EP2259892A1 - Procédé de soudage à courbe de température régulée et dispositif utilisé à cette fin - Google Patents
Procédé de soudage à courbe de température régulée et dispositif utilisé à cette finInfo
- Publication number
- EP2259892A1 EP2259892A1 EP09729551A EP09729551A EP2259892A1 EP 2259892 A1 EP2259892 A1 EP 2259892A1 EP 09729551 A EP09729551 A EP 09729551A EP 09729551 A EP09729551 A EP 09729551A EP 2259892 A1 EP2259892 A1 EP 2259892A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- welding device
- temperature
- power
- welding
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/32—Bonding taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/005—Repairing methods or devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/001—Turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/34—Coated articles, e.g. plated or painted; Surface treated articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
- B23K2103/26—Alloys of Nickel and Cobalt and Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05D2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
Definitions
- the invention relates to a welding method of a component and a device therefor.
- Welding processes are often used to join components together or to remelt cracks or to apply material.
- components of gas turbines such as e.g. Turbine blades repaired by welding, in particular laser process
- the components may even have a directionally solidified structure (DS, SX).
- DS, SX directionally solidified structure
- material of the substrate or material of the substrate and added weld metal is melted.
- the object is achieved by a method according to claim 1, wherein the power is regulated as a function of the temperature and an apparatus according to claim 12.
- FIG. 1 shows a device according to the invention
- FIG. 2 shows a profile of the temperature and the power
- FIG. 3 shows a gas turbine
- FIG. 4 shows in perspective a turbine blade
- FIG. 5 shows in perspective a combustion chamber
- Figure 6 is a list of superalloys.
- FIG. 1 shows a component 4, which in particular represents a component 120, 130, 155 (FIGS. 4, 5) of a gas turbine 100 (FIG. 3).
- the component 4, 120, 130, 155 preferably has a superalloy according to FIG.
- the component 4, 120, 130, 155 is arranged in a receptacle 31 of a device 30, the device 30 having a welding device 33 and a temperature measuring device 35.
- the device 30 preferably has a laser 33 or an electron beam gun, by means of which the component 4, 120, 130, 155 is locally irradiated in a region 41 in order to weld it.
- the component 4 and / or the welding device 33 are moved against each other to produce a weld 43.
- the welding device 33 irradiates the region 41 of the component 4, 120, 130, 155 and generates a melting spot there.
- the irradiated area 41 is moved over the component 4, 120, 130, 155, so that a melting spot is repeatedly generated or shifted along this direction of travel, which at the end of the method results in a weld seam 43 (indicated by dashed lines).
- the temperature T of the area to be welded is measured by a temperature measuring device 35 and is transmitted to the welding device 33 by appropriate means 38, such as electronic connections, computer, control.
- FIG. 2 shows the temperature profile during a welding process.
- the temperature T [K] of the irradiated area 41 and the power P [W] of the welding apparatus 33 are plotted.
- the temperature T of the region 41 to be welded is initially raised from zero, in which the power P of the welding device 33 is increased.
- the component or the welding device is preferably already moved directly against each other when starting up the power P.
- the temperature T is preferably regulated at the beginning of the process, in particular constantly increased.
- the power P of the welding device 33 is preferably further controlled so that preferably a constant temperature during the travel time .DELTA.t is established. During the travel time .DELTA.t, the weld 43 is formed.
- the temperature T is lowered, in particular by a reduction of the power P.
- the temperature T is controlled lowered, in particular constantly reduced to avoid cracks.
- the laser power P is thereby reduced to 0 watts.
- the temperature T of the irradiated spot 41 of the component 4 is shown by a solid line and the laser power P regulated thereto by a dashed line.
- the temperature T is raised to a certain temperature, in particular T max , kept constant and driven down again after a certain time ⁇ t.
- Temperature T max is maintained for the specific period of time ⁇ t while the component 4 and / or the welding apparatus 33 are being moved.
- the laser power P is controlled so that a constant temperature T is reached during the period .DELTA.t, so that the power P of the laser 33 at the beginning rises sharply, drops again, but preferably during the time .DELTA.t still drops. While the temperature T is constant, the power P changes, preferably decreasing somewhat, in particular at least halfway through the process time ⁇ t.
