EP2225583A1 - Ortungsgerät - Google Patents

Ortungsgerät

Info

Publication number
EP2225583A1
EP2225583A1 EP08866102A EP08866102A EP2225583A1 EP 2225583 A1 EP2225583 A1 EP 2225583A1 EP 08866102 A EP08866102 A EP 08866102A EP 08866102 A EP08866102 A EP 08866102A EP 2225583 A1 EP2225583 A1 EP 2225583A1
Authority
EP
European Patent Office
Prior art keywords
polarization
polarization plane
locating device
locating
examination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08866102A
Other languages
English (en)
French (fr)
Inventor
Reiner Krapf
Heiko Braun
Michael Mahler
Christoph Wieland
Ulli Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2225583A1 publication Critical patent/EP2225583A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/04Adaptation for subterranean or subaqueous use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing

Definitions

  • the invention is based on a locating device according to the preamble of claim 1.
  • a hand-held locating device which is provided for locating objects which are arranged in an examination subject and are not visible by means of a radiation of an examination signal. It has a housing which is moved by a user by hand along a surface.
  • the locating device further comprises a polarization unit, which is provided for a polarization of the examination signal.
  • the invention is based on a locating device, in particular a hand-held locating device, with a locating unit for detecting the presence of an object arranged in an examination subject by means of an examination signal having a polarization unit provided for a procedure with the examination signal, and with a housing for receiving the locating unit having a longitudinal axis.
  • the polarization unit specifies at least one first polarization plane, which is oriented obliquely to the longitudinal axis.
  • the examination signal is designed in particular as a high-frequency electromagnetic signal. This is an electromagnetic Signal to be understood, which has a frequency of at least 500 MHz, such as a radar signal.
  • a "process with” the examination signal is to be understood as meaning, in particular, a transmission process, a reception process and / or further processing operations for the examination signal which appear to be meaningful to a person skilled in the art.
  • “Provided” is understood to mean in particular specially designed, equipped and / or programmed become.
  • the housing is elongated, e.g. formed cuboid, corresponds to the longitudinal axis of the main extension direction and the longitudinal direction of the housing.
  • the longitudinal axis of the housing is aligned parallel to the surface of the examination object.
  • the housing in particular has a preferred side, which faces the surface of an examination subject during a locating process.
  • the main direction of extension of this page can be understood by the longitudinal axis.
  • the page is square, should be understood by the longitudinal axis of a page bisector of the page.
  • the longitudinal axis may be further characterized by a marking means attached to the housing, such as e.g. a notch or an arrow, be marked.
  • a polarization plane which is oriented "obliquely" to the longitudinal axis should be understood to mean a plane of polarization whose normal direction is oriented obliquely to the longitudinal axis
  • An oblique alignment of two directions relative to one another should be understood to mean an orientation which deviates from the parallelism and the orthogonality. In particular, the obliquely aligned directions form an acute angle.
  • the locating device is designed as a hand-held locating device, which is used in particular for locating objects in a wall or a floor.
  • the longitudinal axis in the examination of a wall typically and in particular corresponds to the horizontal or the vertical direction in accordance with the regulations.
  • the locating unit is in particular provided for locating objects which have a defined main extension direction or orientation, such as, in particular, elongate objects, for example lines. In typical and in particular prescribed conditions of use, there is a relationship between the longitudinal axis of the locating device and a typical orientation of objects in the examination subject.
  • a preferred ratio of this polarization plane to typical orientations of objects in the examination subject is advantageously created by the orientation of a plane of polarization relative to the longitudinal axis.
  • the locating device has a gripping means for gripping by a user in a locating operation, which is coupled to the housing, whereby a hand-held locating device can be achieved with a high ease of use.
  • a "grip means" is to be understood as meaning, in particular, a means which is intended to be gripped by a user under prescribed conditions of use.
  • the grip means may in particular be a component which is different from the housing and which is directly coupled to the housing, and / or it may The gripping means may further correspond to the housing, which is gripped by a user's hand during a locating process.
  • the polarization plane form an angle of approximately 45 ° with the longitudinal axis.
  • an orientation of the plane of polarization can be achieved, which is advantageously adapted to common orientations of objects in a subject of investigation, such as in particular lines in a wall or under a floor. It is particularly suitable for the location of objects in the examination subject, which are aligned parallel or orthogonal to the longitudinal axis of the locating device.
  • An angle which is formed by a plane and a direction should, in particular, be understood to mean the angle which is formed by the direction and the orthogonal projection of the direction into the plane.
  • an angle formed by a plane and a direction the angle formed by the direction and the normal direction to the plane can be understood. Furthermore, at an angle, which "approx. 45 ° ", an angle shall be understood to deviate by not more than 10%, advantageously not more than 5% of 45 °.
  • the polarization plane in at least one operating mode is a transmission polarization plane which is assigned to at least one transmission channel for transmitting the examination signal.
  • a "transmission channel” is to be understood in particular as a means or a collection of means, in particular electrical lines and / or electronic function blocks, which, starting from the output of a signal generation unit which serves to generate the examination signal in an electrical form, convert the
  • the transmission channel has at least one transmission antenna arrangement with at least one antenna and may additionally comprise further components. tel, which are provided for processing the examination signal between its generation by the signal generating unit and its emission by means of the transmitting antenna arrangement.
  • the polarization unit preferably has a polarization means which, in cooperation with the transmitting antenna arrangement, serves to generate a test signal polarized in the transmission polarization plane.
  • the polarizing means may be different from the transmitting antenna arrangement - for example formed as a filter - or it may preferably be formed integrally with the transmitting antenna arrangement in that a transmitting antenna - which is designed, for example, as a dipole antenna - predetermines the transmitting polarization plane by its configuration.
  • Reception polarization level which is associated with at least one receiving channel for receiving the examination signal.
  • a "receiving channel” is to be understood in particular as a means or a collection of means, in particular electrical lines and / or electronic function blocks, which serve to receive the examination signal and, in particular, to process the examination signal in a form suitable for an evaluation unit
  • the reception channel has at least one receiving antenna arrangement and may additionally comprise further means which are provided for processing the examination signal between its reception and its evaluation by means of the evaluation unit a proportion of the examination signal in the
  • the polarizing means may be different from the receiving antenna arrangement - for example formed as a filter - or it may be formed integrally with the receiving antenna arrangement by a receiving antenna - which is formed for example as a dipole antenna - by their configuration, the receiving polarization level vorgab.
  • the receive antenna order may be different from a transmit antenna arrangement.
  • the receiving antenna arrangement is identical to the transmitting antenna arrangement.
  • the polarization unit specifies at least one second polarization plane, which is different from the first polarization plane, as a result of which increased flexibility and increased information density can be achieved.
  • one of the polarization planes is a transmit polarization plane which is assigned to at least one transmit channel for transmitting the examination signal
  • another one of the polarization planes is a receive polarization plane comprising at least one receive channel for receiving the examination signal assigned.
  • a substantial part of the radiated examination signal is typically reflected on the surface of the examination object, this component reflected in the transmission polarization plane striking the locating unit again.
  • Targeted reception and subsequent evaluation of a portion of the examination signal in a receiving polarization plane different from the transmission polarization plane can advantageously avoid interference effects caused by the reflected component, such as, in particular, superimposition of a useful signal carrying a relevant location information by the reflected component.
  • the property of objects, given by the material and / or the design, of using the polarization plane of a wave striking the object is advantageously used.
  • the polarization planes are arranged orthogonal to one another, whereby an advantageous symmetry can be achieved in a process with the examination signal.
  • the polarization planes are arranged at an angle to each other. In this way, an effective location of objects can be achieved whose orientation in the examination subject essentially corresponds to the oblique orientation of one of the polarization planes.
  • the second polarization plane be aligned parallel or orthogonal to the longitudinal axis, whereby an effective location in a wide range of applications can be achieved.
  • a particularly high degree of application flexibility can furthermore be achieved if the polarization unit has a rotating means which is intended to rotate the alignment of at least one polarization plane relative to the longitudinal axis.
  • the rotating means may be provided for a mechanically and / or electrically controlled drive. It can be embodied as a servomotor or as a further drive means which appears expedient to the person skilled in the art.
  • the ease of use can be increased when the locating device has a chassis, which is provided for guiding the locating unit over a surface of the examination subject in a preferential movement direction, wherein the polarization plane is arranged obliquely relative to the preferential movement direction.
  • the preferential movement direction is aligned perpendicular to the longitudinal axis of the housing.
  • the invention is further based on a method for locating an object arranged in an examination object with a locating device in which a housing of the locating device is moved over a surface of the examination object.
  • an examination signal polarized in a transmission polarization plane is transmitted into the examination subject, wherein the transmission polarization plane is aligned obliquely to a longitudinal axis of the housing.
  • the precision can thus advantageously be increased by reducing unwanted interference factors.
  • the examination signal is received in at least one receiving polarization plane different from the transmission polarization plane. This can be achieved by receiving the examination signal in one of the
  • Transmitting polarization plane different receiving polarization level a particularly advantageous evaluation of the examination signal can be achieved.
  • Targeted reception and subsequent evaluation of a portion of the examination signal in a reception polarization plane different from the transmission polarization plane can advantageously prevent interference effects caused by a reflected component of the examination signal, such as, in particular, superimposition of a useful signal carrying relevant location information by the reflected component.
  • a high information density can also be achieved if the examination signal is received in a plurality of receiving polarization planes which are different from the transmission polarization plane.
  • the method can also be adapted to different orientations of objects in the examination object.
  • the examination signal is received in the transmission polarization plane.
  • an effective location of objects can be achieved, which cause no rotation of a wave striking them.
  • the examination signal is received in the transmitting polarization plane and in at least one receiving polarization plane different from the transmitting polarization plane, whereby an effective localization in a wide range of applications can be achieved.
  • further location information can advantageously be obtained if the examination signal is received in the transmission polarization plane and in a plurality of reception polarization planes that are different from the transmission polarization plane.
  • FIG. 1 shows a locating device which is moved along a surface of a wall to be examined
  • FIG. 3 shows a schematic illustration of a locating unit of the locating device with an antenna arrangement
  • FIGS. 4a to 4c are explanatory drawings for describing different locating modes
  • Fig. 6 shows the arrangement of two mutually oblique polarization planes in a further detection mode
  • Fig. 7 the locating device in an alternative embodiment with a chassis.
  • the examination subject 14 is designed as a wall in which objects 16, 18 to be located, which are invisible to the user, are arranged.
  • the article 16 is formed as a water conduit which extends vertically in the wall while the article 18 corresponds to an electrical conduit which is horizontally aligned.
  • the examination subject 14 may be designed as a floor to be examined. In this case, the objects 16, 18 are aligned horizontally and, for example, in each case parallel to a length or a width of a room.
  • the locating device 10 has a housing 20, which is formed substantially cuboid.
  • the housing 20 has a longitudinal direction, which is referred to as the main extension direction 22 and corresponds to the direction of the length of the housing 20 forming cuboid.
