EP2209354A2 - Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls - Google Patents

Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls Download PDF

Info

Publication number
EP2209354A2
EP2209354A2 EP10150084A EP10150084A EP2209354A2 EP 2209354 A2 EP2209354 A2 EP 2209354A2 EP 10150084 A EP10150084 A EP 10150084A EP 10150084 A EP10150084 A EP 10150084A EP 2209354 A2 EP2209354 A2 EP 2209354A2
Authority
EP
European Patent Office
Prior art keywords
electrode
working gas
hollow cylindrical
pin electrode
generator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10150084A
Other languages
English (en)
French (fr)
Other versions
EP2209354A3 (de
EP2209354B1 (de
Inventor
Michael Bisges
Uwe Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Relyon Plasma GmbH
Original Assignee
Reinhausen Plasma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202009000537U external-priority patent/DE202009000537U1/de
Priority claimed from DE102009004968A external-priority patent/DE102009004968B4/de
Application filed by Reinhausen Plasma GmbH filed Critical Reinhausen Plasma GmbH
Publication of EP2209354A2 publication Critical patent/EP2209354A2/de
Publication of EP2209354A3 publication Critical patent/EP2209354A3/de
Application granted granted Critical
Publication of EP2209354B1 publication Critical patent/EP2209354B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3468Vortex generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the invention relates to a jet generator for generating a collimated plasma beam by arc discharge with supply of a working gas
  • a jet generator for generating a collimated plasma beam by arc discharge with supply of a working gas
  • a working gas comprising a pin electrode, a concentrically arranged to the pin electrode hollow cylindrical, insulated from the pin electrode sheath of electrically conductive material, on whose one end face an annular electrode is arranged, the one Limited nozzle opening whose diameter is smaller than the diameter of the hollow cylindrical shell having a supply for the working gas at the opposite end face and a voltage source for applying a voltage between the pin and ring electrode, wherein the sheath and / or the ring electrode are grounded.
  • a collimated plasma jet used in which a plasma jet is generated by applying a high-frequency alternating voltage in a nozzle tube between two electrodes by means of a non-thermal discharge from a working gas.
  • the working gas is preferably under atmospheric pressure. It is also called an atmospheric plasma.
  • air is used as the working gas.
  • the pre-treatment and cleaning by means of plasma has numerous advantages, of which in particular the high degree of degreasing, the environmental friendliness, the suitability for almost all Materials that stand out for their low operating costs and excellent integration into the various production processes.
  • a generic beam generator for generating a collimated plasma jet which has a cup-shaped housing made of plastic with a lateral supply for the working gas.
  • a nozzle tube made of ceramic is held in the opening of the pot-shaped housing.
  • a pin electrode made of copper is centrally arranged, which protrudes into the nozzle tube made of ceramic.
  • the outer periphery of the nozzle tube is surrounded outside the cup-shaped housing by a jacket of electrically conductive material, which forms a ring electrode at the free end of the nozzle tube.
  • the annular electrode defines a nozzle opening whose diameter is smaller than the inner diameter of the nozzle tube made of ceramic, so that a certain constriction is achieved at the outlet of the nozzle tube.
  • the connection for the working gas is arranged eccentrically with respect to the cup-shaped housing of the jet generator, so that the supplied working gas flows in a spiral shape through the ceramic nozzle tube. This forms a gas vortex whose vortex core extends along the axis of the nozzle tube.
  • the electrically conductive jacket extends approximately to the level of the tip of the pin electrode. When the voltage is raised, a corona discharge occurs at the tip of the pin electrode.
  • the discharge tufts extend radially onto the wall of the nozzle tube and the transport of the charge carriers to the electrically conductive jacket takes place through the ceramic material of the nozzle tube.
  • an extremely high ignition voltage in the order of 10 to 30 kV is required.
  • This corona discharge provides the necessary ions, by which an arc discharge from the pin electrode to the end-side ring electrode is ignited with increasing voltage. Due to the swirling flow of the working gas, the arc between the pin electrode and the nozzle tube is channeled in the vortex core along the axis of the nozzle tube, so that it branches into several partial branches only in the region of the nozzle opening.
  • the working gas which rotates in the area of the vortex core and thus in the immediate vicinity of the arc at high flow velocity, comes into intimate contact with the arc and is thereby partly transferred to the plasma state.
  • a disadvantage of the known jet generator is the high thermal load of the surfaces to be treated.
  • the voltage source requires a very high ignition voltage in the order of 10 to 30 kV. Further losses occur due to the high resistance between the pin electrode and the annular electrode at the nozzle opening.
  • the extremely strong heating of the pin electrode causes molten and dissolved from the surface particles are blown with the plasma jet to the surface. To counteract this destruction of the pin electrode and contamination of the surfaces with detached particles, a large amount of working gas must be passed through the jet generator for cooling purposes.
  • a strong heating of the pin electrode during operation of the beam generator can not be avoided and a concomitant change in the power output of the beam generator can not be prevented.
  • the invention is therefore the object of the invention to provide a jet generator of the type mentioned, which operates with a low ignition and operating voltage, which generates less heat loss and thus the treated surfaces less thermally loaded and its power output during operation is practically constant.
  • the handling of the jet generator should be improved in order to be able to process particularly complicated surface structures better.
  • the solution is based inter alia on the idea of generating an asymmetric heat profile in the jet generator, according to which the majority of the heat loss is released only at the nozzle opening, while the pin electrode is thermally loaded only extremely low. At the same time the resistance between the pin and ring electrode is reduced.
  • the object is achieved in a jet generator of the type mentioned in that the hollow cylindrical shell has an end face conically tapering in the direction of the annular electrode portion, the pin electrode projects into the hollow cylindrical shell, but ends in particular at a small distance in front of the conical section in that the hollow cylindrical jacket directly surrounds the pin electrode, the supply for the working gas has means for generating a turbulent flow of the working gas and the voltage source is a pulsed DC voltage source.
  • the flow conditions in the region of the nozzle opening are of particular importance.
  • separation edges or vortex entrainment must be avoided, since otherwise uncontrolled discharges in the region of the nozzle opening will impair the energy input into the working gas.
  • the conically tapering in the direction of the annular electrode portion carries in conjunction with the Before this section ending pin electrode instrumental in avoiding unintentional discharges and at the same time the flow conditions are improved in the region of the nozzle opening.
  • the means for generating the turbulent flow provide for the formation of a controlled turbulent flow, in the core of which the arc discharge is optimally channeled.
  • the preferably wide, in particular over at least 75% of the length of the hollow cylindrical shell extending pin electrode causes a lower operating voltage sets during operation, which is between 500 volts and a maximum of 7,000 volts.
  • the lower burning or operating voltage causes less heat loss.
  • electrically conductive jacket immediately surrounding the pin electrode, i. without the interposition of a dielectric, and the pin electrode protrudes into the hollow cylindrical shell can reduce the height of the ignition voltage, which was required in the prior art to overcome the ceramic existing dielectric.
  • the pulsed DC voltage source whose ground potential is connected to the sheath and / or the ring electrode of the beam generator, thermally loads the pin electrode only about 10% of the resulting heat loss, while in the jet generator according to the prior art, about half of the heat loss occurs at the pin electrode.
  • the low thermal load of the pin electrode equalizes the power output of the beam generator.
  • the conically tapered portion in which the turbulence contracts in the direction of the nozzle opening, a maximum of 20% of the length of the hollow cylindrical shell. This results in optimal flow conditions with reduced resistance between the electrodes.
  • Another measure for reducing the ignition voltage is that the radial distance between the pin electrode and the hollow cylindrical jacket is less than five times the diameter of the pin electrode.
