JP3817949B2 - レーザ溶接における溶接温度制御方法 - Google Patents

レーザ溶接における溶接温度制御方法 Download PDF

Info

Publication number
JP3817949B2
JP3817949B2 JP01931799A JP1931799A JP3817949B2 JP 3817949 B2 JP3817949 B2 JP 3817949B2 JP 01931799 A JP01931799 A JP 01931799A JP 1931799 A JP1931799 A JP 1931799A JP 3817949 B2 JP3817949 B2 JP 3817949B2
Authority
JP
Japan
Prior art keywords
temperature
welding
value
laser
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01931799A
Other languages
English (en)
Other versions
JP2000218383A (ja
Inventor
晃 市川
正秀 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP01931799A priority Critical patent/JP3817949B2/ja
Publication of JP2000218383A publication Critical patent/JP2000218383A/ja
Application granted granted Critical
Publication of JP3817949B2 publication Critical patent/JP3817949B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ溶接における溶接温度制御方法に関する。
【0002】
【従来の技術】
レーザ溶接は、図11(a)および図11(b)に示すように、レーザ光100を金属板等のワーク101の溶接部102に照射して溶接作業を行うものであり、溶接の溶け込み幅が狭い等の特徴があるため精密な溶接作業に向くが、溶接部102の熱放散が早いので、ポロシティの発生や凝固割れ、および、内部歪の発生等の問題もあり、適切な溶接条件を選択して制御装置107に設定するための作業が難しいといった問題がある。
特に、レーザ光100の光軸を移動させながら連続的な溶接作業を行うような場合には、図11(b)に示すように、キーホールと呼ばれる溶融部103の状態が不安定となり、溶接条件によってはポロシティの発生や凝固割れの発生が重大な問題となることがある。
【0003】
図12は従来のレーザ溶接装置104の構成を簡略化して示すブロック図である。レーザ溶接装置104は、レーザ発生器105、および、レーザ発生器105に電力を供給するためのパワー発生ユニット106と、パワー発生ユニット106を駆動制御するための制御装置107によって構成される。
レーザ発生器105には、ミラー109を介して取り出された分岐光の強度を監視してレーザ発生器105の出力をリアルタイムで測定するパワーメータ108が配備されており、このパワーメータ108からの帰還信号を利用して制御装置107がレーザ発生器105の出力をクローズド・ループで制御するようになっている。
【0004】
【発明が解決しようとする課題】
しかし、図12から明らかなように、制御装置107によるレーザ発生器105の駆動制御で操作量として利用できるパラメータは、パワー発生ユニット106の出力だけであり、従って、溶接作業に適した条件設定を行う際にオペレータが調整できるのもレーザ発生器105の出力目標値それ自体しかない。
しかも、その条件設定によってどのような溶接作業が行われるかを知るためには、実際に溶接作業を行ってワーク101の状態を目視確認する以外にないので、適切な溶接結果を得るための出力の設定作業は試行錯誤の繰り返しによるほかはなく、条件出し作業が著しく煩雑化するといった問題がある。
【0005】
無論、ワーク101の材質によって特定されるような物理的な特性、例えば、熱伝導率等のような一般的な特性もあるのだが、前述したように、従来の溶接方法では、パワー発生ユニット106に指令する操作量、要するに、レーザ発生器105の出力だけを制御対象としているため、たとえワーク101の特性自体が既知であったとしても、それを溶接のための条件設定に役立てることはできない。この結果、溶接ラインの形状や厚みまたはワークの相対送り速度等の異なる新たな溶接作業を行う度に、面倒な条件出し作業を改めて行わなければならなくなるといった弊害も生じる。
【0006】
また、レーザ光100を移動させながら連続的な溶接作業を行うような場合には、レーザ発生器105の出力を調整する代わりに、ワーク101に対するレーザ光100の相対的な移動速度を変えることで溶接部102に与える単位時間当たりの熱量を調整して溶接に適した溶融状態を得ることも理論的には可能である。しかし、そのような場合も、溶接作業に適した相対送り速度は様々な送り速度を試して試行錯誤で求める以外になく、前述したレーザ発生器105の出力制御による場合と同様、適切な条件設定を見つけるのは著しく困難である。
【0007】
【発明の目的】
そこで、本発明の目的は、前記従来技術の欠点を解消し、面倒な試行錯誤を要する条件出し作業を行わなくても、簡単な操作によって最適の温度条件で溶接作業を行うことのできるレーザ溶接における溶接温度制御方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、適切な溶接状態が得られるときの溶接部の温度を制御装置に標準温度として設定しておき、レーザ溶接の実行中、非接触式の温度センサによって前記溶接部の温度をリアルタイムで検出し、前記温度センサによって検出される溶接部の温度が前記標準温度と一致するようにレーザ発生器への供給電力を制御するようにしたレーザ溶接における溶接温度制御方法において、前記標準温度を、溶接開始時の急加熱領域、溶解熱入力のための定常加熱領域および溶接終了時の急冷領域の3つの区間に分けて時系列の関数として設定したことを特徴とする構成により前記目的を達成した。
適切な溶接状態が得られるときの溶接部の温度を標準温度として設定し、その値を目標値として溶接部の温度を直接的にクローズド・ループで自動制御するようにしているので、試行錯誤を必要とする面倒な条件出し作業を行わなくても、適切な温度での溶接作業を確実に実施することができる。しかも、溶接の対象となるワークの材質が同一であれば、溶接ラインの形状やワークの厚みまたはワークの相対送り速度等の条件をある程度変更した場合であっても、それらの差異を吸収して正常な溶接作業を実施することが可能となる。
【0009】
標準温度は、幅を持たない目標値を用いて設定してもよいし、また、適当な幅を持つ温度範囲として設定し、温度センサによって検出される溶接部の温度がその温度範囲内に収まるようにレーザ発生器への供給電力を自動制御するようにしてもよい。
【0010】
しかも、標準温度を溶接開始時の急加熱領域および溶解熱入力のための定常加熱領域と溶接終了時の急冷領域の3つの区間に分けて時系列の関数として設定するようにしたので、溶接作業における急加熱/定常加熱/急冷の各工程を最適な温度条件によって実施することができる。
