestimmt. Das so getrocknete Polymer wird dann in DMSO bei 80°C während 1 h gelöst. Die Lösung wird anschließend mit 0,1 M NaOH titriert. Aus dem Verbrauch der Säure bis zum Equivalentpunkt und dem Trockengewicht wird dann die lonenaustauschkapazität (IEC) berechnet.
Derartige Polymere sind in der Fachwelt bekannt. So können Sulfonsäuregruppen enthaltende Polymere beispielsweise durch Sulfonierung von Polymeren hergestellt werden. Verfahren zur Sulfonierung von Polymeren sind in F. Kucera et. al. Polymer Engineering and Science1988, Vol. 38, No 5, 783-792 beschrieben. Hierbei können die Sulfonierungsbedingungen so gewählt werden, dass ein niedriger Sulfonierungsgrad entsteht (D E-A- 19959289).
So wurde eine weitere Klasse nichtfluorierter Polymere durch Sulfonierung von hochtemperaturstabilen Thermoplasten entwickelt. So sind sulfonierte Polyetherketone (WO96/29360), sulfonierte Polysulfone (J. Membr. Sei. 83 (1993) p.211 ) oder sulfoniertes Polyphenylensulfid (D E-A- 19527435) bekannt.
US-A-6110616 beschreibt Copolymere aus Butadien und Styrol und deren anschließende Sulfonierung zur Verwendung für Brennstoffzellen.
Des Weiteren können derartige Polymere auch durch Polyreaktionen von Monomeren erhalten werden, die Säuregruppen umfassen. So können perfluorinierte Polymere wie in US-A-5422411 beschrieben durch Copolymerisation aus Trifluorostyrol und sulfonylmodifiziertem Trifuorostyrol hergestellt werden.
Zu diesen Perfluorosulfonsäurepolymeren gehört unter anderem Nation® (US-A- 3692569). Dieses Polymer kann wie in US-A-4453991 beschrieben in Lösung gebracht und dann als lonomer eingesetzt werden.
Zu den bevorzugten Polymeren mit Säuregruppen gehören unter anderem sulfonierte Polyetherketone, sulfonierte Polysulfone, sulfonierte Polyphenylensulfide, perfluorinierte sulfonsäuregruppenhaltige Polymere, wie in US-A-3692569, US-A- 5422411 und US-A-6110616 beschrieben.
Zur Anwendung in Brennstoffzellen mit einer Dauergebrauchstemperatur oberhalb 1000C werden solche Polymere (B) bevorzugt, die eine Glasübergangstemperatur oder Vicat-Erweichungstemperatur VST/A/50 von mindestens 1000C, bevorzugt mindestens 1500C und ganz besonders bevorzugt mindestens 1800C haben. Hierbei sind Polysulfone mit einer Vicat-Erweichungstemperatur VST/A/50 von 1800C bis 2300C bevorzugt.
Darüber hinaus sind Polymere (B) bevorzugt, die eine geringe Löslichkeit und/oder Abbaubarkeit in Phosphorsäure aufweisen. Gemäß einer besonderen Ausfϋhrungsform der vorliegenden Erfindung ist nimmt das Gewicht durch eine Behandlung mit 85%iger Phosphorsäure nur unwesentlich ab. Vorzugsweise ist das Gewichtsverhältnis der Platte nach der Phosphorsäure-Behandlung zum Gewicht der Platte vor der Behandlung größer oder gleich 0,8, insbesondere größer oder gleich 0,9 und besonders bevorzugt größer oder gleich 0,95. Dieser Wert wird an einer Platte aus Polymer (B) gemessen, die 2 mm dick, 5 cm lang und 2 cm breit ist. Diese Platte wird in Phosphorsäure gegeben, wobei das Gewichtsverhältnis von Phosphorsäure zu Platte 10 beträgt. Anschließend wird die Phosphorsäure unter Rühren 24 Stunden auf 1000C erhitzt. Anschließend wird die Platte durch Waschen mit Wasser von überschüssiger Phosphorsäure befreit und getrocknet. Hiernach wird die Platte erneut gewogen.
Zu den bevorzugten Polymeren gehören Polysulfone, insbesondere Polysulfon mit Aromaten in der Hauptkette. Gemäß einem besonderen Aspekt der vorliegenden Erfindung weisen bevorzugte Polysulfone und Polyethersulfone eine Schmelzvolumenrate MVR 300/21 ,6 kleiner oder gleich 40 cm3/ 10 min, insbesondere kleiner oder gleich 30 cm3/ 10 min und besonders bevorzugt kleiner oder gleich 20 cm3/ 10 min gemessen nach ISO 1133 auf.
Darüber hinaus hat es sich für die Zwecke der vorliegenden Erfindung besonders bewährt, wenn die Polymermembran Phosphonsäuregruppen umfassende Polymere enthält, die durch Polymerisation von Phosphonsäuregruppen umfassenden Monomeren erhältlich sind. Dabei sind die Polymere vorzugsweise durch ein Verfahren erhältlich, umfassend die Schritte
A) Imbibieren mindestens eines porösen Polyazols mit einer Flüssigkeit, die Phosphonsäuregruppen umfassende Monomere enthält, und
B) Polymerisation mindestens eines Teils der Phosphonsäuregruppen umfassenden Monomeren, die in Schritt I) in die Polymerfolie eingebracht wurden.
Als Imbibieren wird eine Gewichtszunahme des porösen Polyazols von mindestens 3 Gew.-% verstanden. Bevorzugt beträgt die Gewichtszunahme mindestens 5 Gew.- %, besonders bevorzugt mindestens 10 Gew.-%. Die Gewichtszunahme wird gravimetrisch bestimmt aus der Masse des porösen Trägermaterials vor dem Imbibieren rrio und der Masse der Polymermembran nach der Polymerisation gemäß Schritt B), rτi2.
Q= (m2-mo)/mox1OO
Das Imbibieren erfolgt vorzugsweise bei einer Temperatur oberhalb 00C, insbesondere zwischen Raumtemperatur (2O0C) und 18O0C in einer Flüssigkeit, die vorzugsweise mindestens 5 Gew.-% Phosphonsäuregruppen umfassende Monomere enthält. Des weiteren kann das Imbibieren auch bei erhöhtem Druck und mit Hilfe von Ultraschall durchgeführt werden. Hierbei ergeben sich die Grenzen aus wirtschaftlichen Überlegungen und technischen Möglichkeiten.
Das zum Imbibieren eingesetzte Polyazol weist im allgemeinen eine Dicke im Bereich von 5 bis 1000 μm, vorzugsweise 10 bis 500 μm, insbesondere 15 und 300 μm und besonders bevorzugt zwischen 30 und 250 μm auf. Die Herstellung derartiger Trägermaterialien ist im allgemeinen bekannt, wobei diese teilweise kommerziell erhältlich sind.
Porös bedeutet, dass das Polyazol einen großen Anteil an einem freien Volumen aufweist, dass mit einer Flüssigkeit gefüllt werden kann. Das freie Volumen beträgt vorzugsweise mindestens 30% bevorzugt mindestens 50%, mindestens 70% und ganz besonders bevorzugt mindestens 90 Vol.-%, bezogen auf das Volumen des Polyazols.
Die Poren des Polyazols können im allgemeinen eine Größe im Bereich von 1 nm bis 4000 nm, vorzugsweise 10 bis 1000 nm aufweisen.
Die Poren des Polyazols können im allgemeinen ein Volumen im Bereich von 1 nm3 bis 1 μm3, bevorzugt 10 nm3 bis 10000 nm3 aufweisen.
Das Porenvolumen des Polyazols ergibt sich beispielsweise aus der Gewichtszunahme durch das Imbibieren mit Flüssigkeit. Des weiteren kann diese Größe auch durch BET-Methode (Brunauer, Emmett u. Teller) bestimmt werden. Beispielsweise können poröse Träger aus Geweben, Vliesen, Schäume oder anderen porösen Materialien verwendet werden.
Besonders bevorzugt werden Polymerefolien mit einer offenen Porenstruktur, Polymergewebe oder Polymervliese. Das offene Porenvolumen beträgt dabei mehr als 30% bevorzugt mehr als 50% und ganz besonders bevorzugt mehr als 70%. Die Glasübergangstemperatur des organischen Basispolymeren einer solchen Membran ist dabei höher als die Betriebstemperatur der Brennstoffzelle und beträgt vorzugsweise mindestens 1500C, bevorzugt mindestens 1600C und ganz besonders bevorzugt mindestens 1800C. Solche Membranen finden Einsatz als Separationsmembranen zur Ultrafiltration, Gasseparation, Pervaporation, Nanofiltration, Microfiltration oder Hämodialyse.
Die Flüssigkeit, die Phosphonsäuregruppen umfassende Monomere enthält, kann eine Lösung darstellen, wobei die Flüssigkeit auch suspendierte und/oder dispergierte Bestandteile enthalten kann. Die Viskosität der Flüssigkeit, die Phosphonsäuregruppen umfassende Monomere enthält, kann in weiten Bereichen liegen, wobei zur Einstellung der Viskosität eine Zugabe von Lösungsmitteln oder eine Temperaturerhöhung erfolgen kann. Vorzugsweise liegt die dynamische Viskosität im Bereich von 0,1 bis 1.0000 mPa*s, insbesondere 0,2 bis 2000 mPa*s, wobei diese Werte beispielsweise gemäß DIN 53015 gemessen werden können.
Phosphonsäuregruppen umfassende Monomere sind in der Fachwelt bekannt. Es handelt sich hierbei um Verbindungen, die mindestens eine Kohlenstoff-Kohlenstoff- Doppelbindung und mindestens eine Phosphonsäuregruppe aufweisen. Vorzugsweise weisen die zwei Kohlenstoffatome, die Kohlenstoff-Kohlenstoff- Doppelbindung bilden, mindestens zwei, vorzugsweise 3 Bindungen zu Gruppen auf, die zu einer geringen sterischen Hinderung der Doppelbindung führen. Zu diesen Gruppen gehören unter anderem Wasserstoff atome und Halogenatome, insbesondere Fluoratome. Im Rahmen der vorliegenden Erfindung ergibt sich das Phosphonsäuregruppen umfassende Polymer aus dem Polymerisationsprodukt, das durch Polymerisation des Phosphonsäuregruppen umfassenden Monomers allein oder mit weiteren Monomeren und/oder Vernetzern erhalten wird.