  • a wandering of the arc projection and thus a scaling of the pin electrode are prevented if the end tapered pin electrode has a pointing in the direction of the nozzle opening rounded tip.
  • the jet generator according to the invention has as a means for generating a turbulent flow of the working gas a sleeve inserted from the front side into the hollow cylindrical shell surrounding the pin electrode of electrically insulating material, on the surface of which at least one arranged as a helix web is arranged, which is between the inner wall of hollow cylindrical shell and the surface of the sleeve forms a channel for the working gas.
  • the pitch of the helical land can effectively influence the temperature of the plasma jet. A larger slope cools the plasma jet stronger, while a smaller slope leads to a warmer plasma jet.
  • the residence time of the working gas at the same flow rate due to the shorter flow path through the jet generator is shorter, whereby the cooling effect of the working gas is amplified.
  • the residence time of the working gas at the same flow rate due to the longer flow path through the jet generator is reduced.
  • the sleeve forming the duct for the working gas fixes the pole electrode in the electrically conductive jacket and ensures the required electrical separation between the pole electrode and the jacket.
  • the sleeve is not only easy to install, but also leads to compact dimensions of the pin-shaped jet generator.
  • the dimensions of the jet generator in the circumferential direction can be further reduced in that the feed for the working gas has a flush with the hollow cylindrical wall wall with at least one extending in the axial direction of the shell passage which communicates with the supply for the working gas.
  • the axial working gas supply allows the execution of the jet generator as a pin-like tool, at the nozzle opening opposite the end face of the working gas is supplied via a connected to the electrically conductive jacket tube.
  • a simple pulsed DC voltage source generates, for example, rectangular signals. These can be superimposed by additional pulses.
  • the annular electrode may be formed integrally with the conical portion of the hollow cylindrical shell.
  • the electrode and the cladding are preferably made of the same electrically conductive material.
  • the ring electrode is formed by the area surrounding the nozzle opening of the jacket of electrically conductive material.
  • FIG. 1 shows a beam generator according to the invention (1) for generating a bundled, bolt-shaped plasma jet (2), which is formed by arc discharge (3) while supplying a working gas (4).
  • the jet generator (1) consists essentially of a pin electrode (5) which concentrically surrounds a hollow cylindrical, with respect to the pin electrode (5) insulated, tubular jacket (6) made of electrically conductive material. Suitable materials are metals, in particular copper or stainless steel.
  • the hollow cylindrical jacket (6) has at one end face a section (8) which tapers conically at least in the interior of the jacket in the direction of an annular electrode.
  • the portion of the jacket may e.g. have a different shape for ergonomic reasons. It is crucial for the function that the section inside the shell is conical. In the illustrated embodiment, however, the portion is also conically formed on the outside.
  • the annular electrode (7) defines a nozzle opening (9) on the nozzle tip formed by the conical section. The diameter of the nozzle opening (9) is smaller than the inner diameter of the hollow cylindrical shell (6).
  • the hollow cylindrical jacket (6) has a supply for the working gas on, a hose connected to a gas supply, not shown, in particular a compressed air supply (10), in the hollow cylindrical jacket (6) flush wall (11) with two in the axial direction of the jacket (6) extending passages (12) for the working gas and means (13) for generating a turbulent flow of the working gas (4).
  • the means (13) for generating a vortex flow is a sleeve (14) of electrically insulating material which is inserted into the shell (6) at the same time surrounding and supporting the pin electrode (5), on the surface of which a helically extending web (FIG.
  • the passages (12) in the disk-shaped wall (11) communicate with the helical passage (18) for the working gas.
  • the sleeve (14) surrounds the pin electrode (5), which via a further in the axis of the jacket (6) extending passage (19) in the wall (11) with the supply line (20) to a in FIG. 2 shown pulsed DC voltage source (21) is connected.
  • the annular electrode (7) pressed into the section (8) tapering at least in the interior of the jet generator (1), for example made of Kanthal or titanium, is as shown FIG. 2 recognizable, via a further supply line (22) connected to the pulsed DC voltage source (21), wherein the annular electrode (7) is connected to a ground (23).
  • FIG. 3 It can be seen how by means of an adapter (24) to a cable (26) interconnected leads (20, 22) to the pin electrode (5) and the annular electrode (7) via a radial passage (25) from the hose ( 10) are coupled for the working gas.
  • the sleeve-shaped adapter (24) surrounds the hose (10) in the region of Outcoupling of the cable (26).
  • the cable (26) is passed through a seal (27), for example in the form of a permanently elastic sealant.
  • the adapter (24) is coupled directly to the end face of the electrically conductive jacket (6) of the jet generator (1) opposite the annular electrode (7).
  • On the free side of the adapter (24) of the hose (10) for the working gas (4) is glued with its front edge in the diameter corresponding through hole of the adapter (24).
  • FIG. 5 illustrates the connection of the supply lines (20/21) comprising cable (26) with the pin electrode (5) and the annular electrode (7).
  • the supply line (22) via the short piece of wire (34) with the electrically conductive jacket (6) and thus the annular electrode (7) is brought into connection.
  • the short piece of wire (34) for example, between the wall (11) and the inner wall (16) of the electrically conductive jacket (6) is clamped.
  • the connection to the annular electrode (7) is produced.
  • the beam generator works as follows:
  • FIG. 1 the flow of the working gas (4) through the jet generator (1) according to the invention is represented by arrows.
  • the working gas (4) through the hose (10) from the compressed air source, not shown, to the passages (12) in the end face of the beam generator (1) bounding wall (11).
  • the working gas (4) enters through the passages (12) in the helically extending channel (18), the gas flow in the illustrated embodiment imparting a spin in the clockwise direction about the longitudinal axis of the jet generator (1) around.
  • the working gas (4) leaves the sleeve (14) as a vortex flow whose vortex core extends along the longitudinal axis of the jacket (6) of the jet generator (1).
  • FIG. 1 shows the beam generator after ignition with already formed, bolt-shaped plasma jet (2).
  • the plasma jet (2) is formed in that the rotating working gas (4) in the region of the vortex core and thus in the immediate vicinity of the arc between the tip of the pin electrode (5) and the annular electrode (7) comes into intimate contact and thereby partially in the plasma state is transferred.
  • the gas is hardly heated along the pin electrode, so that a cool, atmospheric plasma at the nozzle opening (9) of the jet generator (1) emerges.
  • FIG. 2 illustrates the arc discharge between the tip of the pin electrode (5) and the annular electrode (7) after ignition.
  • the applied, pulsed DC voltage generates a radial arc discharge between the tip of the pin electrode (5) and the inner wall of the shell (6). Due to the turbulence (35) of the working gas (4) of this arc (37) is increasingly channeled in the vortex core on the axis of the shell (6) and expelled in the direction of the nozzle opening (9) until the branching arc (38) from the outside the annular electrode (7) touches down.
  • a white-blue glowing arc (39), extending from the tip of the pin electrode (5) after ignition in a sharply defined thin channel along the axis of the shell (6) to close to the nozzle opening (9) extends.
  • the arc (38) divides into a plurality of sub-branches (40), which seat radially from the outside on the annular electrode (7).
  • FIG. 6 illustrates the asymmetric heat distribution along the jet generator according to the invention (1) from the inlet of the working gas (4) to the nozzle opening (9).
  • the temperature in the jet generator (1) rises only in the region of the nozzle opening (9), while it remains virtually constant at a low level along the pin electrode (5) and thus along the vortex flow (35).
  • a very homogeneous vortex flow (35) which is not influenced by temperature changes, forms, the vortex core of which optimally channels the bolt-shaped plasma jet (2) and expels it in the axial direction of the jacket (6).
  • FIGS. 7 a) - d) show finally different forms of the end-side portion of a pin electrode (5) for a beam generator according to the invention (1).
  • tapered end pin electrode (5) has a rounded tip (41), as shown in the FIGS. 5 b) and c) is shown.
  • pin electrode (5) with a groove (45), whereby a lumpless arc is formed, which leads to a much lower wear of the pin electrode (5).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Plasma Technology (AREA)