【0011】
また、レーザ光を照射しながら光軸を移動させて連続的な溶接作業を行う場合には、レーザ発生器への供給電力を自動制御する代わりに、ワークに対する光軸の相対移動速度を自動制御することによって溶接部の温度を標準温度と一致させるようにしてもよい。
【0012】
相対移動速度を自動制御することによって溶接部の温度を標準温度と一致させる場合も、レーザ発生器への供給電力を自動制御する場合と同様、温度幅を持たせた標準温度を目標値として利用することが可能である。
【0013】
レーザ光を照射しながら光軸を移動させて連続的な溶接作業を行う場合も、標準温度を急加熱領域/定常加熱領域/急冷領域の3つの区間に分けて時系列の関数として設定するそして、実質的な光軸の相対移動を伴う定常加熱領域においてはワークに対する光軸の相対移動速度を自動制御することによって溶接部の温度を標準温度と一致させ、また、光軸の移動を伴わない急加熱領域と急冷領域においては、溶接部の温度が標準温度内に収まるようにレーザ発生器への供給電力を自動制御するようにする。定常加熱領域においては、ワークに対する光軸の相対移動速度の自動制御とレーザ発生器への供給電力の自動制御とを重畳して行うようにしてもよい。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態の幾つかについて説明する。図1は非接触式の温度センサとなる赤外線センサ2によって検出される溶接部102の温度を標準温度に一致させるようにレーザ発生器105への供給電力を自動制御するようにしたレーザ溶接装置1の一例を示す機能ブロック図である。レーザ発生器105,パワー発生ユニット106,パワーメータ108ならびにミラー109の構成および作用に関しては図12に示した従来例のレーザ溶接装置104と同様であるので説明は省略する。
【0015】
レーザ溶接装置1の制御部3は、マイクロ・プロセッサおよびROM,RAM、ならびに、溶接条件記憶用の不揮発性メモリやディスプレイ付き手動データ入力装置等を備えた通常の数値制御装置によって構成され、溶接条件記憶用の不揮発性メモリには、溶接温度の目標値となる標準温度を表すためのデータが予め記憶されている。
【0016】
制御部3からは標準温度を目標値とする温度指令Tcmdが出力され、その値が差動増幅器4に入力される。また、赤外線センサ2によって検出された溶接部102の現在温度は差動増幅器4に帰還され、差動増幅器4は、制御部3からの温度指令Tcmdと赤外線センサ2で検出された溶接部102の現在温度との差分を求めてその値を増幅し、加熱指令として第2の差動増幅器5に出力する。
そして、第2の差動増幅器5は、与えられた加熱指令とパワーメータ108で検出されたレーザ発生器105の出力とを比較して差分を求め、その値を増幅してレーザ発生器105のパワー発生ユニット106に駆動指令として出力することにより、差動増幅器4から出力された加熱指令が達成されるようにパワー発生ユニット106の出力を制御し、最終的に、溶接部102の温度が制御部3からのTcmdと一致するようにパワー発生ユニット106の出力を制御する。
【0017】
本実施形態のレーザ溶接装置1は、溶接部102の温度を直接的に温度指令Tcmdで指定することによって溶接部102の温度自体をフィードバック制御するものであって、図12に示すような従来例、即ち、溶接部102の実温度に関わりなくパワー発生ユニット106の出力のみを制御するものとでは構成が根本的に異なる。
【0018】
この実施形態で使用する標準温度は、適切な溶接状態が保証される溶接部102の温度範囲の上限値と下限値とにより温度幅をもって設定されており、しかも、その標準温度は、レーザ溶接作業における3つの工程、即ち、溶接開始時の急加熱工程と溶解熱入力のための定常加熱工程および溶接終了時の急冷工程の3つの区間に分けて、時系列の関数として各々個別に設定されている。
【0019】
図2は、温度範囲を特定することによって設定した標準温度の一例を示す概念図である。レーザ光100の光軸をワーク101に対して相対移動させながら連続的な溶接作業を行う定常加熱工程では、ワーク101を確実に溶解して溶接作業を行う必要があるので、目標値となる標準温度の下限値Tminは、最低でも、溶接の対象となるワーク101の融点以上とする必要がある。また、定常加熱工程における標準温度の上限値Tmaxは、ワーク101の沸騰を防止する必要上、ワーク101の沸点からある程度のマージンをとって、それよりも低い値に設定する必要がある。
従って、この実施形態では、図2に示すように、定常加熱工程における標準温度の下限値Tminをワーク101の融点と同じ温度Tmin0に設定し、また、標準温度の上限値Tmaxは、融点と沸点との間で僅かに沸点寄りの温度Tmax0に設定している。
【0020】
また、溶接開始直後の急加熱工程と溶接終了時の急冷工程の標準温度は、ワーク101に歪みや割れが発生するのを防止する必要上、適切な温度勾配を持たせた時系列の変数として設定する必要がある。
急加熱工程の標準温度の下限値Tminは、下限値の温度勾配の傾きをamin1、また、急加熱工程開始後の経過時間をTとしてTmin=amin1・Tで示すことができる。一方、急加熱工程の標準温度の上限値Tmaxは、上限値の温度勾配の傾きをamax1、また、急加熱工程開始後の経過時間をTとしてTmax=amax1・Tで示すことができる。
同様に、急冷工程の標準温度の下限値Tminは、定常加熱工程における標準温度の下限値をTmin0、急冷工程の下限値の温度勾配の傾きをamin3、また、急冷開始後の経過時間をTとしてTmin=Tmin0-amin3・Tで示され、急冷工程の標準温度の上限値Tmaxは、定常加熱工程における標準温度の上限値をTmax0、急冷工程の上限値の温度勾配の傾きをamax3、また、急冷開始後の経過時間をTとしてTmax=Tmax0-amax3・Tで示される。
【0021】
温度勾配amin1,amax1,amin3,amax3の各値は、予め適当な実験を行ってワークの材質に応じた値を求め、パラメータとして制御部3の不揮発性メモリに記憶させておく。また、急加熱時間t1,急冷時間t3,定常加熱時間t2の値と定常加熱工程の下限値Tmin0および上限値Tmax0の値は、溶接作業を実施する際に制御部3のディスプレイ付き手動データ入力装置を利用してオペレータがその都度設定する。
【0022】
図3乃至図4は制御部3のマイクロ・プロセッサ(以下、単にMPUという)によって実施される温度制御処理の概略を示すフローチャートである。以下、図3乃至図4を参照してMPUの実質的な処理動作について説明する。
【0023】
温度制御処理を開始したMPUは、まず、ディスプレイ付き手動データ入力装置の表示画面にデータ入力のためのガイダンスメッセージを表示し、前述した急加熱時間t1,急冷時間t3,定常加熱時間t2の値と定常加熱工程の下限値Tmin0および上限値Tmax0の値、ならびに、レーザ発生器105およびパワー発生ユニット106の損傷を防止するための出力制限値の値がオペレータによって入力されるのを待ち、これらの値が入力されたならば、それらの値をRAMに記憶して(ステップa1)、溶接開始指令が入力されるまで待機する(ステップa2)。
【0024】
