EP2245441A1 - Mikrospektrometer - Google Patents

Mikrospektrometer

Info

Publication number
EP2245441A1
EP2245441A1 EP09714805A EP09714805A EP2245441A1 EP 2245441 A1 EP2245441 A1 EP 2245441A1 EP 09714805 A EP09714805 A EP 09714805A EP 09714805 A EP09714805 A EP 09714805A EP 2245441 A1 EP2245441 A1 EP 2245441A1
Authority
EP
European Patent Office
Prior art keywords
fluid channel
optical
microspectrometer
housing
microspectrometer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09714805A
Other languages
English (en)
French (fr)
Inventor
Dominik Rabus
Michael Winkler
Christian Oberndorfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buerkert Werke GmbH and Co KG
Original Assignee
Buerkert Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buerkert Werke GmbH and Co KG filed Critical Buerkert Werke GmbH and Co KG
Publication of EP2245441A1 publication Critical patent/EP2245441A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0628Organic LED [OLED]

Definitions

  • the invention relates to a microspectrometer.
  • Microspectrometers are known. Typically, components such as optical grating, mirrors, evaluation electronics and optical fibers are arranged in a housing or on a base plate, which couple the light to be analyzed into the spectrometer. Outside the microspectrometer is a light source and the sample to be analyzed, which is irradiated by the light of the external light source. The light, which is separated from the optical grating into its spectral components, passes via optical fibers to a plurality of photodetectors.
  • the invention provides a microspectrometer which can be made extremely compact and without external components and has only a fluidic interface and electrical connections to the outside.
  • the advantage of the invention set out in the appended claims is that it permits the continuous spectroscopy of an analyte, e.g. in the monitoring of drinking water quality is of great importance.
  • optical grating is rotatably arranged, so that instead of a detector line, a single photodetector can be used.
  • the housing of the microspectrometer as a rigid molded body by injection molding from at least partially transparent To manufacture plastic.
  • the fluid channel is then passed across a solid portion of the molded article from one side surface to the opposite surface.
  • the required optical grating is molded during injection molding in a surface of the molding. But it is also possible to use a grid after injection into a recess of the housing.
  • the light source may e.g. be an LED and integrated as Einlegteil in the molding.
  • the light source could also be inserted into a recess of the plastic part and then attached, for example, by gluing.
  • OLED it is also possible to use OLED or use other known methods such as laser technology to generate the light source.
  • a further light source could be arranged below / above the fluid channel.
  • the scattered light would then be radiated at an angle of 90 ° on the same path as the test section described.
  • the scattered light falls on the grid, is spectrally decomposed and reaches the evaluation electronics.
  • the fluid channel is transversely irradiated by a separate light source, and the scattered light occurring in this case is collected directly (without spectral decomposition) by means of another photodiode.
  • the scattered light intensity is measured and evaluated separately.
  • 1 is a schematic plan view of an embodiment of the microspectrometer with the housing open; 2 shows a plan view of a second exemplary embodiment of the microspectrometer with the housing open in a schematic illustration;
  • FIG. 5 shows a rigid molded body, which is suitable as a housing.
  • Fig. 6 shows an embodiment using the housing of Fig. 5;
  • FIG. 7 shows a further embodiment using the housing according to Fig. 5; and
  • FIG. 8 shows a further embodiment using a rigid shaped body as the housing.
  • a light source 2 and an optical grating 6 are arranged in a housing 1 on opposite sides.
  • the housing 1 is penetrated by a fluid channel 3.
  • the channel 3 can either be filled and sealed with medium to be analyzed, or this medium can flow continuously through the channel.
  • the fluid channel 3 can be connected to lines (not shown in FIG. 1) in which the medium is transported to and from the spectrometer.
  • the fluid channel 3 is arranged in the housing such that it is located on the optical measuring path between the light source 2 and the grating 6.
  • the fluid channel 3 must be made of translucent material.
  • Fluid channel 3 can be either completely or partially provided in the injection mold for the housing 1 of the microspectrometer, or this or window-like parts thereof are subsequently made of transparent material such
  • a diaphragm 4 wherein the opening is placed so that light from the light source 2 on the grid 6 falls.
  • the diameter of the aperture 4 is ideally adjustable.
  • a mirror 5 is arranged so that light reflected by the grating 6 is incident on it.
