EP2192209A2 - Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile in Gegenwart eines halogenhaltigen Gasgemisches - Google Patents

Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile in Gegenwart eines halogenhaltigen Gasgemisches Download PDF

Info

Publication number
EP2192209A2
EP2192209A2 EP09175543A EP09175543A EP2192209A2 EP 2192209 A2 EP2192209 A2 EP 2192209A2 EP 09175543 A EP09175543 A EP 09175543A EP 09175543 A EP09175543 A EP 09175543A EP 2192209 A2 EP2192209 A2 EP 2192209A2
Authority
EP
European Patent Office
Prior art keywords
central tube
gas
halogen
containing gas
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09175543A
Other languages
English (en)
French (fr)
Other versions
EP2192209B1 (de
EP2192209A3 (de
Inventor
Ansgar Luttermann
Alexander Stankowksi
Karsten Bindernagel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Vernova GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200810043787 external-priority patent/DE102008043787B3/de
Priority claimed from US12/352,641 external-priority patent/US9353625B2/en
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2192209A2 publication Critical patent/EP2192209A2/de
Publication of EP2192209A3 publication Critical patent/EP2192209A3/de
Application granted granted Critical
Publication of EP2192209B1 publication Critical patent/EP2192209B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines

Definitions

  • the invention relates to a device for cleaning oxidized or corroded components in the presence of a halogen-containing gas mixture, with a purification reactor, in the middle or immediately opens a feed line which is connected via a flow control device with a gas-storing the halogen-containing gas mixture gas reservoir.
  • these components can be turbine components acted upon by hot gases, in particular gas turbine blades.
  • Turbine components for engines or stationary gas turbine plants which are exposed to medium or direct hot gas flows, such as guide or moving blades, heat accumulation segments or similar components or groups of components delimiting the hot gas channel are subject to operational material degradation, which often leads to cracks and, associated therewith, mechanical weakening of the respective components , Due to the prevailing in the hot gas channels high temperature and pressure loads, which are exposed to the corresponding mostly made of nickel-based components, divide with increasing operating time by external and internal oxidation complex chemically and thermally stable oxides on the component surfaces, within the forming crack openings and in near-surface areas within the base material.
  • the aim is to transfer the claimed and partially damaged components with a special process chain in a state that largely corresponds to the state of a newly manufactured, comparable component.
  • one of the steps is to thoroughly clean the component to be reworked, i. to eliminate the deposited on the component surface and in the cracks formed complex oxide layer, without damaging the material of the component itself.
  • reaction chamber in which a halogen-containing gas mixture is introduced for the purpose of component cleaning, be temporarily rinsed with a non-halogen-containing gas during the cleaning.
  • the US 6,536,135 B2 describes an FIC process in which an improved O-xidalism by varying the partial pressures of the cleaning gas mixture is made by the consisting of hydrogen fluoride (HF) and hydrogen (H 2 ) cleaning gas mixture is added as another component carbon.
  • the carbon is added in the form of various compounds which form a carbonaceous gas during the process.
  • a typical purification reactor which provides a cylindrical housing which is gas-tight from above and can be fitted in an open state from above with components to be cleaned.
  • the components to be cleaned are housed on vertically stacked storage levels, so-called trays, which are attached to a centrally located in the cleaning reactor central tube through which a carbon-enriched hydrogen fluoride gas mixture is fed to the purification reactor.
  • the reactor head penetrating the gas-tight central tube extends vertically within the cleaning reactor down into the region of the so-called reactor sump, in which the central tube is a substantially over the entire Cross-section of the cleaning reactor extending gas distributor structure provides with outlet openings through which the halogen-containing cleaning gas mixture is fed from bottom to top in the purification reactor.
  • the cleaning gas mixture flows through the entire reactor volume from the reactor sump in the direction of the reactor head, at which a corresponding Gausauslassö réelle is provided.
  • the Applicant also has many years of practical experience in the field of cleaning operationally contaminated, corroded, oxidized and degraded gas turbine components of the type discussed above, in particular using FIC purification techniques and the cleaning equipment required therefor.
  • a relevant purification reactor which is fed via a central tube with a cleaning gas mixture containing hydrogen fluoride and hydrogen in varying ratios, it has been shown that significant disturbances in the cleaning process caused by volume fluctuations in the supply of the cleaning gas in the purification reactor, which may occasionally lead to the termination of the entire cleaning process if certain levels are exceeded.
  • the invention is based on the object, a device for the purification of oxidized or corroded components, in particular of hot gases exposed gas turbine components, in the presence of a halogen-containing gas, with a usually kesselelförmig formed purification reactor, in the middle or directly opens a feed line, which via a flow control device with a reservoir storing the halogen-containing gas, in such a way that, on the one hand, care is taken to completely eliminate the problems associated with an insufficient or fluctuating cleaning gas feed into the purification reactor.
  • the solution according to the device according to the features of the preamble of claim 1 is characterized in that the flow control device in sequence along the flow direction of the feed line flowing through the halogen-containing gas provides a gas flow control valve, a heat exchanger unit and a gas flow measuring unit.
  • the device according to the invention is based on the finding that form condensations along the feed line for the supply of the halogen-containing gas, which occur in particular in the region of throttle points. Such condensations lead to erroneous values in the range of the gas flow control and can lead to total failure of the quantity measurement.
  • the halogen-containing gas is preferably stored in pressure bottles. Under the storage conditions, it is liquid. By raising the temperature, the liquid becomes evaporates, and it adjusts the temperature-dependent vapor pressure of the substance. Before the gas control thus prevail overpressure conditions.
  • the pressure within the purification reactor is typically at the pressure level of 50 Torr to 780 Torr. Therefore, it requires along the feed line at least one pressure-reducing throttle stage. In this case, the above condensation problem occurs.
  • the device according to the invention contains as throttle point along the feed line at least one flow control device which provides a gas-expanding gas flow control valve.
  • a heating unit is provided immediately downstream of the gas flow control valve, which preferably has a gas heater, whereby the temperature level in this line region is raised above the condensation level of the halogen-containing gas, preferably HF gas.
  • the gas flow measuring unit Downstream along the feed line to the heat exchanger is immediately followed by the gas flow measuring unit.
  • a heating of the heat exchanger using a variety of heating techniques is possible.
  • the use of electrical heating has proved to be particularly advantageous.
  • appropriately heated heat transfer medium or other heating media the line area downstream of the gas flow control valve.
  • the heat exchanger unit is to be designed or selected with respect to its heat output such that a temperature level between 22 ° C and 75 ° C, preferably 40 ° C to 50 ° C and particularly preferably 44 ° C to 46 ° C can be adjusted.
  • a shut-off valve is provided upstream and downstream of the flow control device in the feed line, which in each case can be actuated automatically or manually in the event of a possible failure of the flow control device.
  • a bypass line to the flow control device along the feed line is provided, along which a control valve, preferably a manual control valve, is introduced.
  • a device with the features according to the preamble of claim 9, which is directly or indirectly connected to the at least one feed line, is characterized Provides central tube, which extends from the reactor head to the reactor sump within the purification reactor and is connected in the region of the reactor sump with a radially extending to the central tube, the first manifold structure having outlet openings for the halogen-containing gas, solution according to the fact that the first manifold structure a support plane for the components to be cleaned, and a second distributor structure is provided which is spaced from the first distributor structure attached to the central tube.
  • the first distributor structure forms a supporting plane extending radially to the central tube for the components to be cleaned, wherein the distributor structures have outlet openings for the halogen-containing gas, at least in the direction of the components resting thereon.
  • the novel gas distribution concept provides for the arrangement of preferably a plurality of so-called distributor structures arranged one above the other along the central tube before, which are either self-supporting attached to the central tube or combined with suitably formed support structures along the central tube.
  • the novel decentralized gas distribution in the purifying reactor serves to distribute the process gas as optimally as possible by adding and removing the purge gas to each individual component under largely identical conditions. Due to an individual cleaning gas feed in each individual support level for the components to be cleaned, it is ensured that each individual component is directly and suitably supplied with cleaning gas.
  • the number and arrangement of the provided in the respective distribution structure outlet openings can be chosen basically arbitrary, but preferably taking into account the shape, size and arrangement of the components to be cleaned.
  • the distributor structures which are each mounted along the central tube at an axial distance and which, depending on the design, can be integrated into stable support structures or formed in the form of intrinsically stable plate or tube constructions, are made of a material which is resistant to the process conditions prevailing in the purification reactor for this IN600 (Inconel 600).
  • the cleaning reactor is to be equipped with a suitable number of distribution structures to be arranged along the central tube, onto which the components to be cleaned are to be applied.
  • the individual distributor structures can be introduced in a modular manner and taking into account the cleaning task described above.
  • the distributor structures have a central sleeve with a sleeve opening for receiving the central tube.
  • the individual distributor structures can be positioned and fixed along the central tube.
  • a corresponding number of cylindrical spacer sleeves are provided, which are slid longitudinally over the central tube as spacers and fix the sleeves provided with the distributor structures spaced apart from each other along the central tube.
  • the distributor structures extending radially from the sleeve can be formed or implemented in different ways. Plate-shaped or grid-shaped or tubular formations for the distributor structure have proven to be particularly advantageous.
  • at least one of the central tube radially extending stub is provided, spaced from the radial to the central tube at least one central tube annularly circulating ring line is mounted.
  • the respective outlet openings are borne along the at least one stub line and the at least one ring line borne in each case oriented upwards, so that the resting on the distributor structure components are acted upon directly by the emerging from the outlet openings cleaning gas.
  • the cuffs described above, with which the distributor structure is connected have gas openings oriented radially relative to the central tube, through which the cleaning gas radially emerging from the central tube via corresponding gas outlet openings can reach the respective distributor structures. Details of this can be found in the further description with reference to the figures.
