EP2222771A1 - Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzusammensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen - Google Patents

Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzusammensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen

Info

Publication number
EP2222771A1
EP2222771A1 EP08872794A EP08872794A EP2222771A1 EP 2222771 A1 EP2222771 A1 EP 2222771A1 EP 08872794 A EP08872794 A EP 08872794A EP 08872794 A EP08872794 A EP 08872794A EP 2222771 A1 EP2222771 A1 EP 2222771A1
Authority
EP
European Patent Office
Prior art keywords
anion
acac
enolate
acetoacetate
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08872794A
Other languages
English (en)
French (fr)
Inventor
Christian Maliverney
Delphine Blanc
Rachid Ferhat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elkem Silicones France SAS
Original Assignee
Bluestar Silicones France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bluestar Silicones France SAS filed Critical Bluestar Silicones France SAS
Publication of EP2222771A1 publication Critical patent/EP2222771A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond

Definitions

  • M represents a metal selected from the group consisting of: copper, silver, iron, boron, scandium, cerium, ytterbium, bismuth, molybdenum, germanium and manganese;
  • the symbol L 1 represents a ligand which is a ⁇ -dicarbonylato anion or the enolate anion of a ⁇ -dicarbonyl compound and when ri> 2, the symbols L 1 are identical or different,
  • R 1 represents a linear or branched hydrocarbon radical, substituted or unsubstituted, CpC 30 or an aromatic substituted or unsubstituted,
  • R 2 is a hydrogen or a hydrocarbon radical, in general alkyl, advantageously having at most 4 carbon atoms;
  • R 1 and R 2 can be connected to form a ring
  • the ⁇ -dicarbonylato ligand L 1 is a ⁇ -ketoesterat anion chosen from the group consisting of anions derived from the following compounds: methyl, ethyl, n-propyl and isopropyl esters; n-butyl, sec-butyl, isobutyl, tert-butyl, isopentyl, n-hexyl, n-octyl, 1-methylheptyl, n-nonyl, n-decyl and n-dodecyl acetylacetic acid or those described in the application for FR-A-1435882.
  • L 2 is an anionic ligand selected from the group consisting of anions: fluoro (F), chloro (CF), triiodo (l ") (I 3)" difluorochlorato (r) [ClF 2] "hexafluoroiodato (l ⁇ ) [IF 6]" oxochlorato (r) (IOC) "dioxochlorato (l") (IOC 2) ", trioxochlorato (1 “ ) (CIO 3 ) “ , tetraoxochlorato ( ⁇ (CIO 4 ) “ , hydroxo (OH) “ , mercapto (SH) “ , selenuro (SeH), hyperoxo (O 2 ), ozonido (O 3 ), hydroxo (OH ' ), hydrodisulfuro (HS 2 ) “ , meth
  • L 2 is an anionic ligand selected from the group consisting of anions: acetate, oxalate, propionate, butyrate, isobutyrate, diethylacetate, benzoate, 2-ethylhexanoate, stearate, methoxide, ethoxide, isopropoxide, tert -butoxide, tert-pentoxide, 8-hydroxyquinolinate, naphthenate, tropolonate and the oxo O 2 anion.
  • anions acetate, oxalate, propionate, butyrate, isobutyrate, diethylacetate, benzoate, 2-ethylhexanoate, stearate, methoxide, ethoxide, isopropoxide, tert -butoxide, tert-pentoxide, 8-hydroxyquinolinate, naphthenate, tropolonate and the oxo O 2 anion.
  • neutral ligand Y does not matter and the skilled person will use any type of neutral ligand suitable for the metal concerned.
  • the invention also relates to a catalytic system X characterized in that it: a) comprises at least one complex or metal salt A of formula (1) below:
  • the complex or metal salt A is dispersed in at least one organopolysiloxane oil polymer K whose viscosity is at least 100 mPa.s, preferably at least 5000 mPa.s and even more preferably at least 10,000 mPa.s, and
  • two-component bases that is to say, packaged in two packages, which harden from the incorporation of the catalytic system X according to the invention. They are conditioned after incorporation of the catalyst into two separate fractions, one of the fractions being able to contain, for example, only the catalyst according to the invention or a mixture with the crosslinking agent.
  • the silicone base B used to produce the composition according to the invention may comprise:
  • Ci -CJ 0 such as methyl, ethyl, propyl, butyl, pentyl, 2-ethylhexyl, octyl, decyl,
  • C 5 -C 8 cycloalkyl radicals such as the phenyl, tolyl and xylyl radicals.
  • the crosslinking agents D are products that are accessible on the silicone market; moreover their use in compositions hardening at room temperature is known; it appears in particular in the French patents FR-AI 126 411, FR-AI 179 969, FR-AI 189 216, FR-AI 198 749, FR-AI 248 826, FR-AI 314 649, FR-AI 423 477, FR-Al 432 799 and FR-A-2 067 636.
