EP2215010A1 - Wasserstoff speichernde kompositmaterialien - Google Patents
Wasserstoff speichernde kompositmaterialienInfo
- Publication number
- EP2215010A1 EP2215010A1 EP08849758A EP08849758A EP2215010A1 EP 2215010 A1 EP2215010 A1 EP 2215010A1 EP 08849758 A EP08849758 A EP 08849758A EP 08849758 A EP08849758 A EP 08849758A EP 2215010 A1 EP2215010 A1 EP 2215010A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydrogen
- alkaline earth
- composite material
- periodic table
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 230000000737 periodic effect Effects 0.000 claims abstract description 28
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 22
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 17
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 229910001508 alkali metal halide Inorganic materials 0.000 claims abstract description 12
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 claims abstract description 12
- 229910052987 metal hydride Inorganic materials 0.000 claims abstract description 12
- 150000004681 metal hydrides Chemical class 0.000 claims abstract description 12
- 229910001507 metal halide Inorganic materials 0.000 claims abstract description 10
- 150000005309 metal halides Chemical class 0.000 claims abstract description 7
- 150000008045 alkali metal halides Chemical class 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims description 29
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 27
- 239000011734 sodium Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000011575 calcium Substances 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 8
- 239000011777 magnesium Substances 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- -1 metal halide hydride Chemical class 0.000 claims description 5
- 150000004820 halides Chemical class 0.000 claims description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000012300 argon atmosphere Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 description 11
- 238000001228 spectrum Methods 0.000 description 8
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- 229910010082 LiAlH Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910020808 NaBF Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0078—Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/18—Adding fluid, other than for crushing or disintegrating by fluid energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention relates to hydrogen-storing composite materials which are substantially reversibly convertible between a storage state and a non-storage state, and a process for producing the same.
- Hydrogen energy storage has become increasingly important in recent years.
- Today there are various techniques for storing hydrogen in which a distinction can be made between storage in gaseous, liquid or in the form of metal hydrides in a chemically bound state.
- the storage of gaseous or liquid hydrogen often leads to security problems.
- Hydrogen storage systems in which hydrogen is stored in the form of metal hydrides in chemically bonded state are therefore advantageous.
- Such metal hydride hydrogen storage devices have a storage state and a non-storage state, between which they can be converted substantially reversibly.
- NaAlH 4 alkali metal alkanoates NaAlH 4 , LiAlH 4 , Li 3 AlH 6 , LiNa 2 AlH 6 , CaAlH 5 and borohydrides such as LiBH 4 , NaBH 4 , Mg (BH 4 ) 2 , Ca (BH 4 ) 2 due to their relatively high mass-based hydrogen storage capacity.
- NaAlH 4 hydrogen is liberated, for example, in the following reaction steps:
- reaction step (I) the equilibrium temperature at 1 bar of hydrogen is 33 ° C., which corresponds to the measured reaction enthalpy of about 37 kJ / mol of H 2 , and for reaction step (II) HO 0 C, which corresponds to the measured reaction enthalpy of about 47 kJ / mol H 2 .
- reaction enthalpy changes when sodium is replaced by another alkali metal or an alkaline earth metal and / or aluminum by another element of the third main group of the periodic table of the elements.
- a hydrogen-storing composite material which is substantially reversible between a storage state and a non-storage state, and in the storage state, at least one complex metal hydride of alkali metal or alkaline earth metal and an element of the third main group of the Periodic Table of the Elements and at least one complex metal halide of alkali metal or alkaline earth metal and an element of the third main group of the Periodic Table of the Elements or in the storage state at least one complex metal halide of alkali metal or alkaline earth metal and an element of the third main group of the Periodic Table of the Elements and in the non-storage state at least one alkali metal or Alkaline earth metal halide and a metal of the third main group of the Periodic Table of the Elements contains.
- the halide is preferably selected from the group consisting of fluoride, chloride, bromide and mixtures thereof.