  • the respective distributor structures are disc-shaped and each have an upper and a lower disc plate on, which include a gap, which is also surrounded gas-tight by a disk rim which connects the two disc plates at its peripheral edge in a fluid-tight manner.
  • the disk volume limited in this way is fed via an opening facing the central pipe with the halogen-containing cleaning gas, which can escape from the disk volume at least via outlet openings introduced in the upper disk plate.
  • the number, arrangement or orientation and the diameter of the individual outlet openings are basically variably adjustable over a wide range. Thus, for example, between 100 and 10000 holes or outlet openings are provided per diameter structure, each with diameters between 0.1 mm to 5 mm.
  • outlet openings Depending on the dimensions of the purification reactor and the components to be cleaned within the purification reactor, in practice preferred dimensions for the outlet openings have been provided, which provide 1000 to 5000 outlet openings per distribution structure, each with diameters between 0.5 and 2.5 mm.
  • outlet openings For the purpose of an improved, matched to the shape and size of each component to be cleaned flow of cleaning gas, it is appropriate to arrange the outlet openings with respect to the generally circular support level sectorally suitable or distribute, for example in the form of radial lines or radially and in the circumferential direction ordered field pattern in which the outlet openings are arranged in groups summarized.
  • the outlet openings in the form of conventional bores, it is particularly advantageous to tailor the outlet openings so that the individual gas streams emerging from the outlet openings strike the respective component to be cleaned at an optimized flow rate and with a predeterminable outflow direction.
  • the gas outlet direction influencing flow outlet elements which can be formed in a suitable manner already during the production of the outlet openings, for example in the context of shaping punching processes.
  • the distributor structures not only provide outlet openings for the cleaning gas at the upper side facing the support plane in order to apply cleaning gas to the components resting on the respective distributor structures, but moreover corresponding outlet openings are provided on the opposite lower side in order to provide a cleaning gas Align part of the cleaning gas exiting through the distributor structure with those components that rest on the support level directly below.
  • Such optional additional components can preferably be installed between the respective distributor structures or directly on the components to be cleaned, in order to apply certain areas of components to the cleaning gas in a particular manner or to shield certain areas from the cleaning gas in order to make direct contact with them to avoid the cleaning gas.
  • FIG. 1 illustrates a schematic structure of a purification reactor (right half of the figure), which is supplied via a cleaning gas line system (left half of the figure) with a cleaning gas mixture.
  • the cleaning reactor has a substantially cylinder-shaped or barrel-shaped reactor housing 11, which is closed gas-tight on its upper side with a reactor cover 14.
  • the reactor housing 11 is surrounded by a heating jacket 12 in which heaters 13 provide a cleaning process temperature inside the purification reactor of up to 1200 ° C.
  • a central tube 23 is centrally provided which penetrates the reactor cover 14 gas-tight to the outside, and into which via a feed line 10 cleaning gas is fed.
  • a reactor outlet 24 is provided within the purification reactor, is brought via the spent cleaning gas via a corresponding exhaust pipe 25 to the outside for further supply and disposal.
  • two gas reservoirs 1, 1 ' namely a gas reservoir for the provision of hydrogen fluoride (HF) and a gas reservoir for the provision of hydrogen gas (H 2 ). Both types of gas are to be mixed in a suitable manner before being fed into the feed line 10 with a predetermined mixing ratio.
  • a flow control device connects, which consists of a gas flow control valve 5, a heat exchanger unit 9, preferably in the form of a gas heater and a gas flow measuring unit 6 is.
  • the immediately downstream of the gas flow control valve 5 subsequent heat exchanger unit 9 ensures a significant increase in temperature on the condensation temperature of the HF gas, so that a non-affected by any condensation processes HF gas supply can be ensured using the flow control device.
  • a gas temperature control circuit 8 For monitoring and control of the heat exchanger unit 9 is a gas temperature control circuit 8.
  • a suitable gas flow control loop 7 is provided for the controlled implementation of the gas flow measurement.
  • a bypass line 2 is additionally provided, in which a shut-off valve, preferably a manual control valve 4, is mounted.
  • the bypass line 2 is used in the case in which the flow control device, consisting of the gas flow control valve 5 of the heat exchanger unit 9 and the gas flow measuring unit 6 upstream and downstream with the help of two block valves 3 is separated from the gas supply.
  • the used block valves 3 may preferably be in the form of valves, taps or slides, which can be driven both manually and automatically.
  • the provided in the bypass line 2 manual control valve is preferably designed as a needle passage valve, which allows a very finely metered adjustment of the HF gas flow.
  • the HF cleaning gas mixture fed into the central tube 23 along the feed line 10 exits within the process chamber 16 of the purification reactor via distributor structures 20 mounted at different levels along the central tube 23 and on which the components 26 to be cleaned each rest.
  • the distributor structures 20 provided in the process space 16 are designed separately for support structures 19 likewise mounted radially on the central tube 23 and on which the distributor structures 20 are supported.
  • the cleaning gas passes through the central tube 23 in each case in the distributor structures 20, of which it is directed directly to the components 26 to be cleaned exit.
  • Additional provided within the process chamber 16 Gasleitbleche 27, 28 and 29 provide for an individual flow of the individual components to be cleaned 26 with cleaning gas.
  • the lowest distribution structure 20 which is integrated in a stable bottom support 21, which is preferably fixedly connected to the central tube 23.
  • a heat shield 22 is attached to the central tube 23 in the upper region within the purification reactor.
  • FIG. 2 is a perspective view of a preferred embodiment of a distribution structure 20 is shown.
  • the distributor structure 20 has a central sleeve 43, which can be pushed forcibly guided over the central tube, not shown. Only the completeness it should be noted that instead of the sleeve, the manifold structure 20 may also be connected directly to the central tube 23, in this case, the component 43 corresponds to the central tube.
  • stub lines 40 Radially starting from the sleeve 43, four stub lines 40 adjoin these, to which concentric ring lines 41 are respectively connected.
  • the stub lines 40 and ring lines 41 form a communicating piping system, which is supplied from the central tube 23, not shown, with cleaning gas.
  • the sleeve 43 openings (not shown) via which the cleaning gas provided by the central tube 23 can be fed into the distribution system.
  • the distribution structure 20 is eigentragschreib and robust and firmly enough connected to the sleeve 43 to accommodate both the weight of the manifold structure 20 and the weight of applied to the manifold structure 20 to be cleaned components 26.
  • the outlet openings provided along the stub lines 40 and ring lines 41, via which the cleaning gas exits in the direction of the components resting on the distributor structure 20, are shown.
  • FIG. 3 strongly schematically illustrates an alternative embodiment of a distributor structure, which is plate-shaped.
  • the manifold structure in this case has an upper 50 and lower 51 disc plate, both plates 50 and 51 are bounded by a circumferential disc rim 52 and include an internal volume.
  • the distributor structure is connected to a mechanically stable support structure 54.
  • the upper disk plate 50 has sectors, characterized by boundary lines 55, which extend in the illustrated case along each radially. The individual sectors can be exchanged in order to adapt the reactor as variably as possible to different component types.
  • the plate-shaped distributor structure is penetrated by the central tube 23, to which the distributor structure 20 is firmly attached.
  • the manifold structure is connected to a cuff described above, which is threaded over the central tube 23.
  • FIG. 4 is a perspective cross-sectional view represented by a plate-shaped distribution structure.
  • the upper and lower disc plates 50, 51 are directly attached to the central central tube 23.
  • 23 may be a cuff.
  • cleaning gas supplied through the central tube or sleeve 23 passes into the intermediate space between the upper and lower disc plates 50, 51.
  • suitable outlet openings 56 which are incorporated in the upper disc plate 50, the cleaning gas finally exits into the process space.
  • the outlet openings 56 are preferably arranged in consideration of the components to be cleaned, which are to be applied to the upper disc plate 50, respectively. This in FIG. 4 illustrated embodiment provides sectoral field-like pattern order for the outlet openings 56.
  • FIG. 4 illustrated embodiment provides sectoral field-like pattern order for the outlet openings 56.
  • FIG. 5 the plan view of a segment surface of the upper disc plate 50 is shown, in which a plurality of fields 57 are arranged, each composed of a plurality of individual outlet openings 56.
  • the arrangement as well as the number of outlet openings 56 within the individual fields 57 can each be identical or different, preferably be selected depending on the respective components to be cleaned.
  • FIG. 6 schematically shows an enlarged view of a field 57, in which a plurality of individual outlet openings 56 is provided. Based on the sectional views AA and BB, the contours of the individual outlet openings are visible. In particular, it can be seen from the sectional representation AA that each individual outlet opening 56 is covered by a flow guide element 58, whereby the outlet flow can be spatially directed onto the respective component.
  • the optimized control and gas distribution helps to significantly reduce the amount of HF gas to be injected for cleaning purposes. On the one hand, this reduces the risk of damage to the individual components while simultaneously improving the cleaning effect. On the other hand, this can be safely avoided over-etched surface areas on the components. In addition, the entire system is less burdened by the chemically highly reactive cleaning gas, so that the life and use of such systems and their components can be significantly extended.
  • the measures of the invention help to reduce resources such as the process gases, energy and beyond required resources significantly.
  • the reduction of the cleaning gas automatically leads to the reduction of the resulting discharge material flows to be disposed of and thus to the significant reduction of the waste. Overall, the operating costs of such systems can be significantly reduced with the solution according to the concept. This also contributes to a higher loading density of the reactor, as well as a reduction of the process times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Beschrieben wird eine Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile (26), insbesondere von Heissgasen ausgesetzten Gasturbinenkomponenten, in Gegenwart eines halogenhaltigen Gases, mit einem kessel- oder zylinderförmig ausgebildeten Reinigungsreaktor, in den mittel- oder unmittelbar eine Speiseleitung mündet, die über eine Durchflussregeleinrichtung mit einem das halogenhaltige Gas bevorratenden Gasreservoir verbunden ist und in den eine Vorrichtung zur Gasverteilung integriert ist. Die Erfindung zeichnet sich dadurch aus, dass die Durchflussregeleinrichtung in Abfolge längs der Durchströmungsrichtung des die Speiseleitung durchströmenden halogenhaltigen Gases ein Gasmengenregelventil (5), eine Wärmetauschereinheit (9) sowie eine Gasmengenmesseinheit (6) besitzt. Ferner wird eine Gasverteilung im Reaktor beschrieben, die das halogenhaltige Gas direkt zu den zu reinigenden Komponenten leitet.

