EP2286925B1 - Statischer Sprühmischer - Google Patents

Statischer Sprühmischer Download PDF

Info

Publication number
EP2286925B1
EP2286925B1 EP10167599.9A EP10167599A EP2286925B1 EP 2286925 B1 EP2286925 B1 EP 2286925B1 EP 10167599 A EP10167599 A EP 10167599A EP 2286925 B1 EP2286925 B1 EP 2286925B1
Authority
EP
European Patent Office
Prior art keywords
mixer
mixer housing
distal end
static spray
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10167599.9A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2286925A3 (de
EP2286925A2 (de
Inventor
Andreas Hiemer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medmix Switzerland AG
Original Assignee
Sulzer Mixpac AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Mixpac AG filed Critical Sulzer Mixpac AG
Priority to EP10167599.9A priority Critical patent/EP2286925B1/de
Publication of EP2286925A2 publication Critical patent/EP2286925A2/de
Publication of EP2286925A3 publication Critical patent/EP2286925A3/de
Application granted granted Critical
Publication of EP2286925B1 publication Critical patent/EP2286925B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4321Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0408Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing two or more liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C17/00Hand tools or apparatus using hand held tools, for applying liquids or other fluent materials to, for spreading applied liquids or other fluent materials on, or for partially removing applied liquids or other fluent materials from, surfaces
    • B05C17/005Hand tools or apparatus using hand held tools, for applying liquids or other fluent materials to, for spreading applied liquids or other fluent materials on, or for partially removing applied liquids or other fluent materials from, surfaces for discharging material from a reservoir or container located in or on the hand tool through an outlet orifice by pressure without using surface contacting members like pads or brushes
    • B05C17/00553Hand tools or apparatus using hand held tools, for applying liquids or other fluent materials to, for spreading applied liquids or other fluent materials on, or for partially removing applied liquids or other fluent materials from, surfaces for discharging material from a reservoir or container located in or on the hand tool through an outlet orifice by pressure without using surface contacting members like pads or brushes with means allowing the stock of material to consist of at least two different components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge

Definitions

  • the invention relates to a static spray mixer for mixing and spraying of at least two flowable components according to the preamble of the independent claim.
  • Static mixers for mixing at least two flowable components are for example in the EP-A-0 749 776 and in the EP-A-0 815 929 described. Despite their simple, material-saving construction of their mixer structure, these very compact mixers produce good mixing results, especially when mixing highly viscous substances such as sealants, two-component foams, or two-component adhesives. Typically, such static mixers are designed for single use and are often used for curing products in which the mixer practically can not be cleaned.
  • the two components are atomized at the outlet of the mixer by exposure to a medium such as air and can then be applied in the form of a spray or spray on the desired substrate.
  • a medium such as air
  • Such a device is for example in the US-B-6,951,310 disclosed.
  • a tubular mixer housing which receives the mixing element for the static mixture and which on one end has an external thread on which an annular nozzle body is screwed.
  • the nozzle body also has an external thread.
  • a cone-shaped Zerstäuberelement is placed, which has on its conical surface a plurality of longitudinal grooves.
  • a cap is inverted, the inner surface is also designed conical, so that it rests against the conical surface of the atomizer. Consequently, the grooves form flow channels between the atomizer element and the cap.
  • the cap is fixed together with the atomizer element by means of a union nut, which is screwed onto the external thread of the nozzle body, on the nozzle body.
  • the nozzle body has a connection for compressed air. In operation, the compressed air flows from the nozzle body through the flow channels between the atomizer element and the cap and atomizes the material emerging from the mixing element.
  • a nozzle for atomizing a liquid in which the liquid is mixed with gas comprising a one-piece housing extending in the direction of a longitudinal axis to a distal end with an outlet opening, and a sputtering sleeve having an inner surface which the housing encloses in its end region, wherein the atomizing sleeve has an inlet for a pressurized atomizing medium is in EP 0 904 844 A1 described.
  • US 6,601,782 describes a spray nozzle assembly having a tubular, one-piece mixer housing extending in the direction of a longitudinal axis to a distal end with an outlet opening with a mixing element disposed in the mixer housing and a sputtering sleeve having an inner surface enclosing the mixer housing in its end region wherein the sputtering sleeve has an inlet for a pressurized sputtering medium.
  • a static spray mixer for mixing and spraying at least two flowable components, comprising a tubular, one-piece mixer housing which extends in the direction of a longitudinal axis up to a distal end which has an outlet opening for the components, with at least one in the Mixer element arranged to mix the components and with a sputtering sleeve having an inner surface which encloses the mixer housing in its end region, wherein the sputtering sleeve has an inlet for a pressurized sputtering medium.
  • a plurality of extending in the direction of the longitudinal axis grooves are provided through which the sputtering medium from the inlet of the sputtering sleeve to the distal end of the mixer housing can flow.
  • the inventive static spray mixer requires only three components, namely the one-piece mixer housing, the atomizer sleeve and the mixing element, which may also be configured in one piece. This results in a significant reduction in complexity compared to known devices and a much simpler manufacture or assembly.
  • each groove has a depth in the radial direction that increases toward the distal end of the mixer housing.
  • the mixer housing has a distal end portion that tapers toward the distal end. This rejuvenation improves the atomization effect.
  • the inner surface of the atomizing sleeve is configured to cooperate with the distal end portion.
  • the atomizing sleeve is connected thread-free with the mixer housing.
  • the outer surface of the mixer housing in the distal end region is at least partially designed as a frustoconical surface.
  • the truncated cone surface forms a cone angle with the longitudinal axis, which is at least 10 ° and at most 45 °.
  • annular space is preferably provided between the outer surface of the mixer housing and the inner surface of the Zerstäubungshüles, which is in fluid communication with the inlet of the atomizing sleeve and with the grooves.
  • each groove in the radial direction has a depth which is smaller, in particular at most half as large as the extension of the respective groove in the direction perpendicular to the longitudinal axis and the radial direction.
  • the atomizing sleeve is fastened by means of a sealing snap connection on the mixer housing.
  • the mixer housing has a substantially rectangular, preferably square, cross-sectional area perpendicular to the longitudinal axis outside the distal end region. This allows the proven mixers, available under the brand name Quadro®, to be used for the static spray mixer.
  • the mixing element is rectangular, preferably square, perpendicular to the longitudinal direction, as is the case with the Quadro® mixers.
  • the inlet of the atomizing sleeve preferably has fixing means for a supply for the atomizing agent.
  • the mixer housing and / or the atomizing sleeve are injection-molded, preferably made of a thermoplastic.
  • the mixing element is configured in one piece and injection-molded, preferably of a thermoplastic.
  • Fig. 1 shows a longitudinal section of a static spray mixer, which is generally designated by the reference numeral 1.