  • the main extension direction 22 is further characterized by the longitudinal axis 24 of the housing, which is aligned parallel to the main extension direction 22 and contains the center of mass of the locating device 10.
  • the longitudinal axis 24 may further be an aligned parallel to the main extension direction 22 axis containing an edge of the housing 20.
  • a display unit 28 formed as an LCD display and an input unit 30, which has at least one key.
  • the housing 20 further has a preferred side 31, which is arranged opposite the operating side 26 and faces a test object during a locating process (see FIG. 2).
  • the main extension direction, ie the longitudinal direction, of the side 31 can be understood as the "longitudinal axis" 24. If the side 31 is of square design, a “lateral axis” is understood to mean, in particular, a side bisector of the side 31. If the housing 20 has a circular symmetry, for example if the operating side 26 and the side 31 are disc-shaped, then this corresponds to FIG "Longitudinal axis" of a preferred direction of the housing, which is predetermined for example by a mark, a label of the housing or by a reading direction of a display unit.
  • the housing 20 For movement of the locating device 10 along the surface 12, the housing 20 is held by a user in one hand.
  • the housing 10 forms a handle means 32 which is encompassed for holding the locating device 10 in the movement along the surface 12 of a user's hand.
  • a grip means may be attached to the housing 20 or integrally formed on the housing 20.
  • the locating device 10 further includes preferential directions of movement 34 for movement of the housing 20 along the surface 12. These preferred directions of movement 34 are defined relative to the longitudinal axis 24 of the housing 20, namely, they are aligned perpendicular to the longitudinal axis 24 of the housing 20.
  • FIG. 2 shows the arrangement of the locating device 10 in front of the examination subject 14 to be examined, in a side view.
  • the locating device 10 has a locating unit 36, which is arranged within the housing 10. This is in the figures
  • the locating unit 36 is provided to detect the presence of the objects 16, 18 arranged in the examination subject 14. This is done in a known manner by means of an examination signal 38, which is designed as a high frequency electromagnetic signal, in particular as a radar signal.
  • the examination signal 38 is generated in a first step by an electronic signal generation unit 40. This one is about one
  • the antenna arrangement 42 serves as a transmission unit, which transmits the examination signal 38 as a transmission signal 44 into the examination object 14.
  • This transmission signal 44 is reflected by at least one of the objects 16, 18 and received as a reception signal 46 by the antenna arrangement 42 designed as a reception unit.
  • the locating unit 36 is shown in more detail in a detailed view in Figure 3, with the arrangement of the signal generating unit 40 and the antenna assembly 42.
  • the received from the antenna assembly 42 received signal 46 is transmitted to an evaluation unit 48, which is provided for its evaluation. From an evaluation process, information about the
  • the locating unit 36 also has a polarization unit 50, which is provided for operations with the examination signal 38. In particular, it gives two different polarization planes 52, 54 in which the examination signal 38 is transmitted and / or received. The various combinations of transmit and receive modes in the polarization planes 52, 54 will be described in more detail below.
  • the polarization planes 52, 54 are shown schematically by dash-dotted lines in FIG.
  • the polarization unit 50 may be a separate unit from the antenna arrangement 42, which is connected downstream of the antenna arrangement 42.
  • the polarization unit 50 may be formed as a filter unit.
  • the polarization unit 50 is formed in one piece with the antenna arrangement 42.
  • the planes of polarization 52, 54 are given by the alignment of antennas 56, 58, which are in each case designed in particular as dipole antennas with a preferred radiation plane which corresponds to the desired polarization plane.
  • the locating unit 36 also has a control unit 60, which is provided for performing at least one locating mode.
  • the control unit 60 is provided with a computing unit (not shown) and with a memory unit in which control commands that can be executed by the arithmetic unit are stored. To execute a locating mode, the control unit 60 is in operative connection with the signal generating unit 40 and with the evaluation unit 48.
  • At least one polarization plane 52, 54 predetermined by the polarization unit 50 is arranged obliquely relative to the longitudinal axis 24.
  • the polarization planes 52, 54 are arranged orthogonally relative to one another.
  • the polarization planes 52, 54 are also oriented obliquely to the preferred direction of movement 34, namely they form an angle of 45 ° and 135, respectively ° with the preferential movement direction 34.
  • the polarization plane 52 is associated with a transmission channel 62, via which the examination signal 38 is sent as a transmission signal 44, wherein the polarization plane 52 is referred to as transmit polarization plane 53.
  • the transmission signal 44 is designed as a polarized signal whose polarization plane corresponds to the transmission polarization plane 53. This is achieved by putting the transmission channel 62 in operative connection with the antenna 56.
  • the transmission signal 44 is then transmitted in a polarization plane which is oriented obliquely relative to the longitudinal axis 24 and to the main extension direction 22.
  • the transmission signal 44 polarized in the transmission polarization plane 53 accordingly strikes the objects 16, 18 with a plane of polarization that is oblique to the orientation of the objects 16, 18. It is assumed that these objects 16, 18 have the property of rotating this polarization plane.
  • the reception signal 46 stimulated thereby is received by the antenna arrangement 42.
  • the polarization plane 54 is assigned to a receiving channel 64, the polarization plane 54 being designated as the receiving polarization plane 55.
  • a signal component of the received signal 46 in the receiving polarization plane 55 is hereby evaluated by the evaluation unit 48. This is achieved by setting the receive channel 64 in operative connection with the antenna 58.
  • the portion of the examination signal 38 is received and subsequently evaluated, the polarization of which is rotated by the objects 16, 18.
  • the portion of the examination signal 38 which has an unchanged polarization in the transmitting polarization plane 53 and which is excited to a substantial extent by a reflection on the surface 12 of the examination subject 14, is not present in the receiving channel 64, whereby an undesired superimposition of the
  • Useful signal which is formed by the proportion in the receiving polarization plane 55, is avoided.
  • This useful signal which carries the desired location information, can then be evaluated with high accuracy in the evaluation unit 48.
  • the polarization unit 50 is designed as a filter unit, it has a filter which is permeable to a signal component of the examination signal 38 arranged in the plane of polarization 54.
  • Signal components in particular a signal component in the transmission polarization plane 53, at least substantially suppressed, in particular completely suppressed.
  • FIGS. 4a, 4b, 4c show the signal generation unit 40, the evaluation unit 48 and the antenna arrangement 42.
  • the transmission channel 62 is in operative connection with the signal generation unit 40, while the reception channel 64 is in operative connection with the evaluation unit 48.
  • the execution of different locating modes is described schematically by means of an allocation unit 66 which is provided to associate with the signal generation unit 40 or the evaluation unit 48 the antenna 56 and / or the antenna 58. It should be noted that this representation is used to explain the different locating modes and is not directed to a preferred realized construction of the locating unit 36.
  • This allocation unit 66 is designed as an example and, for the sake of clarity, as a switch unit having switches 68.
  • the transmission signal 44 is also shown schematically and it is to illustrate the Principle only the proportions of the received signal 46 shown, which are used for an evaluation.
  • FIG. 4 a shows the locating mode described above.
  • the signal generating unit 40 is associated with the antenna 56, so that the transmission channel 62 includes this antenna 56.
  • the evaluation unit 48 is assigned exclusively the antenna 58, so that the reception channel 64 comprises the antenna 58.
  • the reception channel 64 is separated from the antenna 56 and thus from the transmission channel 62.
  • Different configurations can be achieved by means of the allocation unit 66. For example, a reversal of the configuration described above can be achieved by assigning the antenna 56-and thus the plane of polarization 52-to the reception channel 64, while assigning the antenna 58-and thus the polarization plane 54-to the transmission channel 62.
  • Another locating mode which is shown in FIG. 4 b, is to evaluate exclusively a portion of the examination signal 38 which is polarized in the transmitting polarization plane 53.
  • This detection mode is realized in that the receiving channel 64 with the antenna 56, which - as described above - is used to send the examination signal 38 in the transmitting polarization plane 53, is set in operative connection by means of the switch 68.4 and separated by the switch 68.3 from the antenna 58 becomes.
  • Receiving the examination signal 38 in the transmission polarization plane 53 is particularly suitable for the location of objects which have no sufficient or no influence on the polarization of a wave which strikes them, such as e.g. for locating plate-shaped metal objects.
  • a further locating mode which is shown in FIG. 4 c, it is provided to evaluate a portion of the examination signal 38 in the polarization plane 54 in addition to the receiving operation described in the locating mode of FIG. 4 b.
  • the receiving channel 64 is in operative connection both with the antenna 56 and with the antenna 58.
  • a location mode is carried out, wherein an examination signal 38 is transmitted in the transmission polarization plane 53 and is received both in this transmission polarization plane 53 and in the reception polarization plane 55.
  • a transmission process and a reception process can take place simultaneously, or the reception process and the transmission process can be separated from one another in terms of time.
  • the locating modes described above, in which the polarization planes 52, 54 are formed obliquely to the longitudinal axis 24, are particularly suitable for locating objects which are parallel or orthogonal to a reference direction of the examination object 14.
  • a reference direction is, for example, the horizontal or the vertical direction in the case of a wall or a room length or a room width in the case of a floor.
  • the following embodiments of locating modes by means of the polarization unit 50 are proposed.
  • FIG. 5 shows a further locating mode in which the polarization unit 50 has more than two
  • the polarization unit 50 predetermines a further polarization plane 70, which is arranged obliquely relative to the polarization planes 52, 54.
  • the polarization plane 70 may be aligned parallel to the longitudinal axis 24. In a further embodiment, it may be aligned orthogonal to the longitudinal axis 24.
  • the polarization planes 52, 54 are, as described above, for locating objects in the examination subject 14 that are parallel or orthogonal to a reference direction of the examination subject 14, and the polarization plane 70 can be advantageously used to locate objects that are relative to this reference direction obliquely, in particular at an angle of 45 °, are aligned.
  • a locating mode is provided, in which the examination signal 38 in one of the
  • Polarization planes 52, 54, 70 is sent and in which two more polarization planes are received.
  • a configuration is shown in which the transmission signal 44 is transmitted in the polarization plane 52 forming the transmission polarization plane 53 and the reception signal 46 in the polarization plane 54 forming the reception polarization plane 55 and in the polarization plane 70 forming a reception polarization plane 71 , Will be received.
  • a further locating mode is provided, in which additionally a reception of the received signal 46 takes place in the transmitting polarization plane 53.
  • a locating mode shown in FIG. 6 may provide for the planes of polarization 52, 54 to be oriented obliquely to one another.
  • the plane of polarization 52 may be as in the configuration
  • the polarization plane 54 forms an acute angle with the plane of polarization 52.
  • the polarization plane 54 may be aligned parallel to the longitudinal axis 24.
  • a rotating means 72 can be provided which serves to rotate the alignment of at least one of the polarization planes 52, 54 relative to the longitudinal axis 24.
  • This turning means 72 may optionally be incorporated in the locating device 10, which is emphasized by dashed lines in FIGS. 4a, 4c and 4c. It is designed in particular as a servomotor and can be controlled by the control unit 60.
  • FIG. 7 shows an alternative embodiment of the locating device 10 of FIG. 1.
  • the locating device 10 in the embodiment of Figure 7 has a chassis 74, which is provided for guiding the housing 20 - and thus the locating unit 36 disposed therein - over the surface 12 of the examination object 14 in the preferred direction of movement 34.
  • the preferred direction of movement 34 is predetermined by means of the chassis 74.
  • the chassis 74 has four wheels 76, which roll on a movement along the examination subject 14 on its surface 12.
  • the chassis 74 is associated with a not further shown displacement sensor device which serves to detect a distance traveled by the housing 20 distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Endoscopes (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die Erfindung geht aus von einem Ortungsgerät, insbesondere einem handgeführten Ortungsgerät, mit einer Ortungseinheit (36) zur Erfassung des Vorhandenseins eines in einem Untersuchungsobjekt (14) angeordneten Gegenstands (16, 18) mittels eines Untersuchungssignals (38), die eine für einen Vorgang mit dem Untersuchungssignal (38) vorgesehene Polarisationseinheit (50) aufweist, und mit einem Gehäuse (20) zur Aufnahme der Ortungseinheit (36), das eine Längsachse (24) aufweist. Es wird vorgeschlagen, dass in zumindest einem Betriebsmodus die Polarisationseinheit (50) zumindest eine erste Polarisationsebene (52, 54) vorgibt, die schräg zur Längsachse (24) ausgerichtet ist.