そして、オペレータが溶接開始の指令を与えるとMPUはステップa2の判別処理でこの操作を検出し、経過時間計測タイマTrを起動して溶接作業開始後の経過時間の測定を開始すると共に(ステップa3)、温度指令値記憶レジスタTcmdに初期値ゼロをセットする(ステップa4)。従って、溶接開始直後の温度目標値は図2に示す通りゼロということになる。
【0025】
次いで、MPUは、レーザ光の光軸移動等に関する各軸の補間処理を従来と同様に実施した後(ステップa5)、溶接開始後の経過時間Trの現在値が急加熱時間t1の範囲内にあるか否か、要するに、現時点で急加熱工程の処理が実施されているか否かを判別する(ステップa6)。そして、Tr≦t1の範囲内にあれば、急加熱工程の処理が実施されていることを意味するので、MPUは、Tmin=amin1・T(但し、T=Tr)およびTmax=amax1・T(但し、T=Tr)の演算式に基づいて急加熱工程の標準温度の下限値Tminと上限値Tmaxを求め、その値を下限許容値記憶レジスタTminおよび上限許容値記憶レジスタTmaxの各々にセットする(ステップa11)。
【0026】
また、ステップa6の判別結果が偽となった場合、MPUは、更に、溶接開始後の経過時間Trの現在値が急加熱時間t1+定常加熱時間t2の範囲内にあるか否か、要するに、現時点で定常加熱工程の処理が実施されているか否かを判別する(ステップa7)。そして、Tr≦t1+t2の範囲内にあれば定常加熱工程の処理が実施されていることを意味するので、MPUは、定常加熱工程の標準温度の下限値Tmin0を下限許容値記憶レジスタTminにセットし、また、上限値Tmax0を上限値記憶レジスタTmaxにセットする(ステップa10)。
【0027】
更に、ステップa7の判別結果が偽となった場合、MPUは、溶接開始後の経過時間Trの現在値が急加熱時間t1+定常加熱時間t2+急冷時間t3の範囲内にあるか否か、要するに、現時点で急冷工程の処理が実施されているか否かを判別する(ステップa8)。そして、Tr≦t1+t2+t3の範囲内にあれば急冷工程の処理が実施されていることを意味するので、MPUは、Tmin=Tmin0-amin3・T(但し、T=Tr-t1-t2)およびTmax=Tmax0-amax3・T(但し、T=Tr-t1-t2)の演算式に基づいて急冷工程の標準温度の下限値Tminと上限値Tmaxを求め、その値を下限許容値記憶レジスタTminおよび上限許容値記憶レジスタTmaxの各々にセットする(ステップa9)。
【0028】
次いで、MPUは、赤外線センサ2によって検出されている溶接部102の表面温度T’の値を読み込み(ステップa12)、その値T’が現時点で下限許容値記憶レジスタTminにセットされている標準温度の下限値Tminよりも小さいか否かを判別する(ステップa13)。そして、表面温度T’が標準温度の下限値Tminよりも小さい場合には、温度指令値記憶レジスタTcmdの値に所定値αを加算して温度指令値Tcmdの値を増大させることにより溶接部102の表面温度T’を増大させる方向に補正をかけ(ステップa15)、更に、差動増幅器5からの出力を読み込み、その値がステップa1の処理で設定された出力制限値を越えているか否かを判別する(ステップa16)。そして、差動増幅器5からの出力が出力制限値を越えていなければTcmdの値をそのまま保持し、また、差動増幅器5からの出力が出力制限値を越えている場合には、温度指令値Tcmdの値を元の値に戻し、差動増幅器5からの出力がそれ以上に増大するのを防止して装置の損傷を防ぐ(ステップa17)。
【0029】
一方、ステップa13の判別結果が偽となった場合、つまり、溶接部102の表面温度T’の値が現時点で下限許容値記憶レジスタTminにセットされている標準温度の下限値Tminよりも大きいと判別された場合には、MPUは、更に、表面温度T’の値が上限許容値記憶レジスタTmaxにセットされている標準温度の上限値Tmaxよりも大きいか否かを判別する(ステップa14)。そして、表面温度T’が上限値Tmaxを越えている場合には、MPUは、温度指令値記憶レジスタTcmdの値から所定値αを減算し、溶接部102の表面温度T’を減少させる方向に補正をかける(ステップa17)。
【0030】
また、ステップa14の判別結果が偽となった場合、即ち、温度指令値記憶レジスタTcmdの値が標準温度の下限値Tminと上限値Tmaxとの間にあると判別された場合には、現在のTcmdの値が適切であることを意味するので、MPUは、補正処理は行わずにTcmdの現在値をそのまま保持する。
【0031】
以上に述べたステップa5乃至ステップa17の処理が繰り返し実行される結果、制御部3から出力される温度指令値Tcmndの値は、急加熱工程/定常加熱工程/急冷工程の全ての加熱工程を通じて標準温度の下限値Tminと上限値Tmaxとの間に確実に保持される。また、溶接部102の表面温度T’は図1の説明で述べた制御方式に従ってTcmndを目標値としてクローズド・ループで制御されるので、図2に示すように、標準温度の下限値Tminと上限値Tmaxとの間に確実に保持され、最適な温度条件による的確な溶接作業を実施することができ、しかも、レーザの光軸の送り速度の変動や気温等の環境変化による影響にも十分に対処することができる。
【0032】
また、適切な溶接作業を行うことのできる標準温度の下限値Tminと上限値Tmaxの値はワーク101の形状や大きさ等に関わりなくワーク101の材質によって決まることが多いので、厚みや形状の異なるワーク101に対して溶接作業を行うような場合であっても、amin1,amax1,amin3,amax3等のパラメータの値を頻繁に設定変更する必要はない。なお、ワークの材質や厚みに応じたamin1,amax1,amin3,amax3の値を幾つか実験的に求めてファイル手段に記憶させておき、溶接の開始段階でワークの材質や厚みを指定してその条件に対応するパラメータの値を読み出して使用するようにしてもよい。
【0033】
急加熱工程/定常加熱工程/急冷工程の所要時間が全て経過すると、MPUはステップa8の判別処理でこれを検出し、パワー発生ユニット106への電源供給の停止や光軸の原点復帰等の終了処理を行った後(ステップa18)、温度制御に関わる全ての処理を終了する。
【0034】
図5は赤外線センサ2によって検出される溶接部102の温度を標準温度に一致させるようにワーク101に対するレーザ発生器105の相対移動速度を自動制御するようにした実施形態の一例を示す機能ブロック図である。レーザ発生器105およびパワー発生ユニット106の構成および作用に関しては前述した実施形態と同様である。
【0035】
この実施形態においては、レーザ発生器105に送りをかけるヘッド駆動機構8が設けられ、レーザ発生器105がワーク101に対して相対移動しながら連続的な溶接作業を行うようになっている。モータコントロールユニット9はヘッド駆動機構8に装備されたX,Y,Z各軸のサーボモータを駆動制御するためのものである。モータコントロールユニット9は、制御部7からの移動指令Pcmdによって各軸のサーボモータを駆動制御し、レーザ発生器105を移動させる。また、制御部7からは速度指令Vcmdが出力され、その値が差動増幅器10で増幅されてモータコントロールユニット9に入力され、各軸の送り速度が決められるようになっている。
【0036】
