EP2208101A1 - Optische anordnung zur photomanipulation - Google Patents
Optische anordnung zur photomanipulationInfo
- Publication number
- EP2208101A1 EP2208101A1 EP08802224A EP08802224A EP2208101A1 EP 2208101 A1 EP2208101 A1 EP 2208101A1 EP 08802224 A EP08802224 A EP 08802224A EP 08802224 A EP08802224 A EP 08802224A EP 2208101 A1 EP2208101 A1 EP 2208101A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- manipulation
- sample
- light
- optical arrangement
- arrangement according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 45
- 238000005286 illumination Methods 0.000 claims abstract description 40
- 238000003384 imaging method Methods 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 15
- 238000011156 evaluation Methods 0.000 claims description 7
- 230000005284 excitation Effects 0.000 claims description 7
- 239000000975 dye Substances 0.000 claims description 5
- 230000002186 photoactivation Effects 0.000 claims description 5
- 238000002376 fluorescence recovery after photobleaching Methods 0.000 claims description 4
- 238000001531 micro-dissection Methods 0.000 claims description 4
- 230000002123 temporal effect Effects 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 238000002679 ablation Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 93
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000000386 microscopy Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004061 bleaching Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/32—Micromanipulators structurally combined with microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0032—Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
Definitions
- the object of the invention is therefore to develop an arrangement with which the manipulation in restricted sample areas can be carried out in a simple manner substantially in the focal plane of the microscope.
- confocal sample manipulation should also be possible without the use of multiphoton effects.
- the arrangement should also be able to enable a spatial, isotropic imaging of the sample before, after or during the manipulation.
- This object is achieved in an optical arrangement of the type described above in that the means for photomanipulation comprise a first manipulation optics, is coupled by means of the light of a first manipulation light source in the illumination beam path for forming a substantially planar manipulation light sheet.
- the manipulation light source can be a laser that emits light of a different wavelength or a different wavelength range than the actual illumination light source.
- the illumination light source itself can also be used as a manipulation light source, in which case the manipulation optics and the coupling-in elements can be dispensed with. It is also conceivable to combine several lasers in one light source module, whereby, depending on the selected method, illumination or Pulation, one or more of the light sources are selected and coupled into the illumination beam path.
- the first manipulation optics may also comprise means for structuring the light sheet.
- the light sheet itself has a substantially perpendicular to the optical axis of the microscope objective in the coordinates X and Y, adapted to the sample field to be examined matched length and width and extending in the direction of the optical axis of the imaging lens thickness, which is in the range of a few micrometers .
- This light sheet can be spatially structured, for example, by means of a slit, wherein the slit comprises one or more slots for spatial structuring.
- the structuring of the light sheets by means of grids, screens or the like makes it possible, for example, to trigger photobleaching processes limited to the bright areas and then to observe FRAP processes since no bleaching processes were triggered in the dark areas.
- a significant advantage of the SPIM technology is the ability to generate spatial images of the sample, and in the present arrangement, therefore, the sample and / or the sample holder is expediently movable, preferably mounted rotatable and displaceable. In this way, all areas of the sample can be made accessible to manipulation, in particular also to spatially strictly localized manipulation.
- the control unit is expediently designed to control both manipulation optics.
- the arrangement expediently has an evaluation unit which converts the light detected pixel-wise, for example on a planar CCD detector, into data, ie digital signals, and also evaluates the signal, wherein the signal conversion is often also carried out in the detection means itself.
- FIG. 1 shows an optical arrangement for photomanipulation of a sample 1.
- the sample 1 is picked up by a sample holder 2.
- the sample 1 may be embedded in a gel cylinder made of agarose which is fixed in the sample holder 2.
- the sample holder 2 is rotatably mounted, which here by the Arrow is indicated.
- the sample holder 2 is also slidably mounted, that is movable in all three spatial directions, so that all areas of the sample 1 can be illuminated and detected.
- the sample 1 can also be movably mounted and the sample holder 2 can be firmly constructed, so that the movements of sample 1 and sample holder 2 are decoupled.
- the sample 1 or light which comes from the sample 1 is imaged at least partially on the detection device, ie the CCD camera 6, by imaging optics with an imaging objective 7 which is located in an imaging beam path.
- the light sheet for illumination is essentially flat in the focus of the imaging objective 7.
- the optical axis of the imaging lens 7 also intersects the plane of the sheet of light at a non-zero angle, preferably perpendicular, as shown in FIG.
- the optical arrangement also has a control unit 8, which in the example has an optional nal evaluation unit 9 is combined. In the evaluation unit 9, the detected light is converted into data and evaluated. The direction in which light is detected is indicated by the arrow marked "D" between imaging objective 7 and CCD camera 6.