Description

Ortungsgerät
Stand der Technik
Die Erfindung geht aus von einem Ortungsgerät nach dem Oberbegriff des Anspruchs 1.
Es ist bereits ein handgeführtes Ortungsgerät vorgeschlagen worden, welches zur Ortung von in einem Untersuchungsobjekt angeordneten und nicht sichtbaren Gegenständen mittels einer Abstrahlung eines Untersuchungssignals vorgesehen ist. Es weist ein Gehäuse auf, welches von einem Anwender von Hand entlang einer Fläche bewegt wird. Das Ortungsgerät umfasst ferner eine Polarisationseinheit, die für eine Polarisation des Untersuchungssignals vorgesehen ist.
Vorteile der Erfindung
Die Erfindung geht aus von einem Ortungsgerät, insbesondere einem handgeführten Ortungsgerät, mit einer Ortungseinheit zur Erfassung des Vorhandenseins eines in einem Untersuchungsobjekt angeordneten Gegenstands mittels eines Untersuchungssignals, die eine für einen Vorgang mit dem Untersuchungssignal vorgesehene Polarisationseinheit aufweist, und mit einem Gehäuse zur Aufnahme der Ortungseinheit, das eine Längsachse aufweist.
Es wird vorgeschlagen, dass in zumindest einem Betriebsmodus die Polarisationseinheit zumindest eine erste Polarisationsebene vorgibt, die schräg zur Längsachse ausgerichtet ist. Es kann dadurch bei einem Auswertevorgang des Untersuchungssignals die Präzision durch ein Vermindern von unerwünschten Störfaktoren vorteilhaft erhöht werden. Das Untersuchungssignal ist insbesondere als hoch frequentes elektromagnetisches Signal ausgebildet. Hierbei soll ein elektromagnetisches Signal verstanden werden, welches eine Frequenz von zumindest 500 MHz aufweist, wie z.B. ein Radarsignal. Unter einem „Vorgang mit" dem Untersuchungssignal sollen insbesondere ein Sendevorgang, ein Empfangsvorgang und/oder weitere, dem Fachmann als sinnvoll erscheinende Bearbeitungsvorgänge zur Bearbeitung des Untersuchungssignals verstanden werden. Unter „vorgese- hen" soll insbesondere speziell ausgebildet, ausgestattet und/oder programmiert verstanden werden.
Ist das Gehäuse länglich, wie z.B. quaderförmig ausgebildet, entspricht die Längsachse der Haupt- erstreckungsrichtung bzw. der longitudinalen Richtung des Gehäuses. Vorzugsweise ist bei einem Ortungsvorgang die Längsachse des Gehäuses parallel zur Oberfläche des Untersuchungsobjekts ausgerichtet. Ferner weist das Gehäuse insbesondere eine bevorzugte Seite auf, die bei einem Ortungsvorgang der Oberfläche eines Untersuchungsobjekts zugewandt ist. Hierbei kann unter der Längsachse die Haupterstreckungsrichtung dieser Seite verstanden werden. Ist die Seite quadratisch ausgebildet, soll unter der Längsachse eine Seitenhalbierende der Seite verstanden werden. Die Längsachse kann ferner durch ein am Gehäuse angebrachtes Markiermittel, wie z.B. eine Ker- be oder einen Pfeil, markiert sein.
Unter einer Polarisationsebene, die „schräg" zur Längsachse ausgerichtet ist, soll eine Polarisationsebene verstanden werden, deren Normalrichtung schräg zur Längsachse ausgerichtet ist. Unter einer schrägen Ausrichtung von zwei Richtungen zueinander soll eine Ausrichtung verstanden werden, die von der Parallelität und der Orthogonalität abweicht. Insbesondere bilden die schräg zueinander ausgerichteten Richtungen einen spitzen Winkel.
Besonders vorteilhaft ist das Ortungsgerät als handgeführtes Ortungsgerät ausgebildet, welches insbesondere zur Ortung von Gegenständen in einer Wand oder einem Boden dient. Hierbei ent- spricht die Längsachse bei der Untersuchung einer Wand typischerweise und insbesondere vorschriftsgemäß der horizontalen oder der vertikalen Richtung. Die Ortungseinheit ist insbesondere dazu vorgesehen, Gegenstände zu orten, die eine definierte Haupterstreckungsrichtung oder Ausrichtung aufweisen, wie insbesondere länglich ausgebildete Gegenstände, beispielsweise Leitungen. Bei typischen und insbesondere vorschriftsgemäßen Anwendungsbedingungen besteht ein Verhältnis zwischen der Längsachse des Ortungsgeräts und einer typischen Ausrichtung von Gegenständen im Untersuchungsobjekt. Durch die Erfindung wird vorteilhafterweise über die Ausrichtung einer Polarisationsebene relativ zur Längsachse ein bevorzugtes Verhältnis dieser Polarisationsebene zu typischen Ausrichtungen von Gegenständen im Untersuchungsobjekt geschaffen. Insbesondere kann durch die Erfindung erreicht werden, dass bei der Untersuchung einer Wand zumindest eine Polarisationsebene relativ zu horizontal und vertikal gerichteten Gegenständen in der Wand schräg ausgerichtet ist.
Es wird außerdem vorgeschlagen, dass das Ortungsgerät ein Griffmittel zu einem Greifen durch einen Anwender bei einem Ortungsvorgang aufweist, das mit dem Gehäuse gekoppelt ist, wodurch ein handgeführtes Ortungsgerät mit einem hohen Bedienkomfort erreicht werden kann. Unter einem „Griffmittel" soll insbesondere ein Mittel verstanden werden, das dazu vorgesehen ist, von einem Anwender unter vorschriftsgemäßen Anwendungsbedingungen umgriffen zu werden. Das Griffmittel kann insbesondere ein vom Gehäuse unterschiedliches Bauteil sein, das am Gehäuse direkt gekoppelt ist, und/oder es kann ans Gehäuse einstückig angeformt sein. Das Griffmittel kann ferner dem Gehäuse entsprechen, welches von einer Hand des Anwenders bei einem Ortungsvorgang umgriffen wird.
In einer bevorzugten Ausbildung der Erfindung wird vorgeschlagen, dass die Polarisationsebene einen Winkel von ca. 45° mit der Längsachse bildet. Hierdurch kann eine Orientierung der Polarisationsebene erreicht werden, die an gängige Ausrichtungen von Objekten in einem Untersuchungsgegenstand, wie insbesondere Leitungen in einer Wand oder unter einem Boden, vorteilhaft angepasst ist. Es eignet sich insbesondere bei der Ortung von Objekten im Untersuchungsgegenstand, die parallel oder orthogonal zur Längsachse des Ortungsgeräts ausgerichtet sind. Unter ei- nem Winkel, welcher von einer Ebene und einer Richtung gebildet ist, soll insbesondere der Winkel verstanden werden, welcher von der Richtung und der orthogonalen Projektion der Richtung in die Ebene gebildet ist. Unter einem Winkel, welcher von einer Ebene und einer Richtung gebildet ist, kann des Weiteren der Winkel verstanden werden, welcher durch die Richtung und die Normalrichtung zur Ebene gebildet ist. Ferner soll unter einem Winkel, welcher „ca. 45°" beträgt, ein Winkel verstanden werden, der um höchstens 10%, vorteilhaft um höchstens 5% von 45° abweicht.
Des Weiteren wird vorgeschlagen, dass die Polarisationsebene in zumindest einem Betriebsmodus eine Sendepolarisationsebene ist, die zumindest einem Sendekanal für ein Senden des Untersuchungssignals zugeordnet ist. Unter einem „Sendekanal" soll insbesondere ein Mittel oder eine Sammlung von Mitteln, insbesondere elektrischen Leitungen und/oder elektronischen Funktions- bausteinen, verstanden werden, die ausgehend vom Ausgang einer Signalerzeugungseinheit, die zur Erzeugung des Untersuchungssignals in einer elektrischen Form dient, zur Umwandlung des Untersuchungssignals in eine elektromagnetische Welle dienen. Der Sendekanal weist hierbei zumindest eine Sendeantennenanordnung mit wenigstens einer Antenne auf und kann zusätzlich weitere Mit- tel aufweisen, die zur Bearbeitung des Untersuchungssignals zwischen dessen Erzeugung durch die Signalerzeugungseinheit und dessen Abstrahlung mittels der Sendeantennenanordnung vorgesehen sind. Die Polarisationseinheit weist vorzugsweise ein Polarisationsmittel auf, das im Zusammenwirken mit der Sendeantennenanordnung zur Erzeugung eines in der Sendepolarisationsebene pola- risierten Untersuchungssignals dient. Das Polarisationsmittel kann von der Sendeantennenanordnung unterschiedlich sein - beispielsweise als Filter ausgebildet - oder es kann bevorzugt einstückig mit der Sendeantennenanordnung ausgebildet sein, indem eine Sendeantenne - die beispielsweise als Dipolantenne ausgebildet ist - durch ihre Ausgestaltung die Sendepolarisationsebene vorgibt.
Ferner wird vorgeschlagen, dass die Polarisationsebene in zumindest einem Betriebsmodus eine
Empfangspolarisationsebene ist, die zumindest einem Empfangskanal für ein Empfangen des Untersuchungssignals zugeordnet ist. Unter einem „Empfangskanal" soll insbesondere ein Mittel oder eine Sammlung von Mitteln, insbesondere elektrischen Leitungen und/oder elektronischen Funktionsbausteinen, verstanden werden, die zum Empfangen des Untersuchungssignals und insbesonde- re zur Bearbeitung des Untersuchungssignals in eine für eine Auswerteeinheit geeignete Form dienen. Der Empfangskanal weist hierbei zumindest eine Empfangsantennenanordnung auf und kann zusätzlich weitere Mittel aufweisen, die zur Bearbeitung des Untersuchungssignals zwischen dessen Empfang und dessen Auswertung mittels der Auswerteeinheit vorgesehen sind. Die Polarisationseinheit weist vorzugsweise ein Polarisationsmittel auf, das im Zusammenwirken mit der Emp- fangsantennenanordnung zum Empfangen zumindest eines Anteils des Untersuchungssignals in der