つまり、この実施形態におけるモータ制御は、目標位置と現在位置との間の位置偏差を増幅して速度指令を算出し、この速度指令が達成されるようにモータの駆動トルクを制御するといったように位置,速度,電流ループの各処理を直列的に行うものではなく、制御部7からの移動指令Pcmdと速度指令Vcmdとによって並列的に行われる。従って、例えば、移動指令Pcmdが入力されてモータコントロールユニット9のエラーレジスタに位置偏差が蓄積された場合であっても、速度指令Vcmdの値がゼロである場合には各軸のサーボモータは実質的に動作しない。
【0037】
また、制御部7からは標準温度を目標値とする温度指令値Tcmdが出力され、その値が差動増幅器11に入力される。赤外線センサ2によって検出された溶接部102の現在温度は差動増幅器11に帰還され、差動増幅器11は、制御部7からの温度指令値Tcmdと赤外線センサ2で検出された溶接部102の現在温度との差分を求め、その値を増幅し、加熱指令としてパワー発生ユニット106に出力する。同時に、差動増幅器11からの差分出力は符号を反転した減速指令として差動増幅器10の側にも入力され、差動増幅器10は、制御部7からの速度指令値Vcmdと差動増幅器11からの減速指令との差分をとり、その値を増幅して最終的な速度指令としてモータコントロールユニット9に入力する。
【0038】
従って、差動増幅器11からの差分出力が大きな場合、つまり、温度指令値Tcmdで指定された温度よりも溶接部102の実質的な温度が低ければ低いほど、差動増幅器10に入力される減速指令の値は大きくなり、最終的な速度指令である差動増幅器10からの差分出力は最初の速度指令Vcmdの値よりも小さくなって、レーザ発生器105の相対移動速度が遅くなる。これにより、単位時間当たりに溶接部102に供給される熱量が増大し、結果的に、溶接部102の温度を増大させる方向の補正がかけられることになる。
また、これとは逆に温度指令Tcmdで指定された温度よりも溶接部102の実質的な温度の方が高くなった場合には、差動増幅器10に入力される減速指令は実質的な加速指令となり、最終的な速度指令である差動増幅器10からの差分出力は最初の速度指令Vcmdの値よりも大きくなってレーザ発生器105の相対移動速度が速くなる。これにより、単位時間当たりに溶接部102に供給される熱量が減少し、結果的に、溶接部102の温度を減少させる方向の補正がかけられることになる。
【0039】
レーザ溶接装置6の制御部7は、マイクロ・プロセッサおよびROM,RAMならびに溶接条件記憶用の不揮発性メモリやディスプレイ付き手動データ入力装置等を備えた通常の数値制御装置によって構成され、前述した差動増幅器10の機能に相当する実質的な処理は、そのマイクロ・プロセッサによって実現されるようになっている。また、溶接条件記憶用の不揮発性メモリには、溶接温度の目標値となる標準温度を表すためのデータが予め記憶されている。
【0040】
この実施形態で使用する標準温度は、適切な溶接状態が保証される溶接部102の温度範囲の上限値と下限値とにより温度幅をもって設定されており、しかも、その標準温度は、溶接作業における3つの工程、即ち、溶接開始時の急加熱工程と溶解熱入力のための定常加熱工程および溶接終了時の急冷工程の3つの区間に分けて、時系列の関数として各々個別に設定されている。
【0041】
図6は、温度範囲を特定するこによって設定した標準温度の一例を示す概念図である。先に述べた実施形態の場合と同様、レーザ光の光軸をワーク101に対して相対移動させながら連続的な溶接作業を行う定常加熱工程では、ワーク101を確実に溶解して溶接作業を行う必要があるので、目標値となる標準温度の下限値Tminは、最低でも溶接の対象となるワーク101の融点以上とする必要がある。また、定常加熱工程における標準温度の上限値Tmaxは、ワーク101の沸騰を防止する必要上、ワーク101の沸点からある程度のマージンをとって、それよりも低い値に設定する必要がある。
従って、この実施形態では、図6に示すように、定常加熱工程における標準温度の下限値Tminをワーク101の融点と同じ温度Tmin0に設定し、また、標準温度の上限値Tmaxは、融点と沸点との間で僅かに沸点寄りの温度Tmax0に設定している。
【0042】
また、溶接開始直後の急加熱工程と溶接終了時の急冷工程の標準温度は、ワーク101に歪みや割れが発生するのを防止する必要上、適切な温度勾配を持たせた時系列の変数として設定する必要がある。
急加熱工程の標準温度の下限値Tminは、下限値の温度勾配の傾きをamin1、また、急加熱工程開始後の経過時間をTとしてTmin=amin1・Tで示すことができる。一方、急加熱工程の標準温度の上限値Tmaxは、上限値の温度勾配の傾きをamax1、また、急加熱工程開始後の経過時間をTとしてTmax=amax1・Tで示すことができる。
同様に、急冷工程の標準温度の下限値Tminは、定常加熱工程における標準温度の下限値をTmin0、急冷工程の下限値の温度勾配の傾きをamin3、また、急冷工程開始後の経過時間をTとしてTmin=Tmin0-amin3・Tで示され、急冷工程の標準温度の上限値Tmaxは、定常加熱工程における標準温度の上限値をTmax0、急冷工程の上限値の温度勾配の傾きをamax3、また、急冷工程開始後の経過時間をTとしてTmax=Tmax0-amax3・Tで示される。
【0043】
温度勾配amin1,amax1,amin3,amax3の各値は、予め適当な実験を行ってワークの材質に応じた値を求め、パラメータとして制御部7の不揮発性メモリに記憶させておく。また、定常加熱工程の下限値Tmin0および上限値Tmax0の値と溶接開始位置Poおよび溶接終了位置Peの値は、溶接作業を実施する際に制御部7のディスプレイ付き手動データ入力装置を利用してその都度設定する。
【0044】
前述した通り、この実施形態は、赤外線センサ2によって検出される溶接部102の温度を標準温度に一致させるようにワーク101に対するレーザ発生器105の相対移動速度を自動制御するものであるが、実際にレーザ発生器105の相対移動速度を自動制御することが可能なのは、ヘッド駆動機構8によってレーザ発生器105に実質的な送りをかける区間だけである。
【0045】
つまり、溶接作業開始直後で溶接部102の温度が十分に上昇していない急加熱工程の段階では、レーザ発生器105の送りを伴う実質的な溶接作業が実施されることはないので、レーザ発生器105の相対移動速度を制御することによって溶接部102の温度を適切な温度範囲に調整することもできない。また、溶接部102を冷却する急冷工程ではレーザ発生器105の送りを停止させて溶接部102の冷却を待つことになるので、この急冷工程においても、やはり、レーザ発生器105の相対移動速度を制御することによって溶接部102の温度を適切な温度範囲に調整することはできない。レーザ発生器105の相対移動速度を制御することによって溶接部102の温度を調整できるのは、実際には、図7に示す通り、溶接開始位置Poで溶接部102の温度が溶接可能温度に達してからレーザ発生器105が溶接終了位置Peに到達するまでの移動区間である。
【0046】
よって、本実施形態においては、定常加熱工程の溶接区間においてはレーザ発生器105の相対移動速度を制御することによって溶接部102の温度を適切な温度範囲に調整する一方、急加熱工程と急冷工程においては、通常の温度制御方法を適用して溶接部102の温度を適切な温度範囲に調整するようにしている。