  • Fig. 2 a perspective view.
  • the spray mixer is used for mixing and spraying of at least two flowable components.
  • the spray mixer 1 comprises a tubular, one-piece mixer housing 2 which extends in the direction of a longitudinal axis A to a distal end 21.
  • the distal end 21 is meant that end at which the mixed components leave the mixer housing 2 in the operating state.
  • the distal end 21 is provided with an outlet opening 22.
  • the mixer housing 2 has a connecting piece 23, by means of which the mixer housing 2 can be connected to a reservoir for the components.
  • This reservoir can be, for example, a known two-component cartridge, designed as a coaxial or side-by-side cartridge, or two tanks in which the two components are kept separate from each other.
  • the connector configured, for example as a snap connection, as a bayonet connection, as a threaded connection or combinations thereof.
  • At least one static mixing element 3 is arranged in a manner known per se, which rests against the inner wall of the mixer housing 2, so that the two components can only pass through the mixing element 3 from the proximal end to the outlet opening 22.
  • Either several, successively arranged mixing elements 3 may be provided, or as in the present embodiment, a one-piece mixing element 3, which is preferably injection molded and consists of a thermoplastic.
  • Such static mixers or mixing elements 3 per se are well known to the person skilled in the art and therefore require no further explanation.
  • Such mixing elements are for example in the already cited documents EP-A-0 749 776 and EP-A-0 815 929 described.
  • Such a mixing element 3 of the Quadro® type has a rectangular, in particular a square cross section, perpendicular to the longitudinal direction A. Accordingly, the one-piece mixer housing 2, at least in the region in which it encloses the mixing element 3, a substantially rectangular, in particular square cross-sectional area perpendicular to the longitudinal axis A.
  • the mixing element 3 does not extend all the way to the distal end 21 of the mixer housing 2, but ends at a stop 25 (see Fig. 3 ). Seen in the flow direction up to this stop 25, the interior of the mixer housing 2 has a substantially square cross-section for receiving the mixing element 3. At this stop 25, the interior of the mixer housing 2 is in a circular cone shape, thus has a circular cross-section and forms an exit region 26 which tapers in the direction of the distal end 21 and there opens into the outlet opening 22.
  • the static spray mixer 1 further comprises a sputtering sleeve 4 having an inner surface which encloses the mixer housing 2 in its end region.
  • the atomizing sleeve 4 is designed in one piece and is preferably injection-molded, in particular made of a thermoplastic. It has an inlet 41 for a pressurized atomizing medium, which is in particular gaseous. Preferably, the atomization medium is compressed air.
  • the inlet 41 fixation means 42 for the supply of compressed air here a thread on which the connection of a compressed air hose can be screwed.
  • fixing means 42 are possible, such as a corrugation, a clamp, a crimp or crimp, a bayonet connection or the like.
  • the inlet 42 can be designed for all known connections, in particular also for a Luer lock.
  • the atomizing sleeve 4 is preferably connected thread-free with the mixer housing, in the present embodiment by means of a snap connection.
  • a flange-like elevation 24 is provided on the mixer housing 2 (see Fig. 3 ), which extends over the entire circumference of the mixer housing 2.
  • a circumferential groove 43 is provided, which is designed to cooperate with the survey 24. If the atomizing sleeve 4 is pushed over the mixer housing 2, the projection 24 snaps into the circumferential groove 43 and ensures a stable connection of the atomizing sleeve 4 to the mixer housing 2.
  • this snap connection is designed to be sealed so that the atomizing medium - in this case not compressed air can escape through this from the circumferential groove 43 and the survey 24 existing connection.
  • a plurality of grooves 5 each extending in the direction of the longitudinal axis A are provided in the inner surface of the atomizing sleeve 4 through which the atomizing medium can flow from the inlet 42 of the atomizing sleeve 4 to the distal end 21 of the mixer housing 2, even if in FIG Fig. 2 . 3 and 5 to 8 an embodiment is shown in which the grooves are shown deviating thereof only in the outer surface of the mixer housing.
  • each of the grooves 5 can run in a straight line in the direction of the longitudinal axis A or to run along the longitudinal axis A.
  • grooves 5 are provided only in the outer surface of the mixer housing 2. According to the invention, however, the grooves 5 are provided at least also in the inner surface of the atomizing sleeve 4.
  • FIGS. 3 to 8 show a perspective sectional view of the end portion of the static spray mixer, Fig. 4 a side view.
  • the Fig. 5-8 each show a cross section perpendicular to the longitudinal axis A, namely Fig. 5 along the section line VV in Fig. 4 ; Fig. 6 along the section line VI-VI; Fig. 7 along the section line VII-VII and Fig. 8 along the section line VIII-VIII in Fig. 4 ,
  • the mixer housing 2 has a distal end portion 27, which tapers toward the distal end 21.
  • the outer surface of the mixer housing in the distal end region 27 is at least partially formed as a frustoconical surface.
  • the cone angle ⁇ which forms the outer surface of the mixer housing 2 in the distal end region 27 with the longitudinal axis A, is at least 10 ° and at most 45 °. This cone angle ⁇ is in general different from and especially smaller than the cone angle with which the output region 26 tapers in the interior of the mixer housing 2.
