EP2288801A2 - Regenerator für nicht-zylindersymmetrische arbeitsgasströmung in einem stirlingmotor - Google Patents
Regenerator für nicht-zylindersymmetrische arbeitsgasströmung in einem stirlingmotorInfo
- Publication number
- EP2288801A2 EP2288801A2 EP08869049A EP08869049A EP2288801A2 EP 2288801 A2 EP2288801 A2 EP 2288801A2 EP 08869049 A EP08869049 A EP 08869049A EP 08869049 A EP08869049 A EP 08869049A EP 2288801 A2 EP2288801 A2 EP 2288801A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- regenerator
- working gas
- holes
- longitudinal channels
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
- F02G1/053—Component parts or details
- F02G1/057—Regenerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2243/00—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
- F02G2243/30—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2257/00—Regenerators
Definitions
- the invention relates to a regenerator for short-term storage and Wiederabgabe the heat of a gas flowing alternately in two directions in a working according to the Stiriingkar heat engine. It is known that in a Stiriingmotor regenerators are used, which are flowed through by the working gas, which is pushed back and forth between a hot and a cold room. By means of a corresponding mechanism, the volume of the working gas is thereby changed by expansion and compression in such a way that mechanical energy is generated. Heat is removed from the hot side by this process and heat is supplied to the cold side, which is compensated on the one hand by external heat input on the hot side and on the other hand by cooling on the cold side.
- the invention relates to such a heat storage for the working gas of a Stiriingkar operated heat engine, in which, for example, in the case of a gamma-type Stiriingmotors in a known manner controlled by a crank gear reciprocating displacer the shifting operations of hot after cold and vice versa, wherein the flow guidance of the working gas is designed so that the gas must flow through the annular space around the displacer regenerator.
- a branching connecting channel to a working piston with its oscillating motion, which coincides with the
- Displacer piston is tuned, solely for expansion and compression of the working gas in the machine ensures.
- the main task of the regenerator is to give as much as possible in the working gas after leaving the heater entrained heat to the material of the regenerator before the working gas enters the cooler. If, in the next step of the work cycle, the working gas cooled in the cooler flows back, the heat previously stored in the regenerator material should again be as completely as possible released to the working gas before it enters the heater. This function results in a permanently hot side and a permanently cold side of the regenerator. As a result, heat conduction through the regenerator material from the hot to the cold side is to be prevented as much as possible. At the same time, it is necessary to keep the resistance to the flowing working gas by the regenerator structure as low as possible.
- regenerator structures which consist for example of steel wool or the like loose webs. These only partially meet the requirements;
- the disadvantage here is in particular the not exactly reproducible homogeneous density and low mechanical stability, so that the structures can change significantly by the acting flow forces during a longer operation.
- the deformability of the material not only results in the formation of preferred flow paths through the structure during operation, which reduce efficiency, but also to break up fine fibers which subsequently spread through all the gas paths and at the rubbing and sealing points of the engine severely damage the engine life causing damage.
- regenerator structures for example superimposed fine wire mesh, while avoiding some of the disadvantages described above, but they can be produced only with great effort and to fix in the correct position.
- Other specially developed special structures are also characterized by high prices, since they are not a mass product. In the commercial exploitation of the Stiriing technique, however, the cost argument plays an important role.
- a further embodiment consists in a cylindrical Ringregenerator- element having a continuous from one end face to another material structure, which is designed so that the working gas (eg., Air), the regenerator from one end face to the other in the desired Flowed through way.
- the working gas eg., Air
- the regenerator from one end face to the other in the desired Flowed through way.
- a Gamma-type Stiflingmotor can form the inner Zylinde ⁇ nantel
- a suitable regenerator structure is achieved, for example, by a large number of tubes and rods that fill the annular space and arranged in the direction of flow, or by winding band-shaped material which is wound with wire (according to DE 931 015) or by winding threads, a fabric band or perforated sheet (according to DE 38 12427 A1).
- a cylindrical annular regenerator is known, the structure of which has an end face of the annular body to the other leading longitudinal channels, which are formed from a spiral winding two superimposed films, of which one corrugated and the other is flat.