Abstract

Die Erfindung betrifft einen Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls durch Lichtbogenentladung unter Zufuhr eines Arbeitsgases umfassend eine Stiftelektrode, einen konzentrisch zu der Stiftelektrode angeordneten hohlzylindrischen, gegenüber der Stiftelektrode isolierten Mantel aus elektrisch leitendem Material, an dessen einer Stirnseite eine ringförmige Elektrode angeordnet ist, die eine Düsenöffnung begrenzt, deren Durchmesser kleiner als der Durchmesser des hohlzylindrischen Mantels ist, der an der gegenüberliegender Stirnseite eine Zufuhr für das Arbeitsgas aufweist sowie eine Spannungsquelle zum Anlegen einer Spannung zwischen Stift- und Ringelektrode, wobei der Mantel und/oder die Ringelektrode geerdet sind. Um einen derartigen Strahlgenerator zu schaffen, der mit einer niedrigen Zünd- und Betriebsspannung arbeitet, der weniger Verlustwärme erzeugt und damit die behandelten Oberflächen weniger stark thermisch belastet und dessen Leistungsabgabe während des Betriebs praktisch konstant ist, wir in dem Strahlgenerator ein asymmetrisches Wärmeprofil zu erzeugt, wonach der Großteil der Verlustwärme erst an der Düsenöffnung freigesetzt wird, während die Stiftelektrode thermisch lediglich außerordentlich gering belastet wird. Zugleich wird der Widerstand zwischen der Stift- und Ringelektrode reduziert.