  • the mirror 5 may for example be part of Aperture 4, arranged so that it faces the grating 6 and not the light source 2.
  • the mirror 5 directs incident light on to an evaluation unit (not shown in FIG. 1).
  • This evaluation unit can e.g. a photodetector like an organic photodiode array.
  • the beam path 7 of the optical measuring path is shown.
  • Light from the light source 2 ideally passes through the fluid channel 3 at an angle of incidence of 90 °, passes through the diaphragm 4 to the grating 6, which spectrally splits the light and reflects it onto the mirror 5, which redirects the light to the evaluation unit.
  • the evaluation unit can be arranged inside the microspectrometer or can also be located outside.
  • a second light source 2a e.g. LED arranged, which also sends light across the fluid channel. From the main beam at an angle of 90 ° sloping stray light (dashed line) passes according to beam path 8, for. for the purpose of turbidity measurement by the diaphragm 4 on the optical grating 6 and the evaluation unit.
  • the light source 2 is not activated simultaneously with the light source 2a.
  • the two light sources 2 and 2a are activated alternately, the turbidity and the concentration of constituents in liquids can thus be determined in succession with the same device.
  • the evaluation of the scattered light with spectral decomposition takes place through the optical grating 6.
  • FIG. 4 shows the sectional view of a further exemplary embodiment in which the evaluation of the scattered light takes place without spectral decomposition.
  • the arrangement of the individual components is identical to that of the first embodiment, except that in addition below the fluid channel 3 is a photodiode 2b.
  • the photodiode 2b detects scattered light radiated at an angle of 90 ° from the main beam emitted from the light source 2 and which transmits the light Transmitted fluid channel 3 transversely.
  • the beam path of the scattered light is shown in dashed lines according to arrow 9.
  • the main beam of the light source 2 can be optically decomposed and evaluated by means of grids and the scattered light occurring thereby can be collected directly by means of the photodiode 2b and the scattered light intensity can be measured.
  • the rigid shaped body 20 which is suitable as a housing of the microspectrometer and is shown in FIG. 5, is a flat cuboid with a solid block 20a, which merges with a step 22 into a flat region 20b in which a rectangular recess 24 is formed. This recess 24 can be closed by a cover 26, which is flush with the block 20a.
  • the molded body 20 is produced by injection molding of a particularly transparent plastic, such as polymethyl acrylate.
  • a channel 28 is recessed, which is guided from one side surface up to the opposite side surface. Furthermore, a cylindrical recess 30 is introduced perpendicular to the channel 28 in the block 20 a.
  • a light source such as an LED 32 is inserted in the recess 30.
  • the channel 28 is provided at its ends with fluidic fittings 34.
  • the recess 24 accommodates all further components of the microspectrometer: the diaphragm 36, the optical grating 38 and the photodetector row 40 with evaluation electronics 42.
  • further optical and / or electronic components can be arranged in the recess 24.
  • a plurality of light sources for different spectral ranges can be arranged in the block 20a.
  • the micro-spectrometer has only a fluidic interface in the form of the connecting pieces 34 and electrical connections that can be realized by connectors. Since all optical components are in a rigid spatial relationship, no adjustments are required to make measurements.
  • Fig. 7 differs from that of Fig. 6 by the use of a rotatably mounted optical grating 38a with rotary drive 44 and the use of a single photodiode 40a as a detector.
  • the rotary drive 44 is activated by the evaluation electronics 42a in such a way. Experts that the photodiode 40a successively detects all the spectral components of the light reflected from the grid.
  • the shaped body 20b forms a uniform flat cuboid made of transparent plastic.
  • a recess 46 which is introduced into the molded body 20b parallel to the channel 28b, accommodates the photodetector row 40b and the evaluation electronics 42b.
  • the optical grating 38b is formed in the outer surface of the molded body 20b opposite to the light source 32b and provided with a reflective coating, e.g. is applied by vapor deposition.
  • the grid 38b is covered with a protective layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

Das kompakte Mikrospektrometer für fluide Medien hat in einem Gehäuse (20b) in fester räumlicher Zuordnung eine Lichtquelle, einen Fluidkanal (28b), ein reflektierendes optisches Gitter (38b) und einen Detektor (40b). Die von der Lichtquelle ausgehende optische Messstrecke durchquert den Fluidkanal und trifft auf das optische Gitter. Die von dem optischen Gitter reflektierten spektralen Lichtkomponenten treffen auf den Detektor.

