EP2584067A1 - Composant avec graphène et procédé de fabrication de composants avec graphène - Google Patents

Composant avec graphène et procédé de fabrication de composants avec graphène Download PDF

Info

Publication number
EP2584067A1
EP2584067A1 EP11185872.6A EP11185872A EP2584067A1 EP 2584067 A1 EP2584067 A1 EP 2584067A1 EP 11185872 A EP11185872 A EP 11185872A EP 2584067 A1 EP2584067 A1 EP 2584067A1
Authority
EP
European Patent Office
Prior art keywords
layer
graphene
substrate
component
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11185872.6A
Other languages
German (de)
English (en)
Inventor
Michael Clossen-Von Lanken Schulz
Kai Kadau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11185872.6A priority Critical patent/EP2584067A1/fr
Publication of EP2584067A1 publication Critical patent/EP2584067A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • the invention relates to components with graphene, which serve for the oxidation and / or corrosion protection and mechanical stability of components which are used in particular at high temperatures, as well as a method for the production of components with graphene.
  • Materials for high-temperature applications must have good mechanical strength at high temperatures and generally also good oxidation properties.
  • protective layers are applied to substrates that serve to protect against oxidation.
  • substrates that serve to protect against oxidation.
  • protective layers are e.g. Aluminide, platinum aluminide or MCrAl layers on nickel- or cobalt-based substrates.
  • the object is achieved by a layer system with graphene according to claim 1 and a method according to claim 9.
  • Graphene 7 ', 7 ", 7"', 7 IV , 7 V represents a two-dimensional honeycomb structure ( Fig. 11 ). Each node contains one carbon atom.
  • Graphene 7 'can preferably be applied directly to a substrate 4 according to FIG. 1 be applied or be present.
  • the substrate 4 may be metallic or ceramic.
  • this is preferably a nickel-based or cobalt-based superalloy, especially a nickel-based superalloy, most preferably an alloy according to FIG FIG. 15 ,
  • the graph 7 ' may already be cast in, i. it is already present in a casting during casting or is introduced into the melt there.
  • a protective layer 10, in particular a metallic protective layer 10, can preferably be applied over the graphene 7 'on the substrate 4 ( Fig. 3 ).
  • the graphene 7 ' may be in direct contact with the protective layer 10 or may be disposed within the substrate 4.
  • graphene 7 " may be applied to a protective layer 10, in particular to a metallic protective layer 10, which has already been applied on the substrate 4 in advance ( Fig. 2 ), with no further layer on the graph 7 ".
  • FIG. 4 shows a further embodiment.
  • FIG. 5 shows another embodiment in which graphene 7 '''represents the outermost layer on a ceramic layer 13.
  • Graphene 7 ''' is applied to a ceramic layer 13. At least one metallic protective layer can be applied under this ceramic layer 13 (also in accordance with FIG Fig. 7 ; not shown in detail).
  • the graphene 7 ', 7 IV , 7 V can be arranged within the metallic protective layer 10, and / or the ceramic layer 13 ( Fig. 6 . 7, 8, 9 ).
  • graphene 7 '', 7 ''' may be present on the metallic protective layer 10 and the outer ceramic layer 13 ( Fig. 10 ), wherein preferably the graphene also still within the layers (according to Fig. 6 . 8th ) may be arranged (not shown).
  • graphs 7 ', 7 ",... Simply or multiply in a layer system 1, 120, 130, 155 on or in the metallic layer 10 or the ceramic layer 13 and / or on or in the ceramic layer 13, whereby the Exposure of oxidation and corrosion to the substrate 4, the metallic protective layer 10 is reduced, so that the oxidation and / or corrosion rates are significantly reduced (especially in the FIGS. 1, 2, 4, 5 . 7, 8, 9, 10 ) and the life of the layer 10, 13 is extended.
  • an oxide in particular aluminum oxide, can form or has formed on the substrate 4 or on the protective layer 10.
  • the graphene 7 ', 7'',7''', 7 IV , 7 V can be introduced into the warm and therefore soft layers 10 or is annealed or fixed by a laser treatment of the substrate 4 or the layer 10, 13.
  • graphene 7 ', 7'',7''', 7 IV , 7 V is grown directly on the substrate 4 or layers 10, 13.
  • FIG. 12 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed which serves to secure the blades 120 and vanes 130 to a shaft or disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a single-crystal structure or structures are used as components for machines that are in operation high mechanical, thermal and / or chemical stresses are exposed.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified) or a monocrystalline structure, i. the whole workpiece consists of a single crystal.
  • a columnar grain structure columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified
  • a monocrystalline structure i. the whole workpiece consists of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5RE.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • suitable coating methods e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may have to be freed of protective layers after use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • the FIG. 13 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 107 arranged around a rotation axis 102 in the circumferential direction open into a common combustion chamber space 154, which generate flames.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 made of an alloy is equipped on the working medium side with a particularly heat-resistant protective layer (MCrAIX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic stones).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 is known from the EP 0 486 489 B1 .
  • a ceramic thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, cracks in the heat shield element 155 are also repaired. This is followed by a recoating of the heat shield elements 155 and a renewed use of the heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • FIG. 14 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • a compressor 105 for example, a torus-like
  • Combustion chamber 110 in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112 seen in the direction of flow of the working medium 113 become, in addition to the annular combustion chamber 110 lining heat shield elements most thermally stressed.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • MCrAlX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , that is, it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
EP11185872.6A 2011-10-20 2011-10-20 Composant avec graphène et procédé de fabrication de composants avec graphène Withdrawn EP2584067A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11185872.6A EP2584067A1 (fr) 2011-10-20 2011-10-20 Composant avec graphène et procédé de fabrication de composants avec graphène

