EP2379252A1 - Composant à structure différenciée et procédé de fabrication - Google Patents

Composant à structure différenciée et procédé de fabrication

Info

Publication number
EP2379252A1
EP2379252A1 EP10700830A EP10700830A EP2379252A1 EP 2379252 A1 EP2379252 A1 EP 2379252A1 EP 10700830 A EP10700830 A EP 10700830A EP 10700830 A EP10700830 A EP 10700830A EP 2379252 A1 EP2379252 A1 EP 2379252A1
Authority
EP
European Patent Office
Prior art keywords
region
blade
component
airfoil
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10700830A
Other languages
German (de)
English (en)
Inventor
Harald Harders
Oliver Lüsebrink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10700830A priority Critical patent/EP2379252A1/fr
Publication of EP2379252A1 publication Critical patent/EP2379252A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a component with a structure that is different in different places and to methods of production.
  • SX solidify the blade root
  • DS To solidify the blade root (SX, DS) requires a very long and costly process cycle. Nevertheless, a not inconsiderable number of blades fail due to grain defects (e.g., new grains) in the foot. Furthermore, SX or DS solidification is limited in blade size, which eliminates the benefits of directionally solidified turbine blades in the aft turbine run rows.
  • Blades solidified in a columnar crystal (DS) or monocrystalline (SX) directionally to a size limited by the thermal gradient in the casting furnace.
  • DS columnar crystal
  • SX monocrystalline
  • the object of the invention is to overcome the above-mentioned problems.
  • the object is achieved by a component according to claim 1, namely by columnar (DS) or conventional (CC) solidification in a second region in single-crystal (SX) solidification of a first region and method according to claims 15, 16, 17.
  • DS columnar
  • CC conventional
  • SX single-crystal
  • Prematerial Quantity is the amount of alloy material or two alloys needed to completely cast off the entire component or blade.
  • FIG. 9 a gas turbine
  • FIG. 10 shows a turbine blade
  • Figure 11 is a list of superalloys.
  • FIG. 1 shows a turbine blade 120 with an airfoil region 406 (first region 406) of a blade platform 403 (first 406 and / or second region 403) and a fastening region 400 (second region).
  • the airfoil region 406 preferably consists of a monocrystalline structure (SX).
  • the monocrystalline structure (SX) extends from the blade tip 415 and preferably to the top 4 of the blade platform 403.
  • the blade platform 403 and at least the attachment region 400 have a different structure, ie no single-crystal structure.
  • These may be columnar solidified stalk-shaped crystals (DS) or a non-directional structure (CC structure).
  • the monocrystalline structure (SX) may also extend from the airfoil 406 to the blade platform 403 to a certain extent. Then, within the paddle platform 403, a DS or CC structure begins ( Figure 2).
  • the entire blade platform 403 may be monocrystalline solidified, so that only the mounting portion 400 has a CC or DS structure, as shown in Figure 3.
  • FIG. 4 shows a further exemplary embodiment of the invention, FIG. 4 representing an analogous example to FIG. 1, namely that the SX structure in the blade area 406 has been replaced by a DS structure and the subsequent areas have a structure with a CC structure. In an analogous manner, this also applies to a DS-CC structure according to FIGS. 2 and 3.
  • the airfoil 406 may have an SX structure
  • the blade platform 403 may have a DS structure
  • the blade root 400 may have a CC structure (FIG. 5). If there are three structures (SX, DS, CC) that can span different areas:
  • Blade foot 400 CC
  • Fig. 8 SX a blade 406 and SX only partially in the blade platform 403 DS in blade platform 403 and DS only partially a blade root 400 CC a blade root (rest).
  • the airfoil form 403 may have a DS and CC structure (seen in the direction of the blade root 400) or an SX, DS, CC structure (viewed in the direction of the blade root 400), the blade root each having a CC structure.
  • FIG. 9 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is guided to the burners 107 and mixed there with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • Iron, nickel or cobalt-based superalloys are used as material for the components, in particular for the turbine blades 120, 130 and components of the combustion chamber 110 (FIG. 11).
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and represents yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and represents yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 Bl, EP 0 412 397 B1 or EP 1 306 454 A1.
  • a thermal barrier coating On the MCrAlX may still be present a thermal barrier coating, and consists for example of Zr ⁇ 2, Y2 ⁇ 3-Zr ⁇ 2, that is, it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot. The vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 10 shows a perspective view of a moving blade 120 or guide blade 130 of FIG
  • Turbomachine which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. In these second-mentioned crystalline Structures are also called directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 Bl, EP 0 412 397 B1 or EP 1 306 454 A1.
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10Al-O, 4Y-1 are also preferably used , 5Re.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrC> 2, Y2Ü3-Zr ⁇ 2, i. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • suitable coating methods e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may be porous, micro- or macro-cracked bodies. have ner for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Il est difficile de fabriquer des aubes de turbines monocristallines ou en forme de tiges. L'aube de turbine selon l'invention possède des structures différentes dans des zones différentes de l'aube. La zone de la pale présente toujours une structure monocristalline ou en forme de tige, tandis que les autres régions peuvent s'en écarter.
EP10700830A 2009-01-21 2010-01-08 Composant à structure différenciée et procédé de fabrication Withdrawn EP2379252A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10700830A EP2379252A1 (fr) 2009-01-21 2010-01-08 Composant à structure différenciée et procédé de fabrication