Empfangspolarisationsebene dient. Das Polarisationsmittel kann von der Empfangsantennenanordnung unterschiedlich sein - beispielsweise als Filter ausgebildet - oder es kann einstückig mit der Empfangsantennenanordnung ausgebildet sein, indem eine Empfangsantenne - die beispielsweise als Dipolantenne ausgebildet ist - durch ihre Ausgestaltung die Empfangspolarisationsebene vor- gibt. Die Empfangsantennenordnung kann unterschiedlich von einer Sendeantennenanordnung ausgebildet sein. Bevorzugterweise ist die Empfangsantennenanordnung identisch mit der Sendeantennenanordnung ausgebildet.
In einer bevorzugten Ausgestaltung der Erfindung wird vorgeschlagen, dass die Polarisationsein- heit zumindest eine zweite Polarisationsebene vorgibt, die von der ersten Polarisationsebene unterschiedlich ist, wodurch eine erhöhte Flexibilität und eine erhöhte Informationsdichte erreicht werden können. In diesem Zusammenhang wird vorgeschlagen, dass in zumindest einem Betriebsmodus eine der Polarisationsebenen eine Sendepolarisationsebene ist, die zumindest einem Sendekanal für ein Senden des Untersuchungssignals zugeordnet ist, und eine weitere der Polarisationsebenen eine Empfangspolarisationsebene ist, die zumindest einem Empfangskanal für ein Empfangen des Un- tersuchungssignals zugeordnet ist. Hierdurch kann durch ein Empfangen des Untersuchungssignals in einer von der Sendepolarisationsebene unterschiedlichen Empfangspolarisationsebene ein besonders vorteilhafter Auswertevorgang des Untersuchungssignals erreicht werden. Bei einem Ortungsvorgang wird typischerweise ein wesentlicher Teil des abgestrahlten Untersuchungssignals an der Oberfläche des Untersuchungsobjekts reflektiert, wobei dieser in der Sendepolarisationsebene reflektierte Anteil die Ortungseinheit wieder trifft. Durch einen gezielten Empfang und eine anschließende Auswertung eines Anteils des Untersuchungssignals in einer von der Sendepolarisationsebene unterschiedlichen Empfangspolarisationsebene können durch den reflektierten Anteil verursachte Störeffekte, wie insbesondere eine Überlagerung eines eine relevante Ortungsinforma- tion tragenden Nutzsignals durch den reflektierten Anteil, vorteilhaft vermieden werden. Hierbei wird vorteilhafterweise die durch das Material und/oder die Ausgestaltung gegebene Eigenschaft von Objekten, die Polarisationsebene einer das Objekt treffenden Welle zu drehen, genutzt. Durch die schräge Anordnung der Sendepolarisationsebene und/oder der Empfangspolarisationsebene relativ zur Längsachse kann hierbei eine besonders effektive Ortung von Gegenständen im Untersuchungsobjekt erreicht werden, die - wie in den überwiegenden Fällen verwirklicht - parallel oder orthogonal zur Längsachse ausgerichtet sind.
In einer besonderen Ausführung der Erfindung wird vorgeschlagen, dass die Polarisationsebenen zueinander orthogonal angeordnet sind, wodurch eine vorteilhafte Symmetrie bei einem Vorgang mit dem Untersuchungssignal erreicht werden kann.
Gemäß einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die Polarisationsebenen zueinander schräg angeordnet sind. Hierdurch kann eine effektive Ortung von Objekten erreicht werden, deren Ausrichtung im Untersuchungsobjekt im Wesentlichen der schrägen Ausrichtung von einer der Polarisationsebenen entspricht.
Ferner wird vorgeschlagen, dass die zweite Polarisationsebene parallel oder orthogonal zur Längsachse ausgerichtet ist, wodurch eine effektive Ortung in einem breiten Anwendungsbereich erreicht werden kann. Eine besonders hohe Anwendungsflexibilität kann ferner erreicht werden, wenn die Polarisations- einheit ein Drehmittel aufweist, das dazu vorgesehen ist, die Ausrichtung von zumindest einer Polarisationsebene relativ zur Längsachse zu drehen. Das Drehmittel kann für einen mechanisch und/oder elektrisch gesteuerten Antrieb vorgesehen sein. Es kann als Stellmotor oder als ein weite- res, dem Fachmann als sinnvoll erscheinendes Antriebsmittel ausgebildet sein.
Außerdem kann der Anwendungskomfort erhöht werden, wenn das Ortungsgerät ein Fahrwerk aufweist, das zum Führen der Ortungseinheit über eine Fläche des Untersuchungsobjekts in einer Vorzugsbewegungsrichtung vorgesehen ist, wobei die Polarisationsebene relativ zur Vorzugsbe- wegungsrichtung schräg angeordnet ist. Insbesondere ist die Vorzugsbewegungsrichtung senkrecht zur Längsachse des Gehäuses ausgerichtet.
Die Erfindung geht ferner aus von einem Verfahren zur Ortung eines in einem Untersuchungsobjekt angeordneten Gegenstands mit einem Ortungsgerät, bei welchem ein Gehäuse des Ortungsge- räts über eine Fläche des Untersuchungsobjekts bewegt wird.
Es wird vorgeschlagen, dass ein in einer Sendepolarisationsebene polarisiertes Untersuchungssignal in das Untersuchungsobjekt gesendet wird, wobei die Sendepolarisationsebene schräg zu einer Längsachse des Gehäuses ausgerichtet ist. Es kann dadurch bei einem Auswertevorgang des Unter- suchungssignals die Präzision durch ein Vermindern von unerwünschten Störfaktoren vorteilhaft erhöht werden.
In einer bevorzugten Ausführung der Erfindung wird vorgeschlagen, dass das Untersuchungssignal in zumindest einer von der Sendepolarisationsebene unterschiedlichen Empfangspolarisationsebene empfangen wird. Hierdurch kann durch ein Empfangen des Untersuchungssignals in einer von der
Sendepolarisationsebene unterschiedlichen Empfangspolarisationsebene ein besonders vorteilhafter Auswertevorgang des Untersuchungssignals erreicht werden. Durch einen gezielten Empfang und eine anschließende Auswertung eines Anteils des Untersuchungssignals in einer von der Sendepolarisationsebene unterschiedlichen Empfangspolarisationsebene können durch einen reflektierten Anteil des Untersuchungssignals verursachte Störeffekte, wie insbesondere eine Überlagerung eines eine relevante Ortungsinformation tragenden Nutzsignals durch den reflektierten Anteil, vorteilhaft vermieden werden. Eine hohe Informationsdichte kann ferner erreicht werden, wenn das Untersuchungssignal in mehreren, von der Sendepolarisationsebene unterschiedlichen Empfangspolarisationsebenen empfangen wird. Hierbei kann das Verfahren ferner an verschiedene Ausrichtungen von Gegenständen im Untersuchungs objekt angepasst werden.
Außerdem wird vorgeschlagen, dass das Untersuchungssignal in der Sendepolarisationsebene empfangen wird. Hierdurch kann eine effektive Ortung von Gegenständen erreicht werden, die keine Drehung einer auf sie treffenden Welle bewirken.
Des Weiteren wird vorgeschlagen, dass das Untersuchungssignal in der Sendepolarisationsebene und in zumindest einer von der Sendepolarisationsebene unterschiedlichen Empfangspolarisationsebene empfangen wird, wodurch eine effektive Ortung in einem breiten Anwendungsbereich erreicht werden kann.
In diesem Zusammenhang können vorteilhaft weitere Ortungsinformationen gewonnen werden, wenn das Untersuchungssignal in der Sendepolarisationsebene und in mehreren, von der Sendepolarisationsebene unterschiedlichen Empfangspolarisationsebenen empfangen wird.
Zeichnung
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmä- ßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
Es zeigen:
Fig. 1 ein Ortungsgerät, das entlang einer Fläche einer zu untersuchenden Wand bewegt wird,
Fig. 2 die Anordnung des Ortungsgeräts vor der Wand in einer Seitenansicht,
Fig. 3 eine schematische Darstellung einer Ortungseinheit des Ortungsgeräts mit einer Antennenanordnung, Fig. 4a bis 4c erklärende Zeichnungen zur Beschreibung von verschiedenen Ortungsmodi,
Fig. 5 die Anordnung von drei Polarisationsebenen in einem Ortungsmodus,
Fig. 6 die Anordnung von zwei zueinander schrägen Polarisationsebenen in einem weiteren Ortungsmodus und
Fig. 7 das Ortungsgerät in einer alternativen Ausführung mit einem Fahrwerk.
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt ein handgeführtes Ortungsgerät 10, welches von einem nicht gezeigten Anwender entlang einer Fläche 12 eines Untersuchungsobjekts 14 bewegt wird. Das Untersuchungsobjekt 14 ist als Wand ausgebildet, in welcher zu ortende, für den Anwender unsichtbare Gegenstände 16, 18 angeordnet sind. Der Gegenstand 16 ist als Wasserleitung ausgebildet, die in der Wand vertikal verläuft, während der Gegenstand 18 einer elektrischen Leitung entspricht, die horizontal ausgerichtet ist. Alternativ kann das Untersuchungsobjekt 14 als ein zu untersuchender Boden ausgebildet sein. Hierbei sind die Gegenstände 16, 18 horizontal und beispielsweise jeweils parallel zu einer Länge bzw. einer Breite eines Zimmers ausgerichtet.