- the power (P) of the welding device (33) is preferably highest during the controlled temperature profile T (t), so that thermal stresses within the weld 43 or the solidifying weld metal and the cold and solid substrate of the component 4 are reduced so that the component 4, 120, 130, 155 and the weld 43 no longer have cracks after welding.
- a temperature measuring device 35 in particular a pyrometer, the power of the laser 33 is controlled.
- the device 30 may include a process chamber (not shown) so that a vacuum or inert gas atmosphere in the process chamber may be adjusted.
- FIG. 3 shows by way of example a gas turbine 100 in a longitudinal partial section.
- the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft, which is also referred to as a turbine runner.
- an intake housing 104 a compressor 105, for example a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality Coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
- a compressor 105 for example a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality Coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
- the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
- annular annular hot gas channel 111 for example.
- turbine stages 112 connected in series form the turbine 108.
- Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
- the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
- air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
- the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
- the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
- the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
- the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
- the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
- the guide vanes 130 and blades 120 of the first turbine stage 112 seen in the flow direction of the working medium 113 are in addition to the Annular combustion chamber 110 lining heat shield elements most thermally stressed.
- substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
- SX structure monocrystalline
- DS structure longitudinal grains
- iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
- Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloys.
- the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
- the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
- FIG. 4 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine that extends along a longitudinal axis 121.
- the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
- the blade 120, 130 has, along the longitudinal axis 121, a fastening area 400, an adjacent blade platform 403 and an airfoil 406 and a blade tip 415.
- the blade 130 may have at its blade tip 415 another platform (not shown).
- a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
- the blade root 183 is designed, for example, as a hammer head. Other designs as fir tree or Schissebwschwanzfuß are possible.
- the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
- blades 120, 130 for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
- Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloy.
- the blade 120, 130 can hereby be produced by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
- Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
- directionally solidified structures generally refers to single crystals that have no grain boundaries or at most small angle grain boundaries, as well as stem crystal structures that have grain boundaries running in the longitudinal direction but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from US Pat. No. 6,024,792 and EP 0 892 090 A1; these writings are part of the revelation regarding the solidification process.
- the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co),
- Nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
- Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
- the density is preferably 95% of the theoretical density.
- a protective aluminum oxide layer (TGO thermal grown oxide layer) is formed on the MCrAlX layer (as an intermediate layer or as the outermost layer).
- the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
- nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5RE.
- thermal barrier coating which is preferably the outermost layer, and consists for example of Zr ⁇ 2, Y2Ü3-Zr ⁇ 2, i. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
- the thermal barrier coating covers the entire MCrAlX layer.
- Electron beam evaporation EB-PVD
- EB-PVD Electron beam evaporation
- Thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
- Thermal insulation layer is therefore preferably more porous than the
- the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
- FIG. 5 shows a combustion chamber 110 of the gas turbine 100.
- the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a multiplicity of burners 107 arranged circumferentially about a rotation axis 102 open into a common combustion chamber space 154, which generate flames 156.
- the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
- the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C. to 1600 ° C.
- the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed of heat shield elements 155.
- the 110 may also be provided for the heat shield elements 155 and for their holding elements, a cooling system.