Das Phosphonsäuregruppen umfassende Monomer kann ein, zwei, drei oder mehr Kohlenstoff-Kohlenstoff-Doppelbindungen umfassen. Des weiteren kann das Phosphonsäuregruppen umfassende Monomer ein, zwei, drei oder mehr Phosphonsäuregruppen enthalten.
Im allgemeinen enthält das Phosphonsäuregruppen umfassende Monomer 2 bis 20, vorzugsweise 2 bis 10 Kohlenstoffatome. Bei dem zur Herstellung der Phosphonsäuregruppen umfassenden Polymere verwendeten Phosphonsäuregruppen umfassenden Monomer handelt es sich vorzugsweise um Verbindungen der Formel worin
R eine Bindung, eine zweibindige C1 -C15-Alkylengruppe, zweibindige C1 -C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5- C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1 -C15-Alkylgruppe, C1 -C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der Formel worin
R eine Bindung, eine zweibindige C1 -C15-Alkylengruppe, zweibindige C1 -C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5- C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1 -C15-Alkylgruppe, C1 -C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der Formel worin
A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1-C15-Alkylgruppe, C1 -C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können
R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5- C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet.
Zu den bevorzugten Phosphonsäuregruppen umfassenden Monomeren gehören unter anderem Alkene, die Phosphonsäuregruppen aufweisen, wie Ethenphosphonsäure, Propenphosphonsäure, Butenphosphonsäure; Acrylsäure- und/oder Methacrylsäure-Verbindungen, die Phosphonsäuregruppen aufweisen, wie beispielsweise 2-Phosphonomethyl-acrylsäure, 2-Phosphonornethyl-methacrylsäure, 2-Phosphonomethyl-acrylsäureamid und 2-Phosphonomethyl-methacrylsäureamid.
Besonders bevorzugt wird handelsübliche Vinylphosphonsäure (Ethenphosphonsäure), wie diese beispielsweise von der Firma Aldrich, BASF SE oder Archimica GmbH erhältlich ist, eingesetzt. Eine bevorzugte Vinylphosphonsäure weist eine Reinheit von mehr als 70%, insbesondere 90 % und besonders bevorzugt mehr als 97% Reinheit auf.
Die Phosphonsäuregruppen umfassenden Monomere können des weiteren auch in Form von Derivaten eingesetzt werden, die anschließend in die Säure überführt werden können, wobei die Überführung zur Säure auch in polymerisiertem Zustand erfolgen kann. Zu diesen Derivaten gehören insbesondere die Salze, die Ester, die Amide und die Halogenide der Phosphonsäuregruppen umfassenden Monomere.
Die in Schritt A) verwendete Flüssigkeit umfasst vorzugsweise mindestens 20 Gew.-%, insbesondere mindestens 30 Gew.-% und besonders bevorzugt mindestens 50 Gew.-%, bezogen auf das Gesamtgewicht der Mischung, Phosphonsäuregruppen umfassende Monomere.
Die in Schritt A) eingesetzt Flüssigkeit kann zusätzlich noch weitere organische und/oder anorganische Lösungsmittel enthalten. Zu den organischen Lösungsmitteln gehören insbesondere polar aprotische Lösungsmittel, wie Dimethylsulfoxid (DMSO), Ester, wie Ethylacetat, und polar protische Lösungsmittel, wie Alkohole, wie Ethanol, Propanol, Isopropanol und/oder Butanol. Zu den anorganischen Lösungsmittel zählen insbesondere Wasser, Phosphorsäure und Polyphosphorsäure.
Diese können die Verarbeitbarkeit positiv beeinflussen. Der Gehalt an Phosphonsäuregruppen umfassenden Monomeren in solchen Flüssigkeiten beträgt im allgemeinen mindestens 5 Gew.-%, vorzugsweise mindestens 10 Gew.-%, besonders bevorzugt zwischen 10 und 97 Gew.-%.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung können zur Herstellung der Phosphonsäuregruppen umfassenden Polymere Zusammensetzungen verwendet werden, die Sulfonsäuregruppen umfassende Monomere enthalten.
Sulfonsäuregruppen umfassende Monomere sind in der Fachwelt bekannt. Es handelt sich hierbei um Verbindungen, die mindestens eine Kohlenstoff-Kohlenstoff- Doppelbindung und mindestens eine Sulfonsäuregruppe aufweisen. Vorzugsweise weisen die zwei Kohlenstoffatome, die Kohlenstoff-Kohlenstoff-Doppelbindung bilden, mindestens zwei, vorzugsweise 3 Bindungen zu Gruppen auf, die zu einer geringen sterischen Hinderung der Doppelbindung führen. Zu diesen Gruppen gehören unter anderem Wasserstoffatome und Halogenatome, insbesondere Fluoratome. Im Rahmen der vorliegenden Erfindung ergibt sich das Sulfonsäuregruppen umfassende Polymer aus dem Polymerisationsprodukt, das durch Polymerisation des Sulfonsäuregruppen umfassenden Monomers allein oder mit weiteren Monomeren und/oder Vernetzern erhalten wird.
Das Sulfonsäuregruppen umfassende Monomer kann ein, zwei, drei oder mehr Kohlenstoff-Kohlenstoff-Doppelbindungen umfassen. Des weiteren kann das Sulfonsäuregruppen umfassende Monomer ein, zwei, drei oder mehr Sulfonsäuregruppen enthalten.
Im allgemeinen enthält das Sulfonsäuregruppen umfassende Monomer 2 bis 20, vorzugsweise 2 bis 10 Kohlenstoffatome.
Bei dem Sulfonsäuregruppen umfassenden Monomer handelt es sich vorzugsweise um Verbindungen der Formel worin
R eine Bindung, eine zweibindige C1 -C15-Alkylengruppe, zweibindige C1 -C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5- C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1 -C15-Alkylgruppe, C1 -C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
und/oder der Formel worin
R eine Bindung, eine zweibindige C1 -C15-Alkylengruppe, zweibindige C1 -C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5- C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits, mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1 -C15-Alkylgruppe, C1 -C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet
und/oder der Formel worin
A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1 -C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können
R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5- C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-
Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet.
Zu den bevorzugten Sulfonsäuregruppen umfassenden Monomeren gehören unter anderem Alkene, die Sulfonsäuregruppen aufweisen, wie Ethensulfonsäure, Propensulfonsäure, Butensulfonsäure; Acrylsäure- und/oder Methacrylsäure- Verbindungen, die Sulfonsäuregruppen aufweisen, wie beispielsweise 2-Sulfonomethyl-acrylsäure, 2-Sulfonomethyl-methacrylsäure, 2-Sulfonomethyl- acrylsäureamid und 2-Sulfonomethyl-methacrylsäureamid.
Besonders bevorzugt wird handelsübliche Vinylsulfonsäure (Ethensulfonsäure), wie diese beispielsweise von der Firma Aldrich oder Clariant GmbH erhältlich ist, eingesetzt. Eine bevorzugte Vinylsulfonsäure weist eine Reinheit von mehr als 70%, insbesondere 90 % und besonders bevorzugt mehr als 97% Reinheit auf.
Die Sulfonsäuregruppen umfassenden Monomere können des weiteren auch in Form von Derivaten eingesetzt werden, die anschließend in die Säure überführt werden können, wobei die Überführung zur Säure auch in polymerisiertem Zustand erfolgen kann. Zu diesen Derivaten gehören insbesondere die Salze, die Ester, die Amide und die Halogenide der Sulfonsäuregruppen umfassenden Monomere.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung kann das Gewichtsverhältnis von Sulfonsäuregruppen umfassenden Monomeren zu Phosphonsäuregruppen umfassenden Monomeren im Bereich von 100:1 bis 1 :100, vorzugsweise 10:1 bis 1 :10 und besonders bevorzugt 2:1 bis 1 :2 liegen.
In einer weiteren Ausführungsform der Erfindung können bei der Herstellung der Polymermembran zur Vernetzung befähigte Monomere eingesetzt werden. Diese Monomere können der Flüssigkeit gemäß Schritt A) beigefügt werden. Bei den zur Vernetzung befähigten Monomeren handelt es sich insbesondere um Verbindungen, die mindestens 2 Kohlenstoff-Kohlenstoff Doppelbindungen aufweisen. Bevorzugt werden Diene, Triene, Tetraene, Dimethylacrylate, Trimethylacrylate, Tetramethylacrylate, Diacrylate, Triacrylate, Tetraacrylate.
Besonders bevorzugt sind Diene, Triene, Tetraene der Formel
Dimethylacrylate, Trimethylycrylate, Tetramethylacrylate der Formel
Diacrylate, Triacrylate, Tetraacrylate der Formel
worin
R eine C1-C15-Alkylgruppe, C5-C20-Aryl oder Heteroarylgruppe, NR', -SO2,
PR', Si(R')2 bedeutet, wobei die vorstehenden Reste ihrerseits substituiert sein können, R' unabhängig voneinander Wasserstoff, eine C1 -C15-Alkylgruppe, C1 -C15-
Alkoxygruppe, C5-C20-Aryl oder Heteroarylgruppe bedeutet und n mindestens 2 ist.
Bei den Substituenten des vorstehenden Restes R handelt es sich vorzugsweise um Halogen, Hydroxyl, Carboxy, Carboxyl, Carboxylester, Nitrile, Amine, SiIyI, Siloxan Reste.
Besonders bevorzugte Vernetzer sind Allylmethacrylat, Ethylenglykoldimethacrylat, Diethylenglykoldimethacrylat, Triethylenglykoldimethacrylat, Tetra- und Polyethylenglykoldimethacrylat, 1 ,3-Butandioldimethacrylat, Glycerindimethacrylat, Diurethandimethacrylat, Trimethylpropantrimethacrylat, Epoxyacrylate, beispielsweise Ebacryl, N',N-Methylenbisacrylamid, Carbinol, Butadien, Isopren, Chloropren, Divinylbenzol und/oder Bisphenol-A-dimethylacrylat. Diese Verbindungen sind beispielsweise von Sartomer Company Exton, Pennsylvania unter den Bezeichnungen CN-120, CN104 und CN-980 kommerziell erhältlich.