Description

Mikrospektrometer
Die Erfindung betrifft ein Mikrospektrometer.
Mikrospektrometer sind bekannt. Üblicherweise sind in einem Gehäuse oder auf einer Grundplatte Komponenten wie optisches Gitter, Spiegel, Auswerteelektronik und Lichtfasern angeordnet, welche das zu analysierende Licht in das Spektrometer einkoppeln. Außerhalb des Mikrospektrometers befinden sich eine Lichtquelle sowie die zu analysierende Probe, die vom Licht der externen Lichtquelle durchstrahlt wird. Das von dem optischen Gitter in seine spektralen Kom- ponenten zerlegte Licht gelangt über Lichtleitfasern zu mehreren Photodetektoren.
Durch die Erfindung wird ein Mikrospektrometer bereit gestellt, das äußerst kompakt und ohne externe Komponenten ausgebildet werden kann und nach außen nur eine Fluidikschnittstelle und elektrische Anschlüsse besitzt. Vorteil der in den beigefügten Patentansprüchen angegebenen Erfindung ist unter anderem, dass dadurch die kontinuierliche Spektroskopie eines Analyts ermöglicht wird, was z.B. bei der Überwachung der Trinkwasserqüalität große Bedeutung hat.
Außerdem werden mögliche Fehlerquellen ausgeschlossen, weil die Licht- ' quelle nicht bei jeder Messung neu zu dem den zu messenden Analyten enthaltenden Behälter ausgerichtet werden muss.
Zusätzliche Linsen, die in bekannten Mikrospektrometern benötigt werden, um Licht in die Lichtfaser einzukoppeln, so wie die Lichtfaser selbst sind überflüssig. Das durch das optische Gitter in seine spektralen Komponenten zerlegte Licht kann ohne Umwege über Lichtleitfasern direkt von einer Photodetektorzeile aufgenommen werden. Bei einer alternativen Ausführungsform ist das optische Gitter drehbeweglich angeordnet, so dass an Stelle einer Detektorzeile ein einzelner Photodetektor verwendet werden kann.
Besonders günstig ist es, das Gehäuse des Mikrospektrometers als starrer Formkörper im Spritzgussverfahren aus zumindest bereichsweise transparentem Kunststoff zu fertigen. Der Fluidkanal wird dann quer durch einen massiven Bereich des Formkörpers von einer Seitenfläche zur gegenüberliegenden Fläche geführt. Bei einer vorteilhaften Ausführungsform wird das benötigte optische Gitter beim Spritzguss in eine Fläche des Formkörpers eingeformt. Es ist aber auch möglich, ein Gitter nach dem Spritzguss in eine Ausnehmung des Gehäuses einzusetzen.
Für reflektierende Flächen, die als Spiegel wirken sollen, können Metallschichten anschließend aufgedampft werden, oder es wird geeignete Folie hin- tersprizt. Die Lichtquelle kann z.B. eine LED sein und als Einlegteil in den Formkörper integriert werden. Die Lichtquelle könnte aber auch in eine Ausnehmung des Kunststoffteils eingesetzt und anschließend beispielsweise durch Kleben befestigt werden.
Es ist auch möglich OLED zu verwenden oder andere bekannte Methoden wie Lasertechnologie zur Erzeugung der Lichtquelle einzusetzen.
Werden mehrere verschiedene Lichtquellen in ein Mikrospektrometer integriert, so können mit einem Gerät vorteilhaft mehrere spektrale Messungen unterschiedlicher Wellenlängen ausgeführt werden.
So könnte eine weitere Lichtquelle unter/ oberhalb des Fluidkanals angeord- net sein. Das Streulicht würde dann im Winkel von 90° abgestrahlt werden auf dem gleichen Weg wie die beschriebene Messstrecke. Das Streulicht fällt auf das Gitter, wird spektralzerlegt und gelangt zur Auswerteelektronik.
Gemäß einer Variante oder zusätzlich wird der Fluidkanal von einer gesonderten Lichtquelle quer durchstrahlt, und das hierbei auftretende Streulicht wird direkt (ohne spektrale Zerlegung) mittels weiterer Photodiode aufgefangen. Die Streulichtintensität wird separat gemessen und ausgewertet.
