EP2192376B1 - Dispositif propulsif à progressivité regulée - Google Patents

Dispositif propulsif à progressivité regulée Download PDF

Info

Publication number
EP2192376B1
EP2192376B1 EP20090290837 EP09290837A EP2192376B1 EP 2192376 B1 EP2192376 B1 EP 2192376B1 EP 20090290837 EP20090290837 EP 20090290837 EP 09290837 A EP09290837 A EP 09290837A EP 2192376 B1 EP2192376 B1 EP 2192376B1
Authority
EP
European Patent Office
Prior art keywords
projectile
powder
combustion
chamber
propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20090290837
Other languages
German (de)
English (en)
Other versions
EP2192376A1 (fr
Inventor
Nicolas Caillaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexter Munitions SA
Original Assignee
Nexter Munitions SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexter Munitions SA filed Critical Nexter Munitions SA
Priority to PL09290837T priority Critical patent/PL2192376T3/pl
Publication of EP2192376A1 publication Critical patent/EP2192376A1/fr
Application granted granted Critical
Publication of EP2192376B1 publication Critical patent/EP2192376B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes

Definitions

  • the present invention relates to a propellant cartridge of a large caliber projectile.
  • the invention aims as an application the propulsion of so-called ALR projectiles (A reduced lethality).
  • the reduced lethal projectiles have a reduced mass in order to limit the effects of shocks on the crowds. They are pulled at low speed and are also made with light materials, for example plastic.
  • caliber means here a caliber greater than or equal to 90mm.
  • They are generally formed by an ignition system for igniting a propellant powder disposed in a combustion chamber, the pressure thus generated in the combustion chamber causing the propulsion of the projectile in the barrel of the weapon, then its ejection.
  • the volume of the combustion chamber varies as the projectile progresses in the tube of the weapon, the base of the projectile forming a front wall of the combustion chamber.
  • the amount of powder initially introduced into the combustion chamber to ensure safe propulsion of the large caliber projectile may actually be insufficient to achieve the desired result.
  • the known devices for propelling a large caliber projectile thus tend to either add more powder to eject a projectile with a minimum speed, compatible with the safety requirements, or to intervene directly on the definition of the propellant powder ( geometry, thermodynamic characteristics) to increase the volume of gas generated.
  • the output speed of the projectile is low (of the order of a few hundred meters per second), which is incompatible with the use of an excess amount of propellant powder.
  • ALR munition for a large caliber weapon requires low speed performance. It therefore involves small amounts of propellant powder while the volume of the chamber of the weapon is important. This therefore entails the risk of obtaining unburned powder in the chamber of the weapon, because there is then a difficulty in achieving an optimal combustion rate of the powder because of insufficient containment for the latter.
  • the output speed of the projectile of the propulsion device must be controlled, which is not possible with an existing large-caliber propulsion device. It does not control the amount of unburnt, because of the large volume of the combustion chamber.
  • this effect would be reinforced by the use of a small amount of powder in a known large-caliber propulsion device. This would only increase the uncertainty about the amount of unburnt, thereby increasing the uncertainty about the exit velocity of the projectile. For example, for a reduced lethal projectile of 90mm caliber (mass of the order of 2 to 3 kg), it is necessary to consider a quantity of powder 5 to 20 times less important than to propel a conventional projectile 90 mm.
  • the length of the propulsion device on which the projectile is likely to move before being ejected is of the order of 4 meters; and this length increases with increasing size.
  • the documents D1 and D2 use a first chamber, of reduced volume, containing the propellant powder and in which the combustion takes place; a second chamber where the gases from the combustion can relax and a gas passage between the two chambers.
  • the first chamber is called the high pressure chamber
  • the second chamber is called a low pressure chamber.
  • the amount of powder introduced into the high pressure chamber is low to obtain an equally low ejection velocity of the combustion gases.
  • the reduced volume of the high pressure chamber can limit or even avoid the presence of unburnt.
  • the choice of the section of the passage orifice between the two chambers makes it possible to control the flow rate of combustion gas passing through the low pressure chamber.
  • the propulsion devices of a large caliber projectile have a long weapon tube, in which the projectile is guided to the exit.
  • the barrel of the weapon can reach a length of 4 meters.
  • the tube of small arms systems is much shorter.
  • the powders used in documents D1 or D2 are bright powders whose rapid combustion would not be suitable (with the two-chamber propulsion device structure described by D1 and D2) to a safe ejection of a large caliber, that is to say an ejection without blockage of the projectile in the tube of the weapon.
  • the invention thus aims to provide a propellant cartridge of a large caliber projectile, able to propel projectiles for an application ALR safely.
  • the invention aims to provide a propellant cartridge of a large caliber projectile to ensure effective output of the projectile of the barrel of the weapon, at a speed of output at a time low, it is ie not exceeding a few hundred meters per second, and mastered.
  • the firing device is constituted by a weapon comprising a tube 21 intended to fire a projectile 22, and a propellant cartridge 20 housed in a chamber 23 of the weapon connected to the tube 21.
  • a weapon structure is classic and it is not necessary to describe it in more detail.
  • the propellant cartridge 20 comprises a rear chamber 1, an intermediate chamber 2, a low pressure chamber 3 within which the projectile 22 is disposed and an orifice 13 of predetermined section. for the passage of gases from the intermediate chamber 2 to the low pressure chamber 3.
  • the rear chamber 1 comprises an ignition tube 5 around which is disposed a propellant powder 6.
  • This propellant powder 6 may be formed of cylindrical grains.
  • the outer diameter of these grains may for example be of the order of 5 mm.
  • the ignition tube 5 has orifices 51 disposed along its length and on its periphery which allow the ignition gases to pass in the direction of the propellant powder 6, originating from an ignition system 9 arranged at the base of the ignition tube 5.
  • the rear chamber 1 has means to ensure complete combustion of the propellant powder 6.
  • reduced volume V 1 comprises means for confining the propellant powder 6 in a reduced volume V 1 , corresponding approximately to the difference between the volume of the rear chamber 1 and that of the ignition tube 5.