- the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
- Each heat shield element 155 made of an alloy is equipped on the working medium side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
- M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
- MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
- Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
- a ceramic thermal barrier coating consists for example of ZrC> 2, Y2Ü3-Zr ⁇ 2, ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
- Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
- EB-PVD electron beam evaporation
- thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
- Refurbishment means that turbine blades 120, 130, heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. This is followed by a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Laser Beam Processing (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200810018264 DE102008018264A1 (de) | 2008-04-10 | 2008-04-10 | Schweißverfahren mit geregeltem Temperaturverlauf und eine Vorrichtung dafür |
PCT/EP2009/051910 WO2009124802A1 (fr) | 2008-04-10 | 2009-02-18 | Procédé de soudage à courbe de température régulée et dispositif utilisé à cette fin |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2259892A1 true EP2259892A1 (fr) | 2010-12-15 |
Family
ID=40627374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09729551A Withdrawn EP2259892A1 (fr) | 2008-04-10 | 2009-02-18 | Procédé de soudage à courbe de température régulée et dispositif utilisé à cette fin |
Country Status (5)
Country | Link |
---|---|
US (1) | US8847106B2 (fr) |
EP (1) | EP2259892A1 (fr) |
CN (1) | CN101990477B (fr) |
DE (1) | DE102008018264A1 (fr) |
WO (1) | WO2009124802A1 (fr) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8220990B2 (en) * | 2008-08-15 | 2012-07-17 | Siemens Energy, Inc. | Wireless telemetry electronic circuit package for high temperature environments |
US9095923B2 (en) * | 2012-07-16 | 2015-08-04 | General Electric Company | Method of welding alloy articles |
EP2774712A1 (fr) * | 2013-03-07 | 2014-09-10 | Siemens Aktiengesellschaft | Procédé laser avec des plages de rayonnement laser différentes au sein d'un rayon |
WO2014143310A1 (fr) * | 2013-03-15 | 2014-09-18 | Rolls-Royce Corporation | Réparation d'éléments de moteur à turbine à gaz |
EP2949864B1 (fr) * | 2014-05-28 | 2017-07-05 | Ansaldo Energia IP UK Limited | Composant avec capteur et procédé de montage de capteur |
US9573224B2 (en) | 2014-09-02 | 2017-02-21 | Product Innovation & Engineering, LLC | System and method for determining beam power level along an additive deposition path |
US9757902B2 (en) | 2014-09-02 | 2017-09-12 | Product Innovation and Engineering L.L.C. | Additive layering method using improved build description |
US10632566B2 (en) | 2014-12-02 | 2020-04-28 | Product Innovation and Engineering L.L.C. | System and method for controlling the input energy from an energy point source during metal processing |
SG10201700339YA (en) | 2016-02-29 | 2017-09-28 | Rolls Royce Corp | Directed energy deposition for processing gas turbine engine components |
CN106825924B (zh) * | 2017-03-13 | 2018-07-17 | 佛山市德沣建材有限公司 | 一种激光焊接系统恒温智能调控方法 |
US11980938B2 (en) | 2020-11-24 | 2024-05-14 | Rolls-Royce Corporation | Bladed disk repair process with shield |
US11629412B2 (en) | 2020-12-16 | 2023-04-18 | Rolls-Royce Corporation | Cold spray deposited masking layer |
US11839915B2 (en) | 2021-01-20 | 2023-12-12 | Product Innovation and Engineering LLC | System and method for determining beam power level along an additive deposition path |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4574176A (en) * | 1983-11-28 | 1986-03-04 | Sws Incorporated | Method and apparatus for pulsed high energy density welding |
DE3733147A1 (de) | 1987-10-01 | 1989-04-13 | Messer Griesheim Gmbh | Verfahren zum laserwaermebehandeln, wie laserhaerten, laserweichgluehen, laserrekristallisieren von bauteilen in festem zustand |
