EP2204219B1 - Procédé d'inertisation de prévention contre les incendies et/ou d'extinction d'incendies, et une installation d'inertisation destinée à l'exécution du procédé - Google Patents

Procédé d'inertisation de prévention contre les incendies et/ou d'extinction d'incendies, et une installation d'inertisation destinée à l'exécution du procédé Download PDF

Info

Publication number
EP2204219B1
EP2204219B1 EP08171495A EP08171495A EP2204219B1 EP 2204219 B1 EP2204219 B1 EP 2204219B1 EP 08171495 A EP08171495 A EP 08171495A EP 08171495 A EP08171495 A EP 08171495A EP 2204219 B1 EP2204219 B1 EP 2204219B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
oxygen content
room
gas mixture
inerting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08171495A
Other languages
German (de)
English (en)
Other versions
EP2204219A1 (fr
Inventor
Anselm Eberlein
Peter Uwe Kersten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amrona AG
Original Assignee
Amrona AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE502008003046T priority Critical patent/DE502008003046D1/de
Application filed by Amrona AG filed Critical Amrona AG
Priority to AT08171495T priority patent/ATE503531T1/de
Priority to EP08171495A priority patent/EP2204219B1/fr
Priority to PL08171495T priority patent/PL2204219T3/pl
Priority to SI200830215T priority patent/SI2204219T1/sl
Priority to ES08171495T priority patent/ES2363276T3/es
Priority to DK08171495.8T priority patent/DK2204219T3/da
Priority to AU2009324303A priority patent/AU2009324303B2/en
Priority to PCT/EP2009/066920 priority patent/WO2010066875A1/fr
Priority to BRPI0916132A priority patent/BRPI0916132A2/pt
Priority to RU2011126661/12A priority patent/RU2492890C2/ru
Priority to JP2011540119A priority patent/JP5492220B2/ja
Priority to CA2736211A priority patent/CA2736211C/fr
Priority to CN2009801401980A priority patent/CN102176949B/zh
Priority to US12/637,599 priority patent/US8727031B2/en
Publication of EP2204219A1 publication Critical patent/EP2204219A1/fr
Priority to HK10108345.3A priority patent/HK1141747A1/xx
Application granted granted Critical
Publication of EP2204219B1 publication Critical patent/EP2204219B1/fr
Priority to ZA2011/04869A priority patent/ZA201104869B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/002Fire prevention, containment or extinguishing specially adapted for particular objects or places for warehouses, storage areas or other installations for storing goods
    • A62C3/004Fire prevention, containment or extinguishing specially adapted for particular objects or places for warehouses, storage areas or other installations for storing goods for freezing warehouses and storages
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide

Definitions

  • the present invention relates to an inerting method according to the preamble of claim 1. Accordingly, the invention relates to an inerting method for fire prevention and / or fire extinguishing, in which in the room atmosphere of an enclosed space a predeterminable and compared to the normal ambient air reduced oxygen content is set and maintained.
  • an initial gas mixture is provided, which comprises oxygen, nitrogen and optionally other components, wherein from this provided initial gas mixture in a gas separation system at least part of the oxygen separated and provided in this way at the outlet of the gas separation system, a nitrogen-enriched gas mixture , and wherein this nitrogen-enriched gas mixture is conducted into the room atmosphere of the enclosed space.
  • the invention further relates to an inerting system for setting and / or holding a predeterminable and compared to the normal ambient air reduced oxygen content in the room atmosphere of an enclosed space, wherein the inerting has a gas separation system, with which of a nitrogen and oxygen-containing initial gas mixture at least a portion the oxygen is separated and thus provided at the output of the gas separation system, a nitrogen-enriched gas mixture, and wherein the inerting system comprises a supply line system for supplying the nitrogen-enriched gas mixture to the enclosed space.
  • An inerting installation of the aforementioned type is, in particular, a facility for reducing the risk and extinguishing fires in a protected area to be monitored, with the protection space being permanently inertized for fire prevention or fire fighting.
  • the mode of operation of such an inerting system is based on the knowledge that in enclosed spaces the risk of fire can be counteracted by the fact that in the affected area the oxygen concentration is normally lowered permanently to a value of, for example, about 12 to 15% by volume. At this oxygen concentration, most flammable materials can no longer burn.
  • the main areas of use are in particular IT areas, electrical switch and distribution rooms, enclosed facilities as well as storage areas with high-quality assets.
  • the prevention or extinguishing effect resulting from the inertization process is based on the principle of oxygen displacement.
  • Normal ambient air is known to be about 21 vol .-% of oxygen, about 78 vol .-% of nitrogen and about 1 vol .-% of other gases.
  • the oxygen concentration in the relevant space is reduced by introducing inert gas, such as nitrogen.
  • inert gas such as nitrogen.
  • a extinguishing effect already starts when the oxygen content drops below 15% by volume.
  • further lowering of the oxygen content to, for example, 12 vol.% May be required.
  • the risk of a fire developing in the shelter can be effectively reduced.
  • the publication DE 102 49 126 A1 describes a method for generating a low oxygen atmosphere in a room.
  • it is proposed to pump at least part of the air contained in the space out of the room and to replace this part with an oxygen-poor gas.
  • it is proposed to supply a part of the room air to a nitrogen generator, wherein a nitrogen-enriched gas mixture is provided at the outlet of the nitrogen generator and returned to the room atmosphere of the room.
  • the present invention is based on the problem of developing an inerting system of the type mentioned in such a way that adjusted as economically as possible in the enclosed space a predetermined inerting level and can be sustained.
  • a solution is to be specified with which the costs incurred in the inerting of an enclosed space operating costs can be reduced.
  • a corresponding inerting method should be specified, which ensures cost-effective inerting and in particular permanent inerting of an enclosed space.
  • the invention is based on the finding that the nitrogen purity of the gas mixture provided at the outlet of the gas separation system and enriched with nitrogen or the oxygen radical content of the nitrogen-enriched gas mixture provided at the outlet of the gas separation system has an influence on the so-called "settling time".
  • the term “lowering time” is to be understood as the time duration which is necessary in order to set a given inerting level in the room atmosphere of the enclosed space.
  • air factor means the ratio of the amount of initial gas mixture provided per unit time to the gas separation system to the amount of nitrogen-enriched gas provided per unit time at the outlet of the gas separation system.
  • nitrogen purity at the outlet of the gas separation system is freely selectable and can be adjusted on the nitrogen generator. It basically applies that the operating costs of the nitrogen generator are the more favorable, the lower the set nitrogen purity precipitates. For then, with a comparatively short run time of the compressor at the outlet of the gas separation system, a nitrogen-enriched gas mixture with the set nitrogen purity can be provided.
  • rinse factors include, in order to use the provided at the output of the gas separation system and nitrogen-enriched gas mixture, the oxygen in The space atmosphere of the enclosed space to displace so far that the predetermined inerting level is reached or can be maintained.
  • rinsing factors include, in particular, the amount of nitrogen-enriched gas which can be supplied per unit time by the gas separation system, the volume of space of the enclosed space and the difference between the oxygen content currently prevailing in the room atmosphere of the enclosed space and the oxygen content corresponding to the given inerting level.
  • the nitrogen purity of the gas mixture provided at the outlet of the gas separation system or the oxygen radical content of the nitrogen-enriched gas mixture also plays a decisive role, since the purging process proceeds faster, the lower the residual oxygen content the nitrogen-enriched gas mixture.
  • gas separation system used here is to be understood as a system with which an initial gas mixture which has at least the components “oxygen” and “nitrogen” can be split into oxygen-enriched gas and nitrogen-enriched gas , Usually, the operation of such a gas separation system is based on the action of gas separation membranes.
  • the gas separation system used in the present invention is designed in the first line for the separation of oxygen from the initial gas mixture. Such a gas separation system is often referred to as a "nitrogen generator”.
  • a membrane module or the like in which the various components contained in the initial gas mixture (such as oxygen, nitrogen, noble gases, etc.) diffuse at different rates through the membrane according to their molecular structure.
  • a membrane a hollow fiber membrane can be used. Oxygen, carbon dioxide and hydrogen have a high degree of diffusion and, due to this, leave the initial gas mixture relatively quickly when the membrane module flows through it. Nitrogen with a low degree of diffusion penetrates the hollow-fiber membrane of the membrane module very slowly and accumulates in this way as it flows through the hollow fiber or the membrane module.
  • the nitrogen purity or the oxygen radical content in the gas mixture leaving the gas separation system is determined by the flow rate.
  • the gas separation system can be adjusted to the required nitrogen purity and the required amount of nitrogen. Specifically, the purity of the Nitrogen is controlled by the rate at which the gas flows through the membrane (residence time).
  • the separated, oxygen-enriched gas mixture is usually collected and blown into the atmosphere under atmospheric pressure.
  • the compressed, nitrogen-enriched gas mixture is provided at the exit of the gas separation system.
  • the measurement is made on the oxygen radical content in Vol .-%.
  • the nitrogen content is calculated by subtracting the measured residual oxygen content from 100%. It should be noted that this value is indeed referred to as nitrogen content or nitrogen purity, but it is in fact the inert content, since this partial stream not only from nitrogen, but also from other gas components, such as noble gases, composed.
  • the gas separation system or the nitrogen generator is supplied with compressed air, which is cleaned by upstream filter units.
  • PSA nitrogen pressure enriched gas
  • PSA nitrogen pressure enriched gas
  • the general discovery is that different gases diffuse through materials at different rates.
  • the different diffusion rates of the main components of the air namely nitrogen, oxygen and water vapor, are used technically to produce a nitrogen stream or a nitrogen-enriched air.
  • a separation material is applied to the outer surfaces of hollow-fiber membranes, through which water vapor and oxygen diffuse very well. The nitrogen, however, has only a low diffusion rate for this separation material.
  • the degree of nitrogen enrichment in the nitrogen-enriched air provided by the nitrogen generator may be controlled in response to the residence time of the compressed air provided by the compressed air source in the nitrogen separator air separation system.
  • the PSA technology for example, in the nitrogen generator
  • different binding rates of the atmospheric oxygen and atmospheric nitrogen on specially treated activated carbon are utilized.
  • the structure of the activated carbon used is changed so that an extremely large surface with a large number of micro and submicropores (d ⁇ 1 nm) is present.
  • the oxygen molecules of the air diffuse into the pores much faster than the nitrogen molecules, so that the air in the vicinity of the activated carbon enriches with nitrogen.
  • the degree of nitrogen enrichment in the nitrogen-enriched air provided by the nitrogen generator may be controlled as a function of the residence time of the compressed air in the nitrogen generator provided by the compressed air source become.
  • the solution according to the invention is based on the recognition, on the one hand, that with increasing nitrogen purity, the air factor of the gas separation system increases exponentially, and on the other hand, that the compressor of the inerting system must run the longer the lower the difference between in the room atmosphere of the enclosed space currently prevailing oxygen content and the oxygen radical content in the nitrogen-enriched gas mixture.