- the element of the third main group of the periodic table is preferably selected from the group consisting of boron, aluminum and mixtures thereof.
- the alkali metal is preferably selected from the group consisting of lithium, sodium, potassium and mixtures thereof.
- the alkaline earth metal is preferably selected from the group consisting of beryllium, magnesium, calcium and mixtures thereof.
- hydrogen-storing composite materials which, when loaded, comprise at least one complex metal hydride of lithium, sodium, magnesium and / or calcium, and aluminum or boron, and at least one complex metal halide of lithium, sodium, magnesium and / or calcium, and also aluminum or Boron containing, for example, composite materials containing Na 3 AlH 6 and Na 3 AlF 6 , Li 3 AlH 6 and Li 3 AlF 6 , NaAlH 4 and NaAlCl 4 , NaBH 4 and NaBF 4 , LiBH 4 and LiBF 4 , Ca (BH 4 ) 2 and Ca (BF 4 ) 2 , Ca (AlH 4 ) 2 and Ca (AlF 4 ) 2 , and / or Mg (BH 4 ) 2 and Mg (BF 4 ) 2 .
- thermodynamic reaction equilibrium of the transfer between a storage state and a non-storage state at a temperature of about -4o 0 C to 300 0 C, more preferably about -4o 0 C and 8O 0 C, in particular about 15 0 C to 4O 0 C, more preferably about 2O 0 C to 35 0 C and most preferably about 2O 0 C to 3O 0 C and a pressure of about 0.1 to 20 bar absolute, more preferably 1 to 10 bar absolute, even more preferably 5 to 8 bar absolute.
- Certain complex metal hydrides and / or complex metal halides of alkali metal or alkaline earth metal and an element of the third main group of the Periodic Table of the Elements have a perovskite structure.
- the composite materials according to the invention may contain further constituents, such as alkali metal or alkaline earth metal halides and / or metals of the third main group of the Periodic Table of the Elements and / or further complex hydrides.
- the reaction enthalpy of transfer between a storage state and a non-storage state is preferably 25 to 40 kJ / mol H 2 , preferably 25 to 35 kJ / mol, and more preferably about 30 kJ / mol H 2 .
- the hydrogen-storing composite materials according to the invention are preferably prepared by a process in which an alkali metal halide compound and / or an alkaline earth metal halide compound is mixed with a metal powder of an element of the third main group of the Periodic Table of the Elements and mechanically stressed, for example ground.
- a metal powder of an element of the third main group of the Periodic Table of the Elements and mechanically stressed for example ground.
- ball mills eg vibrating mills, attritors, etc.
- the milled mixture can then be hydrogenated.
- the molar ratio of alkali metal halide or alkaline earth metal halide to metal powder of an element of the third main group of the Periodic Table of the Elements is preferably 0.01: 1 to 100: 1, more preferably 0.1: 1 to 10: 1, and especially 0.5: 1 to 3: 1 and in particular about 1: 1.
- the grinding preferably takes place in an oxygen-poor and dry atmosphere, preferably ter a nitrogen atmosphere, an argon atmosphere, a hydrogen atmosphere, or under vacuum, more preferably at a pressure of 0.00001 mbar absolute to 10 bar absolute, preferably at a pressure of ambient pressure to 20 mbar above ambient pressure.
- the grinding preferably takes place at temperatures between 77 K and 115 0 C, preferably between 15 0 C and 35 0 C, more preferably 2O 0 C to 25 0 C instead.
- the hydrogenation is preferably carried out after introducing the alloy into a pressure vessel under conditions for which the pressure vessel is designed, preferably at a temperature between -4O 0 C and 300 0 C, more preferably between 15 0 C and 15O 0 C and a hydrogen pressure of 1 to 800 bar, preferably 5 to 100 bar, more preferably 10 to 50 bar.
- NaF and Al powders were mixed in a molar ratio of 1: 1 and ground for five hours in a planetary ball mill under inert gas (argon). Subsequently, the milled material was hydrogenated at 145 bar and 14O 0 C for eight hours. The hydrogenated material was dehydrated at 35O 0 C.