Das Ortungsgerät 10 weist ein Gehäuse 20 auf, welches im Wesentlichen quaderförmig ausgebildet ist. Das Gehäuse 20 weist eine Längsrichtung auf, die als Haupterstreckungsrichtung 22 bezeichnet wird und der Richtung der Länge des das Gehäuse 20 bildenden Quaders entspricht. Die Haupterstreckungsrichtung 22 ist ferner durch die Längsachse 24 des Gehäuses charakterisiert, die parallel zur Haupterstreckungsrichtung 22 ausgerichtet ist und den Massenmittelpunkt des Ortungsgeräts 10 enthält. Die Längsachse 24 kann des Weiteren eine parallel zur Haupterstreckungsrichtung 22 ausgerichtete Achse sein, die eine Kante des Gehäuses 20 enthält. Im Gehäuse 20, und zwar in einer Bedienseite 26 integriert, sind ferner eine als LCD-Display ausgebildete Anzeigeeinheit 28 und eine Eingabeeinheit 30, die zumindest eine Taste aufweist. Das Gehäuse 20 weist ferner eine bevorzugte Seite 31 auf, die der Bedienseite 26 gegenüber angeordnet ist und bei einem Ortungs- Vorgang einem Untersuchungsobjekt zugewandt ist (siehe Figur 2). Unter der „Längsachse" 24 kann die Haupterstreckungsrichtung, d.h. die Längsrichtung, der Seite 31 verstanden werden. Ist die Seite 31 quadratisch ausgebildet, so wird unter einer „Längsachse" insbesondere eine Seitenhalbierende der Seite 31 verstanden. Weist das Gehäuse 20 eine kreisförmige Symmetrie auf, indem z.B. die Bedienseite 26 und die Seite 31 scheibenförmig ausgebildet sind, so entspricht die „Längsachse" einer Vorzugsrichtung des Gehäuses, die z.B. durch eine Markierung, eine Beschriftung des Gehäuses oder durch eine Ableserichtung einer Anzeigeeinheit vorgegeben ist.
Zur Bewegung des Ortungsgeräts 10 entlang der Fläche 12 wird das Gehäuse 20 von einem An- wender in einer Hand gehalten. Hierbei bildet das Gehäuse 10 ein Griffmittel 32, das zum Halten des Ortungsgeräts 10 bei der Bewegung entlang der Fläche 12 von einer Hand eines Anwenders umgriffen wird. Alternativ oder zusätzlich kann ein Griffmittel am Gehäuse 20 befestigt sein oder an das Gehäuse 20 einstückig angeformt sein. Das Ortungsgerät 10 weist ferner Vorzugsbewegungsrichtungen 34 für die Bewegung des Gehäuses 20 entlang der Fläche 12 auf. Diese Vorzugs- bewegungsrichtungen 34 sind relativ zur Längsachse 24 des Gehäuses 20 definiert, und zwar sind sie senkrecht zur Längsachse 24 des Gehäuses 20 ausgerichtet.
Figur 2 zeigt die Anordnung des Ortungsgeräts 10 vor dem zu untersuchenden Untersuchungsobjekt 14 in einer Seitenansicht. Zur Durchführung eines Ortungsvorgangs weist das Ortungsgerät 10 eine Ortungseinheit 36 auf, die innerhalb des Gehäuses 10 angeordnet ist. Diese ist in den Figuren
1 und 2 schematisch dargestellt. Die Ortungseinheit 36 ist dazu vorgesehen, das Vorhandensein der im Untersuchungsobjekt 14 angeordneten Gegenstände 16, 18 zu erkennen. Dies erfolgt auf bekannte Weise mittels eines Untersuchungssignals 38, das als hoch frequentes elektromagnetisches Signal, insbesondere als Radarsignal, ausgebildet ist. Das Untersuchungssignal 38 wird in einem ersten Schritt von einer elektronischen Signalerzeugungseinheit 40 erzeugt. Dieses wird über einen
Sendekanal (siehe Figur 3) zu einer Antennenanordnung 42 übertragen, die zur Abstrahlung des Untersuchungssignals 38 dient. Hierbei dient die Antennenanordnung 42 als Sendeeinheit, welche das Untersuchungssignal 38 als Sendesignal 44 in das Untersuchungsobjekt 14 sendet. Dieses Sendesignal 44 wird von mindestens einem der Gegenstände 16, 18 reflektiert und als Empfangssignal 46 von der als Empfangseinheit ausgebildeten Antennenanordnung 42 empfangen.
Die Ortungseinheit 36 ist in einer detaillierten Ansicht in Figur 3 näher dargestellt, und zwar mit der Anordnung der Signalerzeugungseinheit 40 und der Antennenanordnung 42. Das von der Antennenanordnung 42 empfangene Empfangssignal 46 wird einer Auswerteeinheit 48 übertragen, die zu dessen Auswertung vorgesehen ist. Aus einem Auswertevorgang können Informationen über die
Position, insbesondere die Tiefe im Untersuchungsobjekt 14, die Dimensionen und den Typ der Gegenstände 16, 18, gewonnen werden, die anschließend mittels der Anzeigeeinheit 28 angezeigt werden. Die Ortungseinheit 36 weist ferner eine Polarisationseinheit 50 auf, die für Vorgänge mit dem Untersuchungssignal 38 vorgesehen ist. Insbesondere gibt sie zwei voneinander unterschiedli- che Polarisationsebenen 52, 54 vor, in welchen das Untersuchungssignal 38 gesendet und/oder empfangen wird. Die verschiedenen Kombinationen von Sende- und Empfangsmodi in den Polarisationsebenen 52, 54 werden unten näher beschrieben. Die Polarisationsebenen 52, 54 sind schematisch durch strichpunktierte Linien in Figur 3 dargestellt. Die Polarisationseinheit 50 kann eine von der Antennenanordnung 42 getrennte Einheit sein, die der Antennenanordnung 42 nachgeschaltet ist. Hierbei kann die Polarisationseinheit 50 als Filtereinheit ausgebildet sein. In einer bevorzugten Ausführung, die in Figur 3 dargestellt ist, ist die Polarisationseinheit 50 mit der Antennenanordnung 42 einstückig ausgebildet. Hierbei sind die Polarisationsebenen 52, 54 durch die Ausrichtung von Antennen 56, 58 gegeben, die insbesondere jeweils als Dipolantennen mit einer bevorzugten Ausstrahlungsebene, welche der gewünschten Polarisationsebene entspricht, ausgebildet sind. Die Ortungseinheit 36 weist ferner eine Steuereinheit 60 auf, die zur Durchführung von zumindest einem Ortungsmodus vorgesehen ist. Hierzu ist die Steuereinheit 60 mit einer nicht näher dargestellten Recheneinheit und mit einer Speichereinheit versehen, in welche von der Recheneinheit durchführbare Steuerbefehle gespeichert sind. Zur Ausführung eines Ortungsmodus steht die Steuereinheit 60 in Wirkverbindung mit der Signalerzeugungseinheit 40 und mit der Auswerte- einheit 48.
Erfindungsgemäß ist in zumindest einem Ortungsmodus der Steuereinheit 60 zumindest eine von der Polarisationseinheit 50 vorgegebene Polarisationsebene 52, 54 relativ zur Längsachse 24 schräg angeordnet. Im gezeigten Ausführungsbeispiel sind die Polarisationsebenen 52, 54 relativ zueinander orthogonal angeordnet. Die Polarisationsebene 52, 54 bildet einen Winkel OCi = 45° bzw. O^ = 135° mit der Längsachse 24. Hierbei sind die Polarisationsebenen 52, 54 ebenfalls schräg zur Vorzugsbewegungsrichtung 34 ausgerichtet, und zwar bilden sie einen Winkel von 45° bzw. 135° mit der Vorzugsbewegungsrichtung 34.
In einem ersten Ortungsmodus, welcher von der Steuereinheit 60 ausgeführt wird, ist die Polarisationsebene 52 einem Sendekanal 62 zugeordnet, über welches das Untersuchungssignal 38 als Sendesignal 44 gesendet wird, wobei die Polarisationsebene 52 als Sendepolarisationsebene 53 bezeichnet wird. Hierdurch ist das Sendesignal 44 als polarisiertes Signal ausgebildet, dessen Polari- sationsebene der Sendepolarisationsebene 53 entspricht. Dies wird dadurch erreicht, dass der Sendekanal 62 mit der Antenne 56 in Wirkverbindung gesetzt wird. Das Sendesignal 44 wird dann in einer Polarisationsebene gesendet, die relativ zur Längsachse 24 und zur Haupterstreckungsrich- tung 22 schräg ausgerichtet ist. Das in der Sendepolarisationsebene 53 polarisierte Sendesignal 44 trifft demnach die Gegenstände 16, 18 mit einer Polarisationsebene, die schräg zu der Ausrichtung der Gegenstände 16, 18 ist. Es wird angenommen, dass diese Gegenstände 16, 18 die Eigenschaft aufweisen, diese Polarisationsebene zu drehen. Das hierdurch angeregte Empfangssignal 46 wird durch die Antennenanordnung 42 empfangen. Hierbei wird die Polarisationsebene 54 einem Empfangskanal 64 zugeordnet, wobei die Polarisationsebene 54 als Empfangspolarisationsebene 55 bezeichnet ist. Es wird hiermit ein Signalanteil des Empfangssignals 46 in der Empfangspolarisationsebene 55 durch die Auswerte- einheit 48 ausgewertet. Dies wird dadurch erreicht, dass der Empfangskanal 64 in Wirkverbindung mit der Antenne 58 gesetzt wird. Durch diesen Empfangsvorgang in einer Polarisationsebene, und zwar der Empfangspolarisationsebene 55, die unterschiedlich von der Sendepolarisationsebene 53 ist, wird der Anteil des Untersuchungssignals 38 empfangen und anschließend ausgewertet, dessen Polarisation durch die Gegenstände 16, 18 gedreht wird. Der Anteil der Untersuchungssignals 38, der eine unveränderte Polarisation in der Sendepolarisationsebene 53 aufweist und welcher zu einem wesentlichen Teil durch eine Reflexion an der Fläche 12 des Untersuchungsobjekts 14 ange- regt wird, ist im Empfangskanal 64 nicht vorhanden, wodurch eine unerwünschte Überlagerung des