  • the duration of the lowering of a space to be inerted be it for the holding control of the room at a fixed residual oxygen content or while lowering to a new lowering level, the energy consumption of the inerting is almost directly proportional, as the gas separation system upstream compressor is driven digitally at its operating point with optimal efficiency.
  • the inert gas system for setting a Inertization levels must be operated relatively long. If, for example, the value of the nitrogen purity is increased to 95% by volume, the difference between the oxygen content of the inertization level to be set and the residual oxygen content of the gas mixture provided at the outlet of the gas separation system also increases, which in itself reduces the transit time of the gas mixture required for setting an inertization level Compressor and thus reduces the energy consumption of the inerting system.
  • the fact that the nitrogen purity is increased at the outlet of the gas separation system inevitably also increases the air factor. With regard to the running time of the compressor required for setting an inertization level or the energy consumption of the inerting system, this circumstance has a negative effect. This negative influence predominates when the increase in the air factor caused by increasing the nitrogen purity becomes noticeable.
  • the oxygen radical content in the provided at the output of the gas separation system and nitrogen-enriched gas mixture at the currently prevailing in the room atmosphere of the enclosed space oxygen content is preferably automatically or optionally automatically adapt to this To set the nitrogen purity of the gas separation system to a time-optimized value.
  • time-optimized value of the nitrogen purity means the nitrogen purity of the gas separation system or the residual oxygen content in the nitrogen-enriched gas mixture provided at the outlet of the gas separation system, with which the per Constant amount of nitrogen-enriched gas mixture which can be provided for a given period of time, the time duration for the lowering process assumes a minimum from a current oxygen content to an oxygen content corresponding to a predetermined and inerting level.
  • the oxygen radical content of the nitrogen-enriched gas mixture or the nitrogen purity of the gas separation system is preferably set automatically according to a previously determined characteristic curve.
  • This characteristic indicates the time-optimized course of the oxygen radical content in the nitrogen-enriched gas mixture compared to the oxygen content in the room atmosphere of the enclosed space.
  • the expression "time-optimized course of the oxygen radical content” is understood to mean the time-optimized values of the oxygen radical content which are dependent on the oxygen content in the room atmosphere of the enclosed space.
  • the time-optimized value of the oxygen radical content corresponds to the value of the residual oxygen content to be selected in the gas separation system, so that a predeterminable and in comparison to the normal ambient air reduced oxygen content can be set with the aid of the inerting process in the room atmosphere of the enclosed space within a very short time.
  • the nitrogen purity of the gas separation system or the oxygen radical content in the nitrogen-enriched gas mixture is preferably set automatically depending on the oxygen content currently prevailing in the room atmosphere of the enclosed space, in order to inertize the room with the lowest possible operating costs
  • the current oxygen content in the room atmosphere of the enclosed space is measured either directly or indirectly at predetermined times and / or events.
  • the oxygen radical content in the nitrogen-enriched gas mixture is adjusted to a predetermined, time-optimized value continuously or at given times and / or events. This predetermined, time-optimized value should correspond to a residual oxygen content at which the oxygen content in the room atmosphere of the enclosed space can be lowered within a very short time by a predetermined reduction amount to the current oxygen content with the inerting process.
  • the nitrogen purity of the gas separation system depends on the currently prevailing oxygen content in the room atmosphere of the enclosed space is changed, but also that the oxygen content in the initial gas mixture is changed depending on the currently prevailing in the room atmosphere of the enclosed space oxygen content.
  • the air factor of the gas separation system can be reduced if the initial gas mixture, with which the gas separation system is supplied, has a reduced oxygen content.
  • the amount of fresh air mixed in the room air taken from the room is prevented chosen that the amount of air taken from the room per unit time is identical to the amount of the nitrogen-enriched gas mixture, which is provided at the exit of the gas separation system and per unit time in the space atmosphere of the enclosed space.
  • Fig. 1 shows in a schematic representation of a first exemplary embodiment of an inerting system 1 according to the present invention.
  • the illustrated inerting system 1 serves for setting and maintaining a predeterminable inerting level in the room atmosphere of an enclosed space 2.
  • the enclosed space 2 can be, for example, a storage hall in which the oxygen content in the room air as a preventive fire protection measure is reduced to a certain inerting level of, for example, 12 vol. % or 13 vol .-% oxygen content is lowered and maintained.
  • the inerting of the enclosed space 2 is optionally carried out automatically with the aid of a control device 5.
  • the inerting system 1 according to the in Fig. 1 illustrated embodiment, a gas separation system consisting of a compressor 3 and a nitrogen generator 4.
  • the compressor 3 serves to provide the nitrogen generator 4 in a compressed manner, an initial gas mixture having at least the components of oxygen and nitrogen.
  • the output of the compressor 3 is connected via a line system 17 to the inlet of the nitrogen generator 4 in order to supply the nitrogen generator 4 with the compressed initial gas mixture.
  • the initial gas mixture is compressed to a pressure of for example 7.5 to 9.5 bar and preferably 8.8 bar.
  • the nitrogen generator 4 has at least one membrane module 19, for example a hollow-fiber membrane module, through which the initial gas mixture provided by the compressor 3 is pressed after it has passed through a suitable filter 18.
  • the various components (in particular oxygen and nitrogen) contained in the initial gas mixture diffuse at different rates through the hollow-fiber membranes of the membrane module 19 in accordance with their molecular structure.
  • the gas separation is based on the known principle of action, according to which nitrogen with a low degree of diffusion the hollow fiber membrane penetrates very slowly and accumulates in this way when flowing through the hollow fibers of the membrane module 19.
  • a nitrogen-enriched gas mixture is provided in this way. This enriched with nitrogen gas mixture is - as well as the input of the nitrogen generator 4 fed initial gas mixture - in compressed form, although the flow through the at least one membrane module 19 of the nitrogen generator 4 to a pressure drop of, for example, 1.5 to 2.5 bar leads.
  • the nitrogen generator 4 deposited and enriched with oxygen gas mixture is collected and blown off under atmospheric pressure in the environment.
  • the nitrogen-enriched gas mixture provided at the outlet 4a of the nitrogen generator 4 is supplied via a supply line 7 to the enclosed space 2 in order to reduce the oxygen content in the room atmosphere of the enclosed space 2 or by a lowering level already set in the space 2 by tracking with Maintain nitrogen-enriched gas.
  • a suitable pressure relief is to be provided. This can, for example, in the form of self-opening or closing pressure relief valves (in Fig. 1 not shown) executed.
  • the volume of room air to be discharged during the inerting of the room 2 for the purpose of depressurization is fed via a return line system 9 to a mixing chamber 6.
  • the discharged from the enclosed space 2 room air is supplied via a first input 9a of the return line 9 of the mixing chamber 6.
  • the mixing chamber 6 also has a second input 8a, in which a supply line system 8 for supplying Fresh air to the mixing chamber 6 opens.
  • the initial gas mixture is provided, which is compressed by means of the compressor 3, and from which in the gas separation system (nitrogen generator 4) at least a part of the oxygen is separated. For this reason, the output of the mixing chamber 6 is connected to the input of the compressor 3 via a suitable conduit system 15.
  • the amount of fresh air, which is mixed with the room air taken from the room 2 is selected so that the amount of room air taken from the room 2 per unit time is identical with the amount of nitrogen gas-enriched gas mixture provided at the outlet 4a of the nitrogen generator 4, which is conducted per unit time into the room atmosphere of the enclosed space 2.
  • the inerting system 1 according to the in Fig. 1 schematically illustrated embodiment of the present invention is characterized in that the aforementioned control device 5 is connected to the corresponding controllable components of the inerting 1 and designed to automatically control the nitrogen generator 4 and the gas separation system 3, 4 such that the output 4a of Gasseparationssystems 3, 4 provided and enriched with nitrogen gas mixture has a residual oxygen content, which depends on the currently prevailing in the room atmosphere of the enclosed space 2 oxygen content.
  • the nitrogen generator 4 is controlled such that, depending on the oxygen content measured in the room atmosphere of the enclosed space 2 with the aid of an oxygen measuring system 16, the nitrogen-enriched gas mixture has an oxygen radical content between 10, 00 vol .-% to 0.01 vol .-%, wherein the oxygen radical content of the nitrogen-enriched gas mixture decreases with decreasing oxygen content in the room atmosphere of the enclosed space.
  • the inerting system 1 in addition to the already mentioned oxygen measuring system 16 for measuring or determining the actual oxygen content in the room atmosphere of the enclosed space 2, further comprises an oxygen radical content measuring system 21 for measuring the oxygen radical content in the outlet 4a of the nitrogen generator 4 provided and enriched with nitrogen gas mixture or for determining the nitrogen purity of the provided at the output 4a of the nitrogen generator 4 gas mixture. Both measuring systems 16, 21 are connected to the control device 5 accordingly.