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf eine Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile in Gegenwart eines halogenhaltigen Gasgemisches, mit einem Reinigungsreaktor, in den mittel- oder unmittelbar eine Speiseleitung mündet, die über eine Durchflussregeleinrichtung mit einem das halogenhaltige Gasgemisch bevorratenden Gasreservoir verbunden ist. Insbesondere kann es sich bei diesen Bauteilen um von Heissgasen beaufschlagte Turbinenkomponenten, insbesondere Gasturbinenschaufeln, handeln.
  • Stand der Technik
  • Turbinenkomponenten für Triebwerke oder stationäre Gasturbinenanlagen, die mittel- oder unmittelbar Heissgasströmungen ausgesetzt sind, wie beispielsweise Leit- oder Laufschaufeln, Wärmestausegmente oder ähnliche den Heissgaskanal begrenzende Bauteile oder Bauteilgruppen unterliegen betriebsbedingten Materialdegradationen, die häufig zu Rissen und damit verbunden zur mechanischen Schwächung der jeweiligen Komponenten führen. Aufgrund der in den Heissgaskanälen vorherrschenden hohen Temperatur- und Druckbelastungen, denen die entsprechenden zumeist aus Nickelbasiswerkstoffen gefertigten Bauteile ausgesetzt sind, scheiden sich mit zunehmender Betriebsdauer durch äussere und innere Oxidation komplexe chemisch und thermisch stabile Oxide an den Bauteiloberflächen, innerhalb der sich ausbildenden Rissöffnungen sowie in oberflächennahen Bereichen innerhalb des Basismaterials ab.
  • Ziel ist es, die derart beanspruchten und zum Teil beschädigten Bauteile mit einer speziellen Prozesskette in einen Zustand überführen, der weitgehend dem Zustand eines neu gefertigten, vergleichbaren Bauteils entspricht. Hierbeiist einer der Schritte, das zu überarbeitende Bauteil sorgfältig zu reinigen, d.h. die an der Bauteiloberfläche sowie in den sich ausgebildeten Rissen abgeschiedene komplexe Oxidschicht zu beseitigen, ohne dabei das Material des Bauteils selbst zu schädigen.
  • In der DE 28 10 598 A1 ist ein entsprechendes Reinigungsverfahren für die vorstehend bezeichneten Bauteile beschrieben, die einer druckbehafteten Reinigungsatmosphäre bei Temperaturen von über 1000°C ausgesetzt werden, in der gasförmige, aktive Fluoridionen enthalten sind. In Gegenwart einer derartigen Reinigungsatmosphäre setzt sich das komplexe Oxid unter Bildung eines gasförmigen Fluorids mit den Fluoridionen um, ohne dabei das Bauteilmaterial zu schädigen. Derartige auch allgemein als FIC (Fluorid Ion Cleaning) bezeichnete Reinigungsverfahren sind hinlänglich bekannt und in vielfachen Publikationen beschrieben. Repräsentativ sei in diesem Zusammenhang auf die EP 0 209 307 B1 verwiesen, aus der eine beachtliche Übersicht der bis anhin bekannten Reinigungstechnologien entnommen werden kann.
  • Weitgehend allen Bestrebungen zur Verbesserung derartiger FIC-Verfahren ist die Aufgabe gemeinsam, Oxidschichtanteile, die sich insbesondere in rissbedingten Spalt- oder Grabenstrukturen abgeschieden haben, vollständig zu beseitigen, zumal bereits geringste Restanteile oxidierter oder korrodierter Oberflächen nachhaltige Auswirkungen auf anschließende Reparaturmaßnahmen haben. Typischerweise erfolgt zu Zwecken der Rissheilung an den jeweils gereinigten Bauteilen ein Löt- oder Schweißvorgang derart, dass über einem gereinigten Riss eine Reparaturlegierung in Pulverform angehäuft wird, die in Gegenwart von Vakuum und unter Hitzeinwirkung zum Schmelzen und schließlich zum Fließen in den spaltförmigen Riss gebracht wird. Hierbei bildet sich eine Benetzung der Risswand mit der verflüssigten Reparaturlegierung aus. Es liegt auf der Hand, dass entsprechende Benetzungen an einer mit einer Oxidschicht behafteten Bauteiloberfläche nicht oder in einem weit geringeren Maß erfolgen, wodurch letztlich Reparaturschwachstellen entstehen, die es zu vermeiden gilt.
  • In der vorstehend zitierten EP 0 209 307 B1 wird zur Verbesserung des Reinigungserfolges vorgeschlagen, den Druck innerhalb der reaktiven Reinigungsatmosphäre zyklisch zu variieren, um auf diese Weise eine allgemeine Bewegung der reaktiven gasförmigen Fluoridionen im Bereich eines zu reinigenden Bauteils zu erzeugen zu dem Zwecke eines innigen Inkontaktbringens der gasförmigen Reaktionsmittel mit den Wandungen der Risse und Hohlräume innerhalb des geschädigten Bauteils.
  • In der DE 10 2005 051 310 A1 wird vorgeschlagen, die Reaktionskammer, in der zu Zwecken der Bauteilreinigung ein halogenhaltiges Gasgemisch eingebracht wird, zeitweise mit einem nicht halogenhaltigen Gas während der Reinigung zu spülen.
  • Die US 6,536,135 B2 beschreibt ein FIC-Verfahren, bei dem eine verbesserte O-xidreinigung durch Variation der Partialdrücke des Reinigungsgasgemisches vorgenommen wird, indem der aus Fluorwasserstoff (HF) und Wasserstoff (H2) bestehenden Reinigungsgasmischung als weitere Komponente Kohlenstoff zugegeben wird. Der Kohlenstoff wird in Form verschiedener Verbindungen zugegeben, die während des Prozesses ein kohlenstoffhaltiges Gas bilden.
  • Ferner ist der Druckschrift ein typischer Reinigungsreaktor zu entnehmen, der ein zylinderförmiges Gehäuse vorsieht, das von oben gasdicht verschließbar ist und in einem geöffneten Zustand von oben mit zu reinigenden Bauteilen bestückt werden kann. Die zu reinigenden Bauteile werden auf vertikal übereinander vorgesehenen Ablageebenen, sogenannten Böden, untergebracht, die an einem im Reinigungsreaktor mittig angeordneten Zentralrohr befestigt sind, durch das ein kohlenstoffangereichertes Fluorwasserstoff-Gasgemisch dem Reinigungsreaktor zugeführt wird. Das den Reaktorkopf gasdicht durchragende Zentralrohr erstreckt sich vertikal innerhalb des Reinigungsreaktors nach unten in den Bereich des sogenannten Reaktorsumpfes, in dem das Zentralrohr eine sich im wesentlichen über den gesamten Querschnitt des Reinigungsreaktors erstreckende Gasverteilerstruktur mit Austrittsöffnungen vorsieht, über die das halogenhaltige Reinigungsgasgemisch von unten nach oben aufsteigend in den Reinigungsreaktor eingespeist wird. Das Reinigungsgasgemisch durchströmt dabei das gesamte Reaktorvolumen vom Reaktorsumpf in Richtung des Reaktorkopfes, an dem eine entsprechende Gausauslassöffnung vorgesehen ist.
  • Die Anmelderin hat darüber hinaus jahrelange praktische Erfahrung auf dem Gebiet der Reinigung betriebsbedingt verunreinigter, korrodierter, oxidierter und degradierter Gasturbinenkomponenten der vorstehend erläuterten Art, insbesondere unter Verwendung von FIC-Reinigungsverfahren sowie der hierfür erforderlichen Reinigungsanlagen. Im langjährigen Umgang mit einem diesbezüglichen Reinigungsreaktor, der über ein Zentralrohr mit einem Reinigungsgasgemisch gespeist wird, das Fluorwasserstoff und Wasserstoff in wechselnden Verhältnissen enthält, hat es sich gezeigt, dass erhebliche Störungen im Reinigungsprozess durch Mengenschwankungen in der Zuführung des Reinigungsgases in den Reinigungsreaktor verursacht werden, die fallweise bei Überschreiten gewisser Ausmaße bis zum Abbruch des gesamten Reinigungsprozesses führen können. Genauere Untersuchungen zeigten überdies, dass die Zuführung schwankender Fluorwasserstoffgasmengen innerhalb des Reinigungsreaktors zu Konzentrationsschwankungen führen, die letztlich eine reduzierte Reinigungseffizienz und damit verbunden eine nicht exakt steuerbare Reinigungsqualität zur Folge haben. Insbesondere bei sehr stark geschädigten Bauteilen mit einer großen Anzahl von Materialrissen, die darüber hinaus ein breites Spektrum hinsichtlich Tiefe, Breite und Länge der einzelnen Risse aufweisen, kann ein angestrebter Reinigungsgrad unter diesen Umständen nicht mehr gewährleistet werden. Auf die Konsequenzen einer unvollständigen Reinigung von mit einer Schicht komplexer Oxide überzogenen Bauteilen ist bereits vorstehend hingewiesen worden.
  • Ein weiterer nachteiliger und daher verbesserungsbedürftiger Aspekt bei den bislang angewandten Reinigungspraktiken betrifft den Aufbau des Reinigungsreaktors. Bereits in Verbindung mit der vorstehend zitierten US 6,536,135 B2 sind einerseits auf die Einströmung des Reinigungsgases in den Reinigungsreaktor mittels des zentral geführten Zentralrohres und einer im tels des zentral geführten Zentralrohres und einer im Bodensumpfbereich des Reaktors vorgesehenen Verteilerstruktur, als auch auf die Positionier- und Ablagemöglichkeiten der einzelnen zu reinigenden Bauteile auf den längs des Zentralrohrs in vertikaler Abfolge vorgesehenen Ablageböden hingewiesen worden. Aufgrund einer derartigen bekannten Konstruktion sind die Ablage- bzw. Positionierungsmöglichkeiten für die einzelnen zu reinigenden Bauteile innerhalb des Reinigungsreaktors beschränkt. Hinzu kommen die gleichfalls verbesserungsbedürftigen Anströmungsverhältnisse der einzelnen zu reinigenden Bauteile innerhalb des Reinigungsreaktors, zumal nicht ausgeschlossen werden kann, dass aufgrund einer gegenseitigen Abschattung bestimmter Oberflächenbereiche an den zu reinigenden Bauteilen nur eine unzureichende Beaufschlagung mit Reinigungsgas erfolgt. So ist nicht auszuschließen, dass sich durch eine ausschließlich im Reaktorsumpfbereich vorgesehene Reinigungsgaseinspeisung Bereiche mit vergleichsweise schlechten Strömungs- und Konzentrationsverhältnissen bis hin zu Totwassergebieten ausbilden, durch die insbesondere in Bereichen von Rissen ein geringerer Gasaustausch initiiert wird.