- Figure 1 shows an X-ray diffraction spectrum of the reaction product after five hours of grinding (upper spectrum), after hydrogenation at 14O 0 C and 145 bar (middle spectrum) and after the renewed dehydrogenation at 35O 0 C (lower spectrum).
- NaF and Al before the hydrogenation, NaF and Al are present as the only phase.
- the spectrum additionally shows a perovskite phase similar to Na 3 AlH 6 and Na 3 AlF 6 .
- After renewed dehydration again only NaF- and Al- Phases are detected.
- the material is thus substantially reversible between a memory state and a non-memory state can be transferred.
- FIG. 2 shows a spectrum of the sample after hydrogenation (upper spectrum) recorded by means of synchrotron diffractometry and the associated calculated bands (lower spectrum). This shows the presence of NaF, Al, Na 3 AlH 6 , Na 3 AlF 6 and NaAlH 4 phases.
- FIG. 3 shows the result of simultaneous TGA-DTA and MS measurements in the hydrogen region on hydrogenated material according to Example 1
- FIG. 4 shows the result of simultaneous TGA-DTA and MS measurements in the hydrogen region on pure NaAlH 4 .
- the TGA signal in Figure 3 shows that in the temperature range of 170-300 0 C, a mass loss occurs.
- the MS signal shows that this is hydrogen. Detection in the range of F 2 and HF showed no signs of release of fluorine atoms.
- FIG. 3 also shows that the reaction enthalpy for the decomposition of both phases NaAlH 4 and Na 3 AlH 6 is approximately the same.
- FIG. 5 shows the hydrogen uptake and release of NaH + NaF + 2 Al using the TiCl 4 catalyst measured by an Sievert's apparatus.
- FIG. 5 shows that reversible hydrogen absorption is possible.
- FIG. 6 shows the X-ray diffractometric measurement of the material after mixing and grinding, as well as after hydrogen absorption and renewed hydrogen desorption.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Food Science & Technology (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007054843A DE102007054843B4 (de) | 2007-11-16 | 2007-11-16 | Wasserstoff speichernde Kompositmaterialien |
PCT/EP2008/064721 WO2009062850A1 (de) | 2007-11-16 | 2008-10-30 | Wasserstoff speichernde kompositmaterialien |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2215010A1 true EP2215010A1 (de) | 2010-08-11 |
Family
ID=40405014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08849758A Withdrawn EP2215010A1 (de) | 2007-11-16 | 2008-10-30 | Wasserstoff speichernde kompositmaterialien |
Country Status (7)
Country | Link |
---|---|
US (1) | US8926861B2 (de) |
EP (1) | EP2215010A1 (de) |
JP (1) | JP2011502938A (de) |
CN (1) | CN101910051A (de) |
CA (1) | CA2707987A1 (de) |
DE (1) | DE102007054843B4 (de) |
WO (1) | WO2009062850A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110180753A1 (en) * | 2008-02-22 | 2011-07-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | Destabilized and catalyzed borohydride for reversible hydrogen storage |
DE102007054843B4 (de) | 2007-11-16 | 2012-04-12 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Wasserstoff speichernde Kompositmaterialien |
JP2011005485A (ja) * | 2009-06-16 | 2011-01-13 | Toyota Motor Engineering & Manufacturing North America Inc | 可逆的な水素貯蔵のための不安定化及び触媒された水素化ホウ素 |
GB2472458B (en) * | 2009-08-07 | 2011-08-03 | Ilika Technologies Ltd | Hydrogen storage materials |