  • Fig. 2 is shown in a schematic view of an inerting system 1 according to a second embodiment of the present invention.
  • the inerting system 1 according to the second embodiment is particularly suitable for setting and maintaining a predetermined inerting level in the most economical manner in an air-conditioned space, such as in a cold room or in a cold storage warehouse.
  • the structure and operation of the inerting system 1 according to the in Fig. 2 illustrated embodiment substantially correspond to the structure and operation of the previously with reference to Fig. 1 described inertization, so that in order to avoid repetition will be discussed below only the differences.
  • a heat exchanger system 13 is provided. Furthermore, it is advantageous if - as in Fig. 2 indicated - the return line system 9 with a corresponding thermal insulation 20 at least partially shrouded, so icing of the return line system 9 can be avoided if the discharged from the enclosed space 2, cooled room air is supplied via the return line 9 to the heat exchanger system 13 before the room air then is passed into the mixing chamber 6. If required, the heat exchanger system 13 can have a support fan 14, so that the room air can be removed from the room atmosphere of the enclosed space 2 without loss of pressure.
  • the heat exchanger system 13 is used to exploit at least a portion of the heat generated during operation of the compressor 3 waste heat to heat up the discharged and cooled room air accordingly.
  • different systems are used, such as a finned heat exchanger, via which at least a portion of the thermal energy of the exhaust air of the compressor 3 via a heat exchange medium, such as water, is transferred to the discharged room air, so that the temperature of the discharged room air to warm to a moderate temperature, for example, 20 ° C, which is for the operation and efficiency of the nitrogen generator 4 is advantageous.
  • the mixing chamber 6 After the room air discharged from the enclosed space 2 has passed through the heat exchanger system 13, it is supplied to the mixing chamber 6 via a first input 9a of the return line 9.
  • the mixing chamber 6 also has a second input 8a, in which a supply line system 8 for supplying fresh air to the mixing chamber 6 opens.
  • the initial gas mixture is provided, which is compressed by means of the compressor 3, and from which in the gas separation system (nitrogen generator 4) at least a part of the oxygen is separated. For this reason, the output of the mixing chamber 6 is connected to the input of the compressor 3 via a suitable conduit system 15.
  • the nitrogen purity of the nitrogen generator 4 is set and adjusted during the inerting of the enclosed space 2 as a function of the current oxygen content in the room atmosphere of the enclosed space.
  • the nitrogen purity can be changed by varying the residence time of the initial gas mixture in the at least one membrane module 19 of the nitrogen generator 4.
  • the flow through the membrane module 19 and a back pressure are controlled at the outlet of the membrane module 19 with a suitable control valve 24.
  • a high pressure on the membrane and a long residence time (low flow) lead to a high nitrogen purity at the output 4a of the nitrogen generator.
  • a time-optimized value is selected for the respective nitrogen purity, which enables the inerting system to set and maintain a predefined inerting level in the enclosed space 2 in the shortest possible time.
  • a time-optimized value for nitrogen purity it is possible to set and maintain a given level of inerting in the room atmosphere of the enclosed space, the duration of the sinking operation (be it for holding at a fixed residual oxygen level or during the lowering to a new lowering level) and thus also to reduce the energy consumption of the inerting system, since the compressor 3 is driven on its operating point with optimum efficiency digitally (on / off).
  • the inerting system 1 is characterized according to the in Fig. 1 or in Fig. 2 illustrated embodiment in that the gas separation system consisting of the compressor 3 and the nitrogen generator 4 from the mixing chamber 6, an initial gas mixture is provided which has an oxygen content lower than the oxygen content of normal ambient air (ie about 21 vol .-%) can be.
  • the already mentioned return line 9 is provided, with which at least a part of the room air of the enclosed space 2 of the mixing chamber 6 can be supplied in a controlled by the control device 5 via the valve 11 way. Accordingly, if the oxygen content is already reduced in the enclosed space 2, a gas mixture enriched with nitrogen in comparison with the normal ambient air is supplied to the mixing chamber 6 via the return line 9.
  • This part of the room air is mixed in the mixing chamber 6 with supply air to provide for the compressor 3 and the nitrogen generator 4, the required amount of the initial gas mixture. Since the oxygen content of the initial gas mixture has an influence on the air factor of the gas separation system or the nitrogen generator 4, and thus also has an influence on the time-optimized value of the nitrogen purity of the nitrogen generator 4, in the Fig. 1 illustrated embodiment of the inerting system 1 according to the invention in the conduit system 15 between the output of the mixing chamber 6 and the input of the compressor 3, an oxygen measuring system 22 for measuring the oxygen content in the output gas mixture provided.
  • the composition of the initial gas mixture (in particular with regard to the oxygen content) can be suitably influenced by suitably activating the valves 10 and 11.
  • Fig. 3 is a graph of the air factor at the in Fig. 1 or Fig. 2 schematically illustrated inerting system 1 for use coming nitrogen generator 4 shown at different nitrogen purities. Accordingly, it should be noted that the air factor increases exponentially with decreasing residual oxygen content in the nitrogen-enriched gas mixture provided at the exit 4a of the nitrogen generator 4.
  • the air factor at an oxygen radical content of 10% by volume is about 1.5, which means that per m 3 of initial gas mixture at the outlet 4 a of the nitrogen generator 4 an amount of 0.67 m 3 can be provided to nitrogen-enriched gas mixture. This ratio deteriorates with increasing nitrogen purity, as shown in the graph in FIG Fig. 3 can be removed.
  • Fig. 3 is shown in addition to the evolution of the air factor, how the crizabsenkzeit at different nitrogen purities with increasing nitrogen purity behaves. Specifically, on the one hand it is shown how long the compressor 3 has to run in order to reduce the oxygen content in the room atmosphere of the enclosed space 2 from originally 17.4% by volume to 17.0% by volume. In addition to this, on the other hand it is shown how long the compressor 3 has to run in order according to the inerting system 1 Fig. 1 or Fig. 2 in the room air atmosphere of the enclosed space 2 to lower the oxygen content from originally 13.4 vol .-% to 13.0 vol .-%.
  • the lowering time of the compressor 3 for setting a predetermined inertization level in the room air atmosphere of the enclosed space 2 is dependent on the set at the nitrogen generator 4 nitrogen purity or depending on the set on the nitrogen generator 4 oxygen radical content in that at the output 4a of the nitrogen generator 4th provided and enriched with nitrogen gas mixture.
  • time-optimized nitrogen purity The respective minima of the lowering time compared to the nitrogen purity is referred to below as "time-optimized nitrogen purity".
  • time-optimized nitrogen purity In the illustration according to Fig. 4 is the time-optimized nitrogen purity in the inerting 1 according to Fig. 1 or Fig. 2 shown. Specifically, the time-optimized purity is given for different oxygen concentrations in the room atmosphere of the enclosed space 2, which for the gas separation system 3, 4 of the inerting system 1 according to Fig. 1 or Fig. 2 applies.
  • the in Fig. 4 is shown directly that the nitrogen generator 4 is set so that decreases with decreasing oxygen content in the room atmosphere of the enclosed space 2 of the oxygen radical content in the provided at the output 4a of the gas separation system 3, 4 gas mixture. Accordingly, when the nitrogen purity of the nitrogen generator when inerting the enclosed space 2 according to the in Fig. 4 is operated, it is possible to set the lowest possible running time of the compressor 3 and thus with the least possible expenditure of energy, the predetermined inerting in the room atmosphere of the enclosed space 2 and hold.
  • Fig. 5 is shown in a graph of the influence of the oxygen content in the initial gas mixture on the air factor of the gas separation system 3, 4.
  • the air factor at a fixed nitrogen purity of the gas separation system 3, 4 decreases with reduction of the oxygen content in the initial gas mixture.
  • the return line 9 is provided, via which part of the (possibly already enriched with nitrogen) room air is supplied in a controlled manner to the mixing chamber 6, in order in this way the oxygen content in the initial gas mixture of the original 21 vol .-% (oxygen content of normal ambient air).
  • the air factor of the gas separation system 3, 4 can thus be further reduced, so that the efficiency of the gas separation system 3, 4 increases and the energy to be set and maintained for setting a given inertization level can be further reduced.
  • the in Fig. 5 illustrated characteristic with the previously with reference to the graphs in the FIGS. 3 and 4 thus combined, that for each oxygen concentration in the initial gas mixture and in the space 2, an optimized delivery unit of the nitrogen is found.
  • Fig. 6 are - for a calculated application - achievable energy savings (in%) over the set in the room atmosphere of an enclosed space oxygen content shown when the solution according to the invention, the oxygen concentration in the room atmosphere of the enclosed space is lowered.
  • a case was considered in which on the one hand during the inerting of the space for the nitrogen purity of the nitrogen generator, the time-optimized nitrogen purity was selected, and on the other hand, a recirculation of the already enriched with nitrogen room air was carried out to in this way the air factor of the Nitrogen generator continues to reduce and increase its efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation Of Gases By Adsorption (AREA)