  • the inner surface of the atomizing sleeve 4 is configured to cooperate with the distal end portion 27.
  • the inner surface of the atomizing sleeve 4 is also designed as a frustoconical surface having the same cone angle ⁇ as the outer surface of the mixer housing 2 in this region K.
  • the inner surface of the atomizing sleeve 4 is initially still frusto-conical, but has a larger cross-section than the outer surface of the mixer housing 2, so that between the outer surface of the mixer housing 2 and the inner surface of the Zerstäuberhülse 4 an annular space 6 exists (see Fig. 7 ).
  • the annular space 6 is in fluid communication with the inlet 41 of the atomizer sleeve 4.
  • the inner surface of the sputtering sleeve 4 is in a substantially circular cylindrical shape, whereby also the annular space 6 exists.
  • the annular space 6 is limited on its side remote from the distal end 21 by the elevation 24, which engages sealingly in the circumferential groove 43.
  • the grooves 5 of the mixer housing 2 are characterized by two dimensions, namely their extension designated as depth T. in the radial direction, the radial direction meaning a direction perpendicular to the longitudinal axis A which faces radially outward from the longitudinal axis A, and its extension B is in the direction perpendicular to the longitudinal axis A and the radial direction.
  • the depth T of each groove 5 is smaller, in particular at most half as large as the extension B in the direction perpendicular to the longitudinal axis A and the radial direction at the same location.
  • the depth T is about one third of the extent B in each case.
  • a further advantageous measure consists in that the grooves 5 are each designed so that their depth T seen in the direction of flow, ie towards the distal end 21 increases. This feature is by comparing the Fig. 5-7 recognizable.
  • grooves 5 With regard to the geometry and the course of the grooves 5, of course, many other embodiments are possible.
  • the grooves 5 can also be optimized for the specific application in terms of their number, their course and their dimensions.
  • the flange-like elevation 24, the best in Fig. 3 can be seen not consistently extends over the entire circumference of the mixer housing 2, but that there are two pairs of flange-like elevations, which are offset with respect to the direction defined by the longitudinal axis A direction to each other.
  • a pair of the surveys then forms one on the according Fig. 3 according to the top and a provided on the bottom of the mixer housing 2 survey, the other pair is formed by a provided on the front and on the back elevation.
  • Each of the individual survey extends over at most one side or in a circular configuration over at most 90 ° (one quarter) of the circumference.
  • the pair on the top and bottom is offset with respect to the direction defined by the longitudinal axis A to the pair on the front and back, that is, the former pair is, for example closer to the distal end 21 of the mixer housing 2 than the latter in which the projections belonging to the same pair are each provided at the same distance from the distal end 21.
  • the circumferential groove extends 43 not over the entire inner circumference of the atomizing sleeve 4, but there are two sub-grooves, which are offset by 180 ° to each other, and their length in the circumferential direction is in each case at most as large as the length of a single survey.
  • the sputtering sleeve can be pushed onto the mixer housing in two different orientations rotated by 90 ° relative to one another. In one orientation, the sub-grooves snap into the first pair of protuberances, in the other orientation they snap into the second or other pair of protuberances. As a result of this measure, the size or the flow cross-section of the annular space 6 or of the grooves 5 can be changed so that different flows for the atomizing medium can be set.
  • this embodiment operates as follows.
  • the static spray mixer is connected by means of its connecting piece 23 to a storage vessel containing the two components separated from each other, for example with a two-component cartridge.
  • the inlet 41 of the atomizing sleeve 4 is connected to a source of atomizing medium, for example a compressed air source.
  • a source of atomizing medium for example a compressed air source.
  • the compressed air flows through the inlet 41 of the atomizing sleeve 4 into the annular space 6 between the inner surface of the atomizing sleeve 4 and the outer surface of the mixer housing 2 and from there through the grooves 5, which form flow channels, to the distal end 21 and thus to the outlet opening 22 of the mixer housing 3.
  • a particular advantage of the inventive static spray mixer 1 can be seen in its particularly simple design and manufacture.
  • the Principle requires only three parts, namely a one-piece mixer housing 2, a one-piece mixing element 3 and a one-piece atomizing sleeve 4, wherein each of these parts can be produced in a simple and economical manner by injection molding.
  • the particularly simple design also allows for - at least largely - automated assembly of the parts of the static spray mixer 1. In particular, no screwing these three parts are necessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
EP10167599.9A 2009-08-20 2010-06-29 Statischer Sprühmischer Active EP2286925B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10167599.9A EP2286925B1 (de) 2009-08-20 2010-06-29 Statischer Sprühmischer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09168285 2009-08-20
EP10167599.9A EP2286925B1 (de) 2009-08-20 2010-06-29 Statischer Sprühmischer