Der Einsatz von Vernetzern ist optional, wobei diese Verbindungen üblich im Bereich zwischen 0,05 bis 30 Gew.-%, vorzugsweise 0,1 bis 20 Gew.-%, besonders bevorzugt 1 und 10 Gew.-%, bezogen auf das Gewicht der Phosphonsäuregruppen umfassenden Monomere, eingesetzt werden können.
Zur weiteren Verbesserung der anwendungstechnischen Eigenschaften können der Polymermembran zusätzlich noch Füllstoffe, insbesondere protonenleitende Füllstoffe, sowie zusätzliche Säuren zugesetzt werden.
Nicht limitierende Beispiele für protonenleitende Füllstoffe sind
Sulfate wie: CsHSO4, Fe(SO4)2, (N H4)SH(SO-O2, LiHSO4, NaHSO4, KHSO4,
RbSO4, LiN2H5SO4, NH4HSO4, Phosphate wie Zr3(PO4J4, Zr(HPO4J2, HZr2(PO4J3, UO2PO4.3H2O, H8UO2PO4,
Ce(HPO4J2, Ti(HPO4J2, KH2PO4, NaH2PO4, LiH2PO4, NH4H2PO4,
CsH2PO4, CaHPO4, MgHPO4, HSbP2O8, HSb3P2Oi4, H5Sb5P2O20, Polysäure wie H3PW12O40.nH2O (n=21 -29), H3SiW12O40. n H2O (n=21 -29), HxWO3,
HSbWO6, H3PMOi2O40, H2Sb4On, HTaWO6, HNbO3, HTiNbO5,
HTiTaO5, HSbTeO6, H5Ti4O9, HSbO3, H2MoO4 Selenite und Arsenide wie (NH4J3H(SeO4J2, UO2AsO4, (NH4J3H(SeO4J2, KH2AsO4,
Cs3H(SeO4J2, Rb3H(SeO4J2,
Oxide wie AI2O3, Sb2O5, ThO2, SnO2, ZrO2, MoO3 Silikate wie Zeolithe, Zeolithe(NH4+), Schichtsilikate, Gerüstsilikate, H-Natrolite,
H-Mordenite, NH4-Analcine, NH4-Sodalite, NH4-Gallate, H-
Montmorillonite Säuren wie HCIO4, SbF5 Füllstoffe wie Carbide, insbesondere SiC, Si3N4, Fasern, insbesondere Glasfasern,
Glaspulvern und/oder Polymerfasern, bevorzugt auf Basis von
Polyazolen.
Diese Additive können in der Polymermembran in üblichen Mengen enthalten sein, wobei jedoch die positiven Eigenschaften, wie hohe Leitfähigkeit, hohe Lebensdauer und hohe mechanische Stabilität der Membran durch Zugabe von zu großen Mengen an Additiven nicht allzu stark beeinträchtigt werden sollten. Im Allgemeinen umfasst die Membran höchstens 80 Gew.-%, vorzugsweise höchstens 50 Gew.-% und besonders bevorzugt höchstens 20 Gew.-% Additive.
Als weiteres kann die Polymermembran auch perfluorierte Sulfonsäure-Additive (vorzugsweise 0,1 -20 Gew.-%, bevorzugt 0,2-15 Gew.-%, ganz bevorzugt 0,2- 10 Gew.-%) enthalten. Diese Additive führen zur Leistungsverbesserung, in der Nähe der Kathode zur Erhöhung der Sauerstofflöslichkeit und Sauerstoffdiffusion und zur Verringerung der Adsorbtion von Phosphorsäure und Phosphat zu Platin. (Electrolyte additives for phosphoric acid fuel cells. Gang, Xiao; Hjuler, H. A.; Olsen, C; Berg, R. W.; Bjerrum, N. J. Chem. Dep. A, Tech. Univ. Denmark, Lyngby, Den. J. Electrochem. Soc. (1993), 140(4), 896-902 und Perfluorosulfonimide as an additive in phosphoric acid fuel cell. Razaq, M.; Razaq, A.; Yeager, E.; DesMarteau, Darryl D.; Singh, S. Case Cent. Electrochem. Sei., Case West. Reserve Univ., Cleveland, OH, USA. J. Electrochem. Soc. (1989), 136(2), 385-90.)
Nicht limitierende Beispiele für persulfonierte Additive sind: Trifluomethansulfonsäure, Kaliumtrifluormethansulfonat, Natriumtrifluormethansulfonat, Lithiumtrifluormethansulfonat, Ammoniumtrifluormethansulfonat, Kaliumperfluorohexansulfonat, Natriumperfluorohexansulfonat, Lithiumperfluorohexansulfonat, Ammoniumperfluorohexansulfonat, Perfluorohexansulfonsäure, Kaliumnonafluorbutansulfonat, Natriumnonafluorbutansulfonat, Lithiumnonafluorbutansulfonat, Ammoniumnonafluorbutansulfonat, Cäsiumnonafluorbutansulfonat, Triethylammoniumperfluorohexasulfonat, Perflurosulfoimide und Nafion.
Die Herstellung der erfindungsgemäßen Membran kann auf an sich bekannte Weise erfolgen, beispielsweise indem man eine Lösung der Komponenten Polyazol, ionische Flüssigkeit und Verbindung der Formel (P1) herstellt, räkelt und verfestigt.
Gemäß einer besonders bevorzugten Variante der vorliegenden Erfindung erfolgt jedoch bereits die Herstellung des Polyazols in Gegenwart von mindestens einer Verbindung der Formel (P1) oder mindestens einer Verbindung, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefert, besonders bevorzugt in Gegenwart von Polyphosphorsäure. Hierzu können der Verbindung der Formel (P1) oder der Verbindung, die bei Hydrolyse mindestens eine Verbindung der Formel (P1 ) liefert, ein oder mehrere Verbindungen beigefügt werden, die unter Einwirkung von Wärme zur Bildung von Polyazolen fähig sind. Geeignete Verbindungen, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefern, umfassen Polyphosphorsäure sowie organische Phosphonsäureanhydride, insbesondere cyclische Verbindungen der Formel
lineare Verbindungen der Formel
, sowie
Anhydride mehrfach organischer Phosphonsäuren, wie z.B. der Formel von Anhydride der Diphosphonsäure
worin der Rest R und R' gleich oder verschieden ist und für eine Ci - C20- kohlenstoffhaltigen Gruppe steht.
Im Rahmen der vorliegenden Erfindung werden unter einer Ci - C20 -kohlenstoffhaltigen Gruppe bevorzugt die Reste CrC-20-Alkyl, besonders bevorzugt Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, n-Pentyl, s-Pentyl, Cyclopentyl, n-Hexyl, Cyclohexyl, n-Octyl oder Cyclooctyl, Ci - C20 - Alkenyl, besonders bevorzugt Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Octenyl oder Cyclooctenyl, Ci - C20 - Alkinyl, besonders bevorzugt Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl oder Octinyl, C6-C2O-An/!, besonders bevorzugt Phenyl, Biphenyl, Naphthyl oder Anthracenyl, Ci - C2o - Fluoralkyl, besonders bevorzugt Trifluormethyl, Pentafluorethyl oder 2,2,2-Trifluorethyl, C6-C20- Aryl, besonders bevorzugt Phenyl, Biphenyl, Naphthyl, Anthracenyl, Triphenylenyl, [1 ,1';3',1"]Terphenyl-2'-yl, Binaphthyl oder Phenanthrenyl, Ce-C^o-Fluoraryl, besonders bevorzugt Tetrafluorophenyl oder Heptafluoronaphthyl, CrC2o-Alkoxy, besonders bevorzugt Methoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s- Butoxy oder t-Butoxy, C6-C2o-Aryloxy, besonders bevorzugt Phenoxy, Naphthoxy, Biphenyloxy, Anthracenyloxy, Phenanthrenyloxy, C7-C2o-Arylalkyl, besonders bevorzugt o-Tolyl, m-Tolyl, p-Tolyl, 2,6-Dimethylphenyl, 2,6-Diethylphenyl, 2,6-Di-i- propylphenyl, 2,6-Di-t-butylphenyl, o-t-Butylphenyl, m-t-Butylphenyl, p-t-Butylphenyl, C7-C2o-Alkylaryl, besonders bevorzugt Benzyl, Ethylphenyl, Propylphenyl, Diphenylmethyl, Triphenylmethyl oder Naphthalinylmethyl, C7-C2o-Aryloxyalkyl, besonders bevorzugt o-Methoxyphenyl, m-Phenoxymethyl, p-Phenoxymethyl, Ci2- C2o-Aryloxyaryl, besonders bevorzugt p-Phenoxyphenyl, C5-C2o-Heteroaryl, besonders bevorzugt 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, Chinolinyl, Isochinolinyl, Acridinyl, Benzochinolinyl oder Benzoisochinolinyl, C4-C20-Heterocycloalkyl, besonders bevorzugt Furyl, Benzofuryl, 2-Pyrolidinyl, 2-lndolyl, 3-lndolyl, 2,3- Dihydroindolyl, C8-C2o-Arylalkenyl, besonders bevorzugt o-Vinylphenyl, m- Vinylphenyl, p-Vinylphenyl, C8-C2o-Arylalkinyl, besonders bevorzugt o-Ethinylphenyl, m-Ethinylphenyl oder p-Ethinylphenyl, C2 - C20 - heteroatomhaltige Gruppe, besonders bevorzugt Carbonyl, Benzoyl, Oxybenzoyl, Benzoyloxy, Acetyl, Acetoxy oder Nitril verstanden, wobei eine oder mehrere Ci-C2o-kohlenstoff haltige Gruppen ein cyclisches System bilden können.
Bei den vorstehend genannten Ci - C20-kohlenstoff-haltigen Gruppen können ein oder mehrere nicht benachbarte CH2- Gruppen durch -O-, -S-, -NR1- oder -CONR2 - ersetzt sein und ein oder mehrere H-Atome können durch F ersetzt sein.
Bei den vorstehend genannten Ci - C2o-kohlenstoff-haltigen Gruppen die aromatische Systeme aufweisen können ein oder mehrere nicht benachbarte CH- Gruppen durch -O-, -S-, -NR1- oder -CONR2 ersetzt sein und ein oder mehrere H- Atome können durch F ersetzt sein.
Die Reste R1 und R2 sind gleich oder verschieden bei jedem Auftreten H oder ein aliphatischer oder aromatischer Kohlenwasserstoff rest mit 1 bis 20 C-Atomen.