Claims (16)

  1. Procédé d'inertisation pour la prévention contre les incendies et/ou l'extinction d'incendies, dans lequel on établit et on maintient dans l'atmosphère d'un local fermé (2) une teneur en oxygène prédéterminée et réduite par comparaison à l'air environnant normal, ledit procédé comprenant les étapes suivantes :
    - on prépare un mélange gazeux initial qui comprend de l'oxygène, de l'azote et le cas échéant d'autres composants ;
    - dans un système de séparation de gaz (3, 4) on sépare au moins une partie de l'oxygène hors du mélange gazeux initial et on prépare de cette façon à la sortie (4a) du système de préparation de gaz (3, 4) un mélange gazeux enrichi en azote ; et
    - le mélange gazeux enrichi en azote est amené dans l'atmosphère du local fermé (2),
    caractérisé en ce que
    le système de séparation de gaz (3, 4) est piloté de telle façon que la teneur résiduelle en oxygène du mélange gazeux enrichi en azote est régulée à une valeur qui est sélectionnée en fonction de la teneur en oxygène régnant actuellement dans l'atmosphère du local fermé.
  2. Procédé d'inertisation selon la revendication 1,
    dans lequel la teneur résiduelle en oxygène du mélange gazeux enrichi en azote est réduite lorsque la teneur en oxygène dans l'atmosphère du local fermé (2) diminue.
  3. Procédé d'inertisation selon la revendication 1 2,
    dans lequel la teneur résiduelle en oxygène du mélange gazeux enrichi en azote est établie selon une courbe caractéristique préalablement déterminée, ladite courbe caractéristiques imposant la valeur, optimisée vis-à-vis du temps, de la teneur résiduelle en oxygène du mélange gazeux enrichi en azote par rapport à la teneur en oxygène dans l'atmosphère du local fermé (2), valeur selon laquelle on peut établir dans l'atmosphère du local fermé (2) avec le procédé d'inertisation à l'intérieur du temps le plus court une teneur en oxygène prédéterminé et réduite par comparaison à l'air environnant normal.
  4. Procédé d'inertisation selon la revendication 1 ou 2,
    dans lequel on mesure directement ou indirectement, en continu ou à des instants et/ou des événements prédéterminés, la teneur en oxygène régnant actuellement dans l'atmosphère du local fermé (2), et on établit en continu ou à des instants et/ou à des événements prédéterminés la teneur résiduelle en oxygène du mélange gazeux enrichi en azote à une valeur préalablement fixée, à laquelle la teneur en oxygène dans l'atmosphère du local fermé peut être réduite au moyen du procédé d'inertisation à l'intérieur du temps le plus court à raison d'une amplitude réduite prédéterminée par rapport à la teneur respective actuelle en oxygène.
  5. Procédé d'inertisation selon l'une des revendications 1 à 4,
    dans lequel la teneur résiduelle en oxygène du mélange gazeux enrichi en azote est établie en fonction de la teneur actuelle en oxygène dans l'atmosphère du local fermé à une valeur entre 0,01 volume % et 10,00 volume %, et de préférence à une valeur entre 5,5 volume % et 7,5 volume %.
  6. Procédé d'inertisation selon l'une des revendications 1 à 5,
    dans lequel la teneur en oxygène du mélange gazeux initial hors duquel on sépare au moins une partie de l'oxygène est modifiée en fonction de la teneur en oxygène régnant actuellement dans l'atmosphère du local fermé (2).
  7. Procédé d'inertisation selon l'une des revendications 1 à 6,
    dans lequel pour préparer le mélange gazeux initial on prélève hors du local (2) de manière régulée une partie de l'air contenu dans le local fermé (2), et on ajoute de l'air frais de manière régulée à la partie prélevée de l'air du local.
  8. Procédé d'inertisation selon la revendication 7,
    dans lequel la quantité d'air frais qui est ajoutée par unité de temps à l'air prélevé hors du local (2) est choisie de telle façon que la quantité d'air prélevée par unité de temps hors du local (2) est identique à la quantité du mélange gazeux enrichi en azote qui est amenée par unité de temps dans l'atmosphère du local fermé (2).
  9. Procédé dînait utilisation selon l'une des revendications 1 à 8,
    dans lequel la teneur résiduelle en oxygène du mélange gazeux enrichi en azote est établie automatiquement fonction de la teneur en oxygène régnant actuellement dans l'atmosphère du local fermé (2).
  10. Installation d'inertisation pour établir et/ou maintenir dans l'atmosphère d'un local fermé (2) une teneur en oxygène prédéterminée et réduite par comparaison à l'air environnant normal, ladite installation d'inertisation (1) comprenant un système de séparation de gaz (3, 4) au moyen duquel on sépare, depuis un mélange gazeux initial qui contient de l'azote et de l'oxygène, au moins une partie de l'oxygène et on prépare de cette façon à la sortie (4a) du système de séparation de gaz (3, 4) un mélange gazeux enrichi en azote, et ladite installation d'inertisation (1) comprend un système de conduite d'amenée (7) pour amener au local fermé (2) le mélange gazeux enrichi en azote,
    caractérisée par
    un système de commande (5) qui est conçu pour piloter le système de séparation de gaz (3, 4) de telle façon que la teneur résiduelle en oxygène du mélange gazeux enrichi en azote est régulée à une valeur qui est sélectionnée en fonction de la teneur en oxygène régnant actuellement dans l'atmosphère du local fermé (10).
  11. Installation d'inertisation selon la revendication 10,
    dans laquelle le système de commande (5) est en outre conçu pour piloter le système de séparation de gaz (3, 4) en fonction de la teneur en oxygène régnant actuellement dans l'atmosphère du local fermé de telle façon que la teneur résiduelle en oxygène du mélange gazeux préparé à la sortie (4a) du système de séparation de gaz (3, 4) et enrichi en azote est automatiquement réduite quand la teneur en oxygène dans l'atmosphère du local fermé (2) diminue ; et/ou
    dans laquelle le système de commande (5) est en outre conçu pour piloter le système de séparation de gaz (3, 4) de telle façon que le mélange gazeux préparé à la sortie (4a) du système de séparation de gaz (3, 4) et enrichi en azote présente une teneur résiduelle en oxygène entre 10,00 volume % et 0,01 volume %.
  12. Installation d'inertisation selon l'une des revendications 10 ou 11,
    qui comprend en outre un système de mesure d'oxygène (16) conçu pour détecter en continu ou à des instants et/ou des événements prédéterminés la teneur en oxygène dans l'atmosphère du local et pour fournir la valeur de la teneur en oxygène détectée au système de commande (5) à titre de teneur en oxygène actuelle.
  13. Installation d'inertisation selon l'une des revendications 10 à 12,
    dans laquelle il est en outre prévu une chambre de mélange (6) pour préparer le mélange gazeux initial, dans laquelle un premier système de conduites (9) débouche dans la chambre de mélange (6), au moyen duquel une partie de l'air contenu dans le local fermé (2) est prélevée hors du local (2) d'une manière régulée par le système de commande (5) et est amenée à la chambre de mélange (6), et dans laquelle un second système de conduites (8) débouche dans la chambre de mélange (6), au moyen duquel de l'air frais est amené à la chambre de mélange (6) d'une manière régulée par le système de commande (5).
  14. Installation d'inertisation selon la revendication 13,
    qui comprend en outre, dans le premier système de conduites (9), une première soupape (11), en particulier une soupape d'isolement, pilotée par le système de commande (5), et dans le second système de conduites (8), une seconde soupape (10), en particulier une soupape d'isolement, pilotée par le système de commande (5), ledit système de commande (5) étant conçu pour piloter la première et/ou la seconde soupape (11, 10) de telle manière que la quantité d'air prélevé par unité de temps hors du local (2) est identique à la quantité de mélange gazeux enrichi en azote qui est amenée par unité de temps à l'atmosphère du local fermé (2).
  15. Installation d'inertisation selon la revendication 13 ou 14,
    dans laquelle le système de séparation de gaz (3, 4) comprend un générateur d'azote (4) et un compresseur (3), dans laquelle la pureté de l'azote ou la teneur résiduelle en oxygène du mélange gazeux préparé à la sortie (4a) du générateur d'azote (4) et enrichi en azote est susceptible d'être réglée au moyen du système de commande (5), et dans laquelle le compresseur (3) est agencé entre la chambre de mélange (6) et le générateur d'azote (4).
  16. Installation d'inertisation selon l'une des revendications 13 à 15,
    dans laquelle un système échangeur de chaleur (13) est prévu dans le premier système de conduites (9) pour transférer de l'énergie thermique entre l'air prélevé hors du local fermé (2) et la chaleur dégagée par le compresseur (3).
EP08171495A 2008-12-12 2008-12-12 Procédé d'inertisation de prévention contre les incendies et/ou d'extinction d'incendies, et une installation d'inertisation destinée à l'exécution du procédé Active EP2204219B1 (fr)