DE3926479A1 (de) | 1989-08-10 | 1991-02-14 | Siemens Ag | Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit |
JP2773050B2 (ja) | 1989-08-10 | 1998-07-09 | シーメンス アクチエンゲゼルシヤフト | 耐熱性耐食性の保護被覆層 |
JP3126791B2 (ja) * | 1992-01-31 | 2001-01-22 | 株式会社アマダ | 板材の突合せ接合方法およびその接合方法に使用する治具 |
DE4216643A1 (de) * | 1992-05-20 | 1993-11-25 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zum Schweißen mit mehreren Hochenergie-Schweißstrahlen |
DE4234339A1 (de) * | 1992-10-12 | 1994-04-14 | Manfred Prof Dr Ing Geiger | Verfahren zum Laserstrahlschweißen überlappender Bleche und Vorrichtung zu dessen Durchführung |
DE4234342C2 (de) | 1992-10-12 | 1998-05-14 | Fraunhofer Ges Forschung | Verfahren zur Materialbearbeitung mit Laserstrahlung |
RU2147624C1 (ru) | 1994-10-14 | 2000-04-20 | Сименс АГ | Защитный слой для защиты детали от коррозии, окисления и термической перегрузки, а также способ его изготовления |
DE19630521A1 (de) * | 1996-07-29 | 1998-02-05 | Juergen Schroeder | Verfahren zum nebenzeitlosen Laser-Schweißen von Werkstücken in einer Fertigungslinie und Vorrichtung zur Durchführung desselben |
EP0892090B1 (fr) | 1997-02-24 | 2008-04-23 | Sulzer Innotec Ag | Procédé de fabrication de structure monocristallines |
EP0861927A1 (fr) | 1997-02-24 | 1998-09-02 | Sulzer Innotec Ag | Procédé de fabrication de structures monocristallines |
DE19750156A1 (de) * | 1997-11-12 | 1999-05-20 | K H Arnold Maschinenfabrik Gmb | Verfahren zur numerischen Steuerung einer Werkzeugmaschine mit variabler Strahlleistung zur Strahlbearbeitung und zugehörige Werkzeugmaschine |
DE19815439A1 (de) * | 1998-04-07 | 1999-10-14 | Tetra Laval Holdings & Finance | Verfahren zum Verschweißen von laminatförmigen Verpackungsmaterialien |
WO1999067435A1 (fr) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Alliage a solidification directionnelle a resistance transversale a la rupture amelioree |
DE19843556A1 (de) | 1998-09-23 | 2000-04-13 | Heinz Kleiber | Verfahren und Vorrichtung zur temperaturgeregelten Wärmebehandlung von Werkstücken |
US6231692B1 (en) | 1999-01-28 | 2001-05-15 | Howmet Research Corporation | Nickel base superalloy with improved machinability and method of making thereof |
JP3817949B2 (ja) * | 1999-01-28 | 2006-09-06 | スズキ株式会社 | レーザ溶接における溶接温度制御方法 |
JP2003529677A (ja) | 1999-07-29 | 2003-10-07 | シーメンス アクチエンゲゼルシヤフト | 耐熱性の構造部材及びその製造方法 |
DE10053402B4 (de) * | 2000-10-24 | 2008-04-17 | Institut für Fügetechnik und Werkstoffprüfung GmbH | Verfahren und Vorrichtung zum thermischen Fügen von Bauteilen aus silikatischen Werkstoffen, Silikat-Verbundwerkstoffen und Silikat-Kompositwerkstoffen |
DE50104022D1 (de) | 2001-10-24 | 2004-11-11 | Siemens Ag | Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen |
EP1319729B1 (fr) | 2001-12-13 | 2007-04-11 | Siemens Aktiengesellschaft | Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel |
EP1549454B1 (fr) * | 2002-08-28 | 2010-03-24 | The P.O.M. Group | Procede dmd multicouches avec systeme de regulation de la temperature du bain liquide en temps reel, a boucle fermee, et independant de la geometrie de la piece |
DE10259177B4 (de) * | 2002-12-18 | 2010-11-04 | Robert Bosch Gmbh | Verfahren zur Durchführung eines Schweißprozesses |
WO2004056524A1 (fr) * | 2002-12-20 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Procede et dispositif de soudage par points laser |
DE10349677B4 (de) * | 2003-02-28 | 2009-05-14 | Daimler Ag | Verfahren zum Laserstrahlschweißen mit reduzierter Bildung von Endkratern |
DE102004018699A1 (de) * | 2004-04-17 | 2005-11-03 | Mtu Aero Engines Gmbh | Verfahren und Vorrichtung zum Laserschweißen von Bauteilen aus Superlegierungen |
DE102004042492A1 (de) | 2004-08-31 | 2006-03-09 | WINKLER + DüNNEBIER AG | Verfahren und Vorrichtung zur Herstellung einer Schneid- oder Prägewalze mittels Laserauftragsschweißen |