【0047】
図8乃至図10は制御部7のマイクロ・プロセッサ(以下、単にMPUという)によって実施される温度制御処理の概略を示すフローチャートである。以下、図8乃至図10を参照してMPUの実質的な処理動作について説明する。
【0048】
温度制御処理を開始したMPUは、まず、ディスプレイ付き手動データ入力装置の表示画面にデータ入力のためのガイダンスメッセージを表示し、前述した定常加熱工程の下限値Tmin0および上限値Tmax0の値と溶接開始位置Poおよび溶接終了位置Peの値、ならびに、レーザ発生器105の最大送り速度を規制するための速度制限値の値がオペレータによって入力されるのを待ち、これらの値が入力されたならば、それらの値をRAMに記憶して(ステップb1)、溶接開始指令が入力されるまで待機する(ステップb2)。
【0049】
そして、オペレータが溶接開始の指令を与えるとMPUはステップb2の判別処理でこの操作を検出し、溶接開始位置Poへの移動指令Pcmdとジョグ送り速度に対応する速度指令Vcmdを出力してレーザ発生器105の光軸を溶接開始位置Poに移動させ(ステップb3)、経過時間計測タイマTrを起動して溶接作業開始後の経過時間の測定を開始すると共に(ステップb4)、速度指令値記憶レジスタVcmdに初期値ゼロをセットする(ステップb5)。
【0050】
次いで、MPUは、溶接開始後の経過時間Trの現在値が急加熱時間t1の範囲内にあるか否か、要するに、現時点で急加熱工程の処理が実施されているか否かを判別する(ステップb6)。そして、Tr≦t1の範囲内にあれば、急加熱工程の処理が実施されていることを意味するので、MPUは、Tmin=amin1・T(但し、T=Tr)およびTmax=amax1・T(但し、T=Tr)の演算式に基づいて急加熱工程の標準温度の下限値Tminと上限値Tmaxを算出し(ステップb7)、更に、その平均値を求め、温度指令値Tcmdとして差動増幅器11を介してパワー発生ユニット106に出力する(ステップb8)。
【0051】
溶接開始後の経過時間Trが急加熱時間t1を越えるまでの間、前述したステップb6乃至ステップb8の処理が繰り返し実行される結果、急加熱工程の期間t1中は、図6に示されるように、経過時間に応じて線形的に増大する温度指令値Tcmdが制御部7から差動増幅器11に出力されることになる。この間、赤外線センサ2によって検出される溶接部102の現在温度と温度指令値Tcmdとの温度差に基づいて差動増幅器11がパワー発生ユニット106の出力を調整しながら溶接部102の温度をフィードバック制御するので、溶接部102の温度は、その時点における温度指令値Tcmdと同等の値に保持される。
【0052】
そして、急加熱工程の時間t1が経過し、溶接部102の温度が光軸の移動を伴う溶接作業に適した温度に達すると、MPUはステップb6の判別処理でこのことを検出し、光軸を移動させながらの溶接作業を開始する。
【0053】
そこで、MPUは、まず、レーザ光の光軸移動等に関する各軸の補間処理、要するに、移動指令Pcmdや速度指令Vcmdの算出等に関わる処理を従来と同様に実施した後(ステップb9)、レーザ発生器105の現在位置Pを現在位置記憶レジスタから読み込み(ステップb10)、レーザ発生器105の現在位置Pが溶接終了位置Peに到達しているか否かを判別する(ステップb11)。そして、現在位置Pが溶接終了位置Peに到達していなければ、MPUは、下限許容値記憶レジスタTminに定常加熱工程の標準温度の下限値Tmin0を読み込む一方、上限許容値記憶レジスタTmaxには定常加熱工程の標準温度の上限値Tmax0を読み込む(ステップb12)。
【0054】
次いで、MPUは、赤外線センサ2によって検出されている溶接部102の表面温度T’の値を読み込み(ステップb13)、下限許容値記憶レジスタTminと上限許容値記憶レジスタTmaxの平均をとって溶接部102の温度として理想的な温度Tmidlを求め(ステップb14)、溶接部102の表面温度T’が理想値Tmidlに満たないかどうかを判別する(ステップb15)。そして、表面温度T’が理想値Tmidlよりも小さい場合、つまり、ステップb15の判別結果が真となった場合には、MPUは、速度指令値記憶レジスタVcmdの値から所定値βを減算して速度指令値Vcmdの値を減少させ、光軸の送り速度を遅くすることにより溶接部102に単位時間当たりに供給させる熱量を増大させて表面温度T’が増加する方向に送り速度を補正する(ステップb19)。
【0055】
一方、ステップb15の判別結果が偽となった場合には、MPUは、更に、溶接部102の表面温度T’の値が理想値Tmidlを越えているか否かを判別する(ステップb16)。そして、表面温度T’が理想値Tmidlよりも大きい場合、つまり、ステップb16の判別結果が真となった場合には、MPUは、速度指令値記憶レジスタVcmdの値に所定値βを加算して速度指令値Vcmdの値を増大させ、光軸の送り速度を速くすることにより溶接部102に単位時間当たりに供給させる熱量を減少させて表面温度T’が減少する方向に送り速度を補正し(ステップb17)、更に、速度指令値Vcmdの現在値がステップb1の処理で設定された速度制限値を越えているか否かを判別する(ステップb18)。
【0056】
そして、速度指令値Vcmdが速度制限値を越えていなければ速度指令値Vcmdの値をそのまま保持し、また、速度指令値Vcmdが速度制限値を越えている場合には、速度指令値Vcmdの値を元の値に戻し、光軸の移動速度が極端に増大するのを防止する(ステップb19)。速度指令値Vcmdの値が規制された場合、光軸の移動速度を増大させることによって表面温度T’を減少させることは難しくなるが、図5に示す通り、差動増幅器11による温度のフィードバック制御も並列的に行われており、表面温度T’の増加に応じて差動増幅器11からパワー発生ユニット106に与えられる操作量(差分出力)が減少するので、溶接部102の温度を減少させることができる。
【0057】
また、ステップb16の判別結果が偽となった場合には表面温度T’の現在値がその時点で最適とされる表面温度の理想値Tmidlと一致していることを意味するので、速度指令値Vcmdに関する補正作業は行われない。
【0058】
レーザ発生器105の光軸が溶接開始値Poから溶接終了位置Peまで移動する間、前述したステップb9乃至ステップb19の処理が繰り返し実行される結果、溶接部102に供給される熱量が不足する場合には光軸の送り速度が自動的に減速されて単位時間当たりに溶接部102に入力される熱量が増大され、また、溶接部102に供給される熱量が過剰な場合には、光軸の送り速度が自動的に加速されて実質的な熱の供給量か抑制される。これらの処理のうちステップb12からステップb19に至る処理が図5に示す差動増幅器10の速度制御機能に相当する部分である。また、これらの処理が行われる間にも、ハードウェアによって構成される差動増幅器11による温度のフィードバック制御が並列的に行われるので、光軸移動の速度制御のみによって溶接部102に与える熱量を調整する場合、および、パワー発生ユニット106の出力調整のみによって温度制御を行う場合に比べて高い精度で溶接部102の温度T’を目標値に近似させることができ、また、環境温度の変化等といった外乱に対する耐性も遥かに高くなる。