Priority Applications (17)

Application Number Priority Date Filing Date Title
AT08171495T ATE503531T1 (de) 2008-12-12 2008-12-12 Inertisierungsverfahren zur brandverhütung und/oder feuerlöschung sowie inertisierungsanlage zur durchführung des verfahrens
EP08171495A EP2204219B1 (fr) 2008-12-12 2008-12-12 Procédé d'inertisation de prévention contre les incendies et/ou d'extinction d'incendies, et une installation d'inertisation destinée à l'exécution du procédé
PL08171495T PL2204219T3 (pl) 2008-12-12 2008-12-12 Sposób zobojętniania w celu zapobiegania pożarom i/lub zwalczania pożarów oraz urządzenie zobojętniające do zastosowania tego sposobu
SI200830215T SI2204219T1 (sl) 2008-12-12 2008-12-12 Postopek inertizacije za preprečevanje požarov in/ali gašenje ognja ter inertizacijski sistem za izvajanje postopka
ES08171495T ES2363276T3 (es) 2008-12-12 2008-12-12 Método de inertización o extinción para impedir y/o extinguir incendios y sistema de inertización para implementar el método.
DK08171495.8T DK2204219T3 (da) 2008-12-12 2008-12-12 Inertiseringsfremgangsmåde til brandforebyggelse og/eller brandslukning og inertiseringsanlæg til gennemførelse af fremgangsmåden
DE502008003046T DE502008003046D1 (de) 2008-12-12 2008-12-12 Inertisierungsverfahren zur Brandverhütung und/oder Feuerlöschung sowie Inertisierungsanlage zur Durchführung des Verfahrens
BRPI0916132A BRPI0916132A2 (pt) 2008-12-12 2009-12-11 ''método inerte prevenir e/ou extinguir incêndios e sistema inerte para definir e/ou manter um conteúdo de oxigênio pré definível
AU2009324303A AU2009324303B2 (en) 2008-12-12 2009-12-11 Inerting method for fire prevention and/or fire extinguishing and inerting system for carrying out the method
RU2011126661/12A RU2492890C2 (ru) 2008-12-12 2009-12-11 Способ инертирования для предотвращения и/или тушения пожара и система инертирования для осуществления указанного способа
JP2011540119A JP5492220B2 (ja) 2008-12-12 2009-12-11 火災防止および/または消火用不活性化方法、およびその方法を実現する不活性化システム
CA2736211A CA2736211C (fr) 2008-12-12 2009-12-11 Procede d'inertisation pour la prevention et/ou l'extinction des incendies, ainsi qu'installation d'inertisation pour la mise en oeuvre du procede
CN2009801401980A CN102176949B (zh) 2008-12-12 2009-12-11 用于防火和/或灭火的惰性化方法以及实施该方法的惰性化系统
PCT/EP2009/066920 WO2010066875A1 (fr) 2008-12-12 2009-12-11 Procédé d'inertisation pour la prévention et/ou l'extinction des incendies, ainsi qu'installation d'inertisation pour la mise en œuvre du procédé
US12/637,599 US8727031B2 (en) 2008-12-12 2009-12-14 System and method for preventing or extinguishing fire
HK10108345.3A HK1141747A1 (en) 2008-12-12 2010-09-02 Inertisation method to prevent and/or extinguish fires and inertisation system to implement the method
ZA2011/04869A ZA201104869B (en) 2008-12-12 2011-07-01 Inerting method for fire prevention and/or fire extinguishing and inerting system for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08171495A EP2204219B1 (fr) 2008-12-12 2008-12-12 Procédé d'inertisation de prévention contre les incendies et/ou d'extinction d'incendies, et une installation d'inertisation destinée à l'exécution du procédé