- the optical arrangement furthermore has means for photomanipulation of the sample 1.
- These means for photomanipulation comprise a first manipulation optics, by means of which light of a first manipulation light source 10 is coupled into the illumination beam path for forming a substantially planar manipulation light sheet.
- the direction in which manipulation light is directed to the sample is indicated by the arrow marked "M" between the lens 5 and the sample holder 2.
- the second manipulation optics can be designed as a laser scanning microscope. This allows the confocal illumination of the sample via the imaging beam path. If the deflecting mirrors 12 are configured not as fully reflective, but as partially transmissive mirrors, light from the first manipulation light source 10 can also be coupled into the imaging beam path, as indicated by the dashed line. With a corresponding configuration of the coupling element 13, even light from the illumination source 3 can be coupled into the imaging beam path and thus enables normal observation in incident light.
- a combination of the second Manupulationsoptik as shown in Figure 3, with an arrangement according to Figure 2 is possible. Another variant is shown in FIG. 4, here the first manipulation light source 10 and the second manipulation light source 16 are identical.
- Another application example is a sample that shows no response at all below a power density threshold, but only when it is excited above that threshold. If the power density of the light of the two manipulation light sources when impinging on the sample is in each case less than the threshold value, in the sum but above this, so a locally very narrow area can be selected in this way. If the sample has an absolute melting point in the range of the added power densities of the manipulation light sources, the sample 1 can be broken up at this point, for example by the superimposition of the two beams. This can be used, for example, for microdissection. The light source can be the same in the two cases just described.
- irradiating a sample labeled with Dronpa 3 dyes does not cause exposure to light of 405nm wavelength nor to irradiation of 488nm wavelength light. Only with a simultaneous combination of both excitation wavelengths, bright emissions become apparent. However, in the sample 1, these emissions occur only in the region in which the two beams overlap or intersect, that is to say in a spatially very restricted area, even if the manipulation optics in each case illuminate a larger area in each case.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007047464.6A DE102007047464B4 (de) | 2007-09-28 | 2007-09-28 | Optische Anordnung zur Photomanipulation |
PCT/EP2008/007690 WO2009043473A1 (de) | 2007-09-28 | 2008-09-16 | Optische anordnung zur photomanipulation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2208101A1 true EP2208101A1 (de) | 2010-07-21 |
Family
ID=40206477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08802224A Withdrawn EP2208101A1 (de) | 2007-09-28 | 2008-09-16 | Optische anordnung zur photomanipulation |
Country Status (5)
Country | Link |
---|---|
US (1) | US8547634B2 (enrdf_load_stackoverflow) |
EP (1) | EP2208101A1 (enrdf_load_stackoverflow) |
JP (1) | JP5636280B2 (enrdf_load_stackoverflow) |
DE (1) | DE102007047464B4 (enrdf_load_stackoverflow) |
WO (1) | WO2009043473A1 (enrdf_load_stackoverflow) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0641720B2 (ja) | 1989-05-23 | 1994-06-01 | 川口市 | トンネルの覆工方法 |
DE102008009216A1 (de) | 2008-02-13 | 2009-08-20 | Carl Zeiss Microimaging Gmbh | Vorrichtung und Verfahren zum räumlich hochauflösenden Abbilden einer Struktur einer Probe |
GB0813090D0 (en) * | 2008-07-17 | 2008-08-27 | Univ St Andrews | Optical trap |
DE102009044986A1 (de) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | Mikroskop |
US8441633B2 (en) * | 2009-10-29 | 2013-05-14 | California Institute Of Technology | Multiple-photon excitation light sheet illumination microscope |