  • Versuche, zur Begegnung der vorstehend aufgezeigten Probleme in Bezug auf die Verbesserung der Reinigungsqualität die Reinigungszykluszeiten zu erhöhen, um eine längere Wechselwirkungsdauer zwischen den zu reinigenden Bauteilen und dem Reinigungsgasgemisch zu erhalten, erbrachten nur geringfügige Erfolge. Zudem wurden Reinigungsprozesse mit einer erhöhten HF-Konzentration durchgeführt. Doch zeigten diese Bestrebungen lediglich, dass sich die gesetzten Reinigungsziele nicht in zufriedenstellendem Maße einstellten. Vielmehr führten diese Maßnahmen zu einer Kostenerhöhung sowie einem erhöhten Materialangriff auf die zu reinigenden Bauteile.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile, insbesondere von Heissgasen ausgesetzten Gasturbinenkomponenten, in Gegenwart eines halogenhaltigen Gases, mit einem in der Regel kesselförmig ausgebildeten Reinigungsreaktor, in den mittel- oder unmittelbar eine Speiseleitung einmündet, die über eine Durchflussregeleinrichtung mit einem das halogenhaltige Gas bevorratenden Reservoir verbunden ist, derart weiterzubilden, dass einerseits dafür Sorge getragen wird, dass die in Verbindung mit einer unzureichenden bzw. schwankenden Reinigungsgaszufuhr in den Reinigungsreaktor verbundenen Probleme vollständig beseitigt werden. Andererseits gilt es, Maßnahmen zu treffen, die gewährleisten, dass jedes einzelne in den Reinigungsreaktor einzubringende zu reinigende Bauteil einer vorzugsweise unmittelbaren Anströmung mit dem Reinigungsgas ausgesetzt wird, so dass sich möglichst keine Abschattungseffekte sowie auch keine Strömungstoträume innerhalb der Gasströmung ausbilden können. Sämtliche zu treffenden Maßnahmen sollen zudem unter dem Aspekt wirtschaftlicher Überlegungen und einer möglichst schonenden, aber effektiven Reinigung jedes einzelnen Bauteils getroffen werden.
  • Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Gegenstand des Anspruches 9 ist eine weitere, zusätzliche lösungsgemäße Maßnahme, mit der das obenstehende Ziel sowohl in Alleinstellung als auch in Kombination mit Anspruch 1 erfüllt werden kann. Den Erfindungsgedanken vorteilhaft weiterbildende Maßnahmen sind Gegenstand der Unteransprüche, darüber hinaus der weiteren Beschreibung sowie den Ausführungsbeispielen zu entnehmen.
  • Die lösungsgemäße Vorrichtung gemäß den Merkmalen des Oberbegriffs des Anspruches 1 zeichnet sich dadurch aus, dass die Durchflussregeleinrichtung in Abfolge längs der Durchströmungsrichtung des die Speiseleitung durchströmenden halogenhaltigen Gases ein Gasmengenregelventil, eine Wärmetauschereinheit sowie eine Gasmengenmesseinheit vorsieht.
  • Der lösungsgemäßen Vorrichtung liegt die Erkenntnis zugrunde, dass sich längs der Speiseleitung für die Zuführung des halogenhaltigen Gases Kondensationen ausbilden, die insbesondere im Bereich von Drosselstellen auftreten. Derartige Kondensationen führen im Bereich der Gasmengenregelung zu fehlerhaften Werten und können bis hin zum Totalausfall der Mengenmessung führen. Das halogenhaltige Gas wird vorzugsweise in Druckflaschen bevorratet. Unter den Lagerbedingungen liegt es flüssig vor. Durch Erhöhen der Temperatur wird die Flüssigkeit verdampft, und es stellt sich der temperaturabhängige Dampfdruck des Stoffes ein. Vor der Gasregelung herrschen somit Überdruckbedingungen. Der Druck innerhalb des Reinigungsreaktors liegt typischerweise im Druckniveau von 50 Torr bis 780 Torr. Deshalb bedarf es längs der Speiseleitung wenigstens einer druckreduzierenden Drosselstufe. Bei dieser tritt die vorstehende Kondensationsproblematik auf. Die lösungsgemäße Vorrichtung enthält als Drosselstelle längs der Speiseleitung wenigstens eine Durchflussregeleinrichtung, die ein das Gas expandierendes Gasmengenregelventil vorsieht. Zur Begegnung der sich hierbei ausbildenden Kondensation ist in Strömungsrichtung dem Gasmengenregelventil unmittelbar nachfolgend eine Beheizungseinheit vorgesehen, die vorzugsweise einen Gaserhitzer aufweist, wodurch das Temperaturniveau in diesem Leitungsbereich über das Kondensationsniveau des halogenhaltigen Gases, vorzugsweise von HF-Gas, gehoben wird. Stromab längs der Speiseleitung zum Wärmetauscher schließt sich unmittelbar die Gasmengenmesseinheit an. Mit Hilfe der lösungsgemäßen Maßnahme kann wirkungsvoll die Bildung von HF-Kondensat vermieden werden. Fehlmessungen sowie auch ein vollständiges Versagen der Durchflussregeleinrichtung können hiermit vollständig ausgeschlossen werden, wodurch sich zudem auch die Lebensdauer der einzelnen Komponenten der Durchflussregeleinrichtung deutlich erhöht. Dies wiederum hat eine positive Auswirkung auf die Anschaffungs- und Betriebskosten und verbessert darüber hinaus die Verfügbarkeit derartiger Reinigungsanlagen.
  • Grundsätzlich ist eine Beheizung des Wärmtauschers unter Einsatz verschiedenster Aufheiztechniken möglich. Als besonders vorteilhaft hat sich der Einsatz einer elektrischen Beheizung erwiesen. Gleichsam ist es jedoch ebenso möglich, indirekt über entsprechend erhitzte Wärmeträger oder sonstige Heizmedien den Leitungsbereich stromab zum Gasmengenregelventil zu erhitzen. Für die in der Wärmetauschereinheit verwendeten Materialien, die Kontakt mit den halogenhaltigen Gasen haben, besteht die Forderung nach chemischer Beständigkeit gegenüber den aggressiven halogenhaltigen Gasen, vorzugsweise HF-Gas.
  • Die Wärmetauschereinheit ist in Bezug auf ihre Wärmeabgabe derart auszubilden bzw. auszuwählen, dass ein Temperaturniveau zwischen 22°C und 75°C, bevorzugt 40°C bis 50°C und insbesondere bevorzugt 44°C bis 46°C eingestellt werden kann.
  • In einer vorteilhaften Ausbildungsform ist stromauf und stromab zur Durchflussregeleinrichtung in der Speiseleitung jeweils ein Absperrventil vorgesehen, das bei einem eventuellen Ausfall der Durchflussregeleinrichtung jeweils automatisch oder manuell betätigbar ist. Um zu gewährleisten, dass der Reinigungsgaszufluss durch die Speiseleitung selbst in einem derartigen Fall gewährleistet bleibt, ist eine Bypass-Leitung zur Durchflussregeleinrichtung längs der Speiseleitung vorgesehen, längs der ein Regelventil, vorzugsweise ein Handregelventil, eingebracht ist.
  • Weitere Einzelheiten einer bevorzugten Ausführungsform bleiben der Beschreibung unter Bezugnahme auf die Figuren im Weiteren überlassen.
  • Um zu gewährleisten, dass die einzelnen innerhalb des Reinigungsreaktors zu reinigenden Bauteile im Interesse des Reinigungsprozesses von dem Reinigungsgas optimal angeströmt werden, zeichnet sich eine Vorrichtung mit den Merkmalen gemäß dem Oberbegriff des Anspruches 9, die ein mit der wenigstens einen Speiseleitung mittel- oder unmittelbar verbundenes Zentralrohr vorsieht, das sich vom Reaktorkopf zum Reaktorsumpf innerhalb des Reinigungsreaktors erstreckt und im Bereich des Reaktorsumpfes mit einer sich radial zum Zentralrohr erstreckenden, ersten Verteilerstruktur verbunden ist, die über Austrittsöffnungen für das halogenhaltige Gas verfügt, lösungsgemäß dadurch aus, dass die erste Verteilerstruktur eine Auflageebene für die zu reinigenden Bauteile aufweist, und eine zweite Verteilerstruktur vorgesehen ist, die beabstandet zur ersten Verteilerstruktur am Zentralrohr angebracht ist. Die erste Verteilerstruktur bildet zugleich eine sich radial zum Zentralrohr erstreckende Auflageebene für die zu reinigenden Bauteile, wobei die Verteilerstrukturen zumindest in Richtung der auf ihnen aufliegenden Bauteile orientierte Austrittsöffnungen für das halogenhaltige Gas aufweisen.
  • Das neuartige Gasverteilungskonzept sieht die Anordnung von vorzugsweise mehreren längs des Zentralrohrs übereinander angeordneten so genannten Verteilerstrukturen vor, die entweder selbsttragend am Zentralrohr angebracht sind oder mit geeignet ausgebildeten Stützstrukturen längs des Zentralrohrs kombiniert sind.
  • In Abweichung zur bisherigen Reinigungsgaseinspeisung, die direkt aus dem Zentralrohr radial nach aussen oder gemäss US 6536135 B2 im Bereich des Reaktorsumpfes erfolgt, sieht die neu konzipierte Gasverteilung eine längs des Zentralrohres jeweils in den Bereichen der Auflageebenen, auf denen die einzelnen zu reinigenden Bauteile aufliegen, jeweils individuelle Gaseinspeisungen vor. So dient die neuartige dezentrale Gasverteilung im Reinigungsreaktor dazu, das Prozessgas möglichst optimal zu verteilen, indem jeder einzelnen Komponente das Reinigungsgas unter weitgehend identischen Bedingungen zu- und wieder abgeführt wird. Aufgrund einer individuellen Reinigungsgaseinspeisung in jeder einzelnen Auflageebenefür die zu reinigenden Bauteile wird gewährleistet, dass jedes einzelne Bauteil direkt und in geeigneter Weise mit Reinigungsgas beaufschlagt wird. Die Anzahl sowie die Anordnung der in der jeweiligen Verteilerstruktur vorgesehenen Austrittsöffnungen können grundsätzlich beliebig gewählt werden, vorzugsweise jedoch unter Berücksichtigung von Form, Größe und Anordnung der zu reinigenden Bauteile.
  • Die jeweils längs des Zentralrohrs mit axialem Abstand angebrachten Verteilerstrukturen, die je nach Ausbildung in stabile Stützstrukturen integriert oder in Form eigenstabiler Platten- oder Rohrkonstruktionen ausgebildet sein können, sind aus einem Material hergestellt, das beständig gegenüber dem in dem Reinigungsreaktor herrschenden Prozessbedingungen ist, vorzugsweise bietet sich hierfür IN600 (Inconel 600) an.
  • Je nach Reinigungsaufgabe sowie Größe und Anzahl der zu reinigenden Bauteile ist der Reinigungsreaktor mit einer geeigneten Anzahl längs zum Zentralrohr verteilt anzuordnender Verteilerstrukturen zu bestücken, auf die die zu reinigenden Bauteile aufzubringen sind.