Nutzsignals, das von dem Anteil in der Empfangspolarisationsebene 55 gebildet ist, vermieden wird. Dieses Nutzsignal, das die gewünschte Ortungsinformation trägt, kann anschließend mit einer hohen Genauigkeit in der Auswerteeinheit 48 ausgewertet werden. Ist die Polarisationseinheit 50 als Filtereinheit ausgebildet, so weist diese einen Filter auf, der für einen in der Polarisationsebene 54 angeordneten Signalanteil des Untersuchungssignals 38 durchlässig ist. Hierbei werden weitere
Signalanteile, insbesondere ein Signalanteil in der Sendepolarisationsebene 53, zumindest im Wesentlichen unterdrückt, insbesondere vollständig unterdrückt.
In den Figuren 4a, 4b, 4c sind die Signalerzeugungseinheit 40, die Auswerteeinheit 48 und die An- tennenanordnung 42 dargestellt. Der Sendekanal 62 steht in Wirkverbindung mit der Signalerzeugungseinheit 40, während der Empfangskanal 64 in Wirkverbindung mit der Auswerteeinheit 48 steht. Die Ausführung von verschiedenen Ortungsmodi wird schematisch mittels einer Zuordnungseinheit 66 beschrieben, die dazu vorgesehen ist, der Signalerzeugungseinheit 40 bzw. der Auswerteeinheit 48 die Antenne 56 und/oder die Antenne 58 zuzuordnen. Hierbei soll bemerkt werden, dass diese Darstellung zur Erklärung der verschiedenen Ortungsmodi dient und nicht auf einen bevorzugt verwirklichten Aufbau der Ortungseinheit 36 gerichtet ist. Diese Zuordnungsein- heit 66 ist beispielhaft und der Klarheit halber als Schaltereinheit ausgeführt, die Schalter 68 aufweist. Das Sendesignal 44 ist ebenfalls schematisch dargestellt und es sind zur Verdeutlichung des Prinzips lediglich die Anteile des Empfangssignals 46 dargestellt, die für eine Auswertung herangezogen werden.
In Figur 4a ist der oben beschriebene Ortungsmodus dargestellt. Hierbei ist der Signalerzeugungs- einheit 40 die Antenne 56 zugeordnet, so dass der Sendekanal 62 diese Antenne 56 umfasst. Ferner ist der Auswerteeinheit 48 ausschließlich die Antenne 58 zugeordnet, so dass der Empfangskanal 64 die Antenne 58 umfasst. Mittels des Schalters 68.4 ist der Empfangskanal 64 von der Antenne 56 und damit vom Sendekanal 62 getrennt. Es können mittels der Zuordnungseinheit 66 verschiedene Konfigurationen erreicht werden. Beispielweise kann eine Umkehrung der oben beschriebe- nen Konfiguration erreicht werden, indem die Antenne 56 - und damit die Polarisationsebene 52 - dem Empfangskanal 64 zugeordnet wird, während die Antenne 58 - und damit die Polarisationsebene 54 - dem Sendekanal 62 zugeordnet wird.
Ein weiterer Ortungsmodus, der in Figur 4b gezeigt ist, sieht vor, ausschließlich einen Anteil des Untersuchungssignals 38 auszuwerten, welcher in der Sendepolarisationsebene 53 polarisiert ist.
Dieser Ortungsmodus wird dadurch realisiert, dass der Empfangskanal 64 mit der Antenne 56, die - wie oben beschrieben - zum Senden des Untersuchungssignals 38 in die Sendepolarisationsebene 53 dient, mittels des Schalters 68.4 in Wirkverbindung gesetzt wird und mittels des Schalters 68.3 von der Antenne 58 getrennt wird. Ein Empfangen des Untersuchungssignals 38 in der Sendepola- risationsebene 53 eignet sich insbesondere für die Ortung von Gegenständen, die keinen ausreichenden oder gar keinen Einfluss auf die Polarisation einer Welle, die sie trifft, haben, wie z.B. zur Ortung von plattenförmigen Metallobjekten.
In einem weiteren Ortungsmodus, der in Figur 4c gezeigt ist, ist vorgesehen, zusätzlich zum im Ortungsmodus der Figur 4b beschriebenen Empfangsvorgang einen Anteil des Untersuchungssignals 38 in der Polarisationsebene 54 auszuwerten. Hierbei steht der Empfangskanal 64 sowohl mit der Antenne 56 als auch mit der Antenne 58 in Wirkverbindung. Hierbei wird ein Ortungsmodus durchgeführt, wobei ein Untersuchungssignal 38 in der Sendepolarisationsebene 53 gesendet wird und sowohl in dieser Sendepolarisationsebene 53 als auch in der Empfangspolarisationsebene 55 empfangen wird.
In weiteren Ausführungsvarianten von diesen Ortungsmodi können ein Sendevorgang und ein Empfangsvorgang gleichzeitig erfolgen, oder es können der Empfangsvorgang und der Sendevorgang zeitlich voneinander getrennt werden. Die oben beschriebenen Ortungsmodi, in welchen die Polarisationsebenen 52, 54 zur Längsachse 24 schräg ausgebildet sind, sind insbesondere zur Ortung von Gegenständen geeignet, die parallel oder orthogonal zu einer Referenzrichtung des Untersuchungsobjekts 14 sind. Eine solche Referenzrichtung ist z.B. die horizontale oder die vertikale Richtung bei einer Wand oder eine Zimmer- länge oder eine Zimmerbreite bei einem Boden. Zum Erreichen einer effektiven Ortung im Fall einer relativ zu dieser Referenzrichtung schrägen Anordnung eines Gegenstands des Untersuchungsobjekts 14 werden die folgenden Ausführungen von Ortungsmodi mittels der Polarisations- einheit 50 vorgeschlagen.
Figur 5 zeigt einen weiteren Ortungsmodus, bei welchem die Polarisationseinheit 50 mehr als zwei
Polarisationsebenen vorgibt. Zusätzlich zu den in Figur 3 gezeigten Polarisationsebenen 52, 54 gibt die Polarisationseinheit 50 eine weitere Polarisationsebene 70 vor, die relativ zu den Polarisationsebenen 52, 54 schräg angeordnet ist. Beispielsweise kann die Polarisationsebene 70 parallel zur Längsachse 24 ausgerichtet sein. In einer weiteren Ausführungsvariante kann sie orthogonal zur Längsachse 24 ausgerichtet sein. Die Polarisationsebenen 52, 54 eignen sich, wie oben beschrieben, zur Ortung von Gegenständen im Untersuchungsobjekt 14, die parallel oder orthogonal zu einer Referenzrichtung des Untersuchungsobjekts 14 sind, und die Polarisationsebene 70 kann vorteilhaft zur Ortung von Gegenständen herangezogen werden, die relativ zu dieser Referenzrichtung schräg, insbesondere mit einem Winkel von 45°, ausgerichtet sind. Gemäß der Ausführung aus Figur 5 ist ein Ortungsmodus vorgesehen, in welchem das Untersuchungssignal 38 in einer der
Polarisationsebenen 52, 54, 70 gesendet wird und in dem zwei weitere Polarisationsebenen empfangen werden. Beispielhaft ist eine Konfiguration dargestellt, in welcher das Sendesignal 44 in der Polarisationsebene 52, die die Sendepolarisationsebene 53 bildet, gesendet wird und das Empfangssignal 46 in der Polarisationsebene 54, die die Empfangspolarisationsebene 55 bildet, und in der Polarisationsebene 70, die eine Empfangspolarisationsebene 71 bildet, empfangen wird. Ferner ist ein weiterer Ortungsmodus vorgesehen, bei welchem zusätzlich ein Empfangen des Empfangssignals 46 in der Sendepolarisationsebene 53 erfolgt.
Ein in Figur 6 gezeigter Ortungsmodus kann vorsehen, die Polarisationsebenen 52, 54 zueinander schräg auszurichten. Beispielsweise kann die Polarisationsebene 52, wie in der Konfiguration aus
Figur 3, mit einem Winkel von 45° relativ zur Längsachse 24 schräg ausgerichtet sein, wobei die Polarisationsebene 54 mit der Polarisationsebene 52 einen spitzen Winkel bildet. Insbesondere kann - wie in der Figur beispielhaft dargestellt - die Polarisationsebene 54 parallel zur Längsachse 24 ausgerichtet sein. Diese Ortungsmodi der Figuren 3, 5 und 6 können durch verschiedene Antennenanordnungen festgelegt werden. In einer weiteren Ausführung, die in den Figuren 4a, 4b und 4c gezeigt ist, kann ein Drehmittel 72 vorgesehen sein, welches dazu dient, die Ausrichtung von zumindest einer der Polarisationsebenen 52, 54 relativ zur Längsachse 24 zu drehen. Dieses Drehmittel 72 kann optional in das Ortungsgerät 10 eingebaut werden, was in den Figuren 4a, 4c und 4c durch gestrichelte Linien betont wird. Es ist insbesondere als Stellmotor ausgebildet und ist von der Steuereinheit 60 steuerbar.
Figur 7 zeigt eine alternative Ausführung des Ortungsgeräts 10 aus Figur 1. Hierbei werden gleich bleibende Bauteile mit den gleichen Bezugszeichen versehen, wobei, um Wiederholungen zu vermeiden, lediglich die Unterschiede zur oben beschriebenen Ausführung erörtert werden. Das Ortungsgerät 10 in der Ausführung aus Figur 7 weist ein Fahrwerk 74 auf, welches zum Führen des Gehäuses 20 - und damit der darin angeordneten Ortungseinheit 36 - über die Fläche 12 des Untersuchungsobjekts 14 in die Vorzugsbewegungsrichtung 34 vorgesehen ist. In dieser Ausführung ist die Vorzugsbewegungsrichtung 34 mittels des Fahrwerks 74 vorgegeben. Das Fahrwerk 74 weist vier Räder 76 auf, die bei einer Bewegung entlang des Untersuchungsobjekts 14 auf dessen Fläche 12 rollen. Dem Fahrwerk 74 ist eine nicht näher gezeigte Wegsensoreinrichtung zugeordnet, die dazu dient, eine vom Gehäuse 20 zurückgelegte Strecke zu erfassen.