- a gamma-type Stiriing engine for example, it depends on how the displacement cylinder and cylinder are arranged to each other to determine the azimuthal distribution of the flow-through longitudinal channels of the regenerator, the criterion being that the engine efficiency is optimized.
- the inlet and outlet openings of those longitudinal channels, which are not to be flowed through, are closed at the two end faces of the regenerator by suitable glue or solder.
- Another embodiment of the solution according to the invention consists in positioning on each end face of the regenerator a perforated ring element made of high-temperature-resistant material (eg stainless steel) above the channel inlet or outlet openings in such a way that the working gas only through the holes in the not covered by the ring member, parallel to the longitudinal axis of the cylindrical regenerator extending longitudinal channels can pass, wherein the holes in the ring element in their distribution and size are designed so that arise for the working gas flowing through the regenerator Strömungsvorzugsraumen. Fig.
- FIG. 1 shows a cross section through a Stirling engine in the so-called gamma-type construction.
- a crankshaft 2 is mounted, which moves via the connecting rods 3 and 4, the displacer 5 and the working piston 6 back and forth.
- the working gas flows from the hot chamber 12 through the heater head 7 and its outer heat-receiving tube 8, and further through the regenerator 16 mounted around the displacer 5, which consists of the regenerative element 9 having its specific structure and the ring member 14 of the present invention
- Regenerator input and output forms and regulates the working gas flow through the regenerative element 9.
- the working gas continues to flow through the annular cooler element 10, whose inner circumferential surface forms the cylinder jacket surface of the cold chamber 11 of the displacer in which the displacer 5 runs, and from there via a connecting channel 13 branched off at the bottom of the cold chamber 11 into the working cylinder with the working piston 6.
- a connecting channel 13 branched off at the bottom of the cold chamber 11 into the working cylinder with the working piston 6.
- Fig. 2 shows an annular, cylindrical regenerator with a determined by longitudinal channels Regenerator Modell 9 and the invention, the working gas flow regulating, provided with holes ring elements 14 as separately mountable and replaceable modules, wherein the regeneratively effective structure 9 between an outer cylinder 15 and an inner cylinder 16 is embedded.
- Fig. 3 shows the end view of a regenerator structure, which is formed from numerous tubes arranged in the flow direction. The working gas flows both internally through the tubes and through the interstices formed at the colliding outer diameters of the tubes.
- Fig. 4. shows the end view of a regenerator structure formed of numerous wires arranged in the flow direction or thin rods. The working gas flows through the interstices formed at the butting outer diameters of the rods.
- Fig. 5 shows the end view of a regenerator structure, which is formed from the winding of a respective corrugated and a flat film in superimposed numerous layers. The working gas flows through the longitudinal channels formed thereby.
- Fig. 6 shows the end-face view of a ring member 14 according to the invention, the holes through which the working gas can flow, are exemplary holes with the same diameter.
- the flow cross-section is on the side of the regenerator, which is opposite to the branching connection channel 13 of FIG. 1, increased by the fact that the holes are mounted closer together.
- Fig. 7 shows the ring element 14 according to the invention in cross section. From one side to the other lead by way of example bores through which the working gas can flow into the channels of the regenerator 9.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Accessories For Mixers (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Regenerator für das Arbeitsgas einer nach dem Stirlingprinzip arbeitenden Wärme-Kraft-Maschine, wobei der Regenerator als zylinderförmiger Ringkörper ausgeführt ist, dessen Struktur von einer Stirnseite des Ringkörpers zur anderen führende Längskanäle aufweist, gekennzeichnet dadurch, dass von einem ausgewählten Teil der Längskanäle die Eintritts- und Austrittsöffnungen auf den Regenerator-Stirnseiten verschlossen sind, so dass eine bezüglich der Regenerator-Längsachse nicht- zylindersymmetrische Verteilung der für das Arbeitsgas durchströmbaren Längskanäle entsteht.