【0059】
定常加熱工程における溶接部102の実温度T’の変化の一例を図7に示す。図7に示すT’の温度変化が図2に示した最初の実施形態の温度変化T’に比べて安定している理由は、前述した送り速度とレーザ出力の並列制御の他、温度の目標値となるTcmdを温度幅としてではなく幅を持たない数値、即ち、Tmidl=(Tmax+Tmin)/2によって与えている点にもある(ステップb14参照)。この結果、本実施形態における表面温度T’の変化は上限値Tmaxと下限値Tminとの間に収まるのは無論のこと、図6に示すような温度指令値Tcmdと実質的に一致するまでになり、より精度の高い温度制御が可能となる。
【0060】
そして、このような処理を繰り返し実行する間に、レーザ発生器105の現在位置Pが溶接終了位置Peに到達して定常加熱工程の処理が終わったことがステップb11の判別処理で検出されると、MPUは、速度指令値記憶レジスタVcmdの値をゼロに初期化し(ステップb20)、経過時間計測タイマTrをリスタートして急冷工程開始後の経過時間の測定を開始する(ステップb21)。
【0061】
次いで、MPUは、急冷工程開始後の経過時間Trの現在値が急冷時間t3の範囲内にあるか否か、要するに、現時点で急冷工程の処理が実施されているか否かを判別する(ステップb22)。そして、Tr≦t3の範囲内にあれば、急冷工程の処理が実施されていることを意味するので、MPUは、Tmin=Tmin0-amin3・T(但し、T=Tr)およびTmax=Tmax0-amax3・T(但し、T=Tr)の演算式に基づいて急冷工程の標準温度の下限値Tminと上限値Tmaxを算出し(ステップb23)、更に、その平均値を求め、温度指令値Tcmdとして差動増幅器11を介してパワー発生ユニット106に出力する(ステップb24)。
【0062】
急冷工程開始後の経過時間Trが急加熱時間t3を越えるまでの間、前述したステップb22乃至ステップb24の処理が繰り返し実行される結果、急冷工程の期間t3中は、図6に示されるように、経過時間に応じて線形的に減少する温度指令値Tcmdが制御部7から差動増幅器11に出力されることになる。この間、赤外線センサ2によって検出される溶接部102の現在温度と温度指令値Tcmdとの温度差に基づいて差動増幅器11がパワー発生ユニット106の出力を調整しながら溶接部102の温度をフィードバック制御するので、溶接部102の温度はその時点における温度指令値Tcmdと同等の値に保持される。
【0063】
そして、急冷工程の時間t3が経過し、急加熱工程/定常加熱工程/急冷工程を含む一連の溶接作業が完了したことがステップb22の判別処理で検出されると、MPUは、パワー発生ユニット106への電源供給の停止や光軸の原点復帰等の終了処理を行った後(ステップb25)、送り速度制御および温度制御に関する全ての処理を終了する。
【0064】
この実施形態では、温度の目標値となるTcmdを幅のない数値Tmidl=(Tmax+Tmin)/2として与え、また、溶接部102の現在温度T’が適切であるか否かの判断も上限許容値Tmaxと下限許容値Tminとの比較ではなく幅を持たない数値Tmidl=(Tmax+Tmin)/2との比較によって行うようにしているので、必ずしも上限許容値や下限許容値といった概念を導入する必要はなく、例えば、図6に示されるようなTcmd自体を表すデータや関数を生成して直接用いることによって、ステップb7,b8やステップb12,b14、更には、ステップb23,b24に代わる簡略化された処理、つまり、平均値の算出を必要としない処理を実施するように構成することも可能である。
本実施形態においては、融点や沸点等は材質によって一様に決まっているので上限許容値Tmax0や下限許容値Tmin0の値は簡単に特定できるとの観点に基づき、設定操作の簡便化のため、最初に述べた実施形態で採用した上限許容値や下限許容値といった概念をそのまま導入し、ステップb1の処理で上限許容値Tmax0や下限許容値Tmin0の値をオペレータによって入力させ、温度制御の目標値となる(Tmax+Tmin)/2の演算処理自体は、その都度MPUによって実行させるようにしている。
【0065】
この実施形態ではレーザ発生器105の送り速度とレーザ発生器105のレーザ出力を共に制御することによって溶接部102の温度T’を温度指令値Tcmdに一致させるようにしているが、実際に送り動作の行われる定常加熱工程の区間に限って言えば、レーザ発生器105の送り速度Vcmdのみを制御することによって溶接部102の温度を適正な値に保持することも可能である。
【0066】
【発明の効果】
本発明の溶接温度制御方法は、溶接部の温度をリアルタイムで検出し、その温度が指令温度に一致するようにレーザ発生器への供給電力またはワークに対する光軸の相対移動速度、もしくは、その両方を自動制御するようにしているので、溶接対象となるワークの特性さえ分かれば、溶接作業に用いる溶接条件を簡単に決めることができ、ポロシティの発生や凝固割れ、および、内部歪等のない的確なレーザ溶接作業を簡単に実施することができる。
従って、ワーク溶接部の実温度を無視してレーザ発生器の出力のみを制御していた従来の温度制御方法のような試行錯誤の繰り返しによる面倒な条件設定作業は必要ない。
【0067】
また、最終的に必要とされる溶接部の温度が直接的に制御されるので、送り速度や気温の変動等の外乱があった場合でも、これらの外乱による悪影響を吸収して的確なレーザ溶接作業を行うことができる。
【図面の簡単な説明】
【図1】溶接部の温度が標準温度と一致するようにレーザ発生器への供給電力を自動制御するようにしたレーザ溶接装置の一例を示す機能ブロック図である。
【図2】レーザ溶接装置に設定した標準温度の一例を示す概念図である。
【図3】制御部のマイクロ・プロセッサによって実施される温度制御処理の概略を示すフローチャートである。
【図4】温度制御処理の概略を示すフローチャートの続きである。
【図5】溶接部の温度を標準温度に一致させるようにワークに対するレーザ発生器の相対移動速度を自動制御するようにしたレーザ溶接装置の一例を示す機能ブロック図である。
【図6】レーザ溶接装置に設定した標準温度の一例を示す概念図である。
【図7】レーザ発生器の相対移動速度を自動制御して溶接部の温度を調整した場合の実温度の変化を例示した概念図である。
【図8】制御部のマイクロ・プロセッサによって実施される温度制御処理の概略を示すフローチャートである。
【図9】温度制御処理の概略を示すフローチャートの続きである。
【図10】温度制御処理の概略を示すフローチャートの続きである。
【図11】図11(a)はレーザ溶接の概要を簡略化して示す斜視図、図11(b)は溶接個所の状態を示す断面図である。
【図12】従来のレーザ溶接装置の構成を簡略化して示すブロック図である。
【符号の説明】
1 レーザ溶接装置
2 非接触式の温度センサとしての赤外線センサ
3 制御部
4 差動増幅器
5 差動増幅器
6 レーザ溶接装置
7 制御部
8 ヘッド駆動機構
9 モータコントロールユニット
10 差動増幅器
11 差動増幅器
100 レーザ光
101 ワーク
102 溶接部
103 溶融部(キーホール)
105 レーザ発生器
106 パワー発生ユニット
108 パワーメータ
109 ミラー