  • reduced volume V 1 is 0.4 liter for a caliber of 90mm (this volume could be different for a different projectile mass).
  • the confinement means of the rear chamber 1 comprise a first confinement means 12 and a second confinement means 7.
  • the means 12 makes it possible to confine the powder 6 in the volume V 1 of the rear chamber 1 while allowing the gases coming from the combustion of the powder 6 to pass through vents 8 of the rear chamber 1.
  • the means 12 may be a grid, for example metallic, having a mesh size smaller than the grain size of the propellant powder 6.
  • the grains of the propellant powder 6 are cylindrical and have, before any combustion, a dimension of the order 5mm, we can provide a grid 12 whose mesh size is of the order of 2mm.
  • a progressive combustion powder will be selected.
  • Such a powder is formed of cylindrical grains pierced with several holes, which leads to an increase in the combustion surface over time, and therefore to an increase in the volume of gas generated.
  • a single base, 19-hole powder can be used, conventionally used in large caliber weapon systems.
  • Such a powder characteristic makes it possible to ensure a progressive increase in the pressure communicated to the projectile.
  • the confinement means 7 makes it possible to have a solid, totally closed structure encompassing both the grid 12 and the propellant powder 6.
  • the confinement means 7 make it possible to confine both the propellant powder 6 and the gases produced by the combustion of the powder 6 to a certain value of temperature and / or pressure within the rear chamber 1.
  • the confinement means 7 breaks and thus allows the combustion gases to pass through the gate 12 and the vents 8, towards the intermediate chamber 2.
  • vents 8 are here arranged on the circumference of the rear chamber 1, and also at the end thereof.
  • the vents 8 are sized to facilitate the evacuation of the combustion gases and thus prevent the destruction of the rear chamber 1.
  • vents The exact dimensioning of the vents will depend on the performance of the non-lethal system itself (projectile mass, projectile velocity) as well as the combustion characteristics of the propellant powder used. The skilled person will easily size these different parameters from the modeling tools available to him.
  • the gate 12 allows the combustion gases to pass, but prevents the grains of propellant powder 6 whose dimensions exceed the mesh size of the grid 12, from passing to the intermediate chamber 2.
  • the propellant powder 6 remains confined in a reduced volume, defined by the volume V 1 , for a good part of its combustion.
  • the containment means 7 is completed by a setting disc 10 disposed around the ignition tube 5 and against a wall 11 of the rear chamber 1.
  • the setting disc 10 is not intended to break, and is intended to provide a background to the volume V 1 in which the propellant powder 6 is arranged.
  • This setting disc 10 may for example be made of polystyrene, felt or cardboard.
  • the intermediate chamber 2 has a predetermined constant volume V 2 .
  • the volume V 2 is 0.9 liter (90mm gauge).
  • volume V 2 of the intermediate chamber 2 is constant, and low in comparison with the volume V 3 of the low pressure chamber 3, allows a rapid rise in pressure in this intermediate chamber 2 at a pressure level contributing to the good combustion of the powder grains present in the rear chamber 1.
  • the low pressure chamber 3 has a variable volume V 3 . Indeed, the base of the projectile 22 intended to move towards the outlet of the tube 21 itself defines a wall of this chamber 3.
  • the initial volume of the low pressure chamber is 3 liters (90mm gauge). This volume increases as the projectile 22 progresses in the tube of the weapon 21.
  • the orifice 13 may be formed by a tube or a nozzle. It makes it possible to regulate the flow of combustion gas passing from the intermediate chamber 2 to the low pressure chamber 3. The flow of gas introduced into the low pressure chamber 3 is thus perfectly regulated by the size of the orifice 13.
  • the rise in pressure is thus relatively progressive until it reaches a level sufficient to move the projectile within the tube 21 of the device.
  • the pressure level in the low pressure chamber 3 decreases in a slow manner and remains regulated by the flow of combustion gas entering the chamber 3, so that the thrust of the projectile is progressive.
  • the orifice 13 may in particular be dimensioned so as to provide a flow of gas at least partially offsetting the pressure drop associated with the increase in the volume of the low pressure chamber 3. In such a case, this means that after the pressure increase phase, the pressure at the base of the projectile 22 remains sufficiently high during most of the course of the projectile 22 in the tube 21 of the weapon.
  • the pressure drop is approximately 47% at the end.
  • a meter of travel of the projectile 22 in the tube 21 of the weapon (passage of the pressure of 8.5 MPa to 4.5 MPa) and it is more than 76% at the exit of the tube 21 (after a 4m course of the projectile in the tube of the weapon).
  • the pressure drop is only 25% after one meter of travel of the projectile 22 in the tube 21 of the weapon (pressure change from 8MPa to 6MPa ) and it is 65% at the exit of the tube 21 of the weapon.
  • This progressivity is adjustable by adjusting the diameter of the orifice 13.
  • the entire device will be dimensioned so that the powder is completely burned when the projectile leaves the tube.
  • the peak pressure obtained would be of the order of 12 MPa while it is only 8 MPa with the device according to the invention.
  • the invention thus also makes it possible to reduce the shocks received by the projectile, which makes it possible to fire ALR projectiles made of materials with reduced mechanical characteristics, such as plastics.
  • the ignition system 9 is initiated by an appropriate means integral with the weapon (according to the structure of the ignition system 9, a percussion means or electrical contact means will be used), the ignition gases are then directed by the ignition tube 5 to the propellant powder 6 via the orifices 51 of the ignition tube 5.
  • the propellant powder 6 is then initiated, and the confinement obtained by the confinement means 7, 10, 12 ensures a good combustion of the propellant powder 6.
  • the confinement means 7 then gives under the effect of the temperature and / or the pressure of the gases resulting from the combustion of the propellant powder 6, passing them to the intermediate chamber 2 through the vents 8 of the chamber back 1.
  • the grains of powder which have a size smaller than the mesh size of the grid 12 remain confined in the rear chamber 1.
  • the combustion gases are directed to the low pressure chamber 3 via the orifice 13, at a rate regulated by the section of this orifice.
  • the pressure in the low pressure chamber 3 increases until it is sufficient to move the projectile 22.
  • the projectile 22 then begins to move in the tube 21, and its displacement is progressive under the effect of the gases which continue to enter at a regulated flow rate into the low pressure chamber 3 until the ejection of the projectile 22 is effective.