Publications (3)

Publication Number Publication Date
EP2286925A2 EP2286925A2 (de) 2011-02-23
EP2286925A3 EP2286925A3 (de) 2015-08-19
EP2286925B1 true EP2286925B1 (de) 2018-03-14

Family

ID=41565264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10167599.9A Active EP2286925B1 (de) 2009-08-20 2010-06-29 Statischer Sprühmischer

Country Status (10)

Country Link
US (1) US10065200B2 (ru)
EP (1) EP2286925B1 (ru)
JP (1) JP2011041943A (ru)
KR (2) KR20110019720A (ru)
CN (1) CN101992039B (ru)
AU (1) AU2010212322B2 (ru)
BR (1) BRPI1002969A2 (ru)
CA (1) CA2711314C (ru)
RU (1) RU2533145C2 (ru)
TW (1) TWI580476B (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120131095A (ko) * 2011-05-23 2012-12-04 술저 믹스팩 아게 정적 스프레이 믹서용 연결 피스
ES2699955T3 (es) * 2011-05-23 2019-02-13 Sulzer Mixpac Ag Combinación de un mezclador pulverizador estático con una pieza intermedia
EP2833991B1 (de) * 2012-05-14 2018-01-31 Sulzer Mixpac AG Sprühmischer zum mischen und sprühen von mindestens zwei fliessfähigen komponenten
DE102013207021A1 (de) * 2013-04-18 2014-10-23 Henkel Ag & Co. Kgaa Adapter für eine Ausgabevorrichtung
EP3670001B1 (de) * 2018-12-18 2021-07-28 IPR-Intelligente Peripherien für Roboter GmbH Verfahren zur hohlraumkonservierung, mischdüseneinheit und hohlraumkonservierungseinrichtung mit einer solchen mischdüseneinheit
US11541406B2 (en) * 2020-03-30 2023-01-03 Medmix Switzerland Ag Spray nozzle
WO2024062453A1 (en) * 2022-09-23 2024-03-28 3M Innovative Properties Company Fluid nozzle and fluid system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620506A (en) * 1970-07-07 1971-11-16 Fmc Corp Fluid-mixing device
JPS5233822B2 (ru) * 1972-03-18 1977-08-31
US4093188A (en) * 1977-01-21 1978-06-06 Horner Terry A Static mixer and method of mixing fluids
US4255125A (en) * 1978-12-15 1981-03-10 Exxon Research & Engineering Co. Mixing apparatus and the uses thereof
JPS5795254U (ru) * 1980-11-29 1982-06-11
CH670987A5 (ru) 1986-10-24 1989-07-31 Spritztechnik Ag
DE3922561A1 (de) * 1989-07-08 1991-01-17 Schmidt Feintechnik Gmbh Spritzgeraet
DE4216746A1 (de) * 1992-05-21 1993-11-25 Sika Chemie Gmbh Vorrichtung für den Auftrag pastöser Massen mittels Druckluft
DE9215107U1 (de) * 1992-11-06 1992-12-24 Otto, Roland, 8752 Kleinostheim Spritzdüse
US5388764A (en) * 1993-09-20 1995-02-14 American Matrix Technologies, Inc. Spray gun with orifice union
ATE198839T1 (de) 1995-06-21 2001-02-15 Sulzer Chemtech Ag In einem rohr angeordneter mischer
US5814022A (en) * 1996-02-06 1998-09-29 Plasmaseal Llc Method and apparatus for applying tissue sealant
US6148536A (en) * 1996-06-10 2000-11-21 Nippon Telegraph And Telephone Corporation Two-fluid nozzle and device employing the same nozzle for freezing and drying liquid containing biological substances
DE59605822D1 (de) 1996-07-05 2000-10-05 Sulzer Chemtech Ag Winterthur Statischer Mischer
JPH11333333A (ja) 1998-05-27 1999-12-07 Meiji Kikai Seisakusho:Kk ムース状液剤吐出ガン
US6695224B2 (en) * 2001-04-20 2004-02-24 Bayer Polymers Llc Spray nozzle for a two-component air-assisted, low pressure spray system
WO2003024611A1 (en) * 2001-09-20 2003-03-27 Delavan Inc. Low pressure spray nozzle
US6951310B2 (en) 2002-06-06 2005-10-04 Anderson Steven R Spray head and air atomizing assembly
US6601782B1 (en) * 2002-12-23 2003-08-05 Plas-Pak Industries, Inc. Disposable spray nozzle assembly
DE102004008755A1 (de) * 2004-02-23 2005-09-08 Hilti Ag Statischer Mischer und seine Verwendung
RU2288783C1 (ru) 2005-04-11 2006-12-10 Общество с ограниченной ответственностью "АЛДИ" Форсунка