Besonders bevorzugt sind organische Phosphonsäureanhydride die teil- oder perfluoriert sind.
Die genannten organischen Phosphonsäureanhydride sind kommerziell erhältlich, beispielsweise das Produkt ®T3P (Propan-Phosphonsäureanhydrid) der Firma Archimica. Die organischen Phosphonsäureanhydride können auch in Kombination mit Polyphosphorsäure und/oder mit P2O5 eingesetzt werden. Bei der Polyphosphorsäure handelt es sich um handelsübliche Polyphosphorsäuren wie diese beispielsweise von Riedel-de Haen erhältlich sind. Die Polyphosphorsäuren Hn+2Pnθ3n+i (n>1) besitzen üblicherweise einen Gehalt berechnet als P2O5 (acidimetrisch) von mindestens 83%. Anstelle einer Lösung der Monomeren kann auch eine Dispersion/Suspension erzeugt werden.
Die organischen Phosphonsäureanhydride können auch in Kombination mit einfachen und oder mehrfachen organischen Phosphonsäuren eingesetzt werden.
Bei den einfachen und oder mehrfachen organischen Phosphonsäuren handelt es sich um Verbindungen der Formel
R -PO3H2
H2O3P- R - PO3H2 R tPO3H2In n>2
worin der Rest R gleich oder verschieden ist und für eine Ci - C2o- kohlenstoffhaltigen Gruppe steht.
Im Rahmen der vorliegenden Erfindung werden unter einer Ci - C20 -kohlenstoffhaltigen Gruppe bevorzugt die Reste Ci-C2o-Alkyl, besonders bevorzugt Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, n-Pentyl, s-Pentyl, Cyclopentyl, n-Hexyl, Cyclohexyl, n-Octyl oder Cyclooctyl, C6-C2o-Aryl, besonders bevorzugt Phenyl, Biphenyl, Naphthyl oder Anthracenyl, Ci - C2o - Fluoralkyl, besonders bevorzugt Trifluormethyl, Pentafluorethyl oder 2,2,2-Trifluorethyl, C6-C20- Aryl, besonders bevorzugt Phenyl, Biphenyl, Naphthyl, Anthracenyl, Triphenylenyl, [1 ,r;3',1"]Terphenyl-2'-yl, Binaphthyl oder Phenanthrenyl, C6-C2o-Fluoraryl, besonders bevorzugt Tetrafluorophenyl oder Heptafluoronaphthyl, Ci-C20-Alkoxy, besonders bevorzugt Methoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s- Butoxy oder t-Butoxy, C6-C2o-Aryloxy, besonders bevorzugt Phenoxy, Naphthoxy, Biphenyloxy, Anthracenyloxy, Phenanthrenyloxy, C7-C20-Arylalkyl, besonders bevorzugt o-Tolyl, m-Tolyl, p-Tolyl, 2,6-Dimethylphenyl, 2,6-Diethylphenyl, 2,6-Di-i- propylphenyl, 2,6-Di-t-butylphenyl, o-t-Butylphenyl, m-t-Butylphenyl, p-t-Butylphenyl, C7-C2o-Alkylaryl, besonders bevorzugt Benzyl, Ethylphenyl, Propylphenyl, Diphenylmethyl, Triphenylmethyl oder Naphthalinylmethyl, C7-C2o-Aryloxyalkyl, besonders bevorzugt o-Methoxyphenyl, m-Phenoxymethyl, p-Phenoxymethyl, Ci2- C2o-Aryloxyaryl, besonders bevorzugt p-Phenoxyphenyl, C5-C2o-Heteroaryl, besonders bevorzugt 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, Chinolinyl, Isochinolinyl, Acridinyl, Benzochinolinyl oder Benzoisochinolinyl, C4-C20-Heterocycloalkyl, besonders bevorzugt Furyl, Benzofuryl, 2-Pyrolidinyl, 2-lndolyl, 3-lndolyl, 2,3- Dihydroindolyl, C2 - C20 - heteroatomhaltige Gruppe, besonders bevorzugt Carbonyl, Benzoyl, Oxybenzoyl, Benzoyloxy, Acetyl, Acetoxy oder Nitril verstanden, wobei eine oder mehrere CrC20-kohlenstoff haltige Gruppen ein cyclisches System bilden können.
Bei den vorstehend genannten Ci - C20-kohlenstoff-haltigen Gruppen können ein oder mehrere nicht benachbarte CH2- Gruppen durch -O-, -S-, -NR1- oder -CONR2 - ersetzt sein und ein oder mehrere H-Atome können durch F ersetzt sein.
Bei den vorstehend genannten Ci - C20-kohlenstoff-haltigen Gruppen die aromatische Systeme aufweisen können ein oder mehrere nicht benachbarte CH- Gruppen durch -O-, -S-, -NR1- oder -CONR2 ersetzt sein und ein oder mehrere H- Atome können durch F ersetzt sein.
Die Reste R1 und R2 sind gleich oder verschieden bei jedem Auftreten H oder ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen.
Besonders bevorzugt sind organische Phosphonsäuren die teil- oder perfluoriert sind.
Die organischen Phosphonsäuren sind kommerziell erhältlich, beispielsweise die Produkte der Firma Clariant oder Aldrich.
Vinylhaltige Phosphonsäuren, wie diese in der deutschen Patentanmeldung Nr. 10213540.1 beschrieben werden, werden bevorzugt nicht eingesetzt.
Vorzugsweise werden die Verbindung der Formel (P1) oder die Verbindung, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefert, in einem Gewichtsverhältnis Summe aller Verbindung der Formel (P1 ) sowie aller Verbindungen, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefern, zu Summe aller Monomere von 1 :10000 bis 10000:1 , vorzugsweise 1 :1000 bis 1000:1, insbesondere 1 :100 bis 100:1 , eingesetzt. Für die Herstellung des Polyazols in Gegenwart von mindestens einer Verbindung der Formel (P1) oder mindestens einer Verbindung, die bei Hydrolyse mindestens eine Verbindung der Formel (P1 ) liefert, besonders geeignete Mischungen umfassen ein oder mehrere aromatische und/oder heteroaromatische Tetra-Amino- Verbindungen und eine oder mehrere aromatische und/oder heteroaromatische Carbonsäuren oder deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer. Des Weiteren können ein oder mehrere aromatische und/oder heteroaromatische Diaminocarbonsäuren zur Herstellung von Polyazolen eingesetzt werden.
Zu den aromatischen und heteroaromatischen Tetra-Amino-Verbindungen gehören unter anderem 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6-Tetraaminopyridin, 1 ,2,4,5- Tetraaminobenzol, 3,3',4,4'-Tetraaminodiphenylsulfon, 3,3', 4,4'- Tetraaminodiphenylether, 3,3',4,4'-Tetraaminobenzophenon, 3,3',4,4'- Tetraaminodiphenylmethan und 3,3',4,4'-Tetraaminodiphenyldimethylmethan sowie deren Salze, insbesondere deren Mono-, Di-, Tri- und Tetrahydrochloridderivate. Hiervon sind 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6- Tetraaminopyridin und 1 ,2,4,5-Tetraaminobenzol besonders bevorzugt.
Des Weiteren kann die Mischung aromatische und/oder heteroaromatische Carbonsäuren umfassen. Hierbei handelt es sich um Dicarbonsäuren und Tricarbonsäuren und Tetracarbonsäuren oder deren Estern oder deren Anhydride oder deren Säurehalogenide, insbesondere deren Säurehalogenide und/oder Säurebromide. Vorzugsweise handelt es sich bei den aromatischen Dicarbonsäuren um Isophthalsäure, Terephthalsäure, Phthalsäure, 5-Hydroxyisophthalsäure, 4- Hydroxyisophthalsäure, 2-Hydroxyterephthalsäure, 5-Aminoisophthalsäure, 5-N1N- Dimethylaminoisophthalsäure, 5-N,N-Diethylaminoisophthalsäure, 2,5- Dihydroxyterephthalsäure, 2,6-Dihydroxyisophthalsäure, 4,6- Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure. 3,4- Dihydroxyphthalsäure, 3-Fluorophthalsäure, 5-Fluoroisophthalsäure, 2- Fluoroterphthalsäure, Tetrafluorophthalsäure, Tetrafluoroisophthalsäure, Tetrafluoroterephthalsäure,1 ,4-Naphthalindicarbonsäure, 1 ,5- Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7- Naphthalindicarbonsäure, Diphensäure, 1 ,8-dihydroxynaphthalin-3,6-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon- 4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, 2,2- Bis(4-carboxyphenyl)hexafluoropropan, 4,4'-Stilbendicarbonsäure, 4- Carboxyzimtsäure, bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.
Bei den aromatischen Tricarbonsäuren oder deren C1-C20-Alkyl-Ester oder C5-C12-
Aryl-Ester oder deren Säureanhydride oder deren Säurechloride handelt es sich bevorzugt um 1 ,3,5-Benzol-tricarbonsäure (Trimesic acid), 1 ,2,4-Benzol- tricarbonsäure (Trimellitic acid),
(2-Carboxyphenyl)iminodiessigsäure, 3,5,3'-Biphenyltricarbonsäure, 3,5,4'-
Biphenyltricarbonsäure.
Bei den aromatischen Tetracarbonsäuren oder deren C1 -C20-Alkyl-Ester oder C5- C12-Aryl-Ester oder deren Säureanhydride oder deren Säurechloride handelt es sich bevorzugt um 3,5,3',5'-Biphenyltetracarbonsäure, 1 ,2,4,5-Benzoltetracarbonsäure, Benzophenontetracarbonsäure, 3,3',4,4'-Biphenyltetracarbonsäure, 2,2',3,3 - Biphenyltetracarbonsäure, 1 ,2,5,6-Naphthalintetracarbonsäure, 1 ,4,5,8- Naphthalintetracarbonsäure.
Bei den heteroaromatischen Carbonsäuren handelt es sich bevorzugt um heteroaromatische Dicarbonsäuren und Tricarbonsäuren und Tetracarbonsäuren oder deren Estern oder deren Anhydride. Als heteroaromatische Carbonsäuren werden aromatische Systeme verstanden welche mindestens ein Stickstoff, Sauerstoff, Schwefel oder Phosphoratom im Aromaten enthalten. Vorzugsweise handelt es sich um Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin- 2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 -Pyrimidindicarbonsäure, 2,5-Pyrazindicarbonsäure, 2,4,6-Pyridintricarbonsäure, Benzimidazol-5,6-dicarbonsäure sowie deren C1-C20- Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.