Description

  • La présente invention se rapporte à une cartouche de propulsion d'un projectile de gros calibre.
  • L'invention vise comme application la propulsion des projectiles dits ALR (A Létalité Réduite).
  • Les projectiles à létalité réduite ont une masse réduite afin de limiter les effets des chocs sur les foules. Ils sont tirés à faible vitesse et sont également réalisés avec des matériaux légers, par exemple en matière plastique.
  • On connaît des dispositifs de propulsion de projectile de gros calibres. Un tel projectile est connu du DE19944377 A1
  • Par gros calibre, il faut entendre ici un calibre supérieur ou égal à 90mm.
  • Ces dispositifs connus pour projectile de gros calibre ne sont cependant pas adaptés à l'application ALR.
  • Ils sont en général formés par un système d'allumage visant à allumer une poudre propulsive disposée dans une chambre de combustion, la pression ainsi générée dans la chambre de combustion provoquant la propulsion du projectile dans le tube de l'arme, puis son éjection.
  • Pour assurer une propulsion sûre du projectile de gros calibre, on dispose une quantité de poudre propulsive importante dans la chambre de combustion.
  • Pour cela, on comprend que la quantité de poudre doit être d'autant plus importante que le calibre est gros.
  • Il faut de plus noter qu'avec ces dispositifs, le volume de la chambre de combustion varie au fur et à mesure que le projectile progresse dans le tube de l'arme, le culot du projectile formant une paroi avant de la chambre de combustion.
  • Or, plus le volume de la chambre est important, plus il y a de risques d'avoir des imbrûlés de poudre dans la chambre.
  • Cette quantité d'imbrûlés n'est pas maîtrisée.
  • Par suite, la quantité de poudre initialement introduite dans la chambre de combustion pour assurer une propulsion sûre du projectile de gros calibre peut en réalité s'avérer insuffisante pour obtenir le résultat recherché.
  • Ce problème est d'autant plus critique que le calibre est gros.
  • Les dispositifs connus de propulsion d'un projectile de gros calibre ont ainsi tendance soit à ajouter encore plus de poudre pour éjecter un projectile avec une vitesse minimale, compatible avec les exigences de sécurité, soit à intervenir directement sur la définition de la poudre propulsive (géométrie, caractéristiques thermodynamiques) pour accroître le volume de gaz engendré.
  • Le problème de la variation de quantité d'imbrûlés, impliquant une variation de la vitesse de sortie du projectile, est ainsi contourné.
  • En revanche, un tel contournement ne peut pas être envisagé pour une application ALR.
  • En effet, pour une application ALR, la vitesse de sortie du projectile est faible (de l'ordre de quelques centaines de mètres par seconde), ce qui est incompatible avec l'emploi d'une quantité surabondante de poudre propulsive.
  • Au contraire, pour atteindre une vitesse de sortie de projectile relativement faible, il faut employer une quantité de poudre propulsive réduite.
  • La conception d'une munition ALR pour une arme de gros calibre demande en effet de faibles performances de vitesses. Elle implique donc de faibles quantités de poudre propulsive alors que le volume de la chambre de l'arme est important. Ceci entraîne donc des risques d'obtention d'imbrûlés de poudre dans la chambre de l'arme, car il y a alors une difficulté à atteindre un régime de combustion optimal de la poudre à cause d'un confinement insuffisant pour cette dernière.
  • De plus, pour une application ALR, la vitesse de sortie du projectile du dispositif de propulsion doit être maîtrisée, ce qui n'est pas possible avec un dispositif de propulsion de gros calibre existant. On ne maîtrise en effet pas la quantité d'imbrûlés, en raison du volume important de la chambre de combustion.
  • En outre, cet effet serait renforcé par l'emploi d'une faible quantité de poudre dans un dispositif de propulsion de gros calibre connu. Cela ne ferait qu'accroître l'incertitude sur la quantité d'imbrûlés, augmentant de ce fait l'incertitude sur la vitesse de sortie du projectile. Par exemple, pour un projectile à létalité réduite de calibre 90mm (masse de l'ordre de 2 à 3 kg), il faut envisager une quantité de poudre 5 à 20 fois moins importante que pour propulser un projectile de 90 mm classique.
  • En raison de cette incertitude, il n'est donc pas exclu que le projectile, sous l'effet d'une poussée insuffisante, frotte fortement voire se bloque au sein du dispositif de propulsion ou bien encore progresse par à coup, se bloquant quand la pression est insuffisante puis progressant à nouveau quand la pression (qui augmente suite à l'arrêt du projectile) à atteint à nouveau un niveau suffisant.
  • A titre d'exemple, pour un projectile de calibre 90mm, la longueur du dispositif de propulsion sur laquelle le projectile est susceptible de se déplacer avant d'être éjecté, est de l'ordre de 4 mètres ; et cette longueur augmente avec l'augmentation du calibre.
  • Pour une application dite ALR, l'emploi des dispositifs actuels avec une quantité de poudre réduite peut donc aboutir à un échec du tir (le projectile reste bloqué dans le dispositif), voire à une dégradation du dispositif de propulsion lui-même.
  • On a cependant déjà proposé des dispositifs adaptés à l'application ALR.
  • Ces dispositifs ne concernent toutefois que des petits calibres.
  • Par petit calibre, on entend généralement des calibres de 40 mm ou moins.
  • On peut par exemple citer les documents US 2005/0268808 (D1) et US 2007/0151473 (D2).
  • Pour obtenir une vitesse d'éjection du projectile à la fois faible (entre 50 et 300m/s) et maîtrisée, les documents D1 et D2 mettent en oeuvre une première chambre, de volume réduit, renfermant la poudre propulsive et au sein de laquelle la combustion a lieu ; une deuxième chambre où les gaz issus de la combustion peuvent se détendre et un orifice de passage des gaz entre les deux chambres.
  • La première chambre est appelée chambre haute pression, la deuxième chambre étant quant à elle appelée chambre basse pression.
  • La quantité de poudre introduite dans la chambre haute pression est faible pour obtenir une vitesse d'éjection des gaz de combustion également faible.
  • Le volume réduit de la chambre haute pression permet de limiter voire d'éviter la présence d'imbrûlés. De plus, le choix de la section de l'orifice de passage entre les deux chambres permet de contrôler le débit de gaz de combustion passant dans la chambre basse pression.