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2711314C (en) 2017-08-15
TWI580476B (zh) 2017-05-01
TW201124206A (en) 2011-07-16
CN101992039A (zh) 2011-03-30
AU2010212322B2 (en) 2015-02-12
RU2533145C2 (ru) 2014-11-20
CA2711314A1 (en) 2011-02-20
RU2010134755A (ru) 2012-02-27
US10065200B2 (en) 2018-09-04
KR101926666B1 (ko) 2018-12-07
US20110042483A1 (en) 2011-02-24
KR20180018637A (ko) 2018-02-21
JP2011041943A (ja) 2011-03-03
EP2286925A3 (de) 2015-08-19
CN101992039B (zh) 2017-07-14
AU2010212322A1 (en) 2011-03-10
KR20110019720A (ko) 2011-02-28
EP2286925A2 (de) 2011-02-23
BRPI1002969A2 (pt) 2012-04-17

Similar Documents

Publication Publication Date Title
EP2595759B1 (de) Statischer sprühmischer
EP2527041B1 (de) Zwischenstück für einen statischen Sprühmischer
EP2595758B1 (de) Statischer sprühmischer
EP2286925B1 (de) Statischer Sprühmischer
EP0243667B1 (de) Austragvorrichtung für Medien
DE102006008874B4 (de) Dosiervorrichtung mit einer manuell betätigbaren Pumpeinrichtung
EP0775530A1 (de) Spender mit zwei Fördereinheiten
EP2833991B1 (de) Sprühmischer zum mischen und sprühen von mindestens zwei fliessfähigen komponenten
EP2340125A1 (de) Sprühkopf und sprühvorrichtung mit druckgasleitung
EP1793936A1 (de) Vorrichtung zur ausgabe, insbesondere zerstäubung, einer vorzugsweise kosmetischen flüssigkeit
EP1915216A1 (de) Düse für sprühkopf
DE3523252A1 (de) Expansionsgeregelte mischspritzduese
EP0519965B1 (de) Austragkopf für medien-austragvorrichtungen
DE19841401C2 (de) Zweistoff-Flachstrahldüse
DE29516077U1 (de) Sprühvorrichtung
EP1258293A2 (de) Vorrichtung zum Spritzen einer Mehrkomponentenmischung
DE112020006287T5 (de) Mischvorrichtung für beschichtungsflüssigkeiten und verfahren zum mischen von beschichtungsflüssigkeiten
EP0829307A2 (de) Spender für Medien
DE9015118U1 (de) Mehrkomponenten-Mischspritze
DE102020132999A1 (de) Vorrichtung zum Versprühen von Medien an Innenseiten medizinischer Produkte
DE3243230C2 (de) Drallkörperdüse für Spritzanlagen
DE2949598A1 (de) Vorrichtung mit verwirbelungswirkung zur zerstaeubung von fluessigkeiten unter druck
EP2258466A1 (de) Mischsystem für Zweikomponentenkartusche
DE10054359A1 (de) Mehrstoffdüse zum Zerstäuben einer Substanz
EP0522459B1 (de) Sprühverschluss für einen Behälter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B05C 17/005 20060101ALN20150710BHEP

Ipc: B05B 7/08 20060101AFI20150710BHEP

Ipc: B05B 7/04 20060101ALN20150710BHEP

Ipc: B01F 5/06 20060101ALI20150710BHEP

Ipc: B05B 7/10 20060101ALN20150710BHEP

17P Request for examination filed

Effective date: 20160209

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B05C 17/005 20060101ALI20170904BHEP

Ipc: B05B 7/04 20060101ALN20170904BHEP

Ipc: B05B 7/10 20060101ALN20170904BHEP

Ipc: B01F 5/06 20060101ALI20170904BHEP

Ipc: B05B 7/08 20060101AFI20170904BHEP

INTG Intention to grant announced

Effective date: 20170925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. GRAF AND PARTNER AG INTELLECTUAL PROPERTY, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 978327

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010014747

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180314

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180314

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180621

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010014747

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

26N No opposition filed

Effective date: 20181217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180629

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20190520

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 978327

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190619

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100629

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180714

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010014747

Country of ref document: DE

Owner name: MEDMIX SWITZERLAND AG, CH

Free format text: FORMER OWNER: SULZER MIXPAC AG, HAAG, CH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 15