Der Gehalt an Tricarbonsäure oder Tetracarbonsäuren (bezogen auf eingesetzte Dicarbonsäure) beträgt zwischen 0 und 30 Mol-%, vorzugsweise 0,1 und 20 Mol %, insbesondere 0,5 und 10 Mol-%.
Des Weiteren können auch aromatische und heteroaromatische Diaminocarbonsäuren eingesetzt werden. Zu diesen gehört unter anderem Diaminobenzoesäure, 4-Phenoxycarbonyl-3,'4'-diaminodiphenylether und deren Mono- und Dihydrochloridderivate. Bevorzugt werden Mischungen von mindestens 2 verschiedenen aromatischen Carbonsäuren eingesetzt. Besonders bevorzugt werden Mischungen eingesetzt, die neben aromatischen Carbonsäuren auch heteroaromatische Carbonsäuren enthalten. Das Mischungsverhältnis von aromatischen Carbonsäuren zu heteroaromatischen Carbonsäuren beträgt zwischen 1 :99 und 99:1 , vorzugsweise zwischen 1 :50 bis 50:1.
Bei diesen Mischungen handelt es sich insbesondere um Mischungen von N- heteroaromatischen Dicarbonsäuren und aromatischen Dicarbonsäuren. Nicht limitierende Beispiele für Dicarbonsäuren sind Isophthalsäure, Terephthalsäure, Phthalsäure, 2,5-Dihydroxyterephthalsäure, 2,6-Dihydroxyisophthalsäure, 4,6- Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure. 3,4- Dihydroxyphthalsäure,1 ,4-Naphthalindicarbonsäure, 1 ,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7-Naphthalindicarbonsäure, Diphensäure, 1 ,8- dihydroxynaphthalin-3,6-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4'- dicarbonsäure, 4-Trifluoromethylphthalsäure, Pyridin-2,5-dicarbonsäure, Pyridin-3,5- dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5- pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 -Pyrimidindicarbonsäure,2,5- Pyrazindicarbonsäure.
Soll ein möglichst hohes Molekulargewicht erzielt werden, so liegt das Molverhältnis von Carbonsäuregruppen zu Aminogruppen bei der Umsetzung von Tetra-Amino- Verbindungen mit einer oder mehreren aromatischen Carbonsäuren oder deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, vorzugsweise in der Nähe von 1 :2.
Bevorzugt werden mindestens 0,5 Gew.-%, insbesondere 1 bis 30 Gew.-% und besonders bevorzugt 2 bis 15 Gew.-% Monomere zur Herstellung von Polyazolen eingesetzt, jeweils bezogen auf das resultierende Gewicht der zu verwendenden Zusammensetzung.
Werden die Polyazole unmittelbar in der Verbindung der Formel (P1) oder der Verbindung, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefert, aus den Monomeren hergestellt, zeichnen sich die Polyazole durch ein hohes Molekulargewicht aus. Dies gilt insbesondere für die Polybenzimidazole. Gemessen als Intrinsische Viskosität liegt diese im Bereich von 0,3 bis 10 dl/g, vorzugsweise im Bereich von 1 bis 5 dl/g. Insofern auch Tricarbonsäuren oder Tetracarbonsäure eingesetzt werden, wird hierdurch eine Verzweigung/ Vernetzung des gebildeten Polymeren erzielt. Diese trägt zur Verbesserung der mechanischen Eigenschaft bei.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung werden Verbindungen verwendet, die unter Einwirkung von Wärme zur Bildung von Polyazolen geeignet sind, wobei diese Verbindungen durch Umsetzung von einem oder mehreren aromatischen und/oder heteroaromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen und/oder heteroaromatischen Carbonsäuren bzw. deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, oder von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren in der Schmelze bei Temperaturen von bis zu 4000C, insbesondere bis zu 3500C, bevorzugt bis zu 2800C erhältlich sind. Die zur Herstellung dieser Präpolymere einzusetzenden Verbindungen wurden zuvor dargelegt.
Ganz besonders bevorzugt für die Herstellung der erfindungsgemäßen Polymermembran wird ein Verfahren, welches die folgenden Schritte umfasst:
A) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, in mindestens einer Verbindung der Formel (P1) oder mindestens einer Verbindung, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefert, unter Ausbildung einer Lösung und/oder Dispersion
B) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf einem Träger oder auf einer Elektrode,
C) Erwärmen des flächigen Gebildes/Schicht erhältlich gemäß Schritt B) unter Inertgas auf Temperaturen von bis zu 3500C, vorzugsweise bis zu 2800C unter Ausbildung des Polyazol-Polymeren,
D) Behandlung der in Schritt C) gebildeten Membran (bis diese selbsttragend ist).
Auch im Rahmen dieser Ausführungsform des Verfahrens ist die Verwendung von Polyphosphorsäure ganz besonders zweckmäßig.
Die in Schritt A) erzeugte Mischung weist vorzugsweise ein Gewichtsverhältnis Summe aller Verbindungen der Formel (P1 ) und aller Verbindungen, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefern, zu Summe aller Monomeren von 1 :10000 bis 10000:1 , vorzugsweise 1 :1000 bis 1000:1 , insbesondere 1 :100 bis 100:1 , auf. Die Schichtbildung gemäß Schritt B) erfolgt mittels an sich bekannter Maßnahmen, insbesondere Gießen, Sprühen und/oder Rakeln, die aus dem Stand der Technik zur Polymerfilm-Herstellung bekannt sind. Als Träger sind alle unter den Bedingungen als inert zu bezeichnenden Träger geeignet. Zur Einstellung der Viskosität kann die Lösung gegebenenfalls mit Phosphorsäure (konz. Phosphorsäure, 85%) versetzt werden. Hierdurch kann die Viskosität auf den gewünschten Wert eingestellt und die Bildung der Membran erleichtert werden.
Die gemäß Schritt B) erzeugte Schicht hat vorzugsweise eine Dicke zwischen 20 und 4000 μm, bevorzugt zwischen 30 und 3500 μm, insbesondere zwischen 50 und 3000 μm.
Zur Ausbildung der Polyazol-Polymeren wird das flächige Gebilde oder die Schicht, erhältlich gemäß Schritt B), unter Inertgas auf Temperaturen von bis zu 3500C, vorzugsweise bis zu 2800C, erwärmt.
Alternativ kann auch durch Erwärmen der Mischung aus Schritt A) auf Temperaturen von bis zu 3500C, vorzugsweise bis zu 2800C, bereits die Bildung von Oligomeren und/oder Polymeren bewirkt werden. In Abhängigkeit von der gewählten Temperatur und Dauer, kann anschließend auf die Erwärmung in Schritt C) teilweise oder gänzlich verzichtet werden.
Es hat sich weiterhin gezeigt, dass bei Verwendung von aromatischen Dicarbonsäuren (oder heteroaromatischen Dicarbonsäure) wie Isophthalsäure, Terephthalsäure, 2,5-Dihydroxyterephthalsäure, 4,6-Dihydroxyisophthalsäure, 2,6- Dihydroxyisophthalsäure, Diphensäure, 1 ,8-Dihydroxynaphthalin-3,6-Dicarbonsäure, Diphenylether-4,4'-Dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4- Trifluoromethylphthalsäure, Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5- pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6-Pyrimidindicarbonsäure,2,5- Pyrazindicarbonsäure. die Temperatur in Schritt C) - oder falls die Bildung von Oligomeren und/oder Polymeren bereits in Schritt A) gewünscht wird - im Bereich von bis zu 3000C, vorzugsweise zwischen 1000C und 2500C1 günstig ist.
Wird Polyphosphorsäure in dem Verfahren eingesetzt, so erfolgt die Behandlung der Membran in Schritt D) vorzugsweise bei Temperaturen oberhalb 00C und kleiner 15O0C, bevorzugt bei Temperaturen zwischen 100C und 12O0C, insbesondere zwischen Raumtemperatur (200C) und 900C, in Gegenwart von Feuchtigkeit bzw. Wasser und/oder Wasserdampf bzw. und/oder wasserenthaltender Phosphorsäure von bis zu 85%. Die Behandlung erfolgt vorzugsweise unter Normaldruck, kann aber auch unter Einwirkung von Druck erfolgen. Wesentlich ist, dass die Behandlung in Gegenwart von ausreichender Feuchtigkeit geschieht, wodurch die anwesende Polyphosphorsäure durch partielle Hydrolyse unter Ausbildung niedermolekularer Polyphosphorsäure und/oder Phosphorsäure zur Verfestigung der Membran beiträgt.
Die partielle Hydrolyse der Polyphosphorsäure in Schritt D) führt zu einer Verfestigung der Membran und zu einer Abnahme der Schichtdicke und Ausbildung einer Membran mit einer Dicke bevorzugt zwischen 15 und 3000 μm, vorzugsweise zwischen 20 und 2000 μm, insbesondere zwischen 20 und 1500 μm, die selbsttragend ist. Die in der Polyphosphorsäureschicht gemäß Schritt B) vorliegenden intra- und intermolekularen Strukturen (Interpenetrierende Netzwerke IPN) führen in Schritt C) zu einer geordneten Membranbildung, welche für die besonderen Eigenschaften der gebildeten Membran verantwortlich zeichnet.
Die obere Temperaturgrenze der Behandlung gemäß Schritt D) beträgt in der Regel 1500C. Bei extrem kurzer Einwirkung von Feuchtigkeit, beispielsweise von überhitztem Dampf kann dieser Dampf auch heißer als 1500C sein. Wesentlich für die Temperaturobergrenze ist die Dauer der Behandlung.
Die partielle Hydrolyse (Schritt D) kann auch in Klimakammern erfolgen bei der unter definierter Feuchtigkeitseinwirkung die Hydrolyse gezielt gesteuert werden kann. Hierbei kann die Feuchtigkeit durch die Temperatur bzw. Sättigung der kontaktierenden Umgebung beispielsweise Gase wie Luft, Stickstoff, Kohlendioxid oder andere geeignete Gase, oder Wasserdampf gezielt eingestellt werden. Die Behandlungsdauer ist abhängig von den vorstehend gewählten Parametern.