  • alkyltrialkoxysilanes, alkyl silicates and alkyl polysilicates are more particularly preferred, in which the organic radicals are alkyl radicals having from 1 to 4 carbon atoms.
  • crosslinking agents D which can be used, mention is made more particularly of the following silanes:
  • crosslinking agent D examples include ethyl polysilicate, or n-propyl polysilicate.
  • crosslinking agent D is used per 100 parts by weight of polyorganosiloxane C capable of crosslinking by polycondensation to an elastomer.
  • the mineral fillers F used are very finely divided products whose average particle diameter is less than 0.1 ⁇ m. These fillers include fumed silicas and precipitated silicas; their BET surface area is usually greater at 40 m7g. These fillers may also be in the form of more coarsely divided products with an average particle diameter greater than 0.1 ⁇ m. Examples of such fillers include ground quartz, diatomaceous earth silicas, calcium carbonate, calcined clay, rutile titanium oxide, iron, zinc, chromium and zirconium oxides.
  • magnesium various forms of alumina (hydrated or not), boron nitride, lithopone, barium metaborate, barium sulfate, glass microbeads; their specific surface area is generally less than 30 m 2 / g.
  • these fillers may have been surface-modified by treatment with the various organosilicon compounds usually employed for this purpose.
  • these organosilicon compounds may be organochlorosilanes, diorganocyclopolysiloxanes, hexaorganodisiloxanes, hexaorganodisilazanes or diorganocyclopolysilazanes (French Patents FR-AI 126 884, FR-AI 136 885, FR-AI 236 505, British Patent GB-AI 024 234).
  • the treated fillers contain, in most cases, from 3 to 30% of their weight of organosilicic compounds.
  • the charges may consist of a mixture of several types of charges of different particle size; for example, they may consist of 30 to 70% finely divided silicas of BET specific surface area greater than 40 m 2 / g and 70 to 30% of more coarsely divided silicas with a specific surface area of less than 30 mVg.
  • inorganic and / or organic pigments as well as agents improving the thermal resistance (salts and oxides of rare earths such as ceric oxides and hydroxides) and / or the flame resistance of the elastomers.
  • the oxide coktails described in international application WO 98/29488 can be used.
  • agents improving the flame resistance can be mentioned halogenated organic derivatives, organic phosphorus derivatives, platinum derivatives such as chloroplatinic acid (its reaction products with alkanols, ether-oxides), complexes platinum chloride-olefins.
  • These pigments and agents together represent at most 20% of the weight of the charges.
  • auxiliary agents and customary additives may be incorporated into the composition according to the invention; these are chosen according to the applications in which said compositions are used.
  • the silicone base used to produce the composition according to the invention may comprise:
  • non-reactive linear polyorganosiloxane polymers G may be introduced in order to act on the physical characteristics of the compositions in accordance with the invention and / or on the mechanical properties of the elastomers resulting from the hardening of these compositions.
  • non-reactive linear polyorganosiloxane polymers G are well known; they more particularly include: ⁇ , ⁇ -bis (triorganosiloxy) diorganopolysiloxane polymers with viscosities of at least 10 mPa.s at 25 ° C., formed essentially of diorganosiloxy units and at most 1% of monoorganosiloxy and / or siloxy units , the organic radicals bonded to the silicon atoms being chosen from methyl, vinyl and phenyl radicals, at least 60% of these organic radicals being methyl radicals and 10% at most being vinyl radicals.
  • the viscosity of these polymers may reach several tens of millions of mPa.s at 25 ° C .; they therefore include oils with fluid to viscous appearance and hard soft gums. They are prepared according to the usual techniques described more precisely in the French patents FR-A-978 058, FR-AI 025 150, FR-AI 108 764 and FR-AI 370 884. Preferably, the ⁇ , ⁇ -bis oils are used. (trimethylsiloxy) dimethylpolysiloxanes having a viscosity of from 10 mPa.s to 1000 mPa.s at 25 ° C. These polymers which act as plasticizers can be introduced in a proportion of at most 70 parts, preferably 5 to 20 parts, per 100 parts of polyorganosiloxane oil C capable of crosslinking by polycondensation.