Description

  • Die Erfindung betrifft einen Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls durch Lichtbogenentladung unter Zufuhr eines Arbeitsgases umfassend eine Stiftelektrode, einen konzentrisch zu der Stiftelektrode angeordneten hohlzylindrischen, gegenüber der Stiftelektrode isolierten Mantel aus elektrisch leitendem Material, an dessen einer Stirnseite eine ringförmige Elektrode angeordnet ist, die eine Düsenöffnung begrenzt, deren Durchmesser kleiner als der Durchmesser des hohlzylindrischen Mantels ist, der an der gegenüberliegender Stirnseite eine Zufuhr für das Arbeitsgas aufweist sowie eine Spannungsquelle zum Anlegen einer Spannung zwischen Stift- und Ringelektrode, wobei der Mantel und/oder die Ringelektrode geerdet sind.
  • Wenn Werkstückoberflächen beschichtet, lackiert oder geklebt werden sollen, ist häufig eine Vorbehandlung erforderlich, durch die Verunreinigungen von der Oberfläche entfernt werden und/oder durch die die Molekülstruktur so verändert wird, dass die Oberfläche mit Flüssigkeiten, wie Kleber, Lacken und dergleichen besser benetzt werden kann.
  • Zur Oberflächenbehandlung- und reinigung kommen Strahlgeneratoren zur Erzeugung eines gebündelten Plasmastrahls zum Einsatz, bei denen unter Anlegen einer hochfrequenten Wechselspannung in einem Düsenrohr zwischen zwei Elektroden mittels einer nicht-thermischen Entladung aus einem Arbeitsgas ein Plasmastrahl erzeugt wird. Dabei steht das Arbeitsgas vorzugsweise unter atmosphärischem Druck. Man spricht auch von einem atmosphärischen Plasma. In bevorzugter Weise wird Luft als Arbeitsgas verwendet.
  • Die Vorbehandlung und Reinigung mittels Plasma hat zahlreiche Vorteile, von denen insbesondere der hohe Entfettungsgrad, die Umweltfreundlichkeit, die Eignung für nahezu sämtliche Materialien, die geringen Betriebskosten sowie die hervorragende Integration in die unterschiedlichen Fertigungsabläufe hervorzuheben sind.
  • Aus der EP 0 761 415 B9 sowie der DE 195 32 412 C2 ist ein gattungsgemäßer Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls bekannt, der ein topfförmiges Gehäuse aus Kunststoff mit einer seitlichen Zufuhr für das Arbeitsgas aufweist. In der Öffnung des topfförmigen Gehäuses ist koaxial ein Düsenrohr aus Keramik gehalten. Im Inneren des topfförmigen Gehäuses ist mittig eine Stiftelektrode aus Kupfer angeordnet, die in das Düsenrohr aus Keramik hineinragt. Der äußere Umfang des Düsenrohrs ist außerhalb des topfförmigen Gehäuses von einem Mantel aus elektrisch leitendem Material umgeben, der am freien Ende des Düsenrohres eine Ringelektrode ausbildet. Die Ringelektrode begrenzt zugleich eine Düsenöffnung, deren Durchmesser kleiner als der Innendurchmesser des Düsenrohres aus Keramik ist, so dass am Auslass des Düsenrohrs eine gewisse Einschnürung erreicht wird. Der Anschluss für das Arbeitsgas ist exzentrisch in Bezug auf das topfförmige Gehäuse des Strahlgenerators angeordnet, so dass das zugeführte Arbeitsgas drallförmig durch das keramische Düsenrohr strömt. Hierdurch bildet sich ein Gaswirbel, dessen Wirbelkern sich längs der Achse des Düsenrohrs erstreckt. Der elektrisch leitende Mantel erstreckt sich etwa bis in Höhe der Spitze der Stiftelektrode. Beim Hochregeln der Spannung kommt es an der Spitze der Stiftelektrode zunächst zu einer CoronaEntladung. Die Entladungsbüschel erstrecken sich radial auf die Wand des Düsenrohrs und der Transport der Ladungsträger zum elektrisch leitenden Mantel erfolgt durch das Keramikmaterial des Düsenrohres hindurch. Um diese dielektrisch behinderte Barriereentladung zwischen der Stiftelektrode und dem elektrisch leitenden Mantel zu zünden, wird eine außerordentlich hohe Zündspannung in einer Größenordnung von 10 bis 30 kV benötigt. Diese CoronaEntladung liefert die notwendigen Ionen, durch die bei steigender Spannung eine Bogenentladung von der Stiftelektrode zu der stirnseitigen Ringelektrode gezündet wird. Aufgrund der drallförmigen Strömung des Arbeitsgases wird der Lichtbogen zwischen der Stiftelektrode und dem Düsenrohr im Wirbelkern längs der Achse des Düsenrohrs kanalisiert, so dass er sich erst im Bereich der Düsenöffnung in mehrere Teiläste verzweigt. Das Arbeitsgas, das im Bereich des Wirbelkerns und damit in unmittelbarer Nähe des Lichtbogens mit hoher Strömungsgeschwindigkeit rotiert, kommt mit dem Lichtbogen in innige Berührung und wird dadurch zum Teil in den Plasmazustand überführt.
  • Ein Nachteil des bekannten Strahlgenerators besteht in der hohen thermischen Belastung der zu behandelnden Oberflächen. Die Spannungsquelle benötigt eine sehr hohe Zündspannung in einer Größenordnung von 10 bis 30 kV. Weitere Verluste treten durch den hohen Widerstand zwischen der Stiftelektrode und der ringförmigen Elektrode an der Düsenöffnung auf. Die außerordentlich starke Aufheizung der Stiftelektrode führt dazu, dass geschmolzene und von deren Oberfläche gelöste Partikel mit dem Plasmastrahl auf die Oberfläche geblasen werden. Um dieser Zerstörung der Stiftelektrode und Verunreinigung der Oberflächen mit abgelösten Partikeln entgegen zu wirken, muss zu Kühlzwecken eine große Menge an Arbeitsgas durch den Strahlgenerator geleitet werden. Gleichwohl kann eine starke Erwärmung der Stiftelektrode während des Betriebs des Strahlgenerators nicht vermieden und eine damit einhergehende Änderung der Leistungsabgabe des Strahlgenerators nicht verhindert werden.
  • Ausgehend von diesem Stand der Technik liegt der Erfindung daher die Aufgabe zu Grunde, einen Strahlgenerator der eingangs erwähnten Art zu schaffen, der mit einer niedrigen Zünd- und Betriebsspannung arbeitet, der weniger Verlustwärme erzeugt und damit die behandelten Oberflächen weniger stark thermisch belastet und dessen Leistungsabgabe während des Betriebs praktisch konstant ist. Schließlich soll die Handhabbarkeit des Strahlgenerators verbessert werden, um insbesondere auch komplizierte Oberflächenstrukturen besser bearbeiten zu können.
  • Die Lösung beruht unter anderem auf dem Gedanken, im Strahlgenerator ein asymmetrisches Wärmeprofil zu erzeugen, wonach der Großteil der Verlustwärme erst an der Düsenöffnung freigesetzt wird, während die Stiftelektrode thermisch lediglich außerordentlich gering belastet wird. Zugleich wird der Widerstand zwischen der Stift- und Ringelektrode reduziert.
  • Im Einzelnen wird die Aufgabe bei einem Strahlgenerator der eingangs erwähnten Art dadurch gelöst, dass der hohlzylindrische Mantel stirnseitig einen sich konisch in Richtung der ringförmigen Elektrode verjüngenden Abschnitt aufweist, die Stiftelektrode in den hohlzylindrischen Mantel hineinragt, jedoch insbesondere in geringem Abstand vor dem konischen Abschnitt endet, der hohlzylindrische Mantel die Stiftelektrode unmittelbar umgibt, die Zufuhr für das Arbeitsgas Mittel zur Erzeugung einer Wirbelströmung des Arbeitsgases aufweisen und die Spannungsquelle eine gepulste Gleichspannungsquelle ist.
  • Für eine homogene Strömung des Arbeitsgases sind die Strömungsverhältnisse im Bereich der Düsenöffnung von besonderer Bedeutung. Um die für eine Reduktion der Brenn- bzw. Betriebsspannung optimale Gasströmung zu gewährleisten, müssen im Bereich der vorzugsweise runden Düsenöffnung Abrisskanten bzw. Wirbelverschleppungen vermieden werden, da andernfalls unkontrollierte Entladungen im Bereich der Düsenöffnung den Energieeintrag in das Arbeitsgas verschlechtern. Der sich konisch in Richtung der ringförmigen Elektrode verjüngende Abschnitt trägt in Verbindung mit der vor diesem Abschnitt endenden Stiftelektrode maßgeblich dazu bei, dass unbeabsichtigte Entladungen vermieden und gleichzeitig die Strömungsverhältnisse im Bereich der Düsenöffnung verbessert werden. Im Übrigen sorgen die Mittel zur Erzeugung der Wirbelströmung für die Ausbildung einer kontrollierten Wirbelströmung, in deren Kern die LichtbogenEntladung optimal kanalisiert wird.
  • Die sich vorzugsweise weit, insbesondere über mindestens 75 % der Länge des hohlzylindrischen Mantels erstreckende Stiftelektrode bewirkt, dass sich im Betrieb eine niedrigere Brennspannung einstellt, die zwischen 500 Volt und maximal 7.000 Volt liegt. Die geringere Brenn- oder Betriebspannung verursacht weniger Verlustwärme.