Description
Regenerator für nicht-zylindersymmetrische Arbeitsgasströmung in einem Stiriingmotor
[0001] Die Erfindung betrifft einen Regenerator zur kurzzeitigen Speicherung und Wiederabgabe der Wärme eines abwechselnd in zwei Richtungen strömenden Gases in einer nach dem Stiriingprinzip arbeitenden Wärmekraftmaschine. [0002] Es ist bekannt, dass bei einem Stiriingmotor Regeneratoren eingesetzt werden, die vom Arbeitsgas durchströmt werden, wobei dieses zwischen einem heißen und einem kalten Raum hin- und hergeschoben wird. Durch eine entsprechende Mechanik wird dabei das Volumen des Arbeitsgases durch Expansion und Kompression in der Weise verändert, dass mechanische Energie erzeugt wird. Dabei wird durch diesen Prozess der heißen Seite Wärme entzogen und der kalten Seite Wärme zugeführt, was einerseits durch äußere Wärmeeinspeisung auf der heißen Seite und andererseits durch Kühlung auf der kalten Seite ausgeglichen wird. Zur Verbesserung des Wirkungsgrades dient hierbei ein Regenerator, der die Wärme des von der heißen Seite kommenden Arbeitsgases vor Eintritt in einen oder mehrere Kühler so lange zwischenspeichert, bis sie bei Strömungsumkehr des Arbeitsgases wieder an das vom Kühler zur heißen Seite strömende Arbeitsgas abgegeben wird. [0003] Die Erfindung bezieht sich auf einen solchen Wärmespeicher für das Arbeitsgas einer nach dem Stiriingprinzip betriebenen Wärmekraftmaschine, bei welcher, zum Beispiel, im Fall eines Gammatyp-Stiriingmotors in bekannter Weise ein durch ein Kurbelgetriebe gesteuerter hin- und hergehender Verdrängerkolben die Verschiebevorgänge von heiß nach kalt und umgekehrt vornimmt, wobei die Strömungsführung des Arbeitsgases so ausgelegt ist, dass das Gas den um den Verdrängerkolben herum ringförmig angeordneten Regenerator durchströmen muss. Im Strömungsweg zwischen Kühler und der karten Seite des Verdrängerkolbens befindet sich ein abzweigender Verbindungskanal zu einem Arbeitskolben, der mit seiner oszillierenden Bewegung, die mit der des
4
Verdrängerkolbens abgestimmt ist, allein für Expansion und Kompression des Arbeitsgases in der Maschine sorgt.
[0004] Die Hauptaufgabe des Regenerators ist es, die im Arbeitsgas nach Verlassen des Erhitzers mitgeführte Wärme möglichst vollständig an das Material des Regenerators abzugeben, bevor das Arbeitsgas in den Kühler eintritt. Wenn im nächsten Schritt des Arbeitszyklus das im Kühler abgekühlte Arbeitsgas zurückströmt, soll die zuvor im Regeneratormaterial gespeicherte Wärme wieder möglichst vollständig an das Arbeitsgas abgegeben werden, bevor es in den Erhitzer eintritt. Durch diese Funktion ergibt sich eine permanent heiße Seite und eine permanent kalte Seite des Regenerators. Daraus ergibt sich, dass Wärmeleitung durch das Regeneratormaterial von der heißen auf die kalte Seite so weit wie möglich zu verhindern ist. Gleichzeitig gilt es, den dem strömenden Arbeitsgas durch die Regeneratorstruktur entgegen gesetzten Widerstand so gering wie möglich zu halten.