Weiterhin ist die Behandlungsdauer von der Dicke der Membran abhängig.
In der Regel beträgt die Behandlungsdauer zwischen wenigen Sekunden bis Minuten, beispielsweise unter Einwirkung von überhitztem Wasserdampf, oder bis hin zu ganzen Tagen, beispielsweise an der Luft bei Raumtemperatur und geringer relativer Luftfeuchtigkeit. Bevorzugt beträgt die Behandlungsdauer zwischen 10 Sekunden und 300 Stunden, insbesondere 1 Minute bis 200 Stunden. Wird die partielle Hydrolyse bei Raumtemperatur (2O0C) mit Umgebungsluft einer relativen Luftfeuchtigkeit von 40-80% durchgeführt beträgt die Behandlungsdauer zwischen 1 und 200 Stunden.
Die gemäß Schritt D) erhaltene Membran kann selbsttragend ausgebildet werden, d.h. sie kann vom Träger ohne Beschädigung gelöst und anschließend gegebenenfalls direkt weiterverarbeitet werden.
Über den Grad der Hydrolyse, d.h. die Dauer, Temperatur und Umgebungsfeuchtigkeit, ist die Konzentration an Phosphorsäure und damit die Leitfähigkeit der erfindungsgemäßen Polymermembran einstellbar. Erfindungsgemäß wird die Konzentration der Phosphorsäure als Mol Säure pro Mol Wiederholungseinheit des Polymers angegeben. Im Rahmen der vorliegenden Erfindung ist eine Konzentration (Mol Phosporsäure bezogen auf eine Wiederholeinheit der Formel (III), d.h. Polybenzimidazol) zwischen 10 und 50, insbesondere zwischen 12 und 40, bevorzugt. Derartig hohe Dotierungsgrade (Konzentrationen) sind durch Dotieren von Polyazolen mit kommerziell erhältlicher ortho-Phosphorsäure nur sehr schwierig bzw. gar nicht zugänglich.
Im Anschluss an die Behandlung gemäß Schritt D) kann die Membran durch Einwirken von Hitze in Gegenwart von Luftsauerstoff an der Oberfläche noch vernetzt werden. Diese Härtung der Membranoberfläche verbessert die Eigenschaften der Membran zusätzlich.
Die Vernetzung kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) erfolgen. Eine weitere Methode ist die Bestrahlung mit ß-Strahlen. Die Strahlungsdosis beträgt hierbei zwischen 5 und 200 kGy.
Das Einbringen der ionischen Flüssigkeit in die Membran erfolgt im Rahmen der vorliegenden Erfindung vorzugsweise, indem man
(i) die ionische Flüssigkeit bereits der Lösung oder Dispersion des Schrittes A) zusetzt und die nachfolgenden Schritte B), C) und D) in Gegenwart der ionischen Flüssigkeit durchführt oder (ii) die ionische Flüssigkeit nachträglich in die gebildete Membran einbringt.
Dabei setzt die erste Variante voraus, dass die ionische Flüssigkeit unter den Reaktionsbedingungen der nachfolgenden Schritte B), C) und D) sowie ggf. weiteren Schritten sich inert verhält oder zumindest die Eigenschaften der resultierenden Membran nicht nachteilig beeinflusst. Sie hat den Vorteil, dass die Zusammensetzung der resultierenden Membran vergleichsweise einfach und direkt eingestellt werden kann.
Die zweite Variante hat demgegenüber den Vorteil, dass auch solche ionische Flüssigkeiten verwendet werden können, die unter den Reaktionsbedingungen der nachfolgenden Schritte B), C) und D) sowie ggf. weiteren Schritten nicht sich inert verhalten und/oder wieder ausgewaschen werden könnten.
Die zweite Variante kann insbesondere dadurch verwirklicht werden, dass man die Membran zunächst herstellt, dann die Verbindung der Formel (P1) oder die Verbindung, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefert, insbesondere Polyphosphorsäure und/oder Phosphorsäure, ganz oder teilweise auswäscht und anschließend die Membran wieder mit mindestens einer Verbindung der Formel (P1), bevorzugt Phoshorsäure und/oder Polyphosphorsäure, sowie der ionischen Flüssigkeit imprägniert, beispielsweise indem man die Membran in ein Bad eintaucht, das die gewünschte Imprägnierzusammensetzung enthält. Dabei bietet die Vorgehensweise, die Verbindung der Formel (P1) oder die Verbindung, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefert, vollständig auszuwaschen, den Vorteil, dass man das Verhältnis von Verbindung der Formel (P1) zu ionischer Flüssigkeit in der resultierenden Membran gezielt einstellen kann.
Alternativ hat es sich auch besonders bewährt, mindestens eine Verbindung einzusetzen, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefert, und die Hydrolyse der Verbindung (Schritt D)) unter Verwendung einer Zusammensetzung durchzuführen, die die gewünschte ionische Flüssigkeit enthält. Vorteil ist hierbei, dass die besonders hohen Dotierungsgrade der Membran erhalten bleiben. Für diese Zwecke besonders geeignete Zusammensetzungen für die Hydrolyse enthalten mindestens eine Verbindung der Formel (P1) und die gewünschte ionische Flüssigkeit, insbesondere Phosphorsäure und die gewünschte ionische Flüssigkeit.
Die erfindungsgemäße Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere zeigen sie im Vergleich mit bekannten dotierten Polymermembranen bessere Leistungen. Diese begründet sich insbesondere durch eine verbesserte Protonenleitfähigkeit. Diese beträgt bei Temperaturen von 1200C mindestens 0,1 S/cm, vorzugsweise mindestens 0,1 1 S/cm, insbesondere mindestens 0,12 S/cm. Weiterhin zeichnet sich die erfindungsgemäße Polymermembran durch verbesserte mechanische Eigenschaften, insbesondere durch ein verbessertes E-Modul, eine verbesserte Bruchzähigkeit und eine verbesserte Bruchdehnung aus. So zeigt die erfindungsgemäße Polymermembran gegenüber einer Membran, die die gleiche Zusammensetzung jedoch keine ionische Flüssigkeit umfasst, vorzugsweise eine um mindestens 20 % erhöhte Bruchzähigkeit. Darüber hinaus ist die Bruchdehnung der erfindungsgemäßen Polymermembran vorzugsweise mindestens 200 %, insbesondere mindestens 250 %, und die Spannung vorzugsweise mindestens 2,6 MPa, insbesondere mindestens 2,8 MPa.
Zu möglichen Einsatzgebieten der erfindungsgemäßen, dotierten Polymermembranen gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen. Aufgrund ihres Eigenschaftsprofils werden die dotierten Polymermembranen vorzugsweise in Brennstoffzellen verwendet.
Die vorliegende Erfindung betrifft auch eine Membran-Elektroden-Einheit, die mindestens eine erfindungsgemäße Polymermembran aufweist. Für weitere Informationen über Membran-Elektroden-Einheiten wird auf die Fachliteratur, insbesondere auf die Patente US-A-4,191 ,618, US-A-4,212,714 und US-A-4,333,805 verwiesen. Die in den vorstehend genannten Literaturstellen [US-A-4,191 ,618, US- A-4,212,714 und US-A-4,333,805] enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran-Elektroden-Einheiten, sowie der zu wählenden Elektroden , Gasdiffusionslagen und Katalysatoren ist auch Bestandteil der Beschreibung.
In einer Variante der vorliegenden Erfindung kann die Membranbildung anstelle auf einem Träger auch direkt auf der Elektrode erfolgen. Die Behandlung gemäß Schritt D) kann hierdurch entsprechend verkürzt werden, da die Membran nicht mehr selbsttragend sein muss. Auch eine solche Membran ist Gegenstand der vorliegenden Erfindung.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Elektrode mit einer protonenleitenden Polymerbeschichtung, umfassend mindestens ein Polyazol, mindestens eine ionische Flüssigkeit sowie mindestens eine Verbindung der Formel (P1). Eine derartig beschichtete Elektrode kann in einer Membran-Elektroden-Einheit, die gegebenenfalls mindestens eine erfindungsgemäße Polymermembran aufweist, eingebaut werden.
Nachfolgend wird die Erfindung durch ein Beispiel und ein Vergleichsbeispiel weiter veranschaulicht, ohne dass hierdurch eine Beschränkung des Erfindungsgedankens erfolgen soll.
Beispiele
Vergleichsbeispiel Poly(2,2'-(m-phenylen)-5,5'-bibenzimidazol (PBI)-Membran
Das Beispiel 1 der WO 02/088219 wurde wiederholt.
Zu einem Gemisch aus 32,338 g Isophthalsäure (0,195 Mol) und 41 ,687 g 3,3',4,4'- Tetraaminobiphenyl (0,195 Mol) wurde 525,95 g Polyphosphorsäure (PPA) in einem Dreihalskolben gegeben, welcher mit mechanischem Rührer, N2-Einlass und Auslass ausgestattet war. Die Mischung wurde erst auf 120cC für 2h lang, dann auf 1500C für 3h lang, dann auf 1800C für 2h lang, anschließend auf 22O0C für 16h lang unter Rühren erhitzt. Danach wurde zu dieser Lösung bei 2200C 200 g 85 %-ige Phosphorsäure zugegeben. Die resultierende Lösung wurde bei 2200C 2h lang gerührt und schließlich auf 2400C für 1 h lang erhöht. Die hoch viskose Lösung wurde bei dieser Temperatur mit vorgeheiztem Rakelgerät auf einer Glassplatte geräkelt. Eine transparente, dunkel braun gefärbte Poly(2,2'-(m-phenylen)-5,5'- bibenzimidazole (PBI)-Membran wurde erhalten. Die Membran wurde anschließend 1 h bei RT stehengelassen, um eine selbsttragende Membran zu erhalten.
Ein kleiner Teil der Lösung wurde mit Wasser ausgefallen. Das ausgefallene Harz wurde filtriert, dreimal mit H2O gewaschen, mit Ammoniumhydroxid neutralisiert, dann mit H2O gewaschen und bei 1000C 24h lang bei 0,001 bar getrocknet. Aus einer 0,2 g/dL PBI-Lösung in 100 ml 96%-iger H2SO4 wurde die inhärente Viskosität Hinh gemessen. ηinh = 1,8 dL/g bei 300C.