Vorteilhafte Ausführungsformen werden nun unter Bezugnahme auf die Zeichnungen näher beschrieben. In den beigefügten Figuren zeigen:
Fig. 1 Draufsicht auf ein Ausführungsbeispiel des Mikrospektrometers bei geöffnetem Gehäuse in schematischer Darstellung; Fig. 2 Draufsicht auf ein zweites Ausführungsbeispiel des Mikrospektrometers bei geöffnetem Gehäuse in schematischer Darstellung;
Fig. 3 Schnitt von Fig. 2;
Fig. 4 Schnittbild eines weiteren Ausführungsbeispiels;
Fig. 5 einen starren Formkörper, der als Gehäuse geeignet ist; Fig. 6 eine Ausführungsform unter Verwendung des Gehäuses nach Fig. 5;
Fig. 7 eine weitere Ausführungsform unter Verwendung des Gehäuses nach Fig. 5; und Fig. 8 eine weitere Ausführungsform unter Verwendung eines starren Formkörpers als Gehäuse.
Bei der Ausführungsform eines erfindungsgemäßen Mikrospektrometers nach Fig. 1 sind in einem Gehäuse 1 auf gegenüberliegenden Seiten eine Lichtquelle 2 und ein optisches Gitter 6 angeordnet. Das Gehäuse 1 wird von einem Fluidkanal 3 durchragt. Der Kanal 3 kann entweder mit zu analysierendem Medium befüllt und verschlossen werden, oder dieses Medium kann kontinuierlich durch den Kanal strömen. Dazu ist der Fluidkanal 3 verbindbar mit Leitungen (in Fig.1 nicht dargestellt), in denen das Medium zum Spektrometer hin bzw. von diesem weg transportiert wird. Der Fluidka- nal 3 ist im Gehäuse so angeordnet, dass er sich auf der optischen Meßstrecke zwischen der Lichtquelle 2 und dem Gitter 6 befindet.
Der Fluidkanal 3 muss aus lichtdurchlässigem Material gefertigt sein. Der
Fluidkanal 3 kann entweder schon komplett oder teilweise in der Spritzgussform für das Gehäuse 1 des Mikrospektrometers vorgesehen sein, oder dieser oder fensterartige Teile davon werden nachträglich aus transparentem Material wie
Glas oder PMMA in das Gehäuse eingesetzt.
Um unerwünschtes Streulicht auszufiltem, befindet sich zwischen Fluidkanal 3 und Gitter 6 eine Blende 4, wobei deren Öffnung so platziert ist, dass Licht von der Lichtquelle 2 auf das Gitter 6 fällt. Der Durchmesser der Blende 4 ist idealer Weise einstellbar.
Zwischen Blende 4 und Gitter 6 ist ein Spiegel 5 so angeordnet, dass auf ihn vom Gitter 6 reflektiertes Licht fällt. Der Spiegel 5 kann beispielsweise Teil der Blende 4 sein, so angeordnet dass er dem Gitter 6 und nicht der Lichtquelle 2 zugewandt ist.
Der Spiegel 5 lenkt auftreffendes Licht weiter zu einer Auswerteeinheit (in Fig. 1 nicht dargestellt). Diese Auswerteeinheit kann z.B. ein Photodetektor sein wie ein Organic Photodiode Array.
In Fig. 1 ist außer den für das Spektrometer benötigten einzelnen Komponenten der Strahlengang 7 der optischen Meßstrecke gezeigt. Licht aus der Lichtquelle 2 durchquert idealer Weise mit einem Einfallswinkel von 90° den Fluidka- nal 3, gelangt durch die Blende 4 zum Gitter 6, welches das Licht spektralzerlegt und auf den Spiegel 5 reflektiert, der das Licht zur Auswerteeinheit umlenkt.
Die Auswerteeinheit kann innerhalb des Mikrospektrometers angeordnet sein oder sich auch außerhalb befinden.
Wie in Fig. 2 und Fig. 3 gezeigt, ist in einem zweiten Ausführungsbeispiel unterhalb des Fluidkanals eine zweite Lichtquelle 2a z.B. LED angeordnet, die Licht ebenfalls quer durch den Fluidkanal sendet. Vom Hauptstrahl im Winkel von 90° abfallendes Streulicht (gestrichelte Linie) gelangt gemäß Strahlengang 8 z.B. zum Zweck der Trübungsmessung durch die Blende 4 auf das optische Gitter 6 und zur Auswerteeinheit. Dabei ist die Lichtquelle 2 nicht gleichzeitig mit der Lichtquelle 2a aktiviert. Bei Aktivierung der beiden Lichtquellen 2 und 2a im Wechsel können somit hintereinander die Trübung und die Konzentration von Bestandteilen in Flüssigkeiten mit der gleichen Vorrichtung bestimmt werden.