JP6905507B2 (ja) * | 2015-04-02 | 2021-07-21 | アルベマール・ジャーマニー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 高反応性金属水素化物、それらの製造方法及び使用 |
US11376604B2 (en) * | 2015-06-15 | 2022-07-05 | Netzsch Trockenmahltechnik Gmbh | Method for crushing of grinding material and corresponding mill |
CN109103498B (zh) * | 2018-08-27 | 2020-12-18 | 中国电子新能源(武汉)研究院有限责任公司 | 一种钠离子电池电解液及其制备方法与应用 |
CN109081766A (zh) * | 2018-08-29 | 2018-12-25 | 湖北航天化学技术研究所 | 一种Al-NaF复合燃料及其制备方法和应用 |
CN113998988A (zh) * | 2021-11-09 | 2022-02-01 | 上海超高环保科技股份有限公司 | 用于储氢的片、块、管状与异形状材料的制造方法 |
CN113845688B (zh) * | 2021-11-22 | 2022-12-13 | 上海超高环保科技股份有限公司 | 冰凌架构的储氢材料制造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0815273B1 (de) * | 1995-02-02 | 2001-05-23 | Hydro-Quebec | Nanokristallines material auf mg-basis und dessen verwendung zum transport und zum speichern von wasserstoff |
CA2217095A1 (fr) | 1997-10-22 | 1999-04-22 | Hydro-Quebec | Nanocomposites a interfaces activees prepares par broyage mecanique d'hydrures de magnesium et usage de ceux-ci pour le stockage d'hydrogene |
DE10012794A1 (de) * | 2000-03-16 | 2001-09-20 | Studiengesellschaft Kohle Mbh | Verfahren zur reversiblen Speicherung von Wasserstoff auf der Basis von Alkalimetallen und Aluminium |
US20060194695A1 (en) * | 2004-08-27 | 2006-08-31 | Westinghouse Savannah River Co., Llc | Destabilized and catalyzed borohydrided for reversible hydrogen storage |
JP2006142281A (ja) * | 2004-10-20 | 2006-06-08 | Toyota Central Res & Dev Lab Inc | アルミニウム系ナノ複合触媒、その製造方法、およびそれを用いた水素吸蔵複合材料 |
DE102004061286B4 (de) * | 2004-12-14 | 2021-09-16 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Wasserstoff speicherndes Kompositmaterial sowie eine Vorrichtung zur reversiblen Speicherung von Wasserstoff |
DE102005003623A1 (de) * | 2005-01-26 | 2006-07-27 | Studiengesellschaft Kohle Mbh | Verfahren zur reversiblen Speicherung von Wasserstoff |
US7837976B2 (en) * | 2005-07-29 | 2010-11-23 | Brookhaven Science Associates, Llc | Activated aluminum hydride hydrogen storage compositions and uses thereof |
NO330070B1 (no) * | 2006-01-26 | 2011-02-14 | Inst Energiteknik | Hydrogenlagringssystem, fremgangsmate for reversibel hydrogenlagring og fremstilling av materiale derfor samt anvendelse |
JP2007289877A (ja) * | 2006-04-26 | 2007-11-08 | Toyota Central Res & Dev Lab Inc | 水素吸蔵材料及びその製造方法、並びに水素化物複合体 |
DE102007054843B4 (de) | 2007-11-16 | 2012-04-12 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | Wasserstoff speichernde Kompositmaterialien |
-
2007
- 2007-11-16 DE DE102007054843A patent/DE102007054843B4/de active Active
-
2008
- 2008-10-30 CN CN200880124562XA patent/CN101910051A/zh active Pending
- 2008-10-30 CA CA2707987A patent/CA2707987A1/en not_active Abandoned
- 2008-10-30 WO PCT/EP2008/064721 patent/WO2009062850A1/de active Application Filing
- 2008-10-30 US US12/742,504 patent/US8926861B2/en active Active
- 2008-10-30 EP EP08849758A patent/EP2215010A1/de not_active Withdrawn
- 2008-10-30 JP JP2010533533A patent/JP2011502938A/ja active Pending
Non-Patent Citations (2)
Title |
---|
BOGDANOVIC B ET AL: "Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 302, no. 1-2, 1 April 2000 (2000-04-01), pages 36 - 58, XP004194367, ISSN: 0925-8388, DOI: DOI:10.1016/S0925-8388(99)00663-5 * |
See also references of WO2009062850A1 * |
Also Published As
Publication number | Publication date |