  • Par ce biais, les dispositifs présentés dans ces documents limitent l'incertitude sur la vitesse d'éjection du projectile.
  • Les dispositifs présentés dans les documents D1 ou D2 sont donc des voies intéressantes pour élaborer un dispositif de propulsion d'un projectile pour une application ALR.
  • Cependant, ils sont limités à des projectiles de petits calibres, et ne sont pas transposables en l'état à des dispositifs de propulsion de projectiles de gros calibres.
  • En effet, pour propulser un projectile de gros calibre (masse élevée), il est nécessaire d'employer une quantité de poudre plus importante que pour un projectile de petit calibre.
  • Or, l'utilisation d'une quantité de poudre plus importante dans une chambre de volume similaire au volume de la chambre haute pression présentée dans les documents D1 ou D2, conduirait à une rupture des parois de celle-ci.
  • De plus, les dispositifs de propulsion d'un projectile de gros calibre présentent un tube d'arme de grande longueur, dans lequel le projectile est guidé jusqu'à la sortie. Par exemple, pour un calibre de 90mm, le tube de l'arme peut atteindre une longueur de 4 mètres.
  • Le tube des systèmes d'arme de petit calibre est bien plus court.
  • Aussi, pour éviter un blocage du projectile dans le tube de l'arme, dont le volume formerait la chambre basse pression des documents D1 ou D2, il serait nécessaire d'augmenter la quantité de poudre dans la chambre haute pression pour s'assurer de l'éjection effective du projectile hors du dispositif.
  • Ceci n'est pas envisageable car on ne ferait qu'aggraver le problème de sécurité lié à la rupture des parois de la chambre haute pression.
  • En outre, les poudres utilisées dans les documents D1 ou D2 sont des poudres vives dont la combustion rapide ne serait pas adaptée (avec la structure de dispositif propulsif à deux chambres décrit par D1 et D2) à une éjection en toute sécurité d'un gros calibre, c'est-à-dire une éjection sans blocage du projectile dans le tube de l'arme.
  • On pourrait songer à mettre en oeuvre une poudre vive pour résoudre le problème des imbrûlés. Cependant, une telle solution n'est pas satisfaisante car elle conduit à des pics de pression importants qui risquent de solliciter le corps du projectile ALR de façon excessive, en particulier lorsque l'on cherche à obtenir une vitesse de sortie de l'ordre de 300 m/s.
  • Enfin, il faut également noter que l'utilisation d'une chambre haute pression de volume similaire au volume de la chambre haute pression présentée dans les documents D1 ou D2, limiterait la dimension de l'orifice de passage des gaz de combustion dans la chambre basse pression. A supposer que les parois de la chambre haute pression ne cèdent pas, cela conduirait à faire parvenir un débit de gaz insuffisant pour propulser sans blocage le projectile dans le tube de l'arme.
  • L'invention vise ainsi à proposer une cartouche de propulsion d'un projectile de gros calibre, apte à propulser des projectiles pour une application ALR en toute sécurité.
  • De ce fait, l'invention vise à proposer une cartouche de propulsion d'un projectile de gros calibre permettant d'assurer une sortie effective du projectile du tube de l'arme, à une vitesse de sortie à la fois faible, c'est-à-dire ne dépassant pas quelques centaines de mètres par seconde, et maîtrisée.
  • La présente invention propose ainsi une cartouche de propulsion d'un projectile de calibre d'au moins 90mm, caractérisée en ce qu'elle comprend :
    • une chambre arrière comportant :
      • des moyens d'allumage d'une poudre propulsive,
      • un moyen pour confiner la poudre dans la chambre arrière tout en laissant passer les gaz issus de la combustion de la poudre par des évents de la chambre arrière ;
    • une chambre intermédiaire, de volume constant, communiquant avec la chambre arrière par les évents ;
    • une chambre basse pression, formant chambre de propulsion du projectile, et communiquant avec la chambre intermédiaire par un orifice de section prédéterminée.
  • On pourra prévoir d'autres caractéristiques techniques de l'invention, prises seules ou en combinaison :
    • le moyen pour confiner la poudre dans la chambre arrière tout en laissant passer les gaz issus de la combustion de la poudre par les évents de la chambre arrière comprennent une grille dont la taille de maille est inférieure à la dimension, avant combustion, d'un grain de poudre ;
    • la chambre arrière comporte des moyens pour confiner, dans une première phase de combustion, la poudre et les gaz de combustion issus de la combustion de la poudre dans la chambre arrière et pour, lesdits moyens étant susceptibles, dans une deuxième phase de combustion, de céder sous l'effet de la température et/ou de la pression ;
    • le moyen de confinement de l'alinéa précédent est formé par une feuille mince en métal ou en alliage métallique, par exemple en étain ;
    • les moyens d'allumage comprennent un tube d'allumage autour duquel la poudre est disposée et un système d'allumage, par exemple de type amorce à percussion ou amorce à initiation par décharge capacitive, disposé à la base du tube d'allumage ;
    • la cartouche comprend un disque de calage, par exemple en polystyrène, feutre ou carton, disposé autour du tube d'allumage et contre une paroi de la chambre arrière pour caler la poudre propulsive dans la chambre arrière ;
    • l'orifice de section prédéterminée est formé d'une tuyère ou d'un tube;
    • la poudre propulsive est une poudre à combustion progressive.
  • D'autres caractéristiques de l'invention seront énoncées dans la description détaillée ci-après faite en référence aux figures qui représentent, respectivement :
    • la figure 1 représente une vue en coupe d'un dispositif de propulsion régulée selon l'invention, comportant une cartouche de propulsion et un tube pour un projectile ;
    • la figure 2 représente une vue agrandie de la partie inférieure de la cartouche de la figure 1.
  • La description qui suit s'appuie indifféremment sur les figures 1 ou 2.
  • Le dispositif de tir est constitué par une arme comportant un tube 21 destiné à assurer le tir d'un projectile 22, et une cartouche propulsive 20 logée dans une chambre 23 de l'arme reliée au tube 21. Une telle structure d'arme est classique et il n'est pas nécessaire de la décrire plus en détails.