Bei dieser Ausführungsform erfolgt die Auswertung des Streulichts mit spektraler Zerlegung durch das optische Gitter 6.
Fig. 4 zeigt das Schnittbild eines weiteren Ausführungsbeispiels, bei dem die Auswertung des Streulichts ohne spektrale Zerlegung erfolgt.
Die Anordnung der einzelnen Komponenten ist identisch mit der des ersten Ausführungsbeispiels, außer dass sich zusätzlich unterhalb des Fluidkanals 3 eine Photodiode 2b befindet.
Die Photodiode 2b erfasst Streulicht, das im Winkel von 90° abgestrahlt wird vom Hauptstrahl, der von der Lichtquelle 2 ausgesendet wird und welcher den Fluidkanal 3 quer durchstrahlt. Der Strahlengang des Streulichts ist gemäß Pfeil 9 gestrichelt dargestellt.
In diesem Ausführungsbeispiel kann gleichzeitig der Hauptstrahl der Lichtquelle 2 mittels Gitter optisch zerlegt und ausgewertet werden und das dabei auftretende Streulicht direkt mit Hilfe der Photodiode 2b aufgefangen und die Streulichtintensität gemessen werden.
Der in Fig. 5 gezeigte, als Gehäuse des Mikrospektrometers geeignete starre Formkörper 20 ist ein flacher Quader mit einem massiven Block 20a, der mit einer Stufe 22 in einen flachen Bereich 20b übergeht, in dem eine rechteckige Ausnehmung 24 gebildet ist. Diese Ausnehmung 24 ist durch einen Deckel 26 verschließbar, der bündig an den Block 20a anschließt. Der Formkörper 20 wird durch Spritzgießen eines insbesondere transparenten Kunststoffs wie Polymethy- lacrylat hergestellt. In dem Block 20a ist ein Kanal 28 ausgespart, der von einer Seitenfläche ausgehend bis zu der gegenüberliegenden Seitenfläche geführt ist. Ferner ist in den Block 20a eine zylindrische Ausnehmung 30 senkrecht zu dem Kanal 28 eingebracht.
Wie in Fig. 6 gezeigt, wird in die Ausnehmung 30 eine Lichtquelle wie eine LED 32 eingebracht. Der Kanal 28 wird an seinen Enden mit fluidischen Anschlußstücken 34 versehen. Die Ausnehmung 24 nimmt alle weiteren Kompo- nenten des Mikrospektrometers auf: die Blende 36, das optische Gitter 38 und die Photodetektorzeile 40 mit Auswerteelektronik 42. Selbstverständlich können in der Ausnehmung 24 weitere optische und/oder elektronische Komponenten angeordnet werden. Ebenso können in dem Block 20a mehrere Lichtquellen für verschiedene Spektralbereiche angeordnet werden. Nach außen hat das Mikro- spektrometer lediglich eine fluidische Schnittstelle in Form der Anschlußstücke 34 sowie elektrische Anschlüsse, die durch Steckverbinder realisiert sein können. Da alle optischen Komponenten in starrer räumlicher Beziehung zueinander stehen, sind keinerlei Justierungen zur Durchführung von Messungen erforderlich.
Die Ausführungsform in Fig. 7 unterscheidet sich von der nach Fig. 6 durch die Verwendung eines drehbar angeordneten optischen Gitters 38a mit Drehantrieb 44 sowie die Verwendung einer einzelnen Photodiode 40a als Detektor. Der Drehantrieb 44 wird durch die Auswerteelektronik 42a in solcher Weise anges- teuert, daß die Photodiode 40a alle spektralen Komponenten des vom Gitter reflektierten Lichtes nacheinander detektiert.
Bei der Ausführungsform nach Fig. 8 bildet der Formkörper 20b einen einheitlichen flachen Quader aus transparentem Kunststoff. Eine Ausnehmung 46, die parallel zu dem Kanal 28b in den Formkörper 20b eingebracht ist, nimmt die Photodetektorzeile 40b sowie die Auswerteelektronik 42b auf. Das optische Gitter 38b ist in die der Lichtquelle 32b gegenüberliegende Außenfläche des Formkörpers 20b eingeformt und mit einer reflektierenden Beschichtung versehen, die z.B. durch Aufdampfen angebracht wird. Zweckmäßig wird das Gitter 38b noch mit einer Schutzschicht abgedeckt.