  • In einer bevorzugten Ausführungsform sind die einzelnen Verteilerstrukturen modulartig und unter Berücksichtigung der vorstehend beschriebenen Reinigungsaufgabe einbringbar. Hierzu weisen die Verteilerstrukturen eine mittige Manschette mit einer Manschettenöffnung zur Aufnahme des Zentralrohres auf. Mit Hilfe der Manschette lassen sich die einzelnen Verteilerstrukturen längs des Zentralrohrs positionieren und fixieren. Um den Abstand zwischen zwei längs des Zentralrohrs anzubringenden Verteilerstrukturen geeignet zu wählen, ist eine entsprechende Anzahl von zylinderförmigen Distanzmanschetten vorzusehen, die als Abstandshalter längs über das Zentralrohr geschoben werden und die mit den Verteilerstrukturen versehenen Manschetten längs des Zentralrohes voneinander beabstandet fixieren.
  • Grundsätzlich lassen sich die jeweils radial von der Manschette erstreckenden Verteilerstrukturen in unterschiedlicher Weise ausbilden bzw. ausführen. Als besonders vorteilhaft haben sich platten- oder gitterförmige bzw. rohrförmige Ausbildungen für die Verteilerstruktur erwiesen. Im Falle der Ausbildung einer aus einzelnen Rohrstücken bzw. Rohrleitungen zusammengesetzten Verteilerstruktur ist wenigstens eine von dem Zentralrohr radial verlaufende Stichleitung vorgesehen, von der radial zum Zentralrohr beabstandet wenigstens eine das Zentralrohr ringförmig umlaufende Ringleitung angebracht ist. Die jeweiligen Austrittsöffnungen sind längs der wenigstens einen Stichleitung sowie der wenigstens einen Ringleitung beborzugt jeweils nach oben orientiert angebracht, so dass die auf der Verteilerstruktur aufliegenden Bauteile von dem aus den Austrittsöffnungen austretenden Reinigungsgas unmittelbar beaufschlagt werden. Zur Versorgung der Verteilerstrukturen mit dem Reinigungsgas weisen die vorstehend beschriebenen Manschetten, mit denen die Verteilerstruktur verbundenist, radial zum Zentralrohr orientierte Gasöffnungen auf, durch die das aus dem Zentralrohr über entsprechende Gasaustrittsöffnungen radial austretende Reinigungsgas in die jeweiligen Verteilerstrukturen gelangen kann. Einzelheiten hierzu können der weiteren Beschreibung unter Bezugnahme auf die Figuren entnommen werden.
  • In einer weiteren Ausführungsform sind die jeweiligen Verteilerstrukturen scheibenartig ausgebildet und weisen jeweils eine obere und eine untere Scheibenplatte auf, die einen Zwischenraum einschließen, der zudem von einem die beiden Scheibenplatten an ihrem Umfangsrand fluiddicht verbindenden Scheibenrand gasdicht umschlossen wird. Das auf diese Weise begrenzte Scheibenvolumen wird über eine dem Zentralrohr zugewandte Öffnung mit dem halogenhaltigen Reinigungsgas gespeist, das zumindest über in der oberen Scheibenplatte eingebrachte Austrittsöffnungen aus dem Scheibenvolumen entweichen kann. Die Anzahl, Anordnung bzw. Ausrichtung sowie die Durchmesser der einzelnen Austrittsöffnungen sind grundsätzlich in weiten Bereichen variabel einstellbar. So sind beispielsweise pro Verteilerstruktur zwischen 100 und 10000 Bohrungen bzw. Austrittsöffnungen jeweils mit Durchmessern zwischen 0,1 mm bis 5 mm vorgesehen.
  • Je nach Dimensionierung des Reinigungsreaktors sowie der innerhalb des Reinigungsreaktors zu reinigenden Bauteile haben sich in der Praxis bevorzugte Dimensionen für die Austrittsöffnungen erwiesen, die pro Verteilerstruktur 1000 bis 5000 Austrittsöffnungen jeweils mit Durchmessern zwischen 0,5 und 2,5 mm vorsehen.
  • Zu Zwecken einer verbesserten, an die Form und Größe der jeweils zu reinigenden Bauteile angepassten Anströmung mit Reinigungsgas gilt es, die Austrittsöffnungen bezüglich der in der Regel kreisrunden Auflageebene sektoral geeignet anzuordnen bzw. zu verteilen, beispielsweise in Form radial verlaufender Linien oder radial und in Umfangsrichtung geordneter Feldmuster, in denen die Austrittsöffnungen gruppenweise zusammengefasst angeordnet sind.
  • Neben der Ausbildung der Austrittsöffnungen in Form konventioneller Bohrungen ist es besonders vorteilhaft, die Austrittsöffnungen düsenartig zu konfektionieren, so dass die einzelnen aus den Austrittsöffnungen austretenden Gasströmungen mit einer optimierten Strömungsgeschwindigkeit sowie mit einer vorgebbaren Ausströmungsrichtung auf das jeweils zu reinigende Bauteil auftreffen. In besonders vorteilhafter Weise dienen hierzu die Gasaustrittsrichtung pro Austrittsöffnung beeinflussende Strömungsleitelemente, die bereits bei der Herstellung der Austrittsöffnungen in geeigneter Weise ausgebildet werden können, beispielsweise im Rahmen formgebender Stanzprozesse.
  • In einer weiteren bevorzugten Ausführungsvariante sehen die Verteilerstrukturen nicht nur Austrittsöffnungen für das Reinigungsgas an der der Auflageebene zugewandten Oberseite vor, um die auf den jeweiligen Verteilerstrukturen aufliegenden Bauteile mit Reinigungsgas zu beaufschlagen, sondern darüber hinaus sind auch an der gegenüberliegenden Unterseite entsprechende Austrittsöffnungen vorgesehen, um einen Teil des über die Verteilerstruktur austretenden Reinigungsgases auf jene Bauteile zu richten, die auf der unmittelbar darunter befindlichen Auflageebene aufliegen.
  • Trotz der Vielzahl an möglichen Ausbildungsvarianten für eine jeweilige Verteilerstruktur kann es bei einzelnen zu reinigenden Komponenten dennochvorkommen, dass diese nicht optimal vom Reinigungsgas beaufschlagt werden. Um diesen Nachteil zu beseitigen, bietet es sich an, zusätzliche Abdeck-, Ablenk- bzw. Schutzbleche vorzusehen, deren Aufgabe es ist, Gasströme innerhalb des Reinigungsreaktors entsprechend umzulenken. Derartige auch als Gasleitbleche bezeichnete optionale Zusatzkomponenten lassen sich vorzugsweise zwischen den jeweiligen Verteilerstrukturen oder unmittelbar an den zu reinigenden Bauteilen anbringen, um bestimmte Bereiche von Komponenten in besonderer Weise mit dem Reinigungsgas zu beaufschlagen oder aber bestimmte Bereiche gegenüber dem Reinigungsgas abzuschirmen, um einen direkten Kontakt mit dem Reinigungsgas zu vermeiden.
  • Wege zur Ausführung der Erfindung
  • Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung exemplarisch beschrieben. Es zeigen:
  • Fig. 1
    eine schematisierte Darstellung des Aufbaus eines lösungsgemäß ausgebildeten Reinigungsreaktors,
    Fig. 2
    eine perspektivische Darstellung einer Verteilerstruktur,
    Fig. 3
    eine Verteilerstruktur mit plattenförmiger Ausbildung,
    Fig. 4
    eine Teilschnittdarstellung einer plattenförmig ausgebildeten Vertei- lerstruktur,
    Fig. 5
    eine Verteilerstruktur mit segmentartig angeordneten Austrittsöffnun- gen, sowie
    Fig. 6
    eine Illustration von Austrittsöffnungen mit Strömungselementen.
    Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit
  • Figur 1 illustriert einen schematischen Aufbau eines Reinigungsreaktors (rechte Figurenhälfte), der über ein Reinigungsgasleitungssystem (linke Figurenhälfte) mit einer Reinigungsgasmischung versorgt wird. Der Reinigungsreaktor weist ein im wesentlichen zylinder- oder tonnenförmig ausgebildetes Reaktorgehäuse 11 auf, das an seiner oberen Seite mit einem Reaktordeckel 14 gasdicht verschlossen ist. Das Reaktorgehäuse 11 ist von einem Heizungsmantel 12 umgeben, in dem Heizeinrichtungen 13 für eine Reinigungsprozesstemperatur im Inneren des Reinigungsreaktors von bis zu 1200°C sorgen. Innerhalb des Reinigungsreaktors ist mittig ein Zentralrohr 23 vorgesehen, das den Reaktordeckel 14 gasdicht nach außen durchstösst, und in das über eine Speiseleitung 10 Reinigungsgas eingespeist wird. Zudem ist ein Reaktorauslass 24 innerhalb des Reinigungsreaktors vorgesehen, über den verbrauchtes Reinigungsgas über eine entsprechende Abgasleitung 25 nach außen zur weiteren Ver- bzw. Entsorgung gebracht wird.
  • Zur Bereitstellung von Reinigungsgas sind in dem in Figur 1 gezeigten Ausführungsbeispiel zwei Gasreservoire 1, 1' vorgesehen, nämlich ein Gasreservoir zur Bereitstellung von Fluorwasserstoff (HF) und ein Gasreservoir zur Bereitstellung von Wasserstoffgas (H2). Beide Gassorten gilt es, in geeigneter Weise vor Einspeisung in die Speiseleitung 10 mit einem vorgegebenen Mischungsverhältnis zu mischen. Hierzu schließt sich längs einer Speiseleitung unmittelbar stromab des HF-Gasreservoirs 1 eine Durchflussregeleinrichtung an, die aus einem Gasmengenregelventil 5, einer Wärmetauschereinheit 9, vorzugsweise in Form eines Gaserhitzers sowie einer Gasmengenmesseinheit 6 besteht. Die sich unmittelbar stromab zum Gasmengenregelventil 5 anschließende Wärmetauschereinheit 9 sorgt für eine markante Temperaturerhöhung über die Kondensationstemperatur des HF-Gases, so dass eine von jedweden Kondensationsprozessen nicht beeinträchtigte HF-Gasversorgung mit Hilfe der Durchflussregeleinrichtung gewährleistet werden kann. Zur Überwachung und Ansteuerung der Wärmetauschereinheit 9 dient ein Gastemperaturregelkreis 8. Zur kontrollierten Durchführung der Gasmengenmessung ist ein geeigneter Gasmengenregelkreis 7 vorgesehen.
  • Um bei einem eventuellen Ausfall der automatischen Regelung hinsichtlich der Gastemperatur und/oder der Gasmenge einen damit verbundenen Prozessabbruch zu vermeiden, ist zusätzlich eine Bypassleitung 2 vorgesehen, in der ein Absperrventil, vorzugsweise ein Handregelventil 4, angebracht ist. Die Bypassleitung 2 wird in jenem Fall genutzt, bei dem die Durchflussregeleinrichtung, bestehend aus dem Gasmengenregelventil 5 der Wärmetauschereinheit 9 und der Gasmengenmesseinheit 6, stromauf und stromab mit Hilfe zweier Blockventile 3 von der Gaszufuhr abgetrennt wird. Die eingesetzten Blockventile 3 können vorzugsweise in Form von Ventilen, Hähnen oder Schiebern ausgebildet sein, die sowohl von Hand als auch automatisch angetrieben werden können.