  • Indem der hohlzylindrische, im Innenquerschnitt vorzugsweise kreisförmige elektrisch leitende, Mantel die Stiftelektrode unmittelbar umgibt, d.h. ohne Zwischenschaltung eines Dielektrikums, und die Stiftelektrode in den hohlzylindrischen Mantel hineinragt, lässt sich die Höhe der Zündspannung reduzieren, die beim Stand der Technik zur Überwindung des aus Keramik bestehenden Dielektrikums erforderlich war.
  • Die gepulste Gleichspannungsquelle, deren Erdpotential mit dem Mantel und/oder der Ringelektrode des Strahlgenerators verbunden ist, belastet die Stiftelektrode thermisch nur etwa mit 10 % der anfallenden Verlustwärme, während beim Strahlgenerator nach dem Stand der Technik etwa die Hälfte der Verlustwärme an der Stiftelektrode anfällt. Durch diese Umverteilung der Wärmeverluste von der Stiftelektrode in Richtung Düsenöffnung wird ein Aufschmelzen der Stiftelektrode und damit eine Verunreinigung der bestrahlten Oberflächen mit abgelösten Partikeln wirksam vermieden. Außerdem vergleichmäßigt die geringe thermische Belastung der Stiftelektrode die Leistungsabgabe des Strahlgenerators.
  • Vorzugsweise beträgt der sich konisch verjüngende Abschnitt, in dem sich die Wirbelströmung in Richtung der Düsenöffnung zusammenzieht, maximal 20 % der Länge des hohlzylindrischen Mantels. Hierdurch ergeben sich optimale Strömungsverhältnisse bei gleichzeitig reduziertem Widerstand zwischen den Elektroden.
  • Eine weitere Maßnahme zur Reduktion der Zündspannung besteht darin, dass der radiale Abstand zwischen der Stiftelektrode und dem hohlzylindrischen Mantel kleiner als das fünffache des Durchmessers der Stiftelektrode ist.
  • Ein Wandern des Lichtbogenansatzes und damit ein Verzundern der Stiftelektrode werden verhindert, wenn die endseitig kegelförmig zulaufende Stiftelektrode eine in Richtung der Düsenöffnung weisende abgerundete Spitze aufweist.
  • Die Reduktion der Brenn- bzw. Betriebsspannung hängt unter anderem von der optimierten Strömung des Arbeitsgases ab. Aus diesem Grund weist der erfindungsgemäße Strahlgenerator als Mittel zur Erzeugung einer Wirbelströmung des Arbeitsgases eine stirnseitig in den hohlzylindrischen Mantel eingesetzte, die Stiftelektrode umgebende Hülse aus elektrisch isolierendem Material auf, an deren Oberfläche mindestens ein als Wendel ausgestalteter Steg angeordnet ist, der zwischen der Innenwand des hohlzylindrischen Mantels und der Oberfläche der Hülse einen Kanal für das Arbeitsgas bildet. Durch die Steigung des wendelförmigen Stegs kann wirksam die Temperatur des Plasmastrahls beeinflusst werden. Eine größere Steigung kühlt den Plasmastrahl stärker ab, während eine geringere Steigung zu einem wärmeren Plasmastrahl führt. Bei einer größeren Steigung ist die Verweildauer des Arbeitsgases bei gleicher Strömungsgeschwindigkeit aufgrund des kürzeren Strömungsweges durch den Strahlgenerator kürzer, wodurch die Kühlwirkung des Arbeitsgases verstärkt wird. Bei geringerer Steigung des als Wendel ausgestalteten Steges ist die Verweildauer des Arbeitsgases bei gleicher Strömungsgeschwindigkeit aufgrund des längeren Strömungsweges durch den Strahlgenerator länger, wodurch die Kühlwirkung des Arbeitsgases reduziert wird.
  • Die den Kanal für das Arbeitsgas ausbildende Hülse fixiert zugleich die Stiftelektrode in dem elektrisch leitenden Mantel und gewährleistet die erforderliche elektrische Trennung zwischen Stiftelektrode und Mantel. Die Hülse ist nicht nur montagefreundlich, sondern führt darüber hinaus zu kompakten Abmessungen des stiftförmigen Strahlgenerators.
  • Die Abmessungen des Strahlgenerators in Umfangsrichtung können weiter dadurch reduziert werden, dass die Zufuhr für das Arbeitsgas eine in den hohlzylindrischen Mantel bündig einsetzbare Wand mit mindestens einem in Achsrichtung des Mantels verlaufenden Durchgang aufweist, der mit der Zufuhr für das Arbeitsgas kommuniziert. Die axiale Arbeitsgaszuführung erlaubt die Ausführung des Strahlgenerators als stiftähnliches Werkzeug, an dessen der Düsenöffnung gegenüberliegenden Stirnseite das Arbeitsgas über einen mit dem elektrisch leitenden Mantel verbundenen Schlauch zugeführt wird. Die kompakte Bauform des erfindungsgemäßen Strahlgenerators resultiert insbesondere daraus, dass sämtliche Bauteile in dem hohlzylindrischen Mantel aus elektrisch leitendem Material angeordnet sind und die Anschlüsse für das Arbeitsgas sowie die Leitungen zu der entfernt angeordneten Spannungsquelle koaxial zu dem hohlzylindrischen Mantel zugeführt werden.
  • Eine einfache gepulste Gleichspannungsquelle erzeugt beispielsweise Rechtecksignale. Diese können zusätzlich von weiteren Pulsen überlagert werden.
  • In einer konstruktiv einfachen Ausführung der Erfindung kann die ringförmige Elektrode einstückig mit dem konischen Abschnitt des hohlzylindrischen Mantels ausgebildet sein. Die Elektrode und der Mantel bestehen vorzugsweise aus demselben elektrisch leitenden Material. Im einfachsten Fall wird die Ringelektrode von dem die Düsenöffnung umgebenden Bereich des Mantels aus elektrisch leitendem Material gebildet.
  • Nachfolgend wird die Erfindung anhand der Figuren näher erläutert. Es zeigen:
  • Figur 1
    eine schematische Schnittdarstellung durch einen erfindungsgemäßen Strahlgenerator zur Veranschaulichung der Wirbelströmung des Arbeitsgases ,
    Figur 2
    eine schematische Schnittdarstellung des Strahlgenerators nach Figur 1 zur Veranschaulichung des Lichtbogens,
    Figur 3
    eine schematische Schnittdarstellung des Strahlgenerators nach Figur 1 mit einem ersten Schlauch-Adapter zur Zufuhr des Arbeitsgases,
    Figur 4
    eine schematische Schnittdarstellung des Strahlgenerators nach Figur 1 mit einem zweiten Schlauch-Adapter zur Zufuhr des Arbeitsgases,
    Figur 5
    eine schematische Schnittdarstellung des Strahlgenerators nach Figur 1 mit einer elektrischen Kapazität zwischen den Elektroden,
    Figur 6
    ein Diagramm zur Veranschaulichung des Temperaturverlaufs über die Längserstreckung eines erfindungsgemäßen Strahlgenerators.
    Figur 7 a) -d)
    Darstellungen unterschiedlicher Ausprägungen des endseitigen Abschnitts einer Stiftelektrode für einen erfindungsgemäßen Strahlgenerator.
  • Figur 1 zeigt einen erfindungsgemäßen Strahlgenerator (1) zur Erzeugung eines gebündelten, bolzenförmigen Plasmastrahls (2), der durch Lichtbogenentladung (3) unter Zufuhr eines Arbeitsgases (4) ausgebildet wird. Der Strahlgenerator (1) besteht im Wesentlichen aus einer Stiftelektrode (5), die konzentrisch ein hohlzylindrischer, gegenüber der Stiftelektrode (5) isolierter, rohrförmiger Mantel (6) aus elektrisch leitfähigem Material umgibt. Als Materialien kommen Metalle, insbesondere Kupfer oder Edelstahl in Betracht.
  • Der hohlzylindrische Mantel (6) weist an einer Stirnseite einen sich zumindest im inneren des Mantels konisch in Richtung einer ringförmigen Elektrode verjüngenden Abschnitt (8) auf. An der Außenseite kann der Abschnitt des Mantels z.B. aus ergonomischen Gründen eine andere Form aufweisen. Für die Funktion entscheidend ist, dass der Abschnitt im inneren des Mantels konisch ist. Im dargestellten Ausführungsbeispiel ist der Abschnitt jedoch auch an der Außenseite konisch ausgebildet. Die ringförmige Elektrode (7) begrenzt eine Düsenöffnung (9) an der durch den konischen Abschnitt gebildeten Düsenspitze. Der Durchmesser der Düsenöffnung (9) ist kleiner als der Innendurchmesser des hohlzylindrischen Mantels (6).