Publications (2)

Publication Number Publication Date
EP2204219A1 EP2204219A1 (fr) 2010-07-07
EP2204219B1 true EP2204219B1 (fr) 2011-03-30

Family

ID=40589785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08171495A Active EP2204219B1 (fr) 2008-12-12 2008-12-12 Procédé d'inertisation de prévention contre les incendies et/ou d'extinction d'incendies, et une installation d'inertisation destinée à l'exécution du procédé

Country Status (17)

Country Link
US (1) US8727031B2 (fr)
EP (1) EP2204219B1 (fr)
JP (1) JP5492220B2 (fr)
CN (1) CN102176949B (fr)
AT (1) ATE503531T1 (fr)
AU (1) AU2009324303B2 (fr)
BR (1) BRPI0916132A2 (fr)
CA (1) CA2736211C (fr)
DE (1) DE502008003046D1 (fr)
DK (1) DK2204219T3 (fr)
ES (1) ES2363276T3 (fr)
HK (1) HK1141747A1 (fr)
PL (1) PL2204219T3 (fr)
RU (1) RU2492890C2 (fr)
SI (1) SI2204219T1 (fr)
WO (1) WO2010066875A1 (fr)
ZA (1) ZA201104869B (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2204219T1 (sl) * 2008-12-12 2011-06-30 Amrona Ag Postopek inertizacije za preprečevanje požarov in/ali gašenje ognja ter inertizacijski sistem za izvajanje postopka
PL2462994T3 (pl) * 2010-12-10 2014-01-31 Amrona Ag Sposób zobojętniania dla zapobiegania i/lub gaszenia pożarów oraz system zobojętniania do stosowania tego sposobu
US20120217028A1 (en) * 2011-02-24 2012-08-30 Kidde Technologies, Inc. Active odorant warning
EP2763753B1 (fr) * 2011-10-07 2018-12-26 Engineered Corrosion Solutions, LLC Ensemble conduit d'évacuation de gaz d'inertage, système d'inertage qui utilise l'ensemble conduit d'évacuation de gaz et procédé d'inertage d'un système d'extincteur automatique à eau de protection contre les incendies
PT3141287T (pt) * 2012-10-29 2022-12-05 Amrona Ag Processo e dispositivo para determinar e/ou monitorizar a estanquidade ao ar de um espaço fechado
CN104460720B (zh) * 2013-09-12 2017-05-31 湖南华望熏蒸消毒有限公司 一种氮气气调控制方法及系统
CN104841070A (zh) * 2015-02-12 2015-08-19 尤文峰 室内防火装置
CN105258451A (zh) * 2015-11-06 2016-01-20 陕西纳通机械科技有限公司 一种气体发生方法及装置
WO2018119098A1 (fr) * 2016-12-20 2018-06-28 Carrier Corporation Système et procédé de protection contre l'incendie pour enceinte
CN106621124A (zh) * 2017-02-21 2017-05-10 厦门泰消防科技开发有限公司 公共汽车专用灭火器
EP3626327B1 (fr) * 2018-09-19 2023-11-01 Wagner Group GmbH Procédé d'inertisation et installation d'inertisation, en particulier destinés à la prévention des incendies, et utilisation d'une installation d'inertisation
CN110090374A (zh) * 2019-04-19 2019-08-06 高邮摩世勒公共安全设备有限公司 机车锂电储能装置防灭火装置与方法
CN112043997B (zh) * 2020-09-09 2021-12-14 浦江县承玥电子科技有限公司 一种无水源地区野外露营用烧烤架快速灭火降温装置
CN114042278A (zh) * 2021-10-26 2022-02-15 中国核电工程有限公司 一种核燃料后处理厂的控火方法及控火系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU674890B2 (en) * 1992-10-20 1997-01-16 Marioff Corporation Oy Method and installation for fighting fire
JP3719565B2 (ja) * 1997-03-27 2005-11-24 能美防災株式会社 消火方法および消火装置
JP3947610B2 (ja) * 1998-02-17 2007-07-25 能美防災株式会社 消火装置
JP2000102717A (ja) * 1998-09-29 2000-04-11 Tokico Ltd 気体分離装置
JP2001046536A (ja) * 1999-08-12 2001-02-20 Purosasu:Kk 機器火災抑制方法及び装置
CN1431027A (zh) 2002-01-11 2003-07-23 廖赤虹 一种用于非开放空间的火灾灭火方法及系统
JP4163908B2 (ja) * 2002-07-10 2008-10-08 大陽日酸株式会社 高圧ガスの定量供給装置
DE10249126B4 (de) 2002-10-22 2004-08-19 Minimax Gmbh Verfahren und Anlage zum Erzeugen einer sauerstoffarmen Atmosphäre
CN1533814A (zh) 2003-03-27 2004-10-06 廖赤虹 一种用于封闭空间的火灾预防及灭火设备
JP3903115B2 (ja) * 2003-05-27 2007-04-11 消防庁長官 火災防止システム
EP1550482B1 (fr) * 2003-12-29 2010-04-14 Amrona AG Procédé d'inertisation pour l'extinction des incendies
JP4679113B2 (ja) * 2004-10-29 2011-04-27 株式会社竹中工務店 低酸素濃度防火システム
DE502006003825D1 (de) * 2006-10-19 2009-07-09 Amrona Ag Inertisierungsvorrichtung mit Stickstoffgenerator
EP1913980B1 (fr) 2006-10-19 2009-01-14 Amrona AG Dispositif pour l'inertisation avec dispositif de securite
SI1930048T1 (sl) * 2006-12-08 2012-04-30 Amrona Ag Postopek in naprava za regulirano dovajanje dovodnega zraka
ES2549754T3 (es) * 2007-08-01 2015-11-02 Amrona Ag Dispositivo y procedimiento para la prevención de incendios y para la extinción de un incendio que se ha producido en una sala cerrada
MX2009002415A (es) * 2007-08-01 2009-05-11 Amrona Ag Metodo de inertizacion para reducir el riesgo de inicio de incendio en un espacio cerrado, asi como un dispositivo para llevar a cabo el metodo.
SI2204219T1 (sl) * 2008-12-12 2011-06-30 Amrona Ag Postopek inertizacije za preprečevanje požarov in/ali gašenje ognja ter inertizacijski sistem za izvajanje postopka
JP5447794B2 (ja) 2009-05-08 2014-03-19 セイコーエプソン株式会社 発光装置