Claims

Ansprüche
1. Ortungsgerät, insbesondere handgeführtes Ortungsgerät, mit einer Ortungseinheit (36) zur Erfassung des Vorhandenseins eines in einem Untersuchungsobjekt (14) angeordneten Ge- genstands (16, 18) mittels eines Untersuchungssignals (38), die eine für einen Vorgang mit dem Untersuchungssignal (38) vorgesehene Polarisationseinheit (50) aufweist, und mit einem Gehäuse (20) zur Aufnahme der Ortungseinheit (36), das eine Längsachse (24) aufweist, dadurch gekennzeichnet, dass in zumindest einem Betriebsmodus die Polarisationseinheit (50) zumindest eine erste Polarisationsebene (52, 54) vorgibt, die schräg zur Längs- achse (24) ausgerichtet ist.
2. Ortungsgerät nach Anspruch 1, gekennzeichnet durch ein Griffmittel (32) zu einem Greifen durch einen Anwender bei einem Ortungsvorgang, das mit dem Gehäuse (20) gekoppelt ist.
3. Ortungsgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polarisationsebene (52, 54) einen Winkel von ca. 45° mit der Längsachse (24) bildet.
4. Ortungsgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polarisationsebene (52) in zumindest einem Betriebsmodus eine Sendepolarisationsebene (53) ist, die zumindest einem Sendekanal (62) für ein Senden des Untersuchungssignals (38) zugeordnet ist.
5. Ortungsgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polarisationsebene (54) in zumindest einem Betriebsmodus eine Empfangspolarisations- ebene (55) ist, die zumindest einem Empfangskanal (64) für ein Empfangen des Untersuchungssignals (38) zugeordnet ist.
6. Ortungsgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polarisationseinheit (50) zumindest eine zweite Polarisationsebene (54, 52, 70) vorgibt, die von der ersten Polarisationsebene (52, 54) unterschiedlich ist.
7. Ortungsgerät nach Anspruch 6, dadurch gekennzeichnet, dass in zumindest einem Betriebsmodus eine der Polarisationsebenen (52, 54) eine Sendepolarisationsebene (53) ist, die zumindest einem Sendekanal (62) für ein Senden des Untersuchungssignals (38) zugeordnet ist, und eine weitere der Polarisationsebenen (52, 54) eine Empfangspolarisationsebene (55) ist, die zumindest einem Empfangskanal (64) für ein Empfangen des Untersuchungssignals (38) zugeordnet ist.
8. Ortungsgerät nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Polarisationsebenen (52, 54) zueinander orthogonal angeordnet sind.
9. Ortungsgerät nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Polarisationsebenen (52, 70) zueinander schräg angeordnet sind.
10. Ortungsgerät nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die zweite Polarisationsebene (70) parallel oder orthogonal zur Längsachse (24) ausgerichtet ist.
11. Ortungsgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polarisationseinheit (50) zumindest zwei weitere Polarisationsebenen (52, 54, 70) vorgibt.
12. Ortungsgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polarisationseinheit (50) ein Drehmittel (72) aufweist, das dazu vorgesehen ist, die Ausrichtung von zumindest einer Polarisationsebene (52, 54, 70) relativ zur Längsachse (24) zu drehen.
13. Ortungsgerät nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Fahrwerk (74), das zum Führen der Ortungseinheit (36) über eine Fläche (12) des Untersuchungsobjekts (14) in einer Vorzugsbewegungsrichtung (34) vorgesehen ist, wobei die Polarisationsebene (52, 54) relativ zur Vorzugsbewegungsrichtung (34) schräg angeordnet ist.
14. Verfahren zur Ortung eines in einem Untersuchungsobjekt (14) angeordneten Gegenstands (16, 18) mit einem Ortungsgerät (10), insbesondere nach einem der vorhergehenden Ansprüche, bei welchem ein Gehäuse (20) des Ortungsgeräts (10) über eine Fläche (12) des Untersuchungsobjekts (14) bewegt wird, dadurch gekennzeichnet, dass ein in einer Sendepolari- sationsebene (53) polarisiertes Untersuchungssignal (38) in das Untersuchungsobjekt (14) gesendet wird, wobei die Sendepolarisationsebene (53) schräg zu einer Längsachse (24) des Gehäuses (20) ausgerichtet ist.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass das Untersuchungssignal (38) in zumindest einer von der Sendepolarisationsebene (53) unterschiedlichen Empfangspolarisationsebene (55) empfangen wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass das Untersuchungssignal (38) in mehreren, von der Sendepolarisationsebene (53) unterschiedlichen Empfangspolarisati- onsebenen (55, 71) empfangen wird.
17. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass das Untersuchungssignal (38) in der Sendepolarisationsebene (53) empfangen wird.
18. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass das Untersuchungssignal (38) in der Sendepolarisationsebene (53) und in zumindest einer von der Sendepolarisationsebene (53) unterschiedlichen Empfangspolarisationsebene (55) empfangen wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass das Untersuchungssignal (38) in der Sendepolarisationsebene (53) und in mehreren, von der Sendepolarisationsebene (53) unterschiedlichen Empfangspolarisationsebenen (55, 71) empfangen wird.
EP08866102A 2007-12-21 2008-10-31 Ortungsgerät Withdrawn EP2225583A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007062997A DE102007062997A1 (de) 2007-12-21 2007-12-21 Ortungsgerät
PCT/EP2008/064806 WO2009083302A1 (de) 2007-12-21 2008-10-31 Ortungsgerät