[0005] Es sind Regeneratorstrukturen bekannt, die beispielsweise aus Stahlwolle oder ähnlichem lockeren Gespinst bestehen. Diese erfüllen die Anforderungen indes nur teilweise; nachteilig ist hier insbesondere die nicht genau reproduzierbare homogene Dichte und die geringe mechanische Stabilität, so dass sich die Strukturen durch die einwirkenden Strömungskräfte während eines längeren Betriebes erheblich ändern können. Die Verformbarkeit des Materials führt nicht nur dazu, dass sich im Verlaufe des Betriebes bevorzugte Strömungsgassen durch die Struktur ausbilden, welche die Effizienz mindern, sondern auch zum Abbrechen feiner Fasern, die sich in der Folge durch sämtliche Gaswege ausbreiten und an den reibenden und dichtenden Stellen des Motors stark die Motorlebensdauer einschränkende Schäden verursachen. [0006] Andere Regeneratorstrukturen, beispielsweise übereinander geschichtete feine Drahtgitter, vermeiden zwar einige der oben beschriebenen Nachteile, sie sind jedoch nur mit hohem Aufwand herzustellen und in der richtigen Lage zu fixieren. Weitere speziell entwickelte Sonderstrukturen sind ebenfalls durch hohe Preise gekennzeichnet, da sie kein Massenprodukt sind. Bei der kommerziellen Verwertung der Stiriingtechnik spielt indes das Kostenargument eine wichtige Rolle.
[0007] Eine weitere Ausgestaltung besteht in einem zylinderförmigen Ringregenerator- Element, das eine von einer Stirnseite zur anderen durchgehende Materialstruktur aufweist, die so ausgebildet ist, dass das Arbeitsgas (z. B. Luft) den Regenerator von einer Stirnseite zur anderen in der gewünschten Weise durchströmt. Bei einem
Gammatyp-Stiflingmotor kann die innere Zylindeπnantelfläche des Ringregenerator-Elements auch die innere Zylindermantelfläche der nicht mit Dichtungsaufgaben behafteten Heißkammer des Verdrängerzylinders bilden, so dass zusätzliche Laufbüchsen eingespart werden können. Eine zweckentsprechende Regeneratorstruktur wird beispielsweise erreicht durch eine große Anzahl den Ringraum ausfüllender und in Strömungsrichtung angeordneter Röhrchen oder Stäbchen, oder durch Aufwicklung von bandförmigem Werkstoff, der mit Draht umwickelt ist (gemäß Patentschrift DE 931 015), oder durch Aufwicklung von Fäden, einem Gewebeband oder perforiertem Blech (gemäß Druckschrift DE 38 12427 A1).
[0008] Aus der Druckschrift DE 102 34401.9-13 ist ein zylindrischer, ringförmiger Regenerator bekannt, dessen Struktur von einer Stirnseite des Ringkörpers zur anderen führende Längskanäle aufweist, die aus einer spiralförmigen Aufwicklung zweier übereinander liegender Folien gebildet werden, von denen die eine gewellt und die andere flach ist.
[0009] Bei der erfindungsgemäßen Lösung besteht im Unterschied zum Stand der Technik die Regeneratorstruktur aus einer nicht-zylindersymmetrischen Verteilung der vom Arbeitsgas durchströmbaren Längskanäle bezüglich der Längsachse des ringförmigen Regenerators, so dass für das den Regenerator durchströmende Arbeitsgas Vorzugsrichtungen entstehen, die der Symmetrie der Anordnung der für den Arbeitszyklus relevanten Zylinder zueinander so angepasst sind, dass die Effizienz des Stiriingmotors optimiert wird. Im Fall eines Gammatyp-Stiriingmotors, zum Beispiel, kommt es darauf an, wie Verdrängerzylinder und Arbeitszylinder zueinander angeordnet sind, um die azimutale Verteilung der durchströmbaren Längskanäle des Regenerators zu bestimmen, wobei das Kriterium dafür ist, dass die Motoreffizienz optimiert wird. Bei einem ersten Ausführungsbeispiel der erfindungsgemäßen Lösung werden die Eintritts- und Austrittsöffnungen derjenigen Längskanäle, die nicht durchströmt werden sollen, an den beiden Stirnseiten des Regenerators durch geeigneten Kleber oder Lot verschlossen. Eine andere Ausgestaltung der erfindungsgemäßen Lösung besteht darin, dass an jeder Stirnseite des Regenerators ein in seiner Ausführung gleiches, mit Löchern versehenes Ringelement aus hochtemperaturfestem Material (z. B. Edelstahl) über den Kanal-Eintritts- bzw. -Austrittsöffnungen so positioniert wird, dass das Arbeitsgas nur durch die Löcher in die nicht vom Ringelement abgedeckten, parallel zur Längsachse des zylindrischen Regenerators