  • An der gegenüberliegende Stirnseite weist der hohlzylindrische Mantel (6) eine Zufuhr für das Arbeitsgas auf, die einen mit einer nicht dargestellten Gasversorgung, insbesondere einer Druckluftversorgung verbundenen Schlauch (10), eine in den hohlzylindrischen Mantel (6) bündig einsetzbare Wand (11) mit zwei in Achsrichtung des Mantels (6) verlaufenden Durchgängen (12) für das Arbeitsgas sowie Mittel (13) zur Erzeugung einer Wirbelströmung des Arbeitsgases (4) umfasst. Bei den Mitteln (13) zur Erzeugung einer Wirbelströmung handelt es sich um eine stirnseitig in den Mantel (6) eingesetzte, zugleich die Stiftelektrode (5) umgebende und halternde Hülse (14) aus elektrisch isolierendem Material, an deren Oberfläche ein wendelförmig verlaufender Steg (15) angeordnet ist, der zwischen der Innenwand (16) des hohlzylindrischen Mantels (6) und der Oberfläche der Hülse (14) einen Kanal (18) für das Arbeitsgas (4) bildet. Die Durchgänge (12) in der scheibenförmigen Wand (11) kommunizieren mit dem wendelförmig verlaufenden Kanal (18) für das Arbeitsgas.
  • Die Hülse (14) umgibt die Stiftelektrode (5), die über einen weiteren in der Achse des Mantels (6) verlaufenden Durchgang (19) in der Wand (11) mit der Zuleitung (20) zu einer in Figur 2 dargestellten gepulsten Gleichspannungsquelle (21) verbunden ist. Die in den sich zumindest im Inneren des Strahlgenerators (1) verjüngenden Abschnitt (8) eingepresste, ringförmige Elektrode (7), beispielsweise aus Kanthal oder Titan ist, wie aus Figur 2 erkennbar, über eine weitere Zuleitung (22) mit der gepulsten Gleichspannungsquelle (21) verbunden, wobei die ringförmige Elektrode (7) mit einer Erdung (23) verbunden ist.
  • In Figur 3 ist erkennbar, wie mittels eines Adapters (24) die zu einem Kabel (26) miteinander verbundenen Zuleitungen (20, 22) zu der Stiftelektrode (5) bzw. der ringförmigen Elektrode (7) über einen radialen Durchgang (25) aus dem Schlauch (10) für das Arbeitsgas ausgekoppelt werden. Der hülsenförmige Adapter (24) umgibt den Schlauch (10) im Bereich der Auskopplung des Kabels (26). Um einen unerwünschten Austritt des Arbeitsgases an dem radialen Durchgang (25) des hülsenförmigen Adapters (24) zu verhindern, wird das Kabel (26) durch eine Dichtung (27), beispielsweise in Form einer dauerelastischen Dichtmasse hindurchgeführt.
  • In Figur 4 ist der Adapter (24) unmittelbar an der der ringförmigen Elektrode (7) gegenüberliegenden Stirnseite des elektrisch leitenden Mantels (6) des Strahlgenerators (1) gekoppelt. An der freien Seite des Adapters (24) ist der Schlauch (10) für das Arbeitsgas (4) mit seinem stirnseitigen Rand in die im Durchmesser korrespondierende Durchgangsöffnung des Adapters (24) eingeklebt.
  • Figur 5 verdeutlicht die Verbindung des die Zuleitungen (20 /21) umfassenden Kabels (26) mit der Stiftelektrode (5) und der ringförmigen Elektrode (7). An der Verbindungsstelle des Kabels (26) zur Stiftelektrode (5) wird die Zuleitung (22) über das kurze Drahtstück (34) mit dem elektrisch leitenden Mantel (6) und damit der ringförmigen Elektrode (7) in Verbindung gebracht. Hierzu wird das kurze Drahtstück (34) z.B. zwischen der Wand (11) und der Innenwand (16) des elektrisch leitenden Mantels (6) eingeklemmt. Über den Mantel (6) aus elektrisch leitfähigem Material wird die Verbindung zu der ringförmigen Elektrode (7) hergestellt.
  • Der Strahlgenerator arbeitet wie folgt:
  • In Figur 1 wird der Durchfluss des Arbeitsgases (4) durch den erfindungsgemäßen Strahlgenerator (1) durch Pfeile dargestellt. Zunächst wird das Arbeitsgas (4) durch den Schlauch (10) von der nicht dargestellten Druckluftquelle zu den Durchgängen (12) in der stirnseitig den Strahlgenerator (1) begrenzenden Wand (11) geführt. Dort tritt das Arbeitsgas (4) durch die Durchgänge (12) in den wendelförmig verlaufenden Kanal (18) ein, der dem Gasstrom im dargestellten Ausführungsbeispiel einen Drall in Richtung des Uhrzeigersinns um die Längsachse des Strahlgenerators (1) herum verleiht. Das Arbeitsgas (4) verlässt die Hülse (14) als Wirbelströmung, deren Wirbelkern entlang der Längsachse des Mantels (6) des Strahlgenerators (1) verläuft. Im Bereich des sich konisch verjüngenden Abschnitts (8) des Strahlgenerators (1) ist eine Einschnürung (36) des Gasstroms erkennbar, bis dieser schließlich durch die Düsenöffnung (9) hindurch tritt. Figur 1 zeigt den Strahlgenerator nach dem Zünden mit bereits ausgebildeten, bolzenförmigen Plasmastrahl (2). Der Plasmastrahl (2) wird dadurch gebildet, dass das rotierende Arbeitsgas (4) im Bereich des Wirbelkerns und damit in unmittelbarer Nähe des Lichtbogens zwischen der Spitze der Stiftelektrode (5) und der ringförmigen Elektrode (7) in innige Berührung gelangt und dadurch teilweise in den Plasmazustand überführt wird. In Folge des zuvor beschriebenen asymmetrischen Wärmeprofils des Strahlgenerators (1) wird das Gas entlang der Stiftelektrode kaum erwärmt, so dass ein kühles, atmosphärisches Plasma an der Düsenöffnung (9) des Strahlgenerators (1) austritt.
  • Figur 2 veranschaulicht die Bogenentladung zwischen der Spitze der Stiftelektrode (5) und der ringförmigen Elektrode (7) nach dem Zünden. Zunächst wird durch die angelegte, gepulste Gleichspannung eine radiale Bogenentladung zwischen der Spitze der Stiftelektrode (5) und der Innenwand des Mantels (6) erzeugt. Aufgrund der Wirbelströmung (35) des Arbeitsgases (4)wird dieser Lichtbogen (37) zunehmend im Wirbelkern auf der Achse des Mantels (6) kanalisiert und in Richtung der Düsenöffnung (9) ausgetrieben, bis der sich verzweigende Lichtbogen (38) von außen auf der ringförmigen Elektrode (7) aufsetzt. Bei Verwendung von Luft als Arbeitsgas entsteht im Betrieb ein weiß-blau leuchtender Lichtbogen (39), der sich von der Spitze der Stiftelektrode (5) nach dem Zünden in einem scharf begrenzten dünnen Kanal längs der Achse des Mantels (6) bis nah an die Düsenöffnung (9) erstreckt. Dort teilt sich der Lichtbogen (38) in mehrere Teiläste (40) auf, die von außen radial auf der ringförmigen Elektrode (7) aufsetzen.
  • Figur 6 veranschaulicht die asymmetrische Wärmeverteilung längs des erfindungsgemäßen Strahlgenerators (1) vom Eintritt des Arbeitsgases (4) bis zu der Düsenöffnung (9). Wie aus dem Diagramm ersichtlich, steigt die Temperatur in dem Strahlgenerator (1) erst im Bereich der Düsenöffnung (9) an, während sie längs der Stiftelektrode (5) und damit entlang der Wirbelströmung (35) nahezu konstant auf niedrigem Niveau verharrt. In Folge dessen bildet sich eine sehr homogene, nicht durch Temperaturveränderungen beeinflusste Wirbelströmung (35) aus, deren Wirbelkern den bolzenförmigen Plasmastrahl (2) optimal kanalisiert und in Achsrichtung des Mantels (6) austreibt.
  • Figuren 7 a) - d) zeigen schließlich unterschiedliche Ausprägungen des endseitigen Abschnitts einer Stiftelektrode (5) für einen erfindungsgemäßen Strahlgenerator (1). Vorteilhaft weist die in de Figuren 5 a) - c) dargestellte, endseitig kegelförmig zulaufende Stiftelektrode (5) eine abgerundete Spitze (41) auf, wie dies in den Figuren 5 b) und c) dargestellt ist. Über die Wahl des Winkels zwischen der Achse (42) und der Mantellinie (43) des kegelförmigen Abschnitts (44) der Stiftelektrode (5) lässt sich die Temperatur des Plasmastrahls(2) beeinflussen. Ein spitzerer Winkel erzeugt ein heißeres Plasma, wogegen ein weniger spitzer Winkel ein kälteres Plasma erzeugt.
  • Außerdem kann es vorteilhaft sein, die Stiftelektrode (5) mit einer Hohlkehle (45) zu versehen, wodurch ein ansatzloser Lichtbogen entsteht, der zu einem wesentlich geringeren Verschleiß der Stiftelektrode (5) führt. Bezugszeichenliste
    Nr. Bezeichnung Nr. Bezeichnung
    1. Strahlgenerator 29. --
    2. Plasmastrahl 30. --
    3. Lichtbogenentladung 31. --
    4. Arbeitsgas 32. --
    5. Stiftelektrode 33. --
    6. Mantel 34. Drahtstück
    7. ringförmige Elektrode 35. Wirbelströmung
    8. Abschnitt 36. Einschnürung
    9. Düsenöffnung 37. Lichtbogen beim Austreiben
    10. Schlauch 38. Lichtbogen auf ringförmiger Elektrode
    11. Wand 39. Lichtbogen im Betrieb
    12. Durchgänge 40. Teiläste Lichtbogen
    13. Mittel zur Erzeugung einer Wirbelströmung einer Wirbelströmung 41. Spitze
    14. Hülse 42. Achse
    15. Steg 43. Mantellinie
    16. Innenwand 44. kegelförmiger Abschnitt
    17. Oberfläche 45. Hohlkehle
    18. Kanal
    19. Durchgang
    20. Zuleitung
    21. Gleichspannungsquelle
    22. Zuleitung
    23. Erdung
    24. Adapter
    25. Durchgang
    26. Kabel
    27. Dichtung
    28. --