Claims

Patentansprüche
1. Mikrospektrometer für fluide Medien, mit einem Gehäuse, das in fester räumlicher Zuordnung eine Lichtquelle, einen Fluidkanal, ein reflektierendes optisches Gitter und einen Detektor enthält, wobei die von der Lichtquelle ausgehen- de optische Messstrecke den Fluidkanal durchquert und auf das optische Gitter trifft und wobei die von dem optischen Gitter reflektierten spektralen Lichtkomponenten auf den Detektor treffen.
2. Mikrospektrometer nach Anspruch 1 , bei dem eine vorzugsweise einstellbare optische Blende auf der optischen Meßstrecke zwischen dem Fluidkanal und dem optischen Gitter angeordnet ist.
3. Mikrospektrometer nach Anspruch 1 oder 2, mit einem Spiegel, der im Gehäuse fest angeordnet und dem optischen Gitter, das als Reflexionsgitter ausgebildet ist, zugewandt ist.
4. Mikrospektrometer nach Anspruch 2 und 3, bei dem der Spiegel an der Blende angebracht ist.
5. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem das Gehäuse in Spritzgießtechnik hergestellt ist.
6. Mikrospektrometer nach Anspruch 5, bei dem der Fluidkanal mindestens im Bereich der optischen Meßstrecke durch eine transparente Wandung begrenzt ist.
7. Mikrospektrometer nach Anspruch 5, bei dem der Fluidkanal wenigstens im Bereich der optischen Meßstrecke durch ein in das Gehäuse eingesetztes Rohrstück aus transparentem Material gebildet ist.
8. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem der Fluidkanal Anschlüsse zur Einfügung in eine Rohrleitung aufweist.
9. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem auch eine optoelektrische Auswerteeinheit im Gehäuse fest angeordnet ist.
10. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem mehrere Lichtquellen mit verschiedenen Lichtspektren im Gehäuse fest angeord- net sind.
11. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem eine separate Lichtquelle zur Streulichtmessung quer zur optischen Meßstrecke in den Fluidkanal einstrahlt und das quer zum Fluidkanal austretende Streulicht auf das optische Gitter fällt.
12. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem das quer zur optischen Meßstrecke aus dem Fluidkanal austretende Streulicht zur Streulichtmessung von einem separaten Lichtempfänger ohne Spektralzerlegung aufgenommen wird.
13. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem das Gehäuse als starrer Formkörper aus zumindest bereichsweise transparentem Material mit Ausnehmungen zur Aufnahme optischer Komponenten ausgebildet ist und der Fluidkanal von einer Seite des Formkörpers ausgehend diesen durchquerend bis zu der gegenüberliegenden Seite geführt ist.
14. Mikrospektrometer nach Anspruch 13, bei dem das optische Gitter in ei- ne Außenfläche des starren Formkörpers eingeformt ist.
15. Mikrospektrometer nach Anspruch 13, bei dem der starre Formkörper eine Ausnehmung aufweist, in der das optische Gitter drehbeweglich gelagert sowie mit einem Drehantrieb gekoppelt ist.
EP09714805A 2008-02-26 2009-02-25 Mikrospektrometer Withdrawn EP2245441A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202008002683 2008-02-26
DE202008003977U DE202008003977U1 (de) 2008-02-26 2008-03-20 Mikrospektrometer
PCT/EP2009/001339 WO2009106313A1 (de) 2008-02-26 2009-02-25 Mikrospektrometer

Publications (1)

Publication Number Publication Date
EP2245441A1 true EP2245441A1 (de) 2010-11-03

Family

ID=40822428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09714805A Withdrawn EP2245441A1 (de) 2008-02-26 2009-02-25 Mikrospektrometer

Country Status (5)