DE102004050164B4 (de) | 2004-10-14 | 2016-02-18 | Robert Bosch Gmbh | Schweißverfahren |
DE102005004787B4 (de) * | 2005-02-01 | 2009-05-20 | Daimler Ag | Verwendung eines Bleches und Verfahren zur Herstellung einer Laserschweißnaht mit verkleinerten Endkrater |
DE102006013960B4 (de) | 2006-03-27 | 2017-02-16 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Laserverschweißung eines ersten Werkstücks mit einem zweiten Werkstück |
-
2008
- 2008-04-10 DE DE200810018264 patent/DE102008018264A1/de not_active Withdrawn
-
2009
- 2009-02-18 US US12/936,936 patent/US8847106B2/en not_active Expired - Fee Related
- 2009-02-18 WO PCT/EP2009/051910 patent/WO2009124802A1/fr active Application Filing
- 2009-02-18 EP EP09729551A patent/EP2259892A1/fr not_active Withdrawn
- 2009-02-18 CN CN200980112602.3A patent/CN101990477B/zh not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2009124802A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN101990477B (zh) | 2015-03-11 |
WO2009124802A1 (fr) | 2009-10-15 |
CN101990477A (zh) | 2011-03-23 |
US8847106B2 (en) | 2014-09-30 |
US20110100964A1 (en) | 2011-05-05 |
DE102008018264A1 (de) | 2009-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2117758B1 (fr) | Réparation par soudage de défauts intérieurs | |
EP2259892A1 (fr) | Procédé de soudage à courbe de température régulée et dispositif utilisé à cette fin | |
EP2371476B1 (fr) | Procédé de soudure de pièces usinées à partir de superalliages résistant à une chaleur élevée | |
EP2414127B1 (fr) | Methode de soudage d'un evidement dans un composant par le depot de cordons de soudure a l'exterieur ou autour du contour ; composant correspondant | |
EP2280801B1 (fr) | Procédé de soudage de pièces d'usinage en alliages superréfractaires | |
EP2078579A1 (fr) | Procédé de soudage d'un composant et composant doté d'emplacements de soudure et de brasure | |
EP2100687A1 (fr) | Chauffage de fil en acier sans potentiel lors de la soudure et son dispositif | |
EP2312267A1 (fr) | Procédé de mesure de l'épaisseur de couche par triangulation laser et dispositif | |
WO2009118313A2 (fr) | Élément à soudures superposées et procédé de production correspondant | |
EP2274130A1 (fr) | Composant avec cordon de soudure et procédé de fabrication d'un cordon de soudure | |
EP2186594A1 (fr) | Procédé et dispositif de préchauffage lors du soudage utilisant un deuxième faisceau laser | |
EP2240293A1 (fr) | Procédé et dispositif pour fondre des surfaces incurvées | |
EP2226149A1 (fr) | Procédé de soudure en deux étapes | |
EP2224039A1 (fr) | Revêtement doté d'un procédé de revêtement thermique et non thermique | |
EP2241397A1 (fr) | Soudage de trous, procédé de revêtement de tiges de soudage | |
EP2062672A1 (fr) | Méthode de brasage de fissures larges | |
EP2584067A1 (fr) | Composant avec graphène et procédé de fabrication de composants avec graphène | |
EP2138258A1 (fr) | Procédé de soudage à profil de température à plusieurs niveaux | |
EP2583784A1 (fr) | Préparation d'au moins un poste à souder avant le soudage et composant | |
EP2460608A1 (fr) | Fabrication d'un fil d'acier à l'aide du procédé de prototypage rapide, fil d'acier et procédé de soudage | |
EP2487006A1 (fr) | Traitement au laser multiple sous des angles différents | |
EP2254725A1 (fr) | Dispositif de soudage à chambre de soudage et procédé de soudage correspondant | |
DE102014220180A1 (de) | Überwachung und Steuerung eines Beschichtungsvorgangs anhand einer Wärmeverteilung auf dem Werkstück | |
EP2177643A1 (fr) | Procédé de réparation d'un superalliage à l'aide de la même poudre de superalliage et de céramique | |
WO2009098106A1 (fr) | Dispositif chauffant pour une aube de turbine et procédé de soudage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100909 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
17Q | First examination report despatched |
Effective date: 20150806 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170901 |