verlaufenden Längskanäle gelangen kann, wobei die Löcher im Ringelement in ihrer Verteilung und Größe so ausgeführt sind, dass für das den Regenerator durchströmende Arbeitsgas Strömungsvorzugsrichtungen entstehen. [0010] Fig. 1 zeigt einen Querschnitt durch einen Stirlingmotor in der sogenannten Gamma-Typ-Bauweise. Im Gehäuse 1 ist eine Kurbelwelle 2 gelagert, welche über die Pleuel 3 und 4 den Verdrängerkolben 5 und den Arbeitskolben 6 hin und her bewegt. Das Arbeitsgas strömt von der Heißkammer 12 durch den Erhitzerkopf 7 und dessen die äußere Wärme aufnehmende Röhrchen 8 und weiter durch den um den Verdrängerkolben 5 herum gelagerten Regenerator, der aus dem regenerativen Element 9 mit seiner spezifischen Struktur und dem erfindungsgemäßen Ringelement 14 besteht, das den Regenerator-Eingang und -Ausgang bildet und die Arbeitsgasströmung durch das regenerative Element 9 reguliert. Das Arbeitsgas strömt weiter durch das Ringkühler-Element 10, dessen innere Mantelfläche die Zylindermantelfläche der Kaltkammer 11 des Verdrängerzylinders, in dem der Verdrängerkolben 5 läuft, bildet, und von dort über einen am Boden der Kaltkammer 11 abzweigenden Verbindungskanal 13 in den Arbeitszylinder mit dem Arbeitskolben 6. Versuche ergaben eine Erhöhung des Motor-Wirkungsgrades, wenn der Strömungsquerschnitt durch den Regenerator auf der dem abzweigenden Verbindungskanal 13 gegenüberliegenden Seite des Regenerators vergrößert ist.
[0011] Fig. 2 zeigt einen ringförmigen, zylindrischen Regenerator mit einer durch Längskanäle bestimmten Regeneratorstruktur 9 und den erfindungsgemäßen, die Arbeitsgasströmung regulierenden, mit Löchern versehenen Ringelementen 14 als separat montierbare und austauschbare Module, wobei die regenerativ wirksame Struktur 9 zwischen einem Außenzylinder 15 und einem Innenzylinder 16 eingebettet ist.
[0012] Fig. 3 zeigt die stimseitige Ansicht einer Regeneratorstruktur, die aus zahlreichen in Strömungsrichtung angeordneten Röhrchen gebildet wird. Das Arbeitgas fließt sowohl innen durch die Röhrchen als auch durch die an den zusammenstoßenden Außendurchmessem der Röhrchen gebildeten Zwischenräume.
[0013] Fig. 4. zeigt die stimseitige Ansicht einer Regeneratorstruktur, die aus zahlreichen in Strömungsrichtung angeordneten Drähten oder dünnen Stangen gebildet wird. Das Arbeitgas fließt durch die an den zusammenstoßenden Außendurchmessern der Stangen gebildeten Zwischenräume. [0014] Fig. 5 zeigt die stimseitige Ansicht einer Regeneratorstruktur, die aus der Aufwicklung von je einer gewellten und einer flachen Folie in übereinander liegende zahlreiche Lagen gebildet wird. Das Arbeitgas fließt durch die hierdurch gebildeten Längskanäle.
[0015] Fig. 6 zeigt die stimseitige Ansicht eines erfindungsgemäßen Ringelements 14, dessen Löcher, durch die das Arbeitsgas strömen kann, beispielhaft Bohrungen mit gleichem Durchmesser sind. Der Strömungsquerschnitt ist auf der Seite des Regenerators, die dem abzweigenden Verbindungskanal 13 aus Fig. 1 gegenüber liegt, dadurch erhöht, dass dort die Bohrungen dichter zusammenstehend angebracht sind. [0016] Fig. 7 zeigt das erfindungsgemäße Ringelement 14 im Querschnitt. Von einer Seite zur anderen führen beispielhaft Bohrungen, durch die das Arbeitsgas in die Kanäle der Regeneratorstruktur 9 strömen kann.