US10051240B2 (en) | 2010-06-14 | 2018-08-14 | Howard Hughes Medical Institute | Structured plane illumination microscopy |
US8711211B2 (en) | 2010-06-14 | 2014-04-29 | Howard Hughes Medical Institute | Bessel beam plane illumination microscope |
WO2012027542A2 (en) | 2010-08-25 | 2012-03-01 | California Institute Of Technology | Simultaneous orthogonal light sheet microscopy and computed optical tomography |
DE102010039950B4 (de) * | 2010-08-30 | 2021-07-22 | Leica Microsystems Cms Gmbh | Mikroskop mit Mikro- und Makro-Objektiven |
DE102010060121C5 (de) * | 2010-10-22 | 2023-09-28 | Leica Microsystems Cms Gmbh | SPIM-Mikroskop mit sequenziellem Lightsheet |
DE102012221955A1 (de) * | 2012-11-30 | 2014-06-05 | Leica Microsystems (Schweiz) Ag | Beleuchtungseinrichtung für ein Operationsmikroskop |
DE102013213781A1 (de) * | 2013-03-20 | 2014-09-25 | Leica Microsystems Cms Gmbh | Verfahren und optische Anordnung zum Manipulieren und Abbilden einer mikroskopischen Probe |
WO2014147211A1 (en) * | 2013-03-21 | 2014-09-25 | ETH Zürich | Method and device to achieve spatially confined photointeraction at the focal volume of a microscope |
DE102013205115A1 (de) | 2013-03-22 | 2014-09-25 | Leica Microsystems Cms Gmbh | SPIM-Anordnung |
JP2015135463A (ja) * | 2013-12-19 | 2015-07-27 | オリンパス株式会社 | 顕微鏡装置、及び、顕微鏡システム |
DE102014204994A1 (de) * | 2014-03-18 | 2015-09-24 | Carl Zeiss Microscopy Gmbh | Verfahren zur Fluoreszenzmikroskopie einer Probe |
WO2016054118A1 (en) * | 2014-09-29 | 2016-04-07 | Howard Hughes Medical Institute | Non-linear structured illumination microscopy |
US10795144B2 (en) | 2014-12-06 | 2020-10-06 | Howard Hughes Medical Institute | Microscopy with structured plane illumination and point accumulation for imaging and nanoscale topography |
WO2016125281A1 (ja) | 2015-02-05 | 2016-08-11 | 株式会社ニコン | 構造化照明顕微鏡、観察方法、及び制御プログラム |
JP2018004777A (ja) * | 2016-06-28 | 2018-01-11 | オリンパス株式会社 | 光シート顕微鏡、及び、光シート顕微鏡の制御方法 |
DE102016120683A1 (de) * | 2016-10-28 | 2018-05-03 | Carl Zeiss Microscopy Gmbh | Lichtblattmikroskop |
EP4502698A3 (en) | 2017-07-20 | 2025-04-30 | Viventis Microscopy Sàrl | Microscope, method of operating a microscope and method of imaging a sample |
DE102017118691A1 (de) * | 2017-08-16 | 2019-02-21 | Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin | Verfahren zur Lichtblatt-mikroskopischen Untersuchung von insbesondere biologischen Proben und Lichtblatt-Mikroskop |
CN108303374A (zh) * | 2018-02-05 | 2018-07-20 | 河南师范大学 | 一种可改光强的非线性测量系统 |
US20210208170A1 (en) * | 2018-05-25 | 2021-07-08 | Spovum Technologies Private Limited [In/In] | A method for regulated manipulation of a biological sample and a system thereof |
JP7134839B2 (ja) * | 2018-11-07 | 2022-09-12 | 株式会社エビデント | 顕微鏡装置、制御方法、及び、プログラム |
EP3832369B1 (en) | 2019-12-05 | 2025-06-18 | Leica Microsystems CMS GmbH | Light sheet fluorescence microscope |
WO2021197587A1 (en) * | 2020-03-31 | 2021-10-07 | Leica Microsystems Cms Gmbh | Light sheet microscope and method for manipulating a target area of a sample |
US12038382B2 (en) | 2020-07-16 | 2024-07-16 | Clemson University Research Foundation | Method, system and application for 3D molecular diffusion tensor measurement and structural imaging |
WO2022034246A1 (de) * | 2020-08-14 | 2022-02-17 | Leica Microsystems Cms Gmbh | Optische vorrichtung, nachrüstsatz und verfahren zur erzeugung von lichtblättern mit hilfe eines reflektors |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4386274A (en) * | 1980-11-10 | 1983-05-31 | Saul Altshuler | Isotope separation by standing waves |
US6020591A (en) | 1997-07-11 | 2000-02-01 | Imra America, Inc. | Two-photon microscopy with plane wave illumination |
DE10233549B4 (de) | 2002-07-23 | 2021-10-14 | Leica Microsystems Cms Gmbh | Scanmikroskop mit Manipulationslichtstrahl und Verfahren zur Scanmikroskopie |
DE10257423A1 (de) * | 2002-12-09 | 2004-06-24 | Europäisches Laboratorium für Molekularbiologie (EMBL) | Mikroskop |
US20060079668A1 (en) | 2002-12-11 | 2006-04-13 | Eli Lilly And Company | Junctional adhesion molecule splice variants |