Claims (10)

  1. Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls durch Lichtbogenentladung unter Zufuhr eines Arbeitsgases umfassend
    - eine Stiftelektrode,
    - einen konzentrisch zu der Stiftelektrode angeordneten hohlzylindrischen, gegenüber der Stiftelektrode isolierten Mantel aus elektrisch leitendem Material,
    - an dessen einer Stirnseite eine ringförmige Elektrode angeordnet ist, die eine Düsenöffnung begrenzt, deren Durchmesser kleiner als der Durchmesser des hohlzylindrischen Mantels ist,
    - der an der gegenüberliegender Stirnseite eine Zufuhr für das Arbeitsgas aufweist
    - sowie eine Spannungsquelle zum Anlegen einer Spannung zwischen Stift- und Ringelektrode, wobei der Mantel und/oder die Ringelektrode geerdet sind,
    dadurch gekennzeichnet, dass
    - der hohlzylindrische Mantel (6) stirnseitig einen sich konisch in Richtung der ringförmigen Elektrode (7) verjüngenden Abschnitt (8) aufweist,
    - die Stiftelektrode (5) in den hohlzylindrischen Mantel (6) hineinragt, jedoch vor dem konischen Abschnitt (8) endet,
    - der hohlzylindrische Mantel (6) die Stiftelektrode (5) unmittelbar umgibt,
    - die Zufuhr für das Arbeitsgas Mittel (13) zur Erzeugung einer Wirbelströmung (35) des Arbeitsgases (4) aufweisen und
    - die Spannungsquelle eine gepulste Gleichspannungsquelle (21) ist.
  2. Strahlgenerator nach Anspruch 1, dadurch gekennzeichnet, dass die Stiftelektrode (5) sich über mindestens 75 % der Länge des hohlzylindrischen Mantels (6) erstreckt.
  3. Strahlgenerator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der sich konische verjüngende Abschnitt (8) maximal 20% der der Länge des hohlzylindrischen Mantels (6) beträgt.
  4. Strahlgenerator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der radiale Abstand zwischen der Stiftelektrode (5) und dem hohlzylindrischen Mantel (6) kleiner als das 5-fache des Durchmessers der Stiftelektrode (5) ist.
  5. Strahlgenerator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die endseitig kegelförmig zulaufende Stiftelektrode (5) eine in Richtung der Düsenöffnung (9) weisende abgerundete Spitze (41) aufweist.
  6. Strahlgenerator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Mittel (13) zur Erzeugung einer Wirbelströmung (35) des Arbeitsgases (4) eine stirnseitig in den hohlzylindrischen Mantel (6) eingesetzte, die Stiftelektrode (5) halternde Hülse (14) aus elektrisch isolierendem Material umfassen, an deren Oberfläche mindestens ein als Wendel ausgestalteter Steg (15) angeordnet ist, der zwischen der Innenwand (16) des hohlzylindrischen Mantels (6) und der Oberfläche (17) der Hülse (14) einen Kanal (18) für das Arbeitsgas (4) bildet.
  7. Strahlgenerator nach Anspruch 6, dadurch gekennzeichnet, dass die Zufuhr für das Arbeitsgas eine in den hohlzylindrischen Mantel (6) bündig einsetzbare Wand (11) mit mindestens einem in Achsrichtung des Mantels verlaufenden Durchgang (12) aufweist, der mit dem Kanal (18) für das Arbeitsgas (4) kommuniziert.
  8. Strahlgenerator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Gleichspannungsquelle (21) eine maximale Spannung zwischen 500 - 7000 Volt bereitstellt.
  9. Strahlgenerator nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die ringförmige Elektrode (7) aus einem Material mit anhaftender Oxidschicht besteht.
  10. Strahlgenerator nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die ringförmige Elektrode (7) einstückig mit dem konischen Abschnitt (8) des hohlzylindrischen Mantels (6) ausgebildet ist.
EP10150084.1A 2009-01-14 2010-01-05 Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls Not-in-force EP2209354B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202009000537U DE202009000537U1 (de) 2009-01-14 2009-01-14 Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls
DE102009004968A DE102009004968B4 (de) 2009-01-14 2009-01-14 Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls

Publications (3)