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11185872.6A EP2584067A1 (fr) 2011-10-20 2011-10-20 Composant avec graphène et procédé de fabrication de composants avec graphène

Publications (1)

Publication Number Publication Date
EP2584067A1 true EP2584067A1 (fr) 2013-04-24

Family

ID=44936180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11185872.6A Withdrawn EP2584067A1 (fr) 2011-10-20 2011-10-20 Composant avec graphène et procédé de fabrication de composants avec graphène

Country Status (1)

Country Link
EP (1) EP2584067A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112797A1 (en) * 2011-06-20 2014-04-24 Siemens Aktiengesellschaft Blade for a thermal turbomachine
EP2842911A1 (fr) * 2013-08-29 2015-03-04 General Electric Company Revêtement, procédé de revêtement et article revêtu
WO2015131505A1 (fr) * 2014-03-04 2015-09-11 南京工业大学 Procédé de préparation de membrane composite de graphène tubulaire
DE102017123817A1 (de) * 2017-10-12 2019-04-18 Geobrugg Ag Drahtnetzvorrichtung
CN110468384A (zh) * 2019-07-22 2019-11-19 中国航发北京航空材料研究院 一种单晶高温合金和涂层界面的阻扩散层及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
FR2946663A1 (fr) * 2009-06-11 2010-12-17 Snecma Revetement thermique, piece thermomecanique comportant un tel revetement thermique, turbomachine, moteur d'aeronef, d'astronef ou de fusee comportant une telle piece thermomecanique
US20110198313A1 (en) * 2008-10-17 2011-08-18 Ecole Polytechnique Method for the controlled growth of a graphene film