Claims (4)

  1. レーザ光を照射して溶接作業を行うレーザ溶接であって、
    適切な溶接状態が得られるときの溶接部の温度を予め制御装置に標準温度として設定しておき、レーザ溶接の実行中、非接触式の温度センサによって前記溶接部の温度を検出し、前記温度センサによって検出される溶接部の温度が前記標準温度と一致するようにレーザ発生器への供給電力を制御するようにしたレーザ溶接における溶接温度制御方法において、
    前記標準温度を、溶接開始時の急加熱領域、溶解熱入力のための定常加熱領域および溶接終了時の急冷領域の3つの区間に分けて時系列の関数として設定したことを特徴とするレーザ溶接における溶接温度制御方法。
  2. 前記標準温度は、適切な溶接状態が得られるときの溶接部の温度範囲として設定し、前記温度センサによって検出される溶接部の温度が前記温度範囲内に収まるようにレーザ発生器への供給電力を制御するようにしたことを特徴とする請求項1記載のレーザ溶接における溶接温度制御方法。
  3. レーザ光を照射しながらその光軸を移動させて連続的な溶接作業を行うレーザ溶接であって、
    適切な溶接状態が得られるときの溶接部の温度を予め制御装置に標準温度として設定しておき、レーザ溶接の実行中、非接触式の温度センサによって前記溶接部の温度を検出し、前記温度センサによって検出される溶接部の温度が前記標準温度と一致するように、少なくともレーザ発生器への供給電力およびワークに対する光軸の相対移動速度のいずれかを制御するようにしたレーザ溶接における溶接温度制御方法において、
    前記標準温度を、溶接開始時の急加熱領域、溶解熱入力のための定常加熱領域および溶接終了時の急冷領域の3つの区間に分けて時系列の関数として設定し、急加熱領域および急冷領域においては、前記温度センサによって検出される溶接部の温度が前記標準温度と一致するようにレーザ発生器への供給電力を制御する一方、定常加熱領域においては、前記温度センサによって検出される溶接部の温度が標準温度と一致するようにワークに対する光軸の相対移動速度を制御するようにしたことを特徴とするレーザ溶接における溶接温度制御方法。
  4. 前記標準温度は、適切な溶接状態が得られるときの溶接部の温度範囲として設定し、前記温度センサによって検出される溶接部の温度が前記温度範囲内に収まるように少なくともレーザ発生器への供給電力およびワークに対する光軸の相対移動速度のいずれかを制御するようにしたことを特徴とする請求項3のレーザ溶接における溶接温度制御方法。
JP01931799A 1999-01-28 1999-01-28 レーザ溶接における溶接温度制御方法 Expired - Lifetime JP3817949B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01931799A JP3817949B2 (ja) 1999-01-28 1999-01-28 レーザ溶接における溶接温度制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01931799A JP3817949B2 (ja) 1999-01-28 1999-01-28 レーザ溶接における溶接温度制御方法