Publication Number Publication Date
EP2209354A2 true EP2209354A2 (de) 2010-07-21
EP2209354A3 EP2209354A3 (de) 2012-01-11
EP2209354B1 EP2209354B1 (de) 2014-04-09

Family

ID=41796222

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10150084.1A Not-in-force EP2209354B1 (de) 2009-01-14 2010-01-05 Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls

Country Status (2)

Country Link
EP (1) EP2209354B1 (de)
DK (1) DK2209354T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076806A1 (de) 2011-05-31 2012-12-06 Leibniz-Institut für Plasmaforschung und Technologie e.V. Vorrichtung und Verfahren zur Erzeugung eines kalten, homogenen Plasmas unter Atmosphärendruckbedingungen
CN109504970A (zh) * 2018-12-14 2019-03-22 四川大学 一种种植体活化亲水装置
EP4277442A3 (de) * 2022-04-23 2024-01-24 Handa, Janak H. Gleichstrom-plasmabrenner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532412C2 (de) 1995-09-01 1999-09-30 Agrodyn Hochspannungstechnik G Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951143A (en) * 1958-09-25 1960-08-30 Union Carbide Corp Arc torch
US3007072A (en) * 1959-01-29 1961-10-31 Gen Electric Radial type arc plasma generator
US3740522A (en) * 1971-04-12 1973-06-19 Geotel Inc Plasma torch, and electrode means therefor
DE19847774C2 (de) * 1998-10-16 2002-10-17 Peter Foernsel Vorrichtung zur Plasmabehandlung von stab- oder fadenförmigem Material
JP2006114450A (ja) * 2004-10-18 2006-04-27 Yutaka Electronics Industry Co Ltd プラズマ生成装置
US7342197B2 (en) * 2005-09-30 2008-03-11 Phoenix Solutions Co. Plasma torch with corrosive protected collimator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532412C2 (de) 1995-09-01 1999-09-30 Agrodyn Hochspannungstechnik G Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken
EP0761415B1 (de) 1995-09-01 2001-10-31 Agrodyn Hochspannungstechnik GmbH Verfahren zur Erhöhung der Benetzbarkeit der Oberfläche von Werkstücken

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076806A1 (de) 2011-05-31 2012-12-06 Leibniz-Institut für Plasmaforschung und Technologie e.V. Vorrichtung und Verfahren zur Erzeugung eines kalten, homogenen Plasmas unter Atmosphärendruckbedingungen
WO2012163876A1 (de) 2011-05-31 2012-12-06 Leibniz-Institut für Plasmaforschung und Technologie e.V. Vorrichtung und verfahren zur erzeugung eines kalten, homogenen plasmas unter atmosphärendruckbedingungen
CN109504970A (zh) * 2018-12-14 2019-03-22 四川大学 一种种植体活化亲水装置
CN109504970B (zh) * 2018-12-14 2024-01-09 四川大学 一种种植体活化亲水装置
EP4277442A3 (de) * 2022-04-23 2024-01-24 Handa, Janak H. Gleichstrom-plasmabrenner

Also Published As

Publication number Publication date
EP2209354A3 (de) 2012-01-11
DK2209354T3 (da) 2014-07-14
EP2209354B1 (de) 2014-04-09

Similar Documents

Publication Publication Date Title
EP1236380B1 (de) Plasmadüse
EP0761415B2 (de) Verfahren zur Erhöhung der Benetzbarkeit der Oberfläche von Werkstücken
EP1994807B1 (de) Vorrichtung zur erzeugung eines plasma-jets
DE102009016932B4 (de) Kühlrohre und Elektrodenaufnahme für einen Lichtbogenplasmabrenner sowie Anordnungen aus denselben und Lichtbogenplasmabrenner mit denselben
EP1335641B1 (de) Plasmadüse
DE4228064A1 (de) Plasmaspritzgerät
DE29805999U1 (de) Vorrichtung zur Plasmabehandlung von Oberflächen
DE2059594A1 (de) Verfahren und Vorrichtung zum elektrostatischen Aufstreuen von Farbstoffen,Pulvermaterial,Faserstoffen u.dgl.
DE202009018173U1 (de) Düsenschutzkappe und Düsenschutzkappenhalter sowie Lichtbogenplasmabrenner mit derselben und/oder demselben
DE1639257B1 (de) Hochfrequenz plasmagenerator
DE202009000537U1 (de) Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls
DE102009015510B4 (de) Verfahren und Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls
EP2209354B1 (de) Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls
DE1950132A1 (de) Verfahren und Vorrichtung zum Erhitzen mindestens eines Reaktionsmittels auf hohe Temperatur
EP2168409B1 (de) Vorrichtung zur erzeugung eines plasma-jets
EP2366485A1 (de) Lichtbogenschweißgerät mit einem gesteuert gekühlten WIG-Brenner
EP2667689B1 (de) Elektrode für Plasmaschneidbrenner sowie deren Verwendung
DE102009004968B4 (de) Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls
EP2457681A1 (de) Brenner für das Wolfram-Inertgas-Schweißen sowie Elektrode zur Verwendung bei einem solchen Brenner
EP1113711A2 (de) Plasmabrenner und Verfahren zur Erzeugung eines Plasmastrahls
EP1684653B1 (de) Instrument für die plasma-koagulation
EP2180492B1 (de) Schaltkammer für einen Hochspannungsschalter sowie Hochspannungsschalter
AT4668U1 (de) Verfahren und einrichtung zum schweissen
EP2532214B1 (de) Hohltrichterförmiger plasmagenerator
DE102008028166A1 (de) Vorrichtung zur Erzeugung eines Plasma-Jets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REINHAUSEN PLASMA GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/48 20060101ALI20111202BHEP

Ipc: H05H 1/24 20060101ALI20111202BHEP

Ipc: H05H 1/34 20060101AFI20111202BHEP

17P Request for examination filed

Effective date: 20120618

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131024

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 661923

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010006588

Country of ref document: DE

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140711

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010006588

Country of ref document: DE

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010006588

Country of ref document: DE

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

Effective date: 20140908

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010006588

Country of ref document: DE

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Free format text: FORMER OWNER: REINHAUSEN PLASMA GMBH, 93057 REGENSBURG, DE

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140710

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Free format text: FORMER OWNER: REINHAUSEN PLASMA GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006588

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150115 AND 20150121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006588

Country of ref document: DE

Effective date: 20150112

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20150422

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 661923

Country of ref document: AT

Kind code of ref document: T

Owner name: MASCHINENFABRIK REINHAUSEN GMBH, DE

Effective date: 20150803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170119

Year of fee payment: 8

Ref country code: SE

Payment date: 20170119

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170119

Year of fee payment: 8

Ref country code: BE

Payment date: 20170119

Year of fee payment: 8

Ref country code: DK

Payment date: 20170119

Year of fee payment: 8

Ref country code: LU

Payment date: 20170123

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180105

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

Ref country code: BE

Ref legal event code: PD

Owner name: MASCHINENFABRIK REINHAUSEN GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), AFFECTATION / CESSION; FORMER OWNER NAME: REINHAUSEN PLASMA GMBH

Effective date: 20140915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200131

Year of fee payment: 11

Ref country code: AT

Payment date: 20200122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210324

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 661923

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010006588

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802