  • Das in der Bypassleitung 2 vorgesehene Handregelventil ist vorzugsweise als Nadeldurchgangsventil ausgebildet, das eine sehr fein dosierte Einstellung des HF-Gasflusses ermöglicht.
  • Das längs der Speiseleitung 10 in das Zentralrohr 23 eingespeiste HF-Reinigungsgasgemisch tritt innerhalb des Prozessraumes 16 des Reinigungsreaktors über in verschiedenen Ebenen längs des Zentralrohrs 23 angebrachte Verteilerstrukturen 20 aus, auf denen die jeweils zu reinigenden Bauteile 26 aufliegen. In dem gezeigten Ausführungsbeispiel sind die im Prozessraum 16 vorgesehenen Verteilerstrukturen 20 getrennt zu gleichfalls radial am Zentralrohr 23 angebrachten Stützstrukturen 19 ausgeführt, auf denen sich die Verteilerstrukturen 20 abstützen. Das Reinigungsgas gelangt über das Zentralrohr 23 jeweils in die Verteilerstrukturen 20, von denen es unmittelbar auf die zu reinigenden Bauteile 26 gerichtet austritt. Zusätzliche innerhalb des Prozessraums 16 vorgesehene Gasleitbleche 27, 28 und 29 sorgen für eine individuelle Anströmung der einzelnen zu reinigenden Bauteile 26 mit Reinigungsgas.
    Im Bereich des Reaktorsumpfes 17 befindet sich die unterste Verteilerstruktur 20, die in einen stabilen Bodenträger 21 integriert ist, der vorzugsweise fest mit dem Zentralrohr 23 verbunden ist.
  • Um den Bereich des Reaktorkopfes 15, insbesondere den Reaktordeckel 14 gegenüber einer zu starken Hitzebelastung zu bewahren, ist ein Hitzeschild 22 im oberen Bereich innerhalb des Reinigungsreaktors am Zentralrohr 23 angebracht.
  • In Figur 2 ist in perspektivischer Darstellung eine bevorzugte Ausführungsform einer Verteilerstruktur 20 dargestellt. Die Verteilerstruktur 20 weist eine mittige Manschette 43 auf, die über das nicht weiter dargestellte Zentralrohr zwangsgeführt geschoben werden kann. Nur der Vollständigkeit sei darauf hingewiesen, dass anstelle der Manschette die Verteilerstruktur 20 auch direkt mit dem Zentralrohr 23 verbunden sein kann, in diesem Fall entspricht die Komponente 43 dem Zentralrohr.
  • Radial von der Manschette 43 ausgehend schließen an diese vier Stichleitungen 40 an, mit denen jeweils konzentrische Ringleitungen 41 verbunden sind. Die Stichleitungen 40 sowie Ringleitungen 41 bilden ein miteinander kommunizierendes Rohrleitungssystem, das von dem nicht dargestellten Zentralrohr 23 mit Reinigungsgas versorgt wird. Hierzu weist die Manschette 43 Öffnungen auf (nicht dargestellt) über die das vom Zentralrohr 23 bereitgestellte Reinigungsgas in das Verteilersystem eingespeist werden kann. Im dargestellten Ausführungsbeispiel ist die Verteilerstruktur 20 eigentragfähig und robust ausgebildet und fest genug mit der Manschette 43 verbunden, um sowohl das Eigengewicht der Verteilerstruktur 20 sowie auch das Gewicht der auf die Verteilerstruktur 20 aufzubringenden zu reinigenden Bauteile 26 aufzunehmen.
    Nicht in Figur 2 dargestellt sind die längs der Stichleitungen 40 sowie Ringleitungen 41 vorgesehenen Austrittsöffnungen, über die das Reinigungsgas in Richtung der auf der Verteilerstruktur 20 aufliegenden Bauteile austritt.
  • Figur 3 illustriert stark schematisiert ein alternatives Ausführungsbeispiel für eine Verteilerstruktur, die plattenförmig ausgebildet ist. Die Verteilerstruktur weist in diesem Fall eine obere 50 und untere 51 Scheibenplatte auf, beide Platten 50und 51 sind von einem umlaufenden Scheibenrand 52 begrenzt und schließen ein innenliegendes Volumen ein. Zusätzlich ist die Verteilerstruktur mit einer mechanisch stabilen Stützstruktur 54 verbunden. Die obere Scheibenplatte 50 weist Sektoren auf, gekennzeichnet durch Begrenzungslinien 55, die im dargestellten Falle längs jeweils radial verlaufen. Die einzelnen Sektoren können ausgetauscht werden, um den Reaktor möglichst variabel an unterschiedliche Komponententypen anzupassen. Mittig wird die plattenförmig ausgebildete Verteilerstruktur von dem Zentralrohr 23 durchsetzt, an dem die Verteilerstruktur 20 fest angebracht ist. Alternativ ist die Verteilerstruktur mit einer vorstehend beschriebenen Manschette verbunden, die über das Zentralrohr 23 gefädelt ist.
  • In Figur 4 ist eine perspektivische Querschnittsdarstellung durch eine plattenförmig ausgebildete Verteilerstruktur dargestellt. In diesem Falle sei angenommen, dass die obere und die untere Scheibenplatte 50, 51 unmittelbar an dem zentralen Zentralrohr 23 angebracht sind. Ebenfalls kann es sich bei 23 um eine Manschette handeln. Über entsprechende Verbindungsöffnungen 55 gelangt durch das Zentralrohr bzw. Manschette 23 zugeführtes Reinigungsgas in den Zwischenraum zwischen der oberen und unteren Scheibenplatte 50, 51. Über entsprechende Austrittsöffnungen 56, die in der oberen Scheibenplatte 50 eingearbeitet sind, tritt das Reinigungsgas schließlich in den Prozessraum aus. Die Austrittsöffnungen 56 werden vorzugsweise unter Berücksichtigung der zu reinigenden Bauteile, die auf der oberen Scheibenplatte 50 aufzubringen sind, entsprechend angeordnet. Das in Figur 4 dargestellte Ausführungsbeispiel sieht sektoral feldartige Ordnungsmuster für die Austrittsöffnungen 56 vor. In Figur 5 ist die Draufsicht einer Segmentfläche der oberen Scheibenplatte 50 dargestellt, in der eine Vielzahl von Feldern 57 angeordnet sind, die sich jeweils aus einer Vielzahl einzelner Austrittsöffnungen 56 zusammensetzen. Die Anordnung sowie die Anzahl der Austrittsöffnungen 56 innerhalb der einzelnen Felder 57 können jeweils identisch oder unterschiedlich, vorzugsweise in Abhängigkeit an die jeweils zu reinigenden Bauteile gewählt werden.
  • Figur 6 zeigt schematisiert eine vergrößerte Darstellung eines Feldes 57, in dem eine Vielzahl einzelner Austrittsöffnungen 56 vorgesehen ist. Anhand der Schnittbilddarstellungen A-A sowie B-B sind die Konturen der einzelnen Austrittsöffnungen ersichtlich. Insbesondere kann aus der Schnittdarstellung A-A ersehen werden, dass jede einzelne Austrittsöffnung 56 von einem Strömungsleitelement 58 überdeckt ist, wodurch die Austrittsströmung räumlich gerichtet auf das jeweilige Bauteil auftreffen kann.
  • Mit den vorstehend beschriebenen Maßnahmen bezüglich einer optimierten Gasmengenregulierung sowie einer optimierten Gasverteilung ist eine Anzahl von Vorteilen im Hinblick auf die Reinigung von insbesondere heissgasbeaufschlagten Gasturbinenkomponenten verbunden. So bildet sich aufgrund der optimierten Gasmengenregelung ein konstanter Gasvolumenstrom aus, der mit einer geringen Schwankungsbreite in den Reinigungsreaktor eingespeist werden kann. Die Gasverteilung innerhalb des Reinigungsreaktors ist deutlich homogener und gleichmäßiger. Die einzelnen Bauteile werden besser und in einer definierten Weise von dem Reinigungsgas angeströmt, so dass eine gleichmäßige Anströmung in allen zu reinigenden Oberflächenbereichen an den Bauteilen erreicht werden kann. Insbesondere entstehen durch die getroffenen Maßnahmen keine Toträume, in denen die zu reinigenden Bauteile schlechter oder gar nicht umströmt bzw. angeströmt werden. Mit Hilfe des erfindungsgemäßen Reinigungskonzepts kann insbesondere eine deutlich bessere Tiefenreinigung, d.h. bessere Oxidentfernung, von Rissen erreicht werden.
  • Zudem hilft die optimierte Regelung und Gasverteilung, die zu Reinigungszwecken einzuspeisende Menge an HF-Gas deutlich zu reduzieren. Dies verringert zum einen das Risiko einer Schädigung der einzelnen Komponenten bei gleichzeitig verbesserter Reinigungswirkung. Zum anderen können hierdurch überätzte Oberflächenbereiche an den Bauteilen sicher vermieden werden. Darüber hinaus wird die Gesamtanlage weniger durch das chemisch hochreaktive Reinigungsgas belastet, so dass die Stand- und Benutzungsdauer derartiger Anlagen und deren Komponenten deutlich verlängert werden kann. Insgesamt verhelfen die erfindungsgemäßen Maßnahmen, Ressourcen wie beispielsweise die Prozessgase, Energie und darüber hinaus erforderliche Betriebsmittel deutlich zu reduzieren. So führt die Reduzierung des Reinigungsgases automatisch zur Reduktion der anfallenden zu entsorgenden Austrittsstoffströme und damit zur deutlichen Reduzierung des Abfalls. Insgesamt lassen sich die Betriebskosten derartiger Anlagen mit dem lösungsgemäßen Konzept erheblich reduzieren. Dazu trägt auch eine höhere Beladungsdichte des Reaktors, sowie eine Reduktion der Prozesszeiten bei.
  • Bezugszeichenliste
  • 1
    Gasreservoir
    2
    Bypassleitung
    3
    Blockventil
    4
    Handregelventil
    5
    Gasmengenregelventil
    6
    Gasmengenmesseinheit
    7
    Regelkreis für Gasmenge
    8
    Regelkreis für Gastemperatur
    9
    Wärmetauschereinheit
    10
    Speiseleitung
    11
    Reinigungsreaktor
    12
    Heizungseinheit
    13
    Heizungen
    14
    Reaktordeckel
    15
    Reaktorkopf
    16
    Prozessraum
    17
    Reaktorsumpf
    18
    Reaktorboden
    19
    Stützstruktur
    20
    Verteilerstruktur
    21
    Stützstruktur-Bodenträger
    22
    Hitzeschild
    23
    Zentralrohr
    24
    Reaktorauslass
    25
    Abgasleitung
    26
    Bauteil
    27,28,
    Gasleitbleche
    29
    40
    Stichleitung
    41
    Ringleitung
    42
    Verbindungsstellen
    43
    Manschette
    50
    obere Scheibenplatte
    51
    untere Scheibenplatte
    53
    Scheibenrahmen
    54
    Stützstruktur
    55
    Verbindungsöffnung
    56
    Austrittsöffnungen
    57
    Feld von Austrittsöffnungen 56
    58
    Strömungsleitelement
    59
    Sektorblech