Country Link
US (1) US8885160B2 (de)
EP (1) EP2245441A1 (de)
JP (1) JP2011513717A (de)
DE (1) DE202008003977U1 (de)
WO (1) WO2009106313A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021917A (ja) * 2010-07-15 2012-02-02 Kyokko Denki Kk 流体検知センサ及び分光分析装置
DE102015100395B4 (de) * 2014-02-03 2020-06-18 Bürkert Werke GmbH Spektrometer und Fluid-Analysesystem
US9835816B2 (en) * 2015-06-10 2017-12-05 Telect, Inc. Fiber blocking kits
US9945790B2 (en) * 2015-08-05 2018-04-17 Viavi Solutions Inc. In-situ spectral process monitoring
DE102016222253A1 (de) * 2016-11-14 2018-05-17 BSH Hausgeräte GmbH Spektrometer, System enthaltend ein Spektrometer und ein Haushaltsgerät und Verfahren zu deren Betrieb
ES2877175T3 (es) * 2018-03-06 2021-11-16 Vorwerk Co Interholding Aparato de preparación de alimentos
EP4137814A4 (de) * 2020-05-15 2024-05-15 Horiba Advanced Techno Co Ltd Optische messvorrichtung und wasserqualitätsanalysesystem
DE102020120199A1 (de) 2020-07-30 2022-02-03 Bürkert Werke GmbH & Co. KG Verfahren zur Erfassung der Konzentration von organischen Partikeln in der Luft sowie Sensor hierfür
US11841270B1 (en) * 2022-05-25 2023-12-12 Visera Technologies Company Ltd. Spectrometer

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2297431A1 (fr) 1975-01-07 1976-08-06 Instruments Sa Modules optiques, notamment pour constituer des appareils d'analyse spectrale
JPS5946332B2 (ja) 1976-03-31 1984-11-12 株式会社島津製作所 分光測定装置
GB2165061A (en) 1984-09-26 1986-04-03 Int Standard Electric Corp Optical coupler
JPS6311822A (ja) * 1986-07-02 1988-01-19 Hitachi Ltd 回折格子
JPH01308943A (ja) 1988-06-07 1989-12-13 Fuji Electric Co Ltd 微粒子測定装置
EP0399057B1 (de) 1989-05-20 1992-12-09 Hewlett-Packard GmbH Verfahren zum Betrieb eines Spektrometers mit einer Fotodiodenanordnung und Spektrometer mit einer Anordnung von Fotodioden
US5037201A (en) 1990-03-30 1991-08-06 Xerox Corporation Spectral resolving and sensing apparatus
DE4122925C2 (de) * 1991-07-11 1994-09-22 Fraunhofer Ges Forschung Optisches Spektrometer
US5424826A (en) * 1993-07-30 1995-06-13 Control Development, Inc. Wideband optical micro-spectrometer system
DE4434814A1 (de) 1994-09-29 1996-04-04 Microparts Gmbh Infrarotspektrometrischer Sensor für Gase
US5856870A (en) * 1997-04-08 1999-01-05 Foster-Miller, Inc. Spectroanalytical system
DE19717014A1 (de) 1997-04-23 1998-10-29 Inst Mikrotechnik Mainz Gmbh Verfahren und Form zur Herstellung miniaturisierter Formenkörper
JP4032483B2 (ja) * 1998-02-26 2008-01-16 株式会社日立製作所 分光測定装置
US6075252A (en) * 1998-11-16 2000-06-13 Innovative Lasers Corporation Contaminant identification and concentration determination by monitoring the temporal characteristics of an intracavity laser
JP2000161654A (ja) 1998-11-20 2000-06-16 Nippon Furnace Kogyo Kaisha Ltd 蓄熱型バーナによる燃焼装置および燃焼方法
JP4018063B2 (ja) 2000-10-12 2007-12-05 アムニス コーポレイション 画像化システム及びその方法
US7605370B2 (en) * 2001-08-31 2009-10-20 Ric Investments, Llc Microspectrometer gas analyzer
IL146404A0 (en) * 2001-11-08 2002-07-25 E Afikin Computerized Dairy Ma Spectroscopic fluid analyzer
JP2003161654A (ja) * 2001-11-26 2003-06-06 Ando Electric Co Ltd 光スペクトラムアナライザ及び光スペクトル測定方法
JP2003279483A (ja) 2002-03-26 2003-10-02 Kubota Corp 分光分析装置
DE10305093A1 (de) * 2003-02-07 2004-08-19 BSH Bosch und Siemens Hausgeräte GmbH Verfahren und Vorrichtung zur Bestimmung und Überwachung von Verunreinigungszuständen unterschiedlicher Flüssigkeiten
WO2005010474A2 (en) * 2003-07-18 2005-02-03 Chemimage Corporation Method and apparatus for multiwavelength imaging spectrometer
DE10360563A1 (de) * 2003-12-22 2005-07-14 BSH Bosch und Siemens Hausgeräte GmbH Verfahren und Vorrichtung zur Bestimmung des Verunreinigungszustands von Flüssigkeiten
US7324195B2 (en) * 2004-01-08 2008-01-29 Valorbec Societe Em Commandite Planar waveguide based grating device and spectrometer for species-specific wavelength detection
DE102004030029B3 (de) * 2004-06-22 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transmissionsmessverfahren und deren Verwendung
JP4473665B2 (ja) * 2004-07-16 2010-06-02 浜松ホトニクス株式会社 分光器
US7502109B2 (en) * 2005-05-17 2009-03-10 Honeywell International Inc. Optical micro-spectrometer
DE102006035581B3 (de) * 2006-07-29 2008-02-07 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Optische Messzelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009106313A1 *