  • La cartouche propulsive 20 comprend une chambre arrière 1, une chambre intermédiaire 2, une chambre basse pression 3 au sein de laquelle le projectile 22 est disposé et un orifice 13 de section prédéterminée pour le passage des gaz provenant de la chambre intermédiaire 2 vers la chambre basse pression 3.
  • La chambre arrière 1 comporte un tube d'allumage 5 autour duquel est disposée une poudre propulsive 6.
  • Cette poudre propulsive 6 peut être formée de grains cylindriques. Le diamètre externe de ces grains peut par exemple être de l'ordre de 5mm.
  • Le tube d'allumage 5 comporte des orifices 51 disposés sur sa longueur et sur sa périphérie qui permettent le passage des gaz d'allumage, en direction de la poudre propulsive 6, provenant d'un système d'allumage 9 disposé à la base du tube d'allumage 5.
  • La chambre arrière 1 présente des moyens pour assurer une combustion complète de la poudre propulsive 6.
  • A cet effet, elle comprend des moyens pour confiner la poudre propulsive 6 dans un volume réduit V1, correspondant approximativement à la différence entre le volume de la chambre arrière 1 et celui du tube d'allumage 5. Dans l'exemple décrit ici ce volume réduit V1 est de 0.4 litre pour un calibre de 90mm (ce volume pourrait être différent pour une masse de projectile différente).
  • Plus précisément, les moyens de confinement de la chambre arrière 1 comprennent un premier moyen de confinement 12 et un deuxième moyen de confinement 7.
  • Le moyen 12 permet de confiner la poudre 6 dans le volume V1 de la chambre arrière 1 tout en laissant passer les gaz issus de la combustion de la poudre 6 par des évents 8 de la chambre arrière 1.
  • Le moyen 12 peut être une grille, par exemple métallique, présentant une taille de maille inférieure à la dimension des grains de la poudre propulsive 6.
  • Par exemple, si les grains de la poudre propulsive 6 sont cylindriques et présentent, avant toute combustion, une dimension de l'ordre de 5mm, on pourra prévoir une grille 12 dont la taille de maille est de l'ordre de 2mm.
  • On choisira de préférence une poudre à combustion progressive.
  • Une telle poudre est formée de grains cylindriques percés de plusieurs trous ce qui conduit à une augmentation de la surface de combustion au fil du temps, donc à une augmentation du volume de gaz engendré.
  • Par exemple, on pourra utiliser une poudre simple base à 19 trous, utilisée de façon classique dans les systèmes d'arme de gros calibre.
  • Une telle caractéristique de poudre permet d'assurer une progressivité de la montée en pression communiquée au projectile.
  • Le moyen de confinement 7, qui enveloppe la grille 12, participe au confinement de la poudre propulsive 6 dans le volume V1 de la chambre arrière 1 d'une part en l'absence de combustion, et d'autre part lors d'une première phase de combustion.
  • A cet effet, il peut être réalisé par une fine feuille de métal ou d'un alliage métallique, par exemple en étain.
  • En l'absence de combustion, par exemple lorsque la cartouche est stockée, le moyen de confinement 7 permet d'avoir une structure pleine, totalement fermée englobant à la fois la grille 12 et la poudre propulsive 6.
  • Puis, une fois la combustion commencée, le moyen de confinement 7 permettent de confiner à la fois la poudre propulsive 6 et les gaz produits par la combustion de la poudre 6 jusqu'à une certaine valeur de température et/ou de pression au sein de la chambre arrière 1.
  • II s'agit d'une première phase de la combustion.
  • Au-delà de ces valeurs de température et/ou de pression, le moyen de confinement 7 rompt et laisse donc les gaz de combustion passer à travers la grille 12 et les évents 8, vers la chambre intermédiaire 2.
  • Il s'agit d'une deuxième phase de combustion au cours de laquelle la grille 12 joue tout son rôle.
  • Les évents 8 sont ici disposés sur la circonférence de la chambre arrière 1, et également à l'extrémité de celle-ci. Les évents 8 sont dimensionnés pour faciliter l'évacuation des gaz de combustion et éviter ainsi la destruction de la chambre arrière 1.
  • Le dimensionnement exact des évents dépendra des performances du système non létal lui même (masse du projectile, vitesse du projectile) ainsi que des caractéristiques de combustion la poudre propulsive utilisée. L'Homme du Métier dimensionnera aisément ces différents paramètres à partir des outils de modélisation dont il dispose.
  • On comprend donc qu'une fois que le moyen de confinement 7 a cédé, la grille 12 laisse passer les gaz de combustion, mais empêche les grains de poudre propulsive 6 dont les dimensions dépassent la taille de maille de la grille 12, de passer vers la chambre intermédiaire 2.
  • Cela permet de s'assurer que les grains de poudre propulsive restent confinés dans leur volume de confinement V1 tant qu'ils n'ont pas atteint un régime de combustion optimal, pour lequel on peut être certain qu'ils ne s'éteindront plus.
  • Lorsque les grains ont atteint une taille inférieure à celle de la maille de la grille 12, ils passent alors vers la chambre intermédiaire 2, avec les gaz de combustion.
  • La poudre propulsive 6 reste donc confinée dans un volume réduit, défini par le volume V1, pour une bonne partie de sa combustion.
  • Avec cet agencement, on diminue ainsi nettement le risque d'imbrûlés, tout en évitant une rupture des parois de la chambre arrière 1 comportant la poudre propulsive 6.
  • Le moyen de confinement 7 est complété par un disque de calage 10 disposé autour du tube d'allumage 5 et contre une paroi 11 de la chambre arrière 1. Le disque de calage 10 n'est pas destiné à rompre, et a pour objet de fournir un fond au volume V1 dans lequel la poudre propulsive 6 est disposée. Ce disque de calage 10 peut par exemple être réalisé en polystyrène, en feutre ou en carton.
  • La chambre intermédiaire 2 présente quant à elle un volume constant prédéterminé V2. Dans l'exemple qui est représenté ici, le volume V2 est de 0.9 litre (calibre de 90mm).
  • Le fait que le volume V2 de la chambre intermédiaire 2 soit constant, et faible en comparaison au volume V3 de la chambre basse pression 3, permet une montée en pression rapide dans cette chambre intermédiaire 2 à un niveau de pression contribuant à la bonne combustion des grains de poudre présents dans la chambre arrière 1.
  • Par ce biais, on est assuré qu'il n'y aura aucun imbrûlé de poudre propulsive 6 dans la chambre arrière 1 et la chambre intermédiaire 2.
  • Par suite, il n'y a pas d'aléa sur la vitesse de sortie du projectile 22 hors du tube de l'arme 21.