  • compositions according to the invention may also advantageously comprise at least one silicone resin H.
  • silicone resins are branched organopolysiloxane polymers which are well known and commercially available. They have, per molecule, at least two different units chosen from those of formula R " ⁇ 3 SiOi / 2 (unit M), R '" 2 Si0 2/2 (unit D), R 111 SiO 3 Q (unit T) and SiO 4 ⁇ (Q pattern).
  • the radicals R "' are identical or different and are chosen from linear or branched alkyl radicals, vinyl, phenyl and 3,3,3-trifluoropropyl radicals.
  • the alkyl radicals preferably contain from 1 to 6 carbon atoms, inclusive.
  • alkyl radicals R of methyl, ethyl, isopropyl, tert-butyl and n-hexyl radicals, these resins preferably being hydroxylated and in this case having a hydroxyl content by weight of between 5 and 500 meq / 100 g.
  • resins examples include MQ resins, MDQ resins, TD resins and MDT resins.
  • compositions in accordance with the invention it is necessary, in the case of single-component compositions, to use an apparatus which makes it possible to intimately mix, with the exclusion of moisture, with and without heat input, the various constituents to which the additives and additives mentioned above may be added. All these ingredients can be loaded into the equipment according to a any order of introduction.
  • the mixtures can be heated to a temperature in the range 50-180 ° C. under atmospheric pressure or under a reduced pressure to promote the departure of volatile materials.
  • compositions according to the invention that is to say undiluted, or in the form of dispersions in diluents, are stable storage in the absence of water and harden as soon as possible. low temperatures (after starting solvents in the case of dispersions) in the presence of water to form elastomers.
  • Mono-component compositions can be used for multiple applications such as grouting in the building industry, assembly of various materials (metals, plastics, natural and synthetic rubbers, wood, cardboard, earthenware, brick, ceramics). , glass, stone, concrete, masonry), insulation of electrical conductors, encapsulation of electronic circuits, preparation of molds for the manufacture of resins or synthetic foams.
  • the manufacture of the two-component compositions according to the invention is also carried out by mixing the various constituents in suitable apparatus.
  • To the mixture obtained preferably brought to a temperature below 80 ° C., for example of the order of room temperature, may be added the other constituents, that is to say the crosslinking agents, the catalyst and optionally additives and various additives and even water.
  • compositions according to the invention can be used for multiple applications such as grouting and / or gluing in the building industry, the transport industry (examples: automotive, aerospace, rail, maritime and aeronautics). assembly of various materials (metals, plastics, natural and synthetic rubbers, wood, cardboard, polycarbonate, earthenware, brick, ceramics, glass, stone, concrete and masonry), insulation of electrical conductors, coating electronic circuits and the preparation of molds for the manufacture of objects of resins or synthetic foams.
  • various materials metal, plastics, natural and synthetic rubbers, wood, cardboard, polycarbonate, earthenware, brick, ceramics, glass, stone, concrete and masonry
  • insulation of electrical conductors coating electronic circuits and the preparation of molds for the manufacture of objects of resins or synthetic foams.
  • another subject of the invention consists of a two-component system precursor of the organopolysiloxane composition according to the invention and as defined above and vulcanizable to silicone elastomer by polycondensation reactions and characterized in that it occurs in two separate P1 and P2 parts to be mixed to form said composition, and in that one of these parts comprises the catalyst system X as defined above as a catalyst for the polycondensation reaction of organopolysiloxanes and the agent crosslinking D while the other part is free of the aforementioned species and comprises:
  • oil (or oils) polyorganosiloxane (s) C may (s) crosslink by polycondensation to an elastomer
  • Another subject of the invention also consists of a one-component polyorganosiloxane composition which is stable to storage in the absence of moisture and which crosslinking, in the presence of water, of elastomer, characterized in that it comprises:
  • compositions according to the invention harden rapidly at room temperature and even in a confined environment, it follows that "shaped" joints (and also other "in-situ” joints) resulting from the hardening of these compositions are self-regulating.
  • adhesives and can be manufactured under very demanding industrial manufacturing conditions. They may, for example, be manufactured on the usual assembly lines of the automotive industry equipped with an automatic device for depositing the compositions. This automatic device often has a mixing head and a dispensing nozzle, which moves according to the profile of the joints to be manufactured.
  • compositions manufactured and dispensed by means of this apparatus must have a curing time which is well adjusted in order firstly to prevent caking in the mixing head and secondly to obtain complete crosslinking after the end of the removal of the bead. pasty on the pieces to be grouted.
  • These "shaped" seals are especially suitable for rocker cover seals, gearbox lids, distribution spacers and even oil seals.
  • the injected joints are formed in a confined environment, in cavities often completely closed; the compositions placed in these cavities are rapidly transformed into elastomers. These seals can ensure, for example, the sealing of crankshaft bearings.
  • compositions according to the invention are also suitable for the formation of joints and / or glues with fast curing and self-adhering in other areas than the automobile.
  • they can be used to glue and grout plastic cabinets, to produce joints and / or glues:
  • compositions according to the invention are particularly suitable for the formation of seals in a confined environment and capable of undergoing a heat treatment by the type of application, for example for seals used for bonding elements in household appliances such as cooking ovens. Indeed, in some applications, the seal must withstand temperatures greater than or equal to 100 0 C while maintaining a membership consistent with the needs of the application.
  • Another subject of the invention relates to a self-adhesive seal and / or a glue prepared by curing at ambient temperature:
  • organopolysiloxane composition resulting from the mixture of the P1 and P2 parts of the two-component as defined above.
  • the last object according to the invention consists of an elastomer obtained by crosslinking and hardening of the two-component system according to the invention and as described above, or of the composition according to the invention and as described above.
  • IR (nm) data 2979, 1611, 1505, 1239, 1161, 960.
  • a solution of 112 mmol of sodium methylate (6 g) in 100 ml of ethanol is concentrated by 20% by distillation, then 112.5 mmol of the ⁇ -ketoester (16.2 g of isopropyl acetoacetate or 17.8 g of isobutyl acetoacetate) are added and the solution obtained is heated at 80 ° C. for 1 h to give a clear yellow-to-orange solution.
  • a solution of 37.1 mmol of anhydrous iron chloride (6 g) in 20 ml of ethanol is added at 80 ° C. for 30 min, then the mixture is heated at 80 ° C. for 3 hours, cooled, filtered if necessary, concentrated to room temperature.
  • the complexes synthesized in paragraph a) are dispersed at 6.1% or 10% in a silicone oil: - al: hydroxylated polydimethylsiloxane oil blocked at each chain end by a (CH 3 ) 2 (OH) SiO 0 5 unit having a viscosity of 14000 mPa.s at 25 ° C.
  • the mixtures are then finely ground by means of a 3-roll mixer, whose clamping pressures between the rolls are adjusted so as to lead, if possible, to homogeneous mixtures.
  • the catalytic systems thus obtained are characterized from the point of view of appearance and by a viscosity measurement on a Brookfield apparatus.
  • Standard 2-component compositions based on the catalyst systems described in paragraph 1) are prepared and elastomers having physical properties equivalent to or greater than the control are obtained.
  • the elastomer obtained has good mechanical properties (A / R, R / R and DSA), similar to those obtained with a tin catalyst (control).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Adhesives Or Adhesive Processes (AREA)
EP08872794A 2007-12-20 2008-12-18 Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzusammensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen Withdrawn EP2222771A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0708920A FR2925512A1 (fr) 2007-12-20 2007-12-20 Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
PCT/FR2008/001772 WO2009106722A1 (fr) 2007-12-20 2008-12-18 Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes

Publications (1)

Publication Number Publication Date
EP2222771A1 true EP2222771A1 (de) 2010-09-01

Family

ID=39577885

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08872794A Withdrawn EP2222771A1 (de) 2007-12-20 2008-12-18 Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzusammensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen

Country Status (7)

Country Link
US (1) US8772428B2 (de)
EP (1) EP2222771A1 (de)
JP (1) JP5197755B2 (de)
KR (2) KR101487109B1 (de)
CN (1) CN101986778B (de)
FR (1) FR2925512A1 (de)
WO (1) WO2009106722A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053814B2 (ja) * 2007-11-30 2012-10-24 東レ・ダウコーニング株式会社 多成分型室温硬化性シリコーンゴム組成物
FR2925511A1 (fr) * 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
FR2925514A1 (fr) * 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
FR2925510A1 (fr) * 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
ES2524457T3 (es) * 2008-05-29 2014-12-09 Bluestar Silicones France Artículo que presenta propiedades antiincrustantes, y destinado a ser utilizado en aplicaciones acuáticas, en particular marinas
US8937141B2 (en) 2010-09-08 2015-01-20 Momentive Performance Materials Inc. Moisture curable organopolysiloxane composition
EP2492323A1 (de) 2011-02-23 2012-08-29 Akzo Nobel Coatings International B.V. Biofäulebeständige Zusammensetzungen
JP2014520949A (ja) * 2011-07-19 2014-08-25 ダウ コーニング コーポレーション 銅含有錯体、その錯体を含有する縮合反応組成物、並びにその組成物の調製及び使用のための方法
JP2014521826A (ja) * 2011-08-17 2014-08-28 ダウ コーニング コーポレーション ビスマス含有錯体及び縮合反応触媒、この触媒及びこの触媒を含有する組成物の調製方法
JP5860536B2 (ja) 2011-08-18 2016-02-16 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ ステロール及び/又はその誘導体を含む汚損耐性組成物
US9156948B2 (en) * 2011-10-04 2015-10-13 Dow Corning Corporation Iron(II) containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
US9139699B2 (en) 2012-10-04 2015-09-22 Dow Corning Corporation Metal containing condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
WO2013070227A1 (en) 2011-11-10 2013-05-16 Momentive Performance Materials Inc. Moisture curable composition of a polymer having silyl groups
CA2855120A1 (en) 2011-11-10 2013-05-16 Momentive Performance Materials Inc. Moisture curable organopolysiloxane composition
CN103958059B (zh) 2011-12-01 2017-04-26 道康宁公司 硅氢加成反应催化剂和可固化组合物及它们的制备和使用方法
EP2604616A1 (de) 2011-12-12 2013-06-19 Sika Technology AG Dioxomolybdän(VI)-Komplexverbindungen als Katalysatoren für Polyurethan-Zusammensetzungen
KR20140113948A (ko) 2011-12-15 2014-09-25 모멘티브 퍼포먼스 머티리얼즈 인크. 수분 경화성 오가노폴리실록산 조성물
JP6297498B2 (ja) * 2011-12-15 2018-03-20 モーメンティブ・パフォーマンス・マテリアルズ・インク 湿気硬化性オルガノポリシロキサン組成物
WO2013101755A1 (en) 2011-12-29 2013-07-04 Momentive Performance Materials, Inc. Moisture curable organopolysiloxane composition
AU2014222855B2 (en) 2013-02-26 2017-04-13 Akzo Nobel Coatings International B.V. Anti-fouling compositions with a fluorinated oxyalkylene-containing polymer or oligomer
TW201434882A (zh) 2013-03-13 2014-09-16 Momentive Performance Mat Inc 可濕氣固化之有機聚矽氧烷組成物
CN105358606B (zh) 2013-05-10 2018-02-16 莫门蒂夫性能材料股份有限公司 非金属催化的室温可湿固化的有机聚硅氧烷组合物
CA2931839A1 (en) 2013-11-26 2015-06-04 Momentive Performance Materials Inc Moisture curable compound with metal-arene complexes
EP3077468B1 (de) 2013-12-03 2018-02-28 Akzo Nobel Coatings International B.V. Verfahren zur beschichtung einer gealterten beschichtung auf einem substrat und beschichtungszusammensetzung zur verwendung in diesem verfahren
JP6156256B2 (ja) * 2014-05-27 2017-07-05 信越化学工業株式会社 難燃性シリコーンゲル組成物及びその製造方法並びに半導体装置
CN108976806A (zh) * 2018-06-01 2018-12-11 贵州电网有限责任公司 一种非流体防潮封堵材料及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065194A (en) * 1959-07-16 1962-11-20 Wacker Chemie Gmbh Method of preparing silicone rubber compositions
US3337646A (en) * 1964-07-07 1967-08-22 Halcon International Inc Hydrogenation of cumyl alcohol to cumene
FR2557582B1 (fr) * 1983-12-28 1987-04-17 Rhone Poulenc Spec Chim Composition polyorganosiloxanique durcissant en elastomere et comportant un catalyseur a l'etain chelate
JPH0934131A (ja) * 1995-07-25 1997-02-07 Toray Ind Inc 水なし平版印刷版の修正方法
JPH11130914A (ja) * 1997-10-30 1999-05-18 Sumitomo Bakelite Co Ltd ゴム組成物
JP2000066004A (ja) * 1998-08-14 2000-03-03 Fuji Photo Film Co Ltd 反射防止膜およびそれを配置した表示装置
JP2001031869A (ja) * 1999-07-23 2001-02-06 Dow Corning Toray Silicone Co Ltd シリコーンゴムの製造方法
GB9918117D0 (en) * 1999-08-03 1999-10-06 Acma Ltd Organometallic compositions and polyisocyanate compostitions containing them
FR2856694B1 (fr) * 2003-06-25 2006-11-24 Rhodia Chimie Sa Compositions polyorganosiloxanes (pos) monocomposantes reticulant par des reactions de polycondensation en elastomeres a temperature ambiante et en presence d'eau, et elastomeres ainsi obtenus
FR2887552B1 (fr) * 2005-06-24 2007-10-12 Rhodia Chimie Sa Utilisation d'une composition organopolysiloxanique vulcanisable des la temperature ambiante pour former un elastomere auto adherent
JP4766679B2 (ja) * 2006-02-21 2011-09-07 信越化学工業株式会社 加熱硬化型オルガノポリシロキサン組成物
US20070244249A1 (en) 2006-04-06 2007-10-18 General Electric Company Two-part translucent silicone rubber-forming composition
FR2925511A1 (fr) * 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
FR2925514A1 (fr) * 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
FR2925510A1 (fr) * 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
FR2925516A1 (fr) * 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009106722A1 *