Beispiel
Die Polybenzimidazol-H3PO4 Membran des Vergleichsbeispiels wurde mit Wasser gewaschen. Die nasse Membran wurde dann bei Zimmertemperatur zweimal in ein IL (EMIMEtOSO3 (1 -Ethyl-3-methylimidazoliumethylsulfat)):H3PO4 Bad (Gewichtsverhältnis 1 :9) eingelegt. Anschließend wurde die Membran aus dem Bad herausgenommen und abgetupft.
Die Leitfähigkeit und die Zugdehnungseigenschaften der erhaltenen Membranen wurden wie folgt bestimmt:
Messmethode für spezifische Leitfähigkeit
Die spezifische Leitfähigkeit wird mittels Impedanzspektroskopie in einer 4-PoI- Anordnung im potentiostatischen Modus und unter Verwendung von Platinelektroden (Draht, 0,25 mm Durchmesser) gemessen. Der Abstand zwischen den stromabnehmenden Elektroden beträgt 2 cm. Das erhaltene Spektrum wird mit einem einfachen Modell, bestehend aus einer parallelen Anordnung eines ohm'schen Widerstandes und eines Kapazitators, ausgewertet. Der Probenquerschnitt der phosphorsäuredotierten Membran wird unmittelbar vor der Probenmontage gemessen. Zur Messung der Temperaturabhängigkeit wird die Messzelle in einem Ofen auf die gewünschte Temperatur gebracht und über eine in unmittelbarer Probennähe positioniertes Pt-100 Thermoelement geregelt. Nach Erreichen der Temperatur wird die Probe vor dem Start der Messung 10 Minuten auf dieser Temperatur gehalten.
Die Messung der Bruchdehnung/Spannung wird an streifenförmigen Proben mit einer Breite von 15 mm und einer Länge von 120 mm durchgeführt. Der Zugversuch erfolgt bei einer Temperatur von 300C mit einer Dehngeschwindigkeit von 50 mm/min. Die Bruchzähigkeit wird als Fläche unter der Bruchdehnung/Spannung- Kurve erhalten.
Die ermittelten Ergebnisse werden in Tabelle 1 zusammengefasst.
Tabelle 1

Claims

Patentansprüche:
1. Protonenleitende Polymermembran, umfassend mindestens ein Polyazol, mindestens eine ionische Flüssigkeit sowie mindestens eine Verbindung der Formel (P1)
R'4POH (P1) wobei R1, jeweils unabhängig voneinander, ein Rest ist, der C, O und/oder H sowie ggf. weitere hiervon verschiedene Atome umfasst, wobei zwei Reste R1 ggf. miteinander verbunden sein können.
2. Protonenleitende Polymermembran nach Anspruch 1 , dadurch gekennzeichnet, dass das Polyazol Benzimidazoleinheiten der Formel
worin
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar3 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar4 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar5 gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar6 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar7 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar8 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar9 gleich oder verschieden sind und für eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar10 gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar11 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine
Aminogruppe, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte
Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt R gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische Gruppe steht und n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist, oder
worin
R gleich oder verschieden für eine Alkylgruppe und eine aromatische Gruppe steht und n eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist, enthält.
3. Protonenleitende Polymermembran nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie als ionische Flüssigkeit
(A) Salze der allgemeinen Formel (IL-I)
[Ai: tY]n" (IL-I),
in der n für 1 , 2, 3 oder 4 steht, [A]+ für ein quartäres Ammonium-Kation, ein Oxonium-Kation, ein Sulfonium-Kation oder ein Phosphonium-Kation und [Y]"" für ein ein-, zwei-, drei- oder vierwertiges Anion steht;
(B) gemischte Salze der allgemeinen Formeln (IL-II)
[A1HA2I+ [Y]n" (IL-IIa), wobei n = 2;
[A1]+[A2]+[A3]+ [Y]n- (IL-IIb), wobei n = 3; oder
[A1]+[A2]+[A3]+[A4]+ [Yf- (IL-IIc), wobei n = 4 und
wobei [A1]+, [A2]\ [A3]+ und [A4]+ unabhängig voneinander aus den für [A]+ genannten Gruppen ausgewählt sind und [Y]"" die unter (A) genannte Bedeutung besitzt; oder
(C) gemischte Salze der allgemeinen Formeln (IL-III)
[A1]+[A2]+[A3]+[M1]+ [Yf (IL-IIIa), wobei n = 4;
[A1]+[A2]+[M1]+[M2]+ [Y]π" (IL-IIIb), wobei n = 4;
[A1]+[M1]+[M2]+[M3]+ [YT (IL-IIIc), wobei n = 4;
[A1]+[A2]+[M1]+ [Y]π" (IL-IIId), wobei n = 3;
[A1]+[M1]+[M2]+ [Y]"- (IL-IIIe), wobei n = 3; [A1]+[M1]+ [Y]" (IL-IIIf), wobei n = 2;
[A1J+[A2I+[M4J2+ [Yf (IL-IIIg), wobei n = 4;
[A1]+[M1]+[M4]2+ [Y]n" (IL-IIIh), wobei n = 4;
[A1I+[M5J3+ [Yf 9 (IL-IIIi), wobei n = 4; oder
[A1J+[M4J2+ [Y]"" (IL-IMj) enthalten, wobei n = 3 und
wobei [A1J+, [A2J+ und [A3J+ unabhängig voneinander aus den für [A]+ genannten Gruppen ausgewählt sind, [Y]"' die unter (A) genannte Bedeutung besitzt und [M1]+, [M2J+, [M3]+ einwertige Metallkationen, [M4J2+ zweiwertige Metallkationen und [M5J3+ dreiwertige Metallkationen bedeuten.
4. Protonenleitende Polymermembran nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die ionische Flüssigkeit einen Schmelzpunkt von weniger als 1800C aufweist.
5. Protonenleitende Polymermembran nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die ionische Flüssigkeit mindestens ein Kation umfasst, das aus der Gruppe, bestehend aus NH4 +, NH3R+, NH2R3"1", NHR3 +, NR4 +, 1 -Ethyl-2,3-dimethylimidazolium, P(OH)4 +, P(OR)4 +, PR4 + ausgewählt ist, wobei R Methyl, Ethyl, Propyl oder Butyl bedeutet.
6. Protonenleitende Polymermembran nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die ionische Flüssigkeit mindestens ein Anion umfasst, das aus der Gruppe, bestehend aus F, BF4 ", PF6 ", CF3SO3 ", (CF3SO3)2N", CF3CO2 ', aus der Gruppe der Sulfate, Sulfite und Sulfonate der allgemeinen Formel SO4 2", HSO4 ", SO3 2", HSO3 ", R3OSO3 ", R3SO3 ", aus der Gruppe der Phosphate der allgemeinen Formel PO4 3", HPO4 2", H2PO4 ", RaPO4 2", aus der Gruppe der Borate der Formel BO3 3", HBO3 2', H2BO3 ", aus der Gruppe der Silikate und Kieselsäuresäureester der Formel SiO4 4", HSiO4 3", H2SiO4 2", H3SiO4 ", der Carbonsäureimide, Bis(sulfonyl)imide, und Sulfonylimide, und Mischungen davon ausgewählt ist.
7. Protonenleitende Polymermembran nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Membran mindestens eine Verbindung der Formel (P2) umfasst, wobei R" jeweils unabhängig voneinander eine 1- 20 Kohlenstoffatome aufweisende Gruppe oder einen Rest ORV bedeutet, worin Rv H, eine 1- 20 Kohlenstoffatome aufweisende Gruppe oder einen Rest der Formel (P3) bedeutet
wobei
R1" jeweils unabhängig voneinander eine 1 - 20 Kohlenstoffatome aufweisende
Gruppe oder einen Rest ORVI bedeutet,
Rιv jeweils unabhängig voneinander O oder eine 1- 20 Kohlenstoffatome aufweisende Gruppe bedeutet,
R jeweils unabhängig voneinander H oder eine 1 - 20 Kohlenstoffatome aufweisende Gruppe bedeutet, q eine Zahl größer oder gleich 1 bedeutet.
8. Protonenleitende Polymermembran nach Anspruch 7, dadurch gekennzeichnet, dass die Membran Phosphorsäure, mindestens eine Phosphonsäure und/oder Polyphosphorsäure umfasst.
9. Protonenleitende Polymermembran nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Membran, jeweils bezogen auf ihr Gesamtgewicht, a. 0,5 Gew.-% bis 40,0 Gew.% Polyazol, b. 1 ,0 Gew.-% bis 50,0 Gew.% ionische Flüssigkeit und c. 10,0 Gew.-% bis 98,5 Gew.% Verbindung der Formel (P1 ) enthält.
10. Protonenleitende Polymermembran nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Polyazol und die ionische Flüssigkeit in einem Gewichtsverhältnis im Bereich von 1 :2 bis 1 :100 vorliegen.
11. Protonenleitende Polymermembran nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Gewichtsverhältnis von ionischer Flüssigkeit zu Verbindung der Formel (P1) im Bereich von 1 :1 bis 1 :20 liegt.
12. Verfahren zur Herstellung einer protonenleitenden Polymermembran nach mindestens einem der vorangehenden Ansprüche, umfassend die Schritte
A) Mischen von einem oder mehreren aromatischen Tetra-Amino- Verbindungen mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure- Monomer enthalten, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, in mindestens einer Verbindung der Formel (P1) oder mindestens einer Verbindung, die bei Hydrolyse mindestens eine Verbindung der Formel (P1) liefert, unter Ausbildung einer Lösung und/oder Dispersion
B) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf einem Träger,
C) Erwärmen des flächigen Gebildes/Schicht erhältlich gemäß Schritt B) unter Inertgas auf Temperaturen von bis zu 3500C, vorzugsweise bis zu 28O0C unter Ausbildung des Polyazol-Polymeren,
D) Behandlung der in Schritt C) gebildeten Membran bis diese selbsttragend ist, wobei man die ionischen Flüssigkeit in die Membran einbringt, indem man
(i) die ionische Flüssigkeit bereits der Lösung oder Dispersion des Schrittes A) zusetzt und die nachfolgenden Schritte B), C) und D) in Gegenwart der ionischen Flüssigkeit durchführt oder (ii) die ionische Flüssigkeit nachträglich in die gebildete Membran einbringt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Mischung aus Schritt A) auf Temperaturen von bis zu 3500C, vorzugsweise bis zu 280°C, erwärmt wird, so dass auf die Erwärmung in Schritt C) teilweise oder gänzlich verzichtet werden kann.