Claims
1. Regenerator für das Arbeitsgas einer nach dem Stiriingprinzip arbeitenden Wärme- Kraft-Maschine, wobei der Regenerator als zylinderförmiger Ringkörper ausgeführt ist, dessen Struktur von einer Stirnseite des Ringkörpers zur anderen führende Längskanäle aufweist, gekennzeichnet dadurch, dass von einem ausgewählten Teil der Längskanäle die Eintritts- und Austrittsöffnungen auf den Stirnseiten verschlossen sind.
2. Regenerator nach Anspruch 1 , dadurch gekennzeichnet, dass eine durch die Längskanäle führende Arbeitsgasströmung keine Zylindersymmetrie bezüglich der Regenerator-Längsachse hat.
3. Regenerator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass auf jeder Stirnseite des Regenerators ein in seiner Ausführung gleiches, mit Löchern versehenes Ringelement aus bezüglich der herrschenden Temperatur festem Material über den Stirnseiten der Längskanäle so positioniert ist, dass das Arbeitsgas nur durch die Löcher in die nicht vom Ringelement abgedeckten Kanäle gelangen kann.
4. Regenerator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Löcher nicht rotationssymmetrisch bezüglich der Zylinderachse des Regenerators angeordnet sind.
5. Regenerator nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass das Ringelement Bohrungen unterschiedlichen Durchmessers aufweist.
6. Regenerator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sich durch eine Verteilung der Längskanäle, deren Eintritts- und Austrittsöffnungen auf den Stirnseiten offen sind, und/oder durch eine Verteilung und/oder unterschiedliche Größen der Löcher im Ringelement eine Vorzugsrichtung des durchströmenden Arbeitsgases einstellt.
7. Regenerator nach Anspruch 6, dadurch gekennzeichnet, dass sich bei einem Gammatyp-Stirlingmotor durch eine Verteilung der offenen Längskanäle und/oder eine Verteilung und/oder unterschiedliche Größen der Löcher im Ringelement auf der Seite, die dem zum Arbeitszylinder abzweigenden Verbindungskanal gegenüber liegt, ein größerer Strömungsquerschnitt ergibt als auf der dem abzweigenden Verbindungskanal zugewandten Seite.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200720018211 DE202007018211U1 (de) | 2007-12-28 | 2007-12-28 | Regenerator für nicht-zylindersymmetrische Arbeitsgasströmung in einem Stirlingmotor |
PCT/DE2008/002113 WO2009082997A2 (de) | 2007-12-28 | 2008-12-22 | Regenerator für nicht-zylindersymmetrische arbeitsgasströmung in einem stirlingmotor |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2288801A2 true EP2288801A2 (de) | 2011-03-02 |
Family
ID=39155198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08869049A Withdrawn EP2288801A2 (de) | 2007-12-28 | 2008-12-22 | Regenerator für nicht-zylindersymmetrische arbeitsgasströmung in einem stirlingmotor |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2288801A2 (de) |
DE (2) | DE202007018211U1 (de) |
WO (1) | WO2009082997A2 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202009017731U1 (de) | 2009-11-15 | 2010-05-12 | Quasar Engineering Gmbh | Segmentierter Regenerator für das Arbeitsgas eines Stirlingmotors in Sandwich Bauweise |
DE102017109967B9 (de) | 2017-05-09 | 2020-05-07 | Frauscher Holding Gmbh | Stirlingmaschine mit stufenkolben |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1385929A (fr) * | 1964-03-10 | 1965-01-15 | Philips Nv | Machine à pistons à gaz chaud |