  • La chambre basse pression 3 présente quant à elle un volume V3 variable. En effet, le culot du projectile 22 destiné à se mouvoir vers la sortie du tube 21 définit lui-même une paroi de cette chambre 3.
  • Toujours dans le cadre de l'exemple représenté ici, le volume initial de la chambre basse pression est de 3 litres (calibre de 90mm). Ce volume augmente au fur et à mesure que le projectile 22 progresse dans le tube de l'arme 21.
  • L'orifice 13 peut être formé par un tube ou encore une tuyère. Il permet de réguler le débit de gaz de combustion passant de la chambre intermédiaire 2 vers la chambre basse pression 3. Le débit de gaz introduit dans la chambre basse pression 3 est ainsi parfaitement régulé par la dimension de l'orifice 13.
  • La montée en pression s'avère ainsi relativement progressive jusqu'à ce que celle-ci atteigne un niveau suffisant pour mettre en mouvement le projectile au sein du tube 21 du dispositif. Lorsque le projectile 22 est en mouvement, le niveau de pression dans la chambre basse pression 3 décroît de façon lente et reste régulé par le débit de gaz de combustion entrant dans la chambre 3, de sorte que la poussée du projectile est progressive.
  • C'est pour ces raisons qu'on parle de cartouche à progressivité régulée.
  • De préférence, l'orifice 13 peut notamment être dimensionné de façon à fournir un débit de gaz compensant au moins en partie la chute de pression liée à l'augmentation du volume de la chambre basse pression 3. Dans un tel cas, cela signifie qu'après la phase de montée en pression, la pression au culot du projectile 22 reste suffisamment importante pendant la majeure partie du parcours du projectile 22 dans le tube 21 de l'arme.
  • On cherchera ainsi à limiter la décroissance de cette pression le long du parcours du projectile 22 dans le tube 21 de l'arme.
  • A titre d'exemple, pour un projectile 22 de 3kg propulsé à une vitesse de l'ordre de 250 m/s avec un dispositif sans chambre intermédiaire (donc sans évents), la chute de la pression est d'environ 47% au bout d'un mètre de parcours du projectile 22 dans le tube 21 de l'arme (passage de la pression de 8,5 MPa à 4,5 MPa) et elle est de plus de 76% à la sortie du tube 21 (après un parcours de 4m du projectile dans le tube de l'arme).
  • Par comparaison, avec le dispositif selon l'invention, la chute de pression n'est que de 25% au bout d'un mètre de parcours du projectile 22 dans le tube 21 de l'arme (passage de la pression de 8MPa à 6MPa) et elle est de 65% à la sortie du tube 21 de l'arme.
  • La diminution de la pression poussant le projectile le long du tube est donc beaucoup plus progressive avec le dispositif selon l'invention.
  • On notera par ailleurs qu'avec un dispositif sans chambre intermédiaire et sans évents on n'est pas assuré d'obtenir un bon régime de combustion de la poudre comme le permet l'invention.
  • Cette progressivité est réglable en jouant sur le diamètre de l'orifice 13. On dimensionnera l'ensemble du dispositif pour que la poudre soit complètement brûlée lorsque le projectile sort du tube.
  • On évite ainsi tout blocage du projectile 22 dans le tube 21 de l'arme ou bien tout mouvement alternant d'avance et arrêt du projectile 22 le long du tube 21.
  • Si, dans le cadre du même exemple, on cherchait à obtenir la même vitesse de sortie du tube mais avec une poudre à combustion vive (pour éviter les imbrûlés), le pic de pression obtenu serait de l'ordre de 12 MPa alors qu'il n'est que de 8 MPa avec le dispositif selon l'invention.
  • En complément à la progressivité de la diminution de pression, l'invention permet donc aussi de réduire les chocs reçus par le projectile, ce qui permet le tir de projectiles ALR réalisés en matériaux à caractéristiques mécaniques réduites, telles que des matières plastiques.
  • Avec les moyens mis en oeuvre par l'invention, on est alors en mesure d'éviter un problème de blocage du projectile dans le dispositif de propulsion. On est également en mesure de contrôler la vitesse d'éjection du projectile.
  • Le fonctionnement du dispositif peut être présenté comme suit.
  • On initie le système d'allumage 9 par un moyen approprié solidaire de l'arme (selon la structure du système d'allumage 9 on mettra en oeuvre un moyen à percussion ou bien à contact électrique), les gaz d'allumage sont alors dirigés par le tube d'allumage 5 vers la poudre propulsive 6 via les orifices 51 du tube d'allumage 5.
  • La poudre propulsive 6 s'initie alors, et le confinement obtenu par les moyens de confinement 7, 10, 12 assure une bonne mise en combustion de la poudre propulsive 6.
  • Le moyen de confinement 7 cède alors sous l'effet de la température et/ou de la pression des gaz issus de la combustion de la poudre propulsive 6, laissant passer ceux-ci vers la chambre intermédiaire 2 à travers les évents 8 de la chambre arrière 1.
  • Les grains de poudre qui présentent une dimension inférieure à la taille de maille de la grille 12 restent quant à eux confinés dans la chambre arrière 1.
  • Puis, au fur et à mesure de la combustion de la poudre propulsive 6, certains grains peuvent atteindre une dimension inférieure à la taille de maille de la grille 12 et passer dans la chambre intermédiaire 2 pour terminer leur combustion. Ceci n'est pas pénalisant, le confinement ayant été maintenu par la grille 12 dans la chambre arrière 1 pendant une durée suffisante pour que les grains ne s'éteignent pas par la suite.
  • Dans le même temps, les gaz de combustion se dirigent vers la chambre basse pression 3 par l'intermédiaire de l'orifice 13, à un débit régulé par la section de cet orifice.
  • La pression dans la chambre basse pression 3 augmente jusqu'à ce qu'elle soit suffisante pour déplacer le projectile 22.
  • Le projectile 22 commence alors à se déplacer dans le tube 21, et son déplacement est progressif sous l'effet des gaz qui continuent à entrer avec un débit régulé dans la chambre basse pression 3 jusqu'à ce que l'éjection du projectile 22 soit effective.
  • Il est bien entendu que l'exemple décrit ici et notamment les valeurs numériques citées, ne sont données qu'à titre indicatif.
  • Il serait possible de mettre en oeuvre d'autres types et géométries de poudres propulsives en fonction des performances recherchées (vitesse de sortie du projectile du tube de l'armé souhaitée pour une masse de projectile donnée).
  • Il serait également envisageable de donner d'autres caractéristiques dimensionnelles aux différentes chambres en fonction de la masse du projectile et de cette vitesse de sortie souhaitée.