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20110198313A1 (en) * 2008-10-17 2011-08-18 Ecole Polytechnique Method for the controlled growth of a graphene film
FR2946663A1 (fr) * 2009-06-11 2010-12-17 Snecma Revetement thermique, piece thermomecanique comportant un tel revetement thermique, turbomachine, moteur d'aeronef, d'astronef ou de fusee comportant une telle piece thermomecanique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Technology for Graphene Growth Using the Vapor Phase Epitaxial Method", HITACHI REVIEW - HITACHI TECHNOLOGY 2010-2011 - MATERIALS, vol. 68, no. 2, August 2010 (2010-08-01), Hitachi Ltd. [JP], pages 65 - 71, XP055014937, Retrieved from the Internet <URL:http://www.hitachi.com/rev/archive/2010/__icsFiles/afieldfile/2010/08/05/r2010_technology07_mt.pdf> [retrieved on 20111215] *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112797A1 (en) * 2011-06-20 2014-04-24 Siemens Aktiengesellschaft Blade for a thermal turbomachine
EP2842911A1 (fr) * 2013-08-29 2015-03-04 General Electric Company Revêtement, procédé de revêtement et article revêtu
WO2015131505A1 (fr) * 2014-03-04 2015-09-11 南京工业大学 Procédé de préparation de membrane composite de graphène tubulaire
DE102017123817A1 (de) * 2017-10-12 2019-04-18 Geobrugg Ag Drahtnetzvorrichtung
US11975381B2 (en) 2017-10-12 2024-05-07 Geobrugg Ag Wire netting system
CN110468384A (zh) * 2019-07-22 2019-11-19 中国航发北京航空材料研究院 一种单晶高温合金和涂层界面的阻扩散层及其制备方法
CN110468384B (zh) * 2019-07-22 2021-07-16 中国航发北京航空材料研究院 一种单晶高温合金和涂层界面的阻扩散层及其制备方法

Similar Documents

Publication Publication Date Title
EP2436798B1 (fr) Matériel de masquage, couche de masquage et procédé de masquage d&#39;un substrat
EP2593582B1 (fr) Système stratifié céramique poreux
EP1952931A1 (fr) Mechtrode ayant une alimentation en poudre et procédé d&#39;utilisation de cette mechtrode
EP2450465A1 (fr) Système de couche poreux doté d&#39;une couche intérieure poreuse
EP2907888A1 (fr) Aube de compresseur dotée d&#39;un revêtement dur résistant à la corrosion
EP2733310A1 (fr) Surface modifiée autour d&#39;un trou
EP2119805A1 (fr) Procédé de fabrication d&#39;une couche adhésive optimisée par l&#39;évaporation partielle de la couche adhésive
EP2373824B1 (fr) Procédé de revêtement d&#39;un composant à trous de refroidissement par film et composant
EP2742171B1 (fr) Couche double céramique à base d&#39;oxyde de zirconium
EP2312267A1 (fr) Procédé de mesure de l&#39;épaisseur de couche par triangulation laser et dispositif
EP2379252A1 (fr) Composant à structure différenciée et procédé de fabrication
EP2584067A1 (fr) Composant avec graphène et procédé de fabrication de composants avec graphène
EP2476776B1 (fr) Procédé de réglage de la consommation en produit de refroidissement dans des composants refroidis activement
EP2224039A1 (fr) Revêtement doté d&#39;un procédé de revêtement thermique et non thermique
EP2241397A1 (fr) Soudage de trous, procédé de revêtement de tiges de soudage
EP2226149A1 (fr) Procédé de soudure en deux étapes
EP2088224A1 (fr) Procédé de fabrication d&#39;une couche rugueuse et système de couche
EP2365106A1 (fr) Système de couche d&#39;isolation thermique en céramique doté d&#39;une couche de raccordement modifiée
EP2583784A1 (fr) Préparation d&#39;au moins un poste à souder avant le soudage et composant
WO2009053154A1 (fr) Procédé pour éliminer une couche métallique au moyen du procédé fic au cours d&#39;une étape intermédiaire
EP2733236A1 (fr) Système de couche céramique double couche avec couche extérieure poreuse et évidements à l&#39;intérieur
EP2597259A1 (fr) Surface modifiée autour d&#39;un trou
EP2586985A1 (fr) Surface dotée d&#39;un renfoncement formé de manière spécifique et composant
EP2539476B1 (fr) Procédé pour le réglage de la consommation d&#39;un liquide de refroidissement dans un élément refroidi
EP2354275A1 (fr) Système multicouche composé d&#39;une couche métallique et d&#39;une couche céramique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131025