Also Published As

Publication number Publication date
FR2925512A1 (fr) 2009-06-26
KR101487109B1 (ko) 2015-01-27
KR20100105713A (ko) 2010-09-29
JP2011506741A (ja) 2011-03-03
KR20130018974A (ko) 2013-02-25
CN101986778B (zh) 2014-06-04
WO2009106722A1 (fr) 2009-09-03
US8772428B2 (en) 2014-07-08
US20110021684A1 (en) 2011-01-27
JP5197755B2 (ja) 2013-05-15
CN101986778A (zh) 2011-03-16

Similar Documents

Publication Publication Date Title
EP2222770B1 (de) Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzusammensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen
EP2222771A1 (de) Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzusammensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen
EP2222756B1 (de) Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzusammensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen
EP2222772B1 (de) Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzummensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen
EP3385304B1 (de) Bei raumtemperatur vulkanisierbare organopolysiloxan-zusammensetzung zur bildung eines elastomers
EP2222775B1 (de) Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzusammensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen
EP2222774B1 (de) Bei zimmertemperatur zu einem elastomer vulkanisierbare organopolysiloxanzusammensetzung sowie neuartige katalysatoren zur polykondensation von organopolysiloxanen
EP2222773B1 (de) Silikonzusammensetzung die bei umgebungstemperatur vulkanisierbar ist und katalysator für die polykondensation von organosiloxanpolymeren
EP2268743B1 (de) Verbindungen mit einer guanidinstruktur und ihre verwendung als organopolysiloxan-polykondensationskatalysatoren
EP2367867B1 (de) Verbindungen mit guanidinstruktur und verwendung davon als organopolysiloxan-polykondensationskatalysatoren
EP2222688B1 (de) Verbindungen mit einer guanidinstruktur und ihre verwendung als organopolysiloxan-polykondensationskatalysatoren
EP1877470B1 (de) Organopolysiloxanzusammensetzungen, die bei umgebungstemperatur in gegenwart von feuchtigkeit zu elastomeren härten
WO2010142872A1 (fr) Procede d'etancheification et d'assemblage de composants d'un groupe moto-propulseur
EP1844104A1 (de) Durch kondensation vernetzbare und einen füllstoff enthaltende einkomponentige polyorganosiloxanzusammensetzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151104

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160315