JPS61237874A (ja) * | 1985-04-15 | 1986-10-23 | Mitsubishi Electric Corp | デイスプレ−サ形スタ−リング機関の熱交換器 |
JPH01240759A (ja) * | 1988-03-22 | 1989-09-26 | Toshiba Corp | スターリングエンジン用再生器 |
JPH06249066A (ja) * | 1993-02-24 | 1994-09-06 | Aisin Seiki Co Ltd | スターリング機関用蓄熱器 |
US6131644A (en) * | 1998-03-31 | 2000-10-17 | Advanced Mobile Telecommunication Technology Inc. | Heat exchanger and method of producing the same |
DE10234401B4 (de) * | 2002-07-29 | 2008-08-07 | Pasemann, Lutz, Dr. | Regenerator für das Arbeitsgas eines Stirlingmotors |
-
2007
- 2007-12-28 DE DE200720018211 patent/DE202007018211U1/de not_active Expired - Lifetime
-
2008
- 2008-12-22 EP EP08869049A patent/EP2288801A2/de not_active Withdrawn
- 2008-12-22 DE DE112008003748T patent/DE112008003748A5/de not_active Withdrawn
- 2008-12-22 WO PCT/DE2008/002113 patent/WO2009082997A2/de active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2009082997A3 * |
Also Published As
Publication number | Publication date |
---|---|
WO2009082997A3 (de) | 2009-10-29 |
WO2009082997A2 (de) | 2009-07-09 |
DE202007018211U1 (de) | 2008-03-06 |
WO2009082997A4 (de) | 2009-12-30 |
DE112008003748A5 (de) | 2010-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2736472C3 (de) | Hubkolbenmaschine, insbesondere Heißgasmaschine oder Verdichter | |
DE69813171T2 (de) | Zweiphasen-Flüssigkeitsgekühlter Wärmetauscher | |
DE112011103773T5 (de) | Kombinierte Kammerwand und Wärmetauscher | |
DE2109891B2 (de) | Thermodynamische Maschine als Kältemaschine oder Wärmemotor | |
DE2342173C3 (de) | Stapeiförmiger Plattenwärmeaustauscher | |
DE102012206359A1 (de) | Magnetisches Wärmepumpensystem | |
DE2758998C2 (de) | Rekuperator fur den Wärmeaustausch zwischen zwei Strömungsmitteln unterschiedlicher Temperaturen | |
DE3017641A1 (de) | Modul zum aufbau eines doppeltwirkenden stirling-vierzylindermotors | |
DE3016471A1 (de) | Regenerator, insbesondere fuer die tieftemperaturtechnik | |
EP0543132A1 (de) | Wärmekraftmaschine nach dem Stirling-Prinzip | |
EP2288801A2 (de) | Regenerator für nicht-zylindersymmetrische arbeitsgasströmung in einem stirlingmotor | |
DE19814742C1 (de) | Kreiskolben-Wärmemotor-Vorrichtung | |
DE4216132C2 (de) | Kompressionswärmepumpe | |
DE4305043A1 (en) | Stirling engine of double-head piston and swash plate type - has cylinder block with front and rear working gas chambers, surrounded by heat exchangers | |
DE102006021497A1 (de) | Wärmekraftmaschine nach dem Stirling-Prinzip | |
DE2342741C3 (de) | Heißgaskolbenmotor mit einem Erhitzer, der mindestens zwei Rohrreihen enthält | |
DE10234401B4 (de) | Regenerator für das Arbeitsgas eines Stirlingmotors | |
DE102008023662A1 (de) | Wärmepumpe | |
DE2219479A1 (de) | Dynamischer regenerativwaermeaustauscher | |
EP0585430B1 (de) | Aussenbeheizte, regenerative wärme- und kältemaschine | |
DE3043825A1 (de) | Expansionsmaschine, insbesondere freikolben-stirling-maschine, mit hydrodynmaischem schmiersystem | |
DE102009017493A1 (de) | Wärmekraftmaschine | |
DE10057240C1 (de) | Verwendung eines Flüssigkeitskühlers für Verbrennungsmotoren | |
DE10229442B4 (de) | Wärmetauscher zur Abkühlung des Arbeitsgases eines Stirlingmotors | |
WO2002084078A1 (de) | Kreiskolben-wärmemotor-vorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101104 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170701 |