Also Published As

Publication number Publication date
WO2010066875A1 (fr) 2010-06-17
JP5492220B2 (ja) 2014-05-14
US8727031B2 (en) 2014-05-20
US20100155088A1 (en) 2010-06-24
CN102176949B (zh) 2013-08-14
DE502008003046D1 (de) 2011-05-12
JP2012511363A (ja) 2012-05-24
SI2204219T1 (sl) 2011-06-30
ZA201104869B (en) 2012-03-28
PL2204219T3 (pl) 2011-07-29
CN102176949A (zh) 2011-09-07
ES2363276T3 (es) 2011-07-28
AU2009324303B2 (en) 2014-06-05
AU2009324303A1 (en) 2010-06-17
RU2011126661A (ru) 2013-01-20
RU2492890C2 (ru) 2013-09-20
DK2204219T3 (da) 2011-06-06
ATE503531T1 (de) 2011-04-15
BRPI0916132A2 (pt) 2015-11-03
EP2204219A1 (fr) 2010-07-07
CA2736211A1 (fr) 2010-06-17
HK1141747A1 (en) 2010-11-19
CA2736211C (fr) 2016-08-09

Similar Documents

Publication Publication Date Title
EP2204219B1 (fr) Procédé d'inertisation de prévention contre les incendies et/ou d'extinction d'incendies, et une installation d'inertisation destinée à l'exécution du procédé
EP2462994B1 (fr) Procédé d'inertisation de prévention contre les incendies et/ou d'extinction d'incendies, ainsi qu'installation d'inertisation destinée à l'exécution du procédé
EP1913978B1 (fr) Dispositif pour inertiser avec un générateur d'azote
EP2801392B1 (fr) Procédé d'inertisation et installation de réduction d'oxygène
DE60300751T2 (de) Sauerstoff- und Inertgasgenerator
EP1683548B1 (fr) Procédé d'inertisation pour éviter des incendies
EP2186546B1 (fr) Installation de gaz inerte destinée à la réduction du risque et à l'extinction d'incendies dans un espace protégé
EP2724754B1 (fr) Procédé et dispositif de détermination et/ou de surveillance de l'étanchéité à l'air d'une pièce fermée
EP0022178B1 (fr) Procédé d'adsorption cyclique pour la séparation d'un mélange gazeux
DE10205373B4 (de) Brandschutz
DE69008262T2 (de) Trennung von Gasmischungen.
DE4033140C2 (de) Druckwechsel-Adsorptionsverfahren und Vorrichtung zur Durchführung des Verfahrens
EP0045404A2 (fr) Dispositif d'approvisionnement en gaz respirable
DE3403635A1 (de) Verfahren zum entfeuchten von kohlenwasserstoffe enthaltenden gasen
EP1581330A1 (fr) Procece et dispositif permettant de reduire la concentration de l'air en dioxyde de carbone
EP1746678B1 (fr) Procédé pour évacuation de l'eau et des gaz inertes dans un assemblage de piles à combustible et assemblage de piles à combustible
EP2105166A1 (fr) Dispositif destiné à combattre des incendies dans un véhicule
DE102005023101B4 (de) Verfahren zum Einbringen eines Inertgases und Anlage zum Inertisieren
EP4380717A1 (fr) Appareil et procédé de traitement simultané de différents flux de gaz fluctuants
EP3025772A1 (fr) Procédé et dispositif de contrôle de quantité et de pureté pour des installations d'adsorption modulée en pression
EP1273321B1 (fr) Dispositif de lutte contre l'incendie à mousse à air comprimé
WO2014048833A1 (fr) Pile à combustible comprenant une alimentation en air et une évacuation d'air
EP3626327B1 (fr) Procédé d'inertisation et installation d'inertisation, en particulier destinés à la prévention des incendies, et utilisation d'une installation d'inertisation
DE102009010419A1 (de) Vorrichtung und Verfahren zur Abtrennung von Stickstoff
DE60130997T2 (de) Adsorptionsverfahren und vorrichtung zur herstellung von stickstoff und eine solche vorrichtung enthaltender getränkespender

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A62C 99/00 20100101ALI20101004BHEP

Ipc: A62C 35/62 20060101AFI20101004BHEP

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1141747

Country of ref document: HK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KERSTEN, PETER UWE

Inventor name: EBERLEIN, ANSELM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008003046

Country of ref document: DE

Date of ref document: 20110512

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003046

Country of ref document: DE

Effective date: 20110512

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2363276

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110701

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 9316

Country of ref document: SK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110330

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1141747

Country of ref document: HK

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20110330

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E010863

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110801

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110730

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: IPRIS GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008003046

Country of ref document: DE

Effective date: 20120102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20161227

Year of fee payment: 9

Ref country code: FI

Payment date: 20161213

Year of fee payment: 9

Ref country code: HU

Payment date: 20161221

Year of fee payment: 9

Ref country code: DK

Payment date: 20161221

Year of fee payment: 9

Ref country code: SK

Payment date: 20161212

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20161129

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 9316

Country of ref document: SK

Effective date: 20171212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20180806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171213

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20201209

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20211221

Year of fee payment: 14

Ref country code: CZ

Payment date: 20211213

Year of fee payment: 14

Ref country code: IE

Payment date: 20211222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20211221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220218

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221212

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221213

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231222

Year of fee payment: 16

Ref country code: NL

Payment date: 20231220

Year of fee payment: 16

Ref country code: IT

Payment date: 20231228

Year of fee payment: 16

Ref country code: FR

Payment date: 20231221

Year of fee payment: 16

Ref country code: DE

Payment date: 20231214

Year of fee payment: 16

Ref country code: AT

Payment date: 20231221

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231201

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 16