14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass Schritt A) in Polyphosphorsäure durchgeführt wird.
15. Verfahren nach mindestens einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass man die Membran zunächst herstellt, dann die Verbindung der Formel (P1) ganz oder teilweise auswäscht und anschließend die Membran wieder mit einer Verbindung der Formel (P1) und der ionischen Flüssigkeit imprägniert.
16. Verfahren nach mindestens einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass man
- in Schritt A) mindestens eine Verbindung einsetzt, die bei Hydrolyse mindestens eine Verbindung der Formel (P1 ) liefert,
- die in Schritt C) gebildete Membran in Gegenwart von Feuchtigkeit bei Temperaturen und für eine Dauer, ausreichend bis diese selbsttragend ist, behandelt, wobei man die Hydrolyse unter Verwendung einer Zusammensetzung durchführt, die die gewünschte ionische Flüssigkeit enthält.
17. Elektrode mit einer protonenleitenden Polymerbeschichtung, umfassend mindestens ein Polyazol, mindestens eine ionische Flüssigkeit sowie mindestens eine Verbindung der Formel (P1).
18. Membran-Elektroden-Einheit, enthaltend mindestens eine Elektrode und mindestens eine Polymermembran nach mindestens einem der Ansprüche 1 bis 11.
19. Brennstoffzelle, enthaltend mindestens eine Membran-Eletroden-Einheit nach Anspruch 18.
EP09745506A 2008-05-15 2009-05-02 Protonenleitende membran und deren verwendung Withdrawn EP2289122A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09745506A EP2289122A1 (de) 2008-05-15 2009-05-02 Protonenleitende membran und deren verwendung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08008975 2008-05-15
EP09745506A EP2289122A1 (de) 2008-05-15 2009-05-02 Protonenleitende membran und deren verwendung
PCT/EP2009/003163 WO2009138172A1 (de) 2008-05-15 2009-05-02 Protonenleitende membran und deren verwendung

Publications (1)

Publication Number Publication Date
EP2289122A1 true EP2289122A1 (de) 2011-03-02

Family

ID=40943665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09745506A Withdrawn EP2289122A1 (de) 2008-05-15 2009-05-02 Protonenleitende membran und deren verwendung

Country Status (9)

Country Link
US (1) US20110065020A1 (de)
EP (1) EP2289122A1 (de)
JP (1) JP2011523496A (de)
KR (1) KR20110036878A (de)
CN (1) CN102047479A (de)
BR (1) BRPI0912651A2 (de)
CA (1) CA2723283A1 (de)
RU (1) RU2010151121A (de)
WO (1) WO2009138172A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361832A1 (de) * 2003-12-30 2005-07-28 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10361932A1 (de) * 2003-12-30 2005-07-28 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
US8420732B2 (en) * 2009-12-21 2013-04-16 Pbi Performance Products, Inc. Polybenzimidazole solution in an ionic liquid
US20130183603A1 (en) 2012-01-17 2013-07-18 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
US9812725B2 (en) 2012-01-17 2017-11-07 Basf Se Proton-conducting membrane and use thereof
WO2013108111A1 (en) * 2012-01-17 2013-07-25 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
KR101470926B1 (ko) * 2013-09-11 2014-12-09 한국에너지기술연구원 고체산 프로톤 전도체, 그 제조방법, 및 그를 이용한 기체분리막 모듈, 암모니아 합성모듈 및 연료전지
JP6523306B2 (ja) * 2014-01-21 2019-05-29 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ ポリベンズイミダゾール(pbi)及びポリマーイオン性液体(pil)系ブレンド膜、並びにその調製プロセス
US9765196B2 (en) * 2014-02-20 2017-09-19 Rutgers, The State University Of New Jersey Inorganic ionomers made from minerals
DE102014009675A1 (de) * 2014-06-30 2015-12-31 Forschungszentrum Jülich GmbH Elektolytsystem für eine Brennstoffzelle
JP7350762B2 (ja) * 2018-03-09 2023-09-26 ビーエーエスエフ ソシエタス・ヨーロピア ポリベンザゾールポリマー(p)の繊維、フィルムおよび成形体の製造方法
CN117895038A (zh) * 2019-11-18 2024-04-16 坤艾新材料科技(上海)有限公司 纤维增强高温质子交换膜及其制备方法、电化学设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692569A (en) * 1970-02-12 1972-09-19 Du Pont Surface-activated fluorocarbon objects
US4191618A (en) * 1977-12-23 1980-03-04 General Electric Company Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4212714A (en) * 1979-05-14 1980-07-15 General Electric Company Electrolysis of alkali metal halides in a three compartment cell with self-pressurized buffer compartment
US4333805A (en) * 1980-05-02 1982-06-08 General Electric Company Halogen evolution with improved anode catalyst
US4453991A (en) * 1981-05-01 1984-06-12 E. I. Du Pont De Nemours And Company Process for making articles coated with a liquid composition of perfluorinated ion exchange resin
US5422411A (en) * 1993-09-21 1995-06-06 Ballard Power Systems Inc. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom
US6110616A (en) * 1998-01-30 2000-08-29 Dais-Analytic Corporation Ion-conducting membrane for fuel cell
DE19959289A1 (de) * 1999-12-09 2001-06-13 Axiva Gmbh Verfahren zur Herstellung von sulfonierten aromatischen Polymeren und Verwendung der Verfahrensprodukte zur Herstellung von Membranen
DE10117686A1 (de) * 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
AR038161A1 (es) * 2002-01-24 2004-12-29 Basf Ag Procedimiento para separar acidos de mezclas de reaccion quimicas con la ayuda de liquidos ionicos
DE10209774A1 (de) * 2002-02-28 2004-07-29 Universität Stuttgart - Institut für Chemische Verfahrenstechnik Composites und Compositemembranen
DE10246459A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
JP5176261B2 (ja) * 2004-11-10 2013-04-03 東洋紡株式会社 ダイレクトメタノール型燃料電池
EP1826846A4 (de) * 2004-11-10 2010-01-13 Toyo Boseki Aromatische kohlenwasserstoffbasenprotonen-austauschmembran und direktmethanol-brennstoffzelle damit
EP1760110B1 (de) * 2005-09-03 2011-11-02 Samsung SDI Co., Ltd. Polybenzoxazin Verbindung, Elektrolyt-Membran enthaltend dieser Verbindung und Elektrolyt-Membran benutzende Brenndstofzell
US7833643B2 (en) * 2005-09-26 2010-11-16 Arizona Board Of Regents For And On Behalf Of Arizona State University Neutral protic-salt electrolytes and protic-salt imbibed polymer membranes for high temperature fuel cell applications
US20070087248A1 (en) * 2005-10-18 2007-04-19 Samsung Sdi Co., Ltd. Proton conductive electrolyte membrane, method of preparing the same and fuel cell including the proton conductive electrolyte membrane
US7977392B2 (en) * 2005-12-22 2011-07-12 Daimler Ag Water insoluble additive for improving conductivity of an ion exchange membrane
KR100745741B1 (ko) * 2006-08-22 2007-08-02 삼성에스디아이 주식회사 연료전지용 막 전극 접합체 및 이를 채용한 연료전지
JP5334382B2 (ja) * 2006-10-27 2013-11-06 国立大学法人横浜国立大学 電気化学セル及びこれを用いた燃料電池

Also Published As

Publication number Publication date
RU2010151121A (ru) 2012-06-20
BRPI0912651A2 (pt) 2016-01-26
JP2011523496A (ja) 2011-08-11
US20110065020A1 (en) 2011-03-17
KR20110036878A (ko) 2011-04-12
CA2723283A1 (en) 2009-11-19
WO2009138172A1 (de) 2009-11-19
CN102047479A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
WO2009138172A1 (de) Protonenleitende membran und deren verwendung
EP2267059B1 (de) Protonenleitende Membran und deren Verwendung
EP1527494B1 (de) Protonenleitende polymembran, welche sulfonsäuregruppen enthaltende polymere umfasst, und deren anwendung in brennstoffzellen
EP1552574B1 (de) Protonenleitende polymermembran umfassend sulfonsäuregruppen enthaltende polyazole und deren anwendung in brennstoffzellen
EP2069056B1 (de) Verfahren zur herstellung einer protonenleitenden, polyazol-enthaltenden membran
EP1706442B1 (de) Protonenleitende membran und deren verwendung
DE10246459A1 (de) Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
WO2009109512A1 (de) Ionische flüssigkeit enthaltende katalysatortinte und deren verwendung in elektroden-, ccm-, gde- und mea-herstellung
WO2005011039A2 (de) Protonenleitende membran und deren verwendung
DE10235358A1 (de) Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10228657A1 (de) Protonenleitende Membran und deren Verwendung
EP2443176A2 (de) Verfahren zur herstellung eines hochmolekularen polyazols
EP1701995B1 (de) Protonenleitende membran und deren verwendung
EP1537164A1 (de) Verfahren zur herstellung von protonenleitenden polymermembranen, verbesserte polymermembranen und deren anwendung in brennstoffzellen
EP1706441B1 (de) Protonenleitende membran und deren verwendung
WO2011006625A1 (de) Verfahren zum betrieb einer brennstoffzelle und zugehörige brennstoffzelle
EP2443175B1 (de) Polyazol-haltige zusammensetzung
WO2011006623A1 (de) Verfahren zum betrieb einer brennstoffzelle
WO2011003539A1 (de) Verfahren zur stabilisierung von stickstoffhaltigen polymeren
DE112012001400T5 (de) Methode zur mechanischen Stabilierung von stickstoffhaltigen Polymeren
WO2011006624A2 (de) Verfahren zum betrieb einer brennstoffzelle und zugehörige brennstoffzelle
WO2012153172A1 (de) Mechanisch stabilisierte polyazole enthaltend mindestens einen polyvinylalkohol
DE10330461A1 (de) Verfahren zur Herstellung von protonenleitenden Polymermembranen, verbesserte Polymermembranen und deren Anwendung in Brennstoffzellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111201