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09000800A EP2210688A1 (fr) 2009-01-21 2009-01-21 Composant doté de différentes structures et son procédé de fabrication
EP10700830A EP2379252A1 (fr) 2009-01-21 2010-01-08 Composant à structure différenciée et procédé de fabrication
PCT/EP2010/050121 WO2010084036A1 (fr) 2009-01-21 2010-01-08 Composant à structure différenciée et procédé de fabrication

Publications (1)

Publication Number Publication Date
EP2379252A1 true EP2379252A1 (fr) 2011-10-26

Family

ID=40651315

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09000800A Withdrawn EP2210688A1 (fr) 2009-01-21 2009-01-21 Composant doté de différentes structures et son procédé de fabrication
EP10700830A Withdrawn EP2379252A1 (fr) 2009-01-21 2010-01-08 Composant à structure différenciée et procédé de fabrication

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09000800A Withdrawn EP2210688A1 (fr) 2009-01-21 2009-01-21 Composant doté de différentes structures et son procédé de fabrication

Country Status (3)

Country Link
US (1) US20110293431A1 (fr)
EP (2) EP2210688A1 (fr)
WO (1) WO2010084036A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9475119B2 (en) * 2012-08-03 2016-10-25 General Electric Company Molded articles
EP2716386A1 (fr) * 2012-10-08 2014-04-09 Siemens Aktiengesellschaft Composants de turbine à gaz, leur procédé de fabrication et moule destiné à utiliser ce procédé
US9687910B2 (en) 2012-12-14 2017-06-27 United Technologies Corporation Multi-shot casting
EP2931459B1 (fr) * 2012-12-14 2019-02-06 United Technologies Corporation Methode de coulée d'une pale de turbine hybride afin d'améliorer les performances d'un moteur ou une architecture
US10449605B2 (en) 2013-11-27 2019-10-22 United Technologies Corporation Method and apparatus for manufacturing a multi-alloy cast structure
US20150275677A1 (en) * 2014-03-27 2015-10-01 General Electric Company Article for use in high stress environments having multiple grain structures
US9855599B2 (en) 2015-11-15 2018-01-02 General Electric Company Casting methods and articles