Claims (8)

  1. Cartouche de propulsion d'un projectile (22) de calibre d'au moins 90mm, comprenant une chambre arrière (1) comportant des moyens d'allumage (5, 9) d'une poudre propulsive (6), caractérisée en ce que la chambre arrière (1) comporte également un moyen (12) pour confiner la poudre (6) dans la chambre arrière (1) tout en laissant passer les gaz issus de la combustion de la poudre (6) par des évents (8) de la chambre arrière (1) ; et en ce que la cartouche comprend
    • une chambre intermédiaire (2), de volume constant, communiquant avec la chambre arrière (1) par les évents (8) ;
    • une chambre basse pression (3) formant chambre de propulsion du projectile (22) et communiquant avec la chambre intermédiaire (2) par un orifice (13) de section prédéterminée.
  2. Cartouche de propulsion d'un projectile (22) de calibre d'au moins 90 mm selon la revendication 1, dans lequel le moyen (12) pour confiner la poudre (6) dans la chambre arrière (1) tout en laissant passer les gaz issus de la combustion de la poudre (6) par les évents (8) de la chambre arrière (1) comprennent une grille (12) dont la taille de maille est inférieure à la dimension, avant combustion, d'un grain de poudre (6).
  3. Cartouche de propulsion d'un projectile (22) d'au moins 90 mm selon l'une des revendications précédentes, dans lequel la chambre arrière (1) comporte un moyen (7) pour confiner, dans une première phase de combustion, la poudre (6) et les gaz de combustion issus de la combustion de la poudre (6) dans la chambre arrière (1), lesdits moyens (7) étant susceptibles, dans une deuxième phase de combustion, de céder sous l'effet de la température et/ou de la pression.
  4. Cartouche de propulsion d'un projectile de calibre d'au moins 90mm selon la revendication précédente, dans lequel le moyen (7) est formé par une feuille mince en métal ou en alliage métallique, par exemple en étain.
  5. Cartouche de propulsion d'un projectile de calibre d'au moins 90mm selon l'une des revendications précédentes, dans lequel les moyens d'allumage (5, 9) comprennent un tube d'allumage (5) autour duquel la poudre (6) est disposée et un système d'allumage (9), par exemple de type amorce à percussion ou amorce à initiation par décharge capacitive, disposé à la base du tube d'allumage (5).
  6. Cartouche de propulsion d'un projectile de calibre d'au moins 90mm selon la revendication précédente, dans lequel il est prévu un disque de calage (10), par exemple en polystyrène, feutre ou carton, disposé autour du tube d'allumage (5) et contre une paroi (11) de la chambre arrière (1) pour caler la poudre propulsive (6) dans la chambre arrière (1)
  7. Cartouche de propulsion d'un projectile de calibre d'au moins 90mm selon l'une des revendications précédentes, dans lequel l'orifice (13) de section prédéterminée est formé d'une tuyère ou d'un tube.
  8. Cartouche de propulsion d'un projectile de calibre d'au moins 90mm selon l'une des revendications précédentes, dans lequel la poudre propulsive (6) est une poudre à combustion progressive.
EP20090290837 2008-11-27 2009-11-04 Dispositif propulsif à progressivité regulée Active EP2192376B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09290837T PL2192376T3 (pl) 2008-11-27 2009-11-04 Urządzenie napędowe z regulowanym włączaniem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0806667A FR2938907B1 (fr) 2008-11-27 2008-11-27 Dispositif propulsif a progressivite regulee.