---|---|
US8926861B2 (en) | 2015-01-06 |
JP2011502938A (ja) | 2011-01-27 |
WO2009062850A1 (de) | 2009-05-22 |
DE102007054843B4 (de) | 2012-04-12 |
US20130187085A1 (en) | 2013-07-25 |
CN101910051A (zh) | 2010-12-08 |
CA2707987A1 (en) | 2009-05-22 |
DE102007054843A1 (de) | 2009-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007054843B4 (de) | Wasserstoff speichernde Kompositmaterialien | |
Denys et al. | Mg substitution effect on the hydrogenation behaviour, thermodynamic and structural properties of the La2Ni7–H (D) 2 system | |
Denys et al. | LaMg11 with a giant unit cell synthesized by hydrogen metallurgy: crystal structure and hydrogenation behavior | |
Huot et al. | Structure of nanocomposite metal hydrides | |
Olsen et al. | Structure and thermal properties of composites with RE-borohydrides (RE= La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb or Lu) and LiBH 4 | |
Li et al. | Significantly improved dehydrogenation of LiAlH4 destabilized by K2TiF6 | |
Yang et al. | Multi-hydride systems with enhanced hydrogen storage properties derived from Mg (BH4) 2 and LiAlH4 | |
WO1997003919A1 (de) | Verfahren zur reversiblen speicherung von wasserstoff | |
Pighin et al. | Study of MgH2+ NbF5 mixtures: Formation of MgH2− xFx solid solutions and interaction with hydrogen | |
DE112005002271B4 (de) | Verfahren zum Speichern von Wasserstoff in Wasserstoffspeichersystemen | |
Zou et al. | Reversible hydrogen storage in a 3NaBH4/YF3 composite | |
Barison et al. | A study of the LiNH2–MgH2 system for solid state hydrogen storage | |
EP1824780B8 (de) | Wasserstoff speicherndes kompositmaterial sowie seine verwendung in einer vorrichtung zur reversiblen speicherung von wasserstoff | |
Kamegawa et al. | High-pressure synthesis of novel hydrides in Mg–RE–H systems (RE= Y, La, Ce, Pr, Sm, Gd, Tb, Dy) | |
DE112005002738T5 (de) | Mit einem Gerüst versehene borazan-lithiumhydrid Wasserstoffspeichermateralien | |
CA2636295C (en) | Synthesis of alh3 and structurally related phases | |
Blanchard et al. | Isothermal decomposition of LiAlD4 with and without additives | |
Lv et al. | Niobium fluoride-modified hydrogen evolution reaction of magnesium borohydride diammoniate | |
Chen et al. | Hydrogen absorption–desorption cycle durability of SmMgNi4 | |
Remhof et al. | Hydrogen cycling behavior of LiBD4/Al studied by in situ neutron diffraction | |
Qu et al. | Comparative catalytic effects of NiCl 2, TiC and TiN on hydrogen storage properties of LiAlH 4 | |
Soubeyroux et al. | Phase stability and neutron diffraction studies of Laves phases Zr (Cr1− xMx) 2 with M=(Cu0. 5Ni0. 5) and 0< x< 0.2 and their hydrides | |
Lushnikov et al. | CeNi 3-based Intermetallic hydrides | |
Wan et al. | Synchrotron XRD and XANES studies of cerium-doped NaAlH4: Elucidation of doping induced structure changes and electronic state | |
Šorgić et al. | A study of structural and thermodynamic properties of the YNi5− xAlx–hydrogen system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100615 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BORMANN, RUEDIGER Inventor name: DORNHEIM, MARTIN Inventor name: EIGEN, NICO |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUER MATERIAL |
|
17Q | First examination report despatched |
Effective date: 20110614 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20111228 |