DE102004034987A1 (de) * | 2004-07-16 | 2006-02-02 | Carl Zeiss Jena Gmbh | Lichtrastermikroskop und Verwendung |
JP4602731B2 (ja) * | 2004-10-05 | 2010-12-22 | オリンパス株式会社 | 顕微鏡システム |
JP2007114542A (ja) * | 2005-10-21 | 2007-05-10 | Olympus Corp | 顕微鏡観察装置および顕微鏡観察方法 |
EP1970744A4 (en) * | 2005-12-28 | 2010-12-01 | Nikon Corp | OPTICAL SCANNING DEVICE, OPTICAL SCAN TYPE MICROSCOPE, OBSERVATION PROCEDURE, CONTROL DEVICE AND CONTROL PROGRAM |
DE102007018862A1 (de) * | 2007-04-18 | 2008-10-23 | Carl Zeiss Microimaging Gmbh | Objektivwechseleinrichtung für Mikroskope |
-
2007
- 2007-09-28 DE DE102007047464.6A patent/DE102007047464B4/de active Active
-
2008
- 2008-09-16 EP EP08802224A patent/EP2208101A1/de not_active Withdrawn
- 2008-09-16 WO PCT/EP2008/007690 patent/WO2009043473A1/de active Application Filing
- 2008-09-16 US US12/680,165 patent/US8547634B2/en active Active
- 2008-09-16 JP JP2010526193A patent/JP5636280B2/ja active Active
Non-Patent Citations (1)
Title |
---|
GREGER K ET AL: "Basic building units and properties of a fluorescence single plane illumination microscope", REVIEW OF SCIENTIFIC INSTRUMENTS, AIP, MELVILLE, NY, US, vol. 78, no. 2, 28 February 2007 (2007-02-28), pages 23705 - 23705, XP012103772, ISSN: 0034-6748, DOI: DOI:10.1063/1.2428277 * |
Also Published As
Publication number | Publication date |
---|---|
US20100193673A1 (en) | 2010-08-05 |
DE102007047464A1 (de) | 2009-04-02 |
US8547634B2 (en) | 2013-10-01 |
WO2009043473A1 (de) | 2009-04-09 |
DE102007047464B4 (de) | 2023-03-02 |
JP5636280B2 (ja) | 2014-12-03 |
JP2010540995A (ja) | 2010-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007047464B4 (de) | Optische Anordnung zur Photomanipulation | |
EP2193398B1 (de) | Verfahren zur mikroskopischen dreidimensionalen abbildung einer probe | |
EP2107408B1 (de) | Mikroskop mit der Beobachtungsrichtung senkrecht zur Beleuchtungsrichtung | |
EP0977069B2 (de) | Verfahren und Anordnung zur konfokalen Mikroskopie | |
EP2641078B1 (de) | Tiefenauflösungsgesteigerte mikroskopie | |
EP2535754B1 (de) | Abtastmikroskop und Verfahren zur lichtmikroskopischen Abbildung eines Objektes | |
EP2516993B1 (de) | Hochauflösendes mikroskop und verfahren zur zwei- oder dreidimensionalen positionsbestimmung von objekten | |
EP1264169B1 (de) | Verbesserung der spektralen und/oder räumlichen auflösung in einem laser-scanning mikroskop | |
EP1248132B1 (de) | Verfahren und Anordnung zur tiefenaufgelösten optischen Erfassung einer Probe | |
EP2480926B1 (de) | Mikroskop | |
EP3497502B1 (de) | Lichtblattmikroskop | |
DE10038526B4 (de) | Verfahren und Anordnung zur Erfassung des wellenlängenabhängigen Verhaltens einer beleuchteten Probe | |
DE10257237A1 (de) | Anordnung zur optischen Erfassung von in einer Probe angeregter und/oder rückgestreuter Lichtstrahlung | |
EP1720052A1 (de) | Vorrichtung zur Steuerung von Lichtstrahlung | |
WO2009100830A1 (de) | Vorrichtung und verfahren zum räumlichen hochauflösenden abbilden einer struktur einer probe | |
EP1186930A2 (de) | Vorrichtung und Verfahren zur Untersuchung und Manipulation von mikroskopischen Objekten | |
DE10151216A1 (de) | Verfahren zur optischen Erfassung von charakteristischen Größen einer beleuchteten Probe | |
WO2018033581A1 (de) | Lichtblattmikroskop | |
DE10155002A1 (de) | Verfahren und Anordnung zur tiefenaufgelösten optischen Erfassung einer Probe | |
EP1882970A1 (de) | Laser-Scanning-Mikroskop zur Fluoreszenzuntersuchung | |
DE102017119480A1 (de) | Optische Anordnung zum Scannen von Anregungsstrahlung und/oder Manipulationsstrahlung in einem Laser-Scanning-Mikroskop und Laser-Scanning-Mikroskop | |
DE10118463A1 (de) | Verfahren und Anordnung zur tiefenaufgelösten optischen Erfassung einer Probe | |
EP3066511B1 (de) | Mikroskop für evaneszente beleuchtung und punktförmige rasterbeleuchtung | |
WO2004113987A1 (de) | Vrefahren zur fluoreszenzmikroskopie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100324 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110511 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20111122 |