Publications (2)

Publication Number Publication Date
EP2192376A1 EP2192376A1 (fr) 2010-06-02
EP2192376B1 true EP2192376B1 (fr) 2015-04-22

Family

ID=40902042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090290837 Active EP2192376B1 (fr) 2008-11-27 2009-11-04 Dispositif propulsif à progressivité regulée

Country Status (4)

Country Link
EP (1) EP2192376B1 (fr)
ES (1) ES2540104T3 (fr)
FR (1) FR2938907B1 (fr)
PL (1) PL2192376T3 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2995088A (en) * 1959-06-29 1961-08-08 Bermite Powder Company Multi-stage igniter charge
DE19944377B4 (de) * 1999-09-16 2006-08-31 Rheinmetall Waffe Munition Gmbh Patrone
SE0302916D0 (sv) * 2003-11-04 2003-11-04 Comtri Teknik Ab Utbytbar drivpatron
US7287475B2 (en) * 2006-01-03 2007-10-30 Combined Systems, Inc. Reloadable non-lethal training cartridge

Also Published As

Publication number Publication date
ES2540104T3 (es) 2015-07-08
EP2192376A1 (fr) 2010-06-02
FR2938907B1 (fr) 2013-12-13
PL2192376T3 (pl) 2015-09-30
FR2938907A1 (fr) 2010-05-28

Similar Documents

Publication Publication Date Title
EP0905473B1 (fr) Projectile d'artillerie de campagne de gros calibre à longue portée
CH650073A5 (fr) Projectile pour armes de poing et d'epaule et cartouche munie d'un tel projectile.
FR2599828A1 (fr) Munition de petit ou moyen calibre a efficacite amelioree et portee limitee, en particulier pour la chasse
EP0106263A1 (fr) Projectile explosif perforant encartouché
EP0737298B1 (fr) Balle de chasse a fleche telescopee, comportant un sous-projectile associe a un lanceur
WO1993013382A1 (fr) Tube douille pour grenade a fusil pouvant retenir les fragments de la balle
FR2606500A1 (fr) Munition de chasse a volume de combustion augmente
FR2806789A1 (fr) Tube allumeur pour une munition d'artillerie
FR2482665A1 (fr) Moteur-fusee a carburant solide et a poussee variable
WO2005098346A1 (fr) Dispositif emetteur de rayonnement notamment infrarouge
CH625336A5 (en) Training cartridge for automatic weapon with inertial bolt mechanism
EP2192376B1 (fr) Dispositif propulsif à progressivité regulée
EP3504501B1 (fr) Dispositif neutralisateur de son pour arme à feu
WO1994021981A1 (fr) Dispositif d'etancheite aux gaz de propulsion pour munitions d'artillerie
EP0728293B1 (fr) Balle de chasse a double penetration et a portee reduite
EP2614242B1 (fr) Systeme de propulsion pour engin volant, en particulier pour missile
EP2620737B1 (fr) Munition non létale
FR2509457A1 (fr) Projectile a trajectoire courte
FR2708730A1 (fr) Lanceur à séparation contrôlée d'éléments pour munitions.
FR2820817A1 (fr) Projectile
FR2937123A1 (fr) Munition de controle des foules a effet non letal
FR2695717A1 (fr) Sabot pour projectile pour accélérateur par effet de statoréacteur et projectile équipé d'un tel sabot.
FR2992409A1 (fr) Munition non letale a portee accrue
EP0204623A1 (fr) Allumeur destiné aux chargements générateurs de gaz des obus
EP0752571B1 (fr) Projectile à trajectoire raccourcie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100910

17Q First examination report despatched

Effective date: 20101029

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140723

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141022

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 723491

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009030765

Country of ref document: DE

Effective date: 20150603

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2540104

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150708

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20150422

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 723491

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150422

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150723

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009030765

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

26N No opposition filed

Effective date: 20160125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221024

Year of fee payment: 14

Ref country code: BE

Payment date: 20221020

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231023

Year of fee payment: 15

Ref country code: IT

Payment date: 20231019

Year of fee payment: 15

Ref country code: FR

Payment date: 20231019

Year of fee payment: 15

Ref country code: DE

Payment date: 20231019

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231025

Year of fee payment: 15

Ref country code: BE

Payment date: 20231019

Year of fee payment: 15