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844728A (en) * 1968-03-20 1974-10-29 United Aircraft Corp Gas contacting element leading edge and trailing edge insert
CH544217A (de) * 1971-04-08 1973-11-15 Bbc Sulzer Turbomaschinen Gasturbinenschaufel
GB1374462A (en) * 1971-06-22 1974-11-20 Secr Defence Casting of metal articles
US4033792A (en) * 1974-12-23 1977-07-05 United Technologies Corporation Composite single crystal article
US4540038A (en) * 1984-06-05 1985-09-10 Westinghouse Electric Corp. Method for production of combustion turbine blade having a hybrid structure
US4637448A (en) * 1984-08-27 1987-01-20 Westinghouse Electric Corp. Method for production of combustion turbine blade having a single crystal portion
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
DE58908611D1 (de) 1989-08-10 1994-12-08 Siemens Ag Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile.
EP0637476B1 (fr) * 1993-08-06 2000-02-23 Hitachi, Ltd. Aube de turbine à gaz, procédé de fabrication de celle-ci et turbine à gaz utilisant cette aube
JP3370676B2 (ja) 1994-10-14 2003-01-27 シーメンス アクチエンゲゼルシヤフト 腐食・酸化及び熱的過負荷に対して部材を保護するための保護層並びにその製造方法
EP0861927A1 (fr) 1997-02-24 1998-09-02 Sulzer Innotec Ag Procédé de fabrication de structures monocristallines
EP0892090B1 (fr) 1997-02-24 2008-04-23 Sulzer Innotec Ag Procédé de fabrication de structure monocristallines
JP4240808B2 (ja) * 1997-10-27 2009-03-18 シーメンス パワー ジェネレイション インコーポレイテッド タービン翼の製造方法
US6325871B1 (en) * 1997-10-27 2001-12-04 Siemens Westinghouse Power Corporation Method of bonding cast superalloys
EP1306454B1 (fr) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
DE50006694D1 (de) 1999-07-29 2004-07-08 Siemens Ag Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
EP1319729B1 (fr) 2001-12-13 2007-04-11 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20050091848A1 (en) * 2003-11-03 2005-05-05 Nenov Krassimir P. Turbine blade and a method of manufacturing and repairing a turbine blade
US7587818B2 (en) * 2004-12-23 2009-09-15 General Electric Company Repair of gas turbine blade tip without recoating the repaired blade tip
US7762309B2 (en) * 2007-09-24 2010-07-27 Siemens Energy, Inc. Integral single crystal/columnar grained component and method of casting the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010084036A1 *

Also Published As

Publication number Publication date
US20110293431A1 (en) 2011-12-01
EP2210688A1 (fr) 2010-07-28
WO2010084036A1 (fr) 2010-07-29

Similar Documents

Publication Publication Date Title
EP2262608A1 (fr) Procédé pour souder en fonction d'une orientation préférentielle du substrat
EP2379252A1 (fr) Composant à structure différenciée et procédé de fabrication
EP2407579A1 (fr) Système poreux de couches en céramique
EP2119805A1 (fr) Procédé de fabrication d'une couche adhésive optimisée par l'évaporation partielle de la couche adhésive
EP2373824A1 (fr) Procédé pour recouvrir un composant pourvu de trous de refroidissement pelliculaire et composant
WO2014053185A1 (fr) Procédé de reconditionnement d'une aube de turbine à gaz ainsi que turbine à gaz pourvue d'une telle aube
EP2742171B1 (fr) Couche double céramique à base d'oxyde de zirconium
EP2476776B1 (fr) Procédé de réglage de la consommation en produit de refroidissement dans des composants refroidis activement
EP2088224A1 (fr) Procédé de fabrication d'une couche rugueuse et système de couche
WO2009087189A2 (fr) Brasage de trous, procédé de revêtement et baguettes de brasure
EP2584067A1 (fr) Composant avec graphène et procédé de fabrication de composants avec graphène
WO2011107167A1 (fr) Système de couche d'isolation thermique céramique à couche de liaison modifiée
EP2460608A1 (fr) Fabrication d'un fil d'acier à l'aide du procédé de prototypage rapide, fil d'acier et procédé de soudage
EP2116319B1 (fr) Composant oblong obtenu par solidification directionelle ayant différentes tailles transversales de grains longitudinaux
WO2009053154A1 (fr) Procédé pour éliminer une couche métallique au moyen du procédé fic au cours d'une étape intermédiaire
EP2484794A1 (fr) Matériau doté d'une structure de pyrochlore dotée de tantale, utilisation du matériau, système de couche et procédé de fabrication d'un système de couche
EP2558245B1 (fr) Lot contenant du germanium, un composant doté d'un lot et un procédé de soudage
EP2539476B1 (fr) Procédé pour le réglage de la consommation d'un liquide de refroidissement dans un élément refroidi
EP2586985A1 (fr) Surface dotée d'un renfoncement formé de manière spécifique et composant
EP2463043A1 (fr) Pièce de formage coulée en céramique dotée de différents facteurs de rétrécissement et procédé de coulée
EP2102379B1 (fr) Procédé d'utilisation d'une turbine qui présente un oxyde sur une couche métallique et une turbine
EP2177643A1 (fr) Procédé de réparation d'un superalliage à l'aide de la même poudre de superalliage et de céramique
EP2463044A1 (fr) Noyau de fonderie en céramique modulaire et procédé de coulée
EP2206806A1 (fr) Couche de MCrAIX à double épaisseur ayant des teneurs en cobalt et nickel différentes
EP2450123A1 (fr) Procédé de fabrication d'un outil pour la fabrication de noyaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150801