Claims (19)

  1. Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile (26), insbesondere von Heissgasen beaufschlagter Turbinenkomponenten, in Gegenwart eines halogenhaltigen Gasgemisches, umfassend einen Reinigungsreaktor, in den mittel- oder unmittelbar eine Speiseleitung mündet, die über eine Durchflussregeleinrichtung mit einem das halogenhaltige Gas bevorratenden Gasreservoir verbunden ist,
    dadurch gekennzeichnet, dass die Durchflussregeleinrichtung in Abfolge längs der Durchströmungsrichtung des die Speiseleitung durchströmenden halogenhaltigen Gases zumindest ein Gasmengenregelventil (5), eine Wärmetauschereinheit (9) sowie eine Gasmengenmesseinheit (6) vorsieht.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass stromauf und stromab zur Durchflussregeleinrichtung in der Speiseleitung jeweils ein Absperrventil (3) vorgesehen ist, und
    dass eine Bypassleitung (2) zur Durchflussregeleinrichtung längs der Speiseleitung vorgesehen ist, längs der ein Regelventil (4) eingebracht ist.
  3. Vorrichtung nach Anspruch 2,
    dadurch gekennzeichnet, dass die Absperrventile (3) jeweils als Blockventil ausgebildet sind.
  4. Vorrichtung nach Anspruch 2 oder 3,
    dadurch gekennzeichnet, dass das Regelventil (4) als Handregelventil ausgebildet ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass die Wärmetauschereinheit (9) eine elektrische Beheizung aufweist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass das halogenhaltige Gas Fluorwasserstoffgas ist.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass die Speiseleitung (10) vor Eintritt in den Reinigungsreaktor in eine in den Reinigungsreaktor führende Zuleitung mündet, in die vor Eintritt in den Reinigungsreaktor wenigstens eine zweite Speiseleitung mündet.
  8. Vorrichtung nach Anspruch 7,
    dadurch gekennzeichnet, dass die zweite Speiseleitung mit einem Wasserstoffgasreservoir (1') verbunden ist.
  9. Vorrichtung nach dem Oberbegriff des Anspruches 1 oder nach einem der Ansprüche 1 bis 8, wobei ein mit der wenigstens einen Speiseleitung mittel- oder unmittelbar verbundenes Zentralrohr (23) vorgesehen ist, das sich von einem Reaktorkopf (15) bis zu einem Reaktorsumpf (17) innerhalb des Reinigungsreaktors erstreckt und im Bereich des Reaktorsumpfes (17) mit einer sich radial zum Zentralrohr (23) erstreckenden, ersten Verteilerstruktur (19) verbunden ist, die über Austrittsöffnungen (56) für das halogenhaltige Gasgemisch verfügt,
    dadurch gekennzeichnet, dass die erste Verteilerstruktur (20) eine Auflageebene für die zu reinigenden Bauteile (26) vorsieht,
    dass eine zweite Verteilerstruktur (20) vorgesehen ist, die beabstandet zur ersten Verteilerstruktur am Zentralrohr (23) angeordnet ist und eine sich radial zum Zentralrohr (23) erstreckende Auflageebene für die zu reinigenden Bauteile (26) vorsieht, und
    dass die Verteilerstrukturen (20) zumindest in Richtung der auf ihnen aufliegenden Bauteile (26) zugewandt orientierte Austrittsöffnungen (56) für das halogenhaltige Gas besitzen.
  10. Vorrichtung nach Anspruch 9,
    dadurch gekennzeichnet, dass weitere Verteilerstrukturen (20) längs des Zentralrohrs (23) jeweils voneinander beabstandet angeordnet sind.
  11. Vorrichtung nach Anspruch 9 oder 10,
    dadurch gekennzeichnet, dass die zweite und die weiteren Verteilerstrukturen (20) Austrittsöffnungen für das halogenhaltige Gas aufweisen, die auf die längs des Zentralrohrs (23) unmittelbar benachbarte Verteilerstruktur (20) gerichtet sind.
  12. Vorrichtung nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet, dass die erste Verteilerstruktur (20) sowie weitere Verteilerstrukturen platten- oder gitterförmig ausgebildet sind.
  13. Vorrichtung nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet, dass die Verteilerstruktur (20) wenigstens eine von dem Zentralrohr (23) radial verlaufende Stichleitung (40) besitzt, von der radial zum Zentralrohr (23) beabstandet wenigstens eine das Zentralrohr (23) ringförmig umlaufende Ringleitung (41) abgeht, und
    dass die Austrittsöffnungen (56) längs der wenigstens einen Stichleitung (40) sowie der wenigstens einen ringförmigen Ringleitung (41) angebracht sind.
  14. Vorrichtung nach Anspruch 13,
    dadurch gekennzeichnet, dass die Stich- und Ringleitungen (40, 41) aus einem formstabilen Rohrmaterial gefertigt sind, und
    dass die Stich- und Ringleitungen (40, 41) eine spinnennetzartige Auflageebene beschreiben, auf die die zu reinigen Bauteile (26) unmittelbar auflegbar sind.
  15. Vorrichtung nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet, dass die Verteilerstruktur (20) scheibenartig das Zentralrohr (23) umgibt und mit einer oberen und unteren Scheibenplatte (50, 51) sowie einem beide Scheibenplatten (50, 51) an ihrem Umfangsrand (53) fluiddicht verbindenden Scheibenrand ein Scheibenvolumen einschliesst,
    dass das Scheibenvolumen über wenigstens eine dem Zentralrohr (23) zugewandte Öffnung (25) in der Verteilerstruktur mit dem halogenhaltigen Gas speisbar ist,
    und
    dass zumindest die obere Scheibenplatte (50) Austrittsöffnungen (56) für das halogenhaltige Gasbesitzt.
  16. Vorrichtung nach Anspruch 15,
    dadurch gekennzeichnet, dass an den Austrittsöffnungen (56) jeweils die Gasaustrittsrichtung beeinflussende Strömungsleitelemente (58) vorgesehen sind.
  17. Vorrichtung nach den Ansprüchen 15 und 16,
    dadurch gekennzeichnet, dass die obere Scheibenplatte (50) Ausnehmungen vorsieht, in die modulartig ausgebildete Sektorbleche (59) einlegbar sind, und
    dass die Sektorbleche (59) individuell vorgebbare Muster an Austrittsöffnungen (56) vorsehen.
  18. Vorrichtung nach einem der Ansprüche 9 bis 17,
    dadurch gekennzeichnet, dass die Verteilerstruktur (20) mit einer radial innenliegenden Manschette (43) verbunden ist, die als Trag- und Stützstruktur dient, und
    dass die Manschette (43) eine Öffnung zur Aufnahme des Zentralrohrs (23) besitzt, längs der die Manschette (43) zwangsgeführt fixierbar ist.
  19. Vorrichtung nach Anspruch 18,
    dadurch gekennzeichnet, dass eine Anzahl von zylinderförmigen Distanzmanschetten längs des Zentralrohrs (23) zu Zwecken einer gegenseitigen Beabstandung zweier Verteilerstrukturen (20) längs des Zentralrohrs (23) vorgesehen ist.
EP09175543.9A 2008-11-17 2009-11-10 Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile in Gegenwart eines halogenhaltigen Gasgemisches Active EP2192209B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810043787 DE102008043787B3 (de) 2008-11-17 2008-11-17 Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile in Gegenwart eines halogenhaltigen Gasgemisches
US12/352,641 US9353625B2 (en) 2009-01-13 2009-01-13 Device for cleaning oxidized or corroded components in the presence of a halogenous gas mixture