Publications (1)

Publication Number Publication Date
EP2225583A1 true EP2225583A1 (de) 2010-09-08

Family

ID=40383939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08866102A Withdrawn EP2225583A1 (de) 2007-12-21 2008-10-31 Ortungsgerät

Country Status (5)

Country Link
US (1) US8686891B2 (de)
EP (1) EP2225583A1 (de)
CN (1) CN101952740A (de)
DE (1) DE102007062997A1 (de)
WO (1) WO2009083302A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027666A1 (de) * 2009-07-14 2011-01-20 Robert Bosch Gmbh UWB-Messgerät
DE102010063666A1 (de) * 2010-12-21 2012-06-21 Robert Bosch Gmbh Handortungsvorrichtung
DE102011007786A1 (de) * 2011-04-20 2012-10-25 Robert Bosch Gmbh Antennenvorrichtung
DE102011088439A1 (de) 2011-12-13 2013-06-13 Robert Bosch Gmbh Handwerkzeugvorrichtung mit zumindest einer Ortungsvorrichtung
DE102011088438A1 (de) * 2011-12-13 2013-06-13 Robert Bosch Gmbh Handwerkzeugvorrichtung
US9073347B2 (en) * 2012-10-11 2015-07-07 Geophysical Survey Systems, Inc. Hand-held radar device with direct printing based on radar input
WO2015137853A1 (en) * 2014-03-12 2015-09-17 Saab Ab An antenna system for polarization diversity
CN104749600B (zh) * 2015-03-04 2017-04-12 大连理工大学 一种基于偏振光的判定式组合导航方法
US10585203B2 (en) 2016-04-28 2020-03-10 Fluke Corporation RF in-wall image visualization
US10564116B2 (en) 2016-04-28 2020-02-18 Fluke Corporation Optical image capture with position registration and RF in-wall composite image
US10254398B2 (en) 2016-04-28 2019-04-09 Fluke Corporation Manipulation of 3-D RF imagery and on-wall marking of detected structure
US10209357B2 (en) * 2016-04-28 2019-02-19 Fluke Corporation RF in-wall image registration using position indicating markers
US10571591B2 (en) 2016-04-28 2020-02-25 Fluke Corporation RF in-wall image registration using optically-sensed markers
US10302793B2 (en) 2016-08-04 2019-05-28 Fluke Corporation Blending and display of RF in wall imagery with data from other sensors
US10444344B2 (en) 2016-12-19 2019-10-15 Fluke Corporation Optical sensor-based position sensing of a radio frequency imaging device
US10871550B2 (en) * 2018-08-07 2020-12-22 7hugs Labs SAS Polarization axis attenuation and cross polarization resistant antenna orientation assembly for tracked object

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8426246D0 (en) 1984-10-17 1984-11-21 British Gas Corp Microwave reflection survey equipment
US5130711A (en) 1991-12-02 1992-07-14 Mitsui Engineering & Shipbuilding Co., Ltd. Subsurface target identification radar
US5457394A (en) * 1993-04-12 1995-10-10 The Regents Of The University Of California Impulse radar studfinder
US6359582B1 (en) * 1996-09-18 2002-03-19 The Macaleese Companies, Inc. Concealed weapons detection system
AU7908698A (en) * 1997-07-02 1999-01-25 Ekko Dane Production A/S Radar plant and measurement technique for determination of the orientation and the depth of buried objects
US6417797B1 (en) * 1998-07-14 2002-07-09 Cirrus Logic, Inc. System for A multi-purpose portable imaging device and methods for using same
DE10050655C1 (de) * 2000-10-13 2002-01-24 Hilti Ag GPR-Mehrfachantennen-Vorrichtung zur Materialerkundung für den kombinierten Einsatz mit einem Handwerkzeug
US6617996B2 (en) * 2001-06-14 2003-09-09 Mala Geoscience Ab Ground penetrating radar with audible output
GB0122357D0 (en) 2001-09-15 2001-11-07 Secr Defence Sub-surface radar imaging
SE524470C2 (sv) * 2002-12-13 2004-08-10 Malaa Geoscience Foervaltnings Anordning för insamling av polarimetrisk data från markradar
DE102004031627A1 (de) * 2004-06-30 2006-02-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur werkstoffdurchdringenden Ortung eines Messsignals
US8253619B2 (en) * 2005-02-15 2012-08-28 Techtronic Power Tools Technology Limited Electromagnetic scanning imager
DE102005052367A1 (de) 2005-10-31 2007-05-03 Robert Bosch Gmbh Messgerät und Verfahren zur Ortung von in einem Medium eingeschlossenen Objekten mittels elektromagnetischer HF-Signale
WO2008045105A2 (en) * 2005-11-28 2008-04-17 Nelson Michell C Detection, location, and characterization of buried explosive devices and weapons caches
ITFI20060098A1 (it) 2006-04-28 2007-10-29 Saima Sicurezza Spa Dispositivo portatile per la rilevazione di oggetti nascosti

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009083302A1 *

Also Published As

Publication number Publication date
CN101952740A (zh) 2011-01-19
WO2009083302A1 (de) 2009-07-09
US8686891B2 (en) 2014-04-01
DE102007062997A1 (de) 2009-06-25
US20100328137A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
WO2009083302A1 (de) Ortungsgerät
DE2419542C3 (de) Verfahren und Einrichtung zum Lokalisieren eines Fahrzeugs
EP2790879B1 (de) Handwerkzeugvorrichtung
EP0867971B1 (de) Schlüsselloses Zugangssystem für ein Kraftfahrzeug mit einem Magnetfeldsensor
DE3808172A1 (de) System zum detektieren unterirdischer objekte
DE2056170A1 (de) Anordnung fur seitliche Messungen auf Schallbasis
EP2621682B1 (de) Ortungsvorrichtung
EP1763653A1 (de) Verfahren und vorrichtung zur materialstärkenbestimmung auf hochfrequenzbasis
EP1236971A2 (de) Verfahren und Vorrichtung zur Bestimmung der Achslage zweier Maschinenspindeln
WO2012041575A1 (de) Handwerkzeugmaschinenvorrichtung
DE2129110A1 (de) Verfahren zum Überprüfen von metallischen Schweißungen
DE2258992C2 (de) Radarantennensystem mit gestaffelten Strahlungskeulen
EP2212705B1 (de) Wellenfeldanalyseverfahren und -gerät
DE19962949A1 (de) Vorrichtung zur abtaststrahlungsbasierten Oberflächenzustandserkennung insbesondere von Straßen
EP0026001A1 (de) Empfangsantenne für Satelliten-Direktempfang
EP2791710B1 (de) Handwerkzeugvorrichtung mit zumindest einer ortungsvorrichtung
EP2621656B1 (de) Ortungsvorrichtung
DE3137012A1 (de) Verfahren und vorrichtung zum orten von veschuetteten
DE2622800C3 (de) Verfahren zur interferometrischen Peilung eines für den Empfang elektromagnetischer Wellen störende Reflexionen erzeugenden Objekts
WO2005073749A1 (de) Verfahren und vorrichtung zum wiederauffinden von gegenständen
DE102018007754A1 (de) Ermittlung des wahren Richtdiagramms einer Antennenanordnung auf einem über einer reflektierenden Grundfläche angeordneten Fahrzeug.
DE102008004417A1 (de) Vorrichtung zum Senden und/oder Empfangen elektromagnetischer HF-Signale
EP2656115B1 (de) Handortungsvorrichtung, ortungsgerät und verfahren zur ortung
DE869164C (de) Vorrichtung zum gerichteten Senden bzw. Empfangen von Schallwellen
WO2013087288A2 (de) Handwerkzeugvorrichtung mit zumindest einer ortungsantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20101201

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190312