Also Published As

Publication number Publication date
WO2009106313A1 (de) 2009-09-03
JP2011513717A (ja) 2011-04-28
DE202008003977U1 (de) 2009-07-02
US20110080583A1 (en) 2011-04-07
US8885160B2 (en) 2014-11-11

Similar Documents

Publication Publication Date Title
EP2245441A1 (de) Mikrospektrometer
EP0793090B1 (de) Messanordnung mit einem für Anregungs- und Messstrahlung transparentem Trägerelement
EP1068511B1 (de) Anordnung für die oberflächenplasmonen-resonanz-spektroskopie
EP0834066B1 (de) Verfahren und einrichtung zum nachweis physikalischer, chemischer, biologischer oder biochemischer reaktionen und wechselwirkungen
WO2003067228A1 (de) Verfahren für untersuchungen an flüssigkeiten sowie vorrichtung hierfür
DE102011050969A1 (de) Vorrichtung zur referenzierten Messung von reflektiertem Licht und Verfahren zum Kalibrieren einer solchen Vorrichtung
AT510631B1 (de) Spektrometer
EP3084397B1 (de) Atr-infrarotspektrometer
DE19509157C2 (de) Optisches System mit großen Meßbereichen
DE602004011108T2 (de) Vorrichtung zur kontinuierlichen bestimmung eines stoffes
DE102011075530A9 (de) Fotometer zur In-situ-Messung in Fluiden
EP2717044A1 (de) Verfahren zur Detektion von Analyten
DE2600371C3 (de) Optische Anordnung
DE102007058563A1 (de) Spektrometermesskopf zur Analyse von Kenngrößen flüssiger, pastöser oder fester Substanzen
EP2619551B1 (de) Sensor zur überwachung eines mediums
DE102010041141B4 (de) Sensor zur Überwachung eines Mediums
WO2016012276A1 (de) Anordnung zur orts- und wellenlängenaufgelösten erfassung von lichtstrahlung, die von mindestens einer oled oder led emittiert wird
DE10324973B4 (de) Anordnung und Verfahren zur optischen Detektion von in Proben enthaltenen chemischen, biochemischen Molekülen und/oder Partikeln
DE19920184C2 (de) Verfahren für die gleichzeitige Erfassung von diffuser und specularer Reflexion von Proben, insbesondere undurchsichtiger Proben, sowie Reflektanz-Meßsonde
WO2007036298A1 (de) Vorrichtung und verfahren zur bestimmung des brechungsindex eines fluids
DE102012108620A1 (de) Verfahren zum Bestimmen der Weglänge einer Probe und Validierung der damit erhaltenen Messung
EP2427751B1 (de) Modulares optisches sensorsystem für fluide medien
DE102004015906A1 (de) Mikrofluidische Vorrichtung für die optische Analyse
DE102015213147A1 (de) Verfahren zur Bestimmung und Messkopf zur Erfassung einer Oberflächeneigenschaft genau einer Seite einer lichtdurchlässigen Probe
DE112021003493T5 (de) Vorrichtung zur Bestimmung der Anwesenheit oder Konzentration von Zielmolekülen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160901