Publications (3)

Publication Number Publication Date
EP2192209A2 true EP2192209A2 (de) 2010-06-02
EP2192209A3 EP2192209A3 (de) 2014-08-13
EP2192209B1 EP2192209B1 (de) 2016-04-06

Family

ID=41682389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09175543.9A Active EP2192209B1 (de) 2008-11-17 2009-11-10 Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile in Gegenwart eines halogenhaltigen Gasgemisches

Country Status (2)

Country Link
EP (1) EP2192209B1 (de)
CA (1) CA2685800C (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006602A1 (de) * 2014-10-09 2016-04-13 Airbus DS GmbH Verfahren zur Reinigung von Turbinenschaufeln
US9689076B2 (en) 2014-10-10 2017-06-27 Airbus Ds Gmbh Method of cleaning turbine blades
CN113002808A (zh) * 2021-02-07 2021-06-22 上海宇航系统工程研究所 一种火箭吹除集中供气系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2810598A1 (de) 1977-03-17 1978-09-21 Gen Electric Verfahren zum reparieren eines gegenstandes aus einer superlegierung auf nickelgrundlage
EP0209307B1 (de) 1985-07-15 1988-09-07 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Reinigung von Metallgegenständen
US6536135B2 (en) 1999-02-18 2003-03-25 General Electric Company Carbon-enhanced fluoride ion cleaning
DE102005051310A1 (de) 2005-10-26 2007-05-03 Siemens Ag Reinigung von oxidierten oder korrodierten Bauteilen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003705A (ja) * 1999-06-16 2001-01-09 Hitachi Ltd ガスタービン翼電解加工空冷孔清浄化方法並びに装置
GB0614874D0 (en) * 2006-07-27 2006-09-06 Rolls Royce Plc Aeroengine washing system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2810598A1 (de) 1977-03-17 1978-09-21 Gen Electric Verfahren zum reparieren eines gegenstandes aus einer superlegierung auf nickelgrundlage
EP0209307B1 (de) 1985-07-15 1988-09-07 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Reinigung von Metallgegenständen
US6536135B2 (en) 1999-02-18 2003-03-25 General Electric Company Carbon-enhanced fluoride ion cleaning
DE102005051310A1 (de) 2005-10-26 2007-05-03 Siemens Ag Reinigung von oxidierten oder korrodierten Bauteilen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006602A1 (de) * 2014-10-09 2016-04-13 Airbus DS GmbH Verfahren zur Reinigung von Turbinenschaufeln
US9689076B2 (en) 2014-10-10 2017-06-27 Airbus Ds Gmbh Method of cleaning turbine blades
CN113002808A (zh) * 2021-02-07 2021-06-22 上海宇航系统工程研究所 一种火箭吹除集中供气系统

Also Published As

Publication number Publication date
CA2685800A1 (en) 2010-05-17
EP2192209B1 (de) 2016-04-06
EP2192209A3 (de) 2014-08-13
CA2685800C (en) 2016-05-24

Similar Documents

Publication Publication Date Title
DE3148620C2 (de) Vorrichtung zum Niederschlagen dünner Filme auf Siliciumplättchen
DE3729517A1 (de) Adsorptionseinrichtung zur gastrennung
DE102008025831B4 (de) Kühlstruktur für den Körper eines Kristallzüchtungsofens
DE102010014643A1 (de) Rohrbündelreaktor
WO2006021315A1 (de) Gewickelter wärmetauscher
EP2526365B1 (de) Leitscheibenanordnung für einen wärmetauscher, wärmetauscher, verfahren zum herstellen eines wärmetauschers sowie aus- oder nachrüstkit für einen wärmetauscher
WO2008148773A1 (de) Aus einer vielzahl diffusionsverschweisster scheiben bestehender gasverteiler und ein verfahren zur fertigung eines solchen gasverteilers
WO2007134844A1 (de) Vorrichtung zum abkühlen von gasen (quenche) unter bildung eines korrosiven kondensates
WO2016166079A1 (de) Kühlfalle
DE2854943A1 (de) Heizvorrichtung mit schutzgassystem
DE19803740C2 (de) Gasphasenbeschichtungsverfahren und Vorrichtung zur Gasphasenbeschichtung von Werkstücken
EP2192209B1 (de) Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile in Gegenwart eines halogenhaltigen Gasgemisches
DE19647366A1 (de) Verfahren und Ofen zum Aktivieren einer gewebten oder ungewebten Textilmatte auf Grundlage von kontinuierlichen Fäden oder Garnen aus Kohlenstoffasern
DE102008026001A1 (de) Verfahren und Vorrichtung zur Erzeugung und Bearbeitung von Schichten auf Substraten unter definierter Prozessatmosphäre
WO2010081588A1 (de) Chargiergestell sowie abschreckvorrichtung mit chargiergestell
DE112004002277T5 (de) Anlage zur raschen thermischen Bearbeitung
DE3208378C2 (de) Deckenstrahlungsheizung, insbesondere für Hallen
DE102008043787B3 (de) Vorrichtung zur Reinigung oxidierter oder korrodierter Bauteile in Gegenwart eines halogenhaltigen Gasgemisches
DE19637090C1 (de) Industrielle Abluftreinigungsanlage
DE10356679A1 (de) Verfahren und Vorrichtung zur Beschichtung oder Wärmebehandlung von BLISK-Scheiben für Fluggasturbinen
DE3143989C1 (de) Kernkraftwerk mit einem Sicherheitsbehaelter
DE112023000239T5 (de) Wärmetauschkomponente und Wärmetauschverfahren für eine Hydriervorrichtung
EP0344094B1 (de) Entspannungsvorrichtung für unter Druck stehende heisse Flussigkeiten
DE1527406A1 (de) Anlage zum Loeten von Waermeaustauscherbuendeln,insbesondere fuer Kuehler
WO2011026675A1 (de) Vorrichtung zum ausleiten von gasförmigen messproben aus einem herstellungsprozess und verwendung der vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: C23G 5/00 20060101AFI20140708BHEP

Ipc: F01D 5/00 20060101ALI20140708BHEP

Ipc: B08B 7/00 20060101ALI20140708BHEP

Ipc: F01D 25/00 20060101ALI20140708BHEP

Ipc: B23P 6/04 20060101ALI20140708BHEP

17P Request for examination filed

Effective date: 20150213

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20160211

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 787937

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009012378

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD, CH

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160406

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160808

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009012378

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161121

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

26N No opposition filed

Effective date: 20170110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009012378

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009012378

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009012378

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009012378

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009012378

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 787937

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161110

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Effective date: 20171221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171121

Year of fee payment: 9

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171123

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181110

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241119

Year of fee payment: 16