Publications (2)

Publication Number Publication Date
JP2000218383A JP2000218383A (ja) 2000-08-08
JP3817949B2 true JP3817949B2 (ja) 2006-09-06

Family

ID=11996042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01931799A Expired - Lifetime JP3817949B2 (ja) 1999-01-28 1999-01-28 レーザ溶接における溶接温度制御方法

Country Status (1)

Country Link
JP (1) JP3817949B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396556A1 (en) * 2002-09-06 2004-03-10 ALSTOM (Switzerland) Ltd Method for controlling the microstructure of a laser metal formed hard layer
DE10259177B4 (de) * 2002-12-18 2010-11-04 Robert Bosch Gmbh Verfahren zur Durchführung eines Schweißprozesses
AU2003292459A1 (en) * 2002-12-20 2004-07-14 Koninklijke Philips Electronics N.V. A method and a device for laser spot welding
JP2005164955A (ja) 2003-12-02 2005-06-23 Fujitsu Ltd 撮像デバイス、撮像デバイスの製造方法及び撮像デバイス保持機構
DE102004050164B4 (de) * 2004-10-14 2016-02-18 Robert Bosch Gmbh Schweißverfahren
DE102008018264A1 (de) * 2008-04-10 2009-10-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schweißverfahren mit geregeltem Temperaturverlauf und eine Vorrichtung dafür
JP6101497B2 (ja) * 2013-01-31 2017-03-22 株式会社アマダミヤチ レーザ加工方法及びレーザ加工装置
JP6012855B2 (ja) 2013-05-10 2016-10-25 株式会社日立製作所 溶接方法、溶接システム及び溶接凝固割れモニタリングシステム
JP6285154B2 (ja) * 2013-11-14 2018-02-28 株式会社アマダミヤチ レーザ溶接方法及びレーザ溶接システム
DE102016100561A1 (de) 2016-01-14 2017-07-20 Pac Tech - Packaging Technologies Gmbh Verfahren zur Platzierung und Kontaktierung eines Prüfkontakts
EP3213830A1 (de) * 2016-03-02 2017-09-06 Nexans Verfahren zur herstellung eines rohres aus metall
JP6439734B2 (ja) * 2016-04-04 2018-12-19 トヨタ自動車株式会社 レーザ肉盛方法
KR102019853B1 (ko) * 2017-12-14 2019-09-09 조국환 레이저 용착기의 모재 방사율이 반영되는 용착 온도 제어 시스템 및 그 제어방법
JPWO2022085632A1 (ja) * 2020-10-20 2022-04-28
CN118123241B (zh) * 2024-04-30 2024-07-23 迈为技术(珠海)有限公司 一种阵列激光焊接装置、方法及存储介质

Also Published As

Publication number Publication date
JP2000218383A (ja) 2000-08-08

Similar Documents

Publication Publication Date Title
JP3817949B2 (ja) レーザ溶接における溶接温度制御方法
US9636774B2 (en) Controller for laser beam machining for controlling approaching operation of machining head
KR101056487B1 (ko) 다층 디엠디 프로세스용 부품 기하학적 독립 실시간 폐쇄루프 용접 풀 온도 제어 시스템
US5977506A (en) Welding method for the connection of a component to a workpiece, and a device for carrying out the method
JP7268961B2 (ja) レーザ加工のための微細スケールでの時間的制御
EP1609557A1 (en) Arc starting method in a hybrid welding process using laser and electric arc, welding device for performing the method, and controller
WO2011157285A1 (en) A method of automatically setting a welding parameter for mig/mag welding and a controller for performing the method
WO2018230419A1 (ja) 溶接システム及び溶接方法
AU2010355561B2 (en) A method of automatically setting a welding parameter for MIG/MAG welding and a controller for performing the method
CA3145642A1 (en) Standoff distance monitoring and control for directed energy deposition additive manufacturing systems
CN112423926B (zh) 包括消耗性焊丝的电弧焊接方法
CN111132788B (zh) 提供用于控制焊枪位置的参考距离信号的方法和装置
CN115485096B (zh) 附加制造装置及附加制造方法
CN114641364B (zh) 用于焊接焊缝的方法和设备
WO2021014779A1 (ja) Am装置
JP2003019589A (ja) 溶融部温度をフィードバック制御する溶接制御装置及び溶接制御方法
JPH05111783A (ja) レーザ加工における穴明け加工方法
JP5165198B2 (ja) アーク溶接ロボットの溶接条件設定方法
JP7134383B1 (ja) 付加製造システムの制御装置および制御方法
US20220274202A1 (en) Additive manufacturing machine
JP2000210781A (ja) レ―ザ溶接方法および装置
JP3466166B2 (ja) 回転アーク溶接装置および溶接速度設定装置
JP2003103369A (ja) 交流パルス溶接方法
US6294752B1 (en) Method of flash-butt welding
JP2638401B2 (ja) 消耗電極式アーク溶接機のワイヤ送給速度制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4