EP2190587B1 - Vielloch- oder bündeldüse - Google Patents

Vielloch- oder bündeldüse Download PDF

Info

Publication number
EP2190587B1
EP2190587B1 EP08802252A EP08802252A EP2190587B1 EP 2190587 B1 EP2190587 B1 EP 2190587B1 EP 08802252 A EP08802252 A EP 08802252A EP 08802252 A EP08802252 A EP 08802252A EP 2190587 B1 EP2190587 B1 EP 2190587B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
outlet openings
hole
longitudinal axis
annular gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08802252A
Other languages
English (en)
French (fr)
Other versions
EP2190587A1 (de
Inventor
Dieter Wurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL08802252T priority Critical patent/PL2190587T3/pl
Publication of EP2190587A1 publication Critical patent/EP2190587A1/de
Application granted granted Critical
Publication of EP2190587B1 publication Critical patent/EP2190587B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/045Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being parallel just upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/18Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area using fluids, e.g. gas streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0466Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the central liquid flow towards the peripheral gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • B05B7/062Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet
    • B05B7/066Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet with an inner liquid outlet surrounded by at least one annular gas outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0846Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with jets being only jets constituted by a liquid or a mixture containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0853Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single gas jet and several jets constituted by a liquid or a mixture containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0892Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point the outlet orifices for jets constituted by a liquid or a mixture containing a liquid being disposed on a circle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation

Definitions

  • the invention relates to a multi-hole or bundle nozzle with a plurality of outlet openings for fluid to be atomized.
  • Multi-hole nozzles are nozzles in which the droplet spray, starting from a common pre-chamber or mixing chamber, exits via a plurality of individual bores.
  • Bundle nozzles are nozzles in which several basically functional individual nozzles are mounted on a nozzle head or within a nozzle head.
  • Multi-hole nozzles and bundle nozzles have in common that several spray jets simultaneously emerge from the nozzle and form a total exit jet. Within the total exit jet can, but does not necessarily have to be an interaction or mixing of the individual beams.
  • the invention thus relates to nozzles for atomizing liquids without and with the use of compressed air, wherein alternatively a plurality of individual nozzles are mounted on a nozzle lance head, or flows out of a common chamber liquid or a drop-gas mixture of a plurality of outlet openings in the nozzle outlet part.
  • novel measures for producing a fine droplet spray while avoiding deposits on the nozzle exit part are to be used in such multi-hole or bundle nozzles.
  • liquids are sprayed into a gaseous fluid, for example in flue gas to be cleaned or cooled, ie for flue gas cleaning or for evaporative cooling. It is often crucial that the liquid is atomized into the finest possible drops. The finer the drops, the larger the specific drop surface. This can result in considerable procedural advantages. For example, the size of a reaction vessel and its manufacturing costs are critically dependent on the average droplet size. But in many cases it is by no means sufficient for the average droplet size to fall below a certain limit. Even a few much larger drops can lead to significant disruption. This is particularly the case when the drops do not evaporate fast enough due to their size, so that even drops or doughy particles in the following components, eg fabric filter hoses or fan blades, are deposited and lead to malfunction due to incrustations, corrosion or imbalance ,
  • pressurized gas-based two-fluid nozzles are frequently used in addition to high-pressure single-fluid nozzles, which are charged only with the liquid to be atomized.
  • the liquid is removed by means of a pressurized gas, e.g. Compressed air or pressurized steam, the first gaseous fluid, into a second gaseous fluid, e.g. in flue gas, sprayed.
  • a pressurized gas e.g. Compressed air or pressurized steam
  • compressed air is often used in the following for the designation of the first gaseous fluid, the term “compressed air” including the use of pressurized gas or pressurized steam having essentially any desired chemical composition.
  • the second gaseous fluid is referred to as a flue gas, the use of the term “flue gas” including any other gaseous and possibly additionally solids-laden fluid.
  • the description of the invention focuses on the more complicated case of the compressed-air two-fluid nozzle.
  • the invention is also applicable to single-ink atomizing nozzles, provided that they are designed as a multi-hole or bundle nozzles.
  • the sulfuric acid dew point temperature may range between 100 ° C and 160 ° C
  • the steam dew point temperatures in flue gases are often between about 45 ° C and 65 ° C. Since a comparatively cold fluid is usually sprayed into the flue gas with two-substance nozzles, the surface temperature of the nozzle lance and nozzle head, in particular those of bundle nozzle heads, is well below the dew point temperatures of the flue gas constituents mentioned. From the flue gas to nozzle lance and nozzle head condensing liquid can chemically react with the particulate contents of the flue gas, the airborne dusts.
  • Impermissibly high moisture contents of the product occurring in subsequent components of the system can be the result. It is treacherous here that the deposits on the nozzle heads usually have developed so far only after some time that they exert a strong disturbing influence on the droplet size distribution. While very good results are achieved in a nozzle equipped with nozzles, it can be used with the Time to a significant impairment of the operation come when the pads have increased accordingly.
  • each individual nozzle acts like a jet pump: it sucks in gaseous fluid, eg flue gas, from the environment and mixes it into the spray jet. This gaseous fluid thus flows partially over the cold front surface of the nozzle to the passage opening and, consequently, it may come to the growth of deposits here, at least when it is the gaseous fluid is flue gas.
  • gaseous fluid eg flue gas
  • a multi-orifice nozzle For a multi-orifice nozzle, this is for example in Fig. 1 where also the liquid film 12 on the coating as well as resulting large secondary drops 13 are shown.
  • a first step to improve the boundary conditions would be a redesign of the construction of a multi-hole nozzle in such a way that a central outlet bore is possible.
  • a curtain air nozzle By arranging a curtain air nozzle according to the prior art, the formation of deposits from flue gas constituents can be prevented in such nozzles with a plurality of outlet bores.
  • a relatively large enveloping air volume flow is required if lining formation on the front face of the nozzle is to be prevented reliably.
  • a multi-hole or bundle nozzle is to be provided in which a deposit formation is at least greatly reduced and which enables the generation of a total spray jet with a large spray angle.
  • a multi-hole or bundle nozzle according to claim 1 is provided for this purpose.
  • the invention thus achieves a convergent / divergent arrangement of the exit jets, so that, on the one hand, the exit bores of nozzles having a plurality of outlet openings or of bundle nozzles can be grouped as closely as possible about the axis of the nozzle head and on the other hand, the possibility of forming a total spray jet having a sufficiently large spray angle is provided.
  • the nozzle configuration according to the invention has only a small amount of fog required.
  • the minimum distance of the central longitudinal axes of the outlet openings of the individual nozzles lies in the mouth region of the entire nozzle, so it can still be arranged in the mouthpiece upstream of the outlet openings, at the level of the outlet openings or downstream of the outlet openings. In this case, a region of the minimum distance lying immediately downstream of the outlet openings is preferred in order to be able to realize an expansion of the overall jet shortly after the nozzle.
  • the exit jets emerging from the individual nozzle holes or from the individual individual nozzles thus form a flow focus in the mouth region of the entire nozzle, wherein this flow focus may also lie within the mouthpiece.
  • the term "flow focus" is not to be seen in the narrow sense, but in terms of a minimum cross-section of the total jet, upstream and downstream of this minimum cross-section is a larger cross section of the total beam.
  • the basic idea of the invention is thus to align the individual nozzle jets or exit jets in such a way that the beam forms, as it were, a flow focus at the point of entry into a process space in which it is sprayed.
  • the individual nozzle jets or exit jets are already inclined towards the main axis or center longitudinal axis of the nozzle before reaching the flow focus or the minimum cross section, but are not strictly aligned with this center longitudinal axis, but aim at the center longitudinal axis in the center.
  • the center of the total beam may be formed by the exit jet of a central nozzle, which is aligned parallel to the central longitudinal axis.
  • the at least two outlet openings are arranged annularly around the central longitudinal axis of the nozzle.
  • the central longitudinal axes of the at least two outlet openings are arranged at the same angle to the main longitudinal axis on the nozzle.
  • the central longitudinal axes of the at least two outlet openings are inclined in the same direction with respect to a circumferential direction about the main longitudinal axis of the nozzle.
  • the central longitudinal axes of the at least two outlet openings lie on the lateral surface of an imaginary hyperboloid of revolution.
  • the jet streams generated by means of the at least two outlet openings can be largely without Spread interaction with each other in a process space downstream of the outlet openings.
  • the droplet sizes in the total spray jet of collision processes between individual drops are substantially independent and are determined exclusively by the atomization properties of the individual nozzles or of the individual outlet openings.
  • a central outlet opening lying on the main longitudinal axis of the nozzle is provided around which the at least two further outlet openings are arranged in an annular manner.
  • the central longitudinal axes of the at least two further outlet openings are inclined in the same direction with respect to a circumferential direction about the main longitudinal axis of the nozzle in order to generate a twist about the main longitudinal axis of the nozzle.
  • annular gap nozzle is advantageous in order to avoid liquid films in the region of the nozzle orifice, which can lead to secondary drops of considerable size.
  • the annular gap nozzle can be acted upon with compressed air at high pressure or even to produce enveloping air only with low-pressure veiling air.
  • the outlet openings are provided in a nozzle mouthpiece which is surrounded by an annular gap nozzle.
  • the outlet openings are provided, for example, as holes in a massive nozzle tip.
  • This Nozzle tip may be surrounded by an annular die to avoid the formation of large secondary drops.
  • a nozzle carrying body is provided on which a plurality of nozzle nozzles projecting in the outflow direction individual nozzles are arranged, wherein the individual nozzles are surrounded at least at the level of their outlet openings of an annular gap nozzle hood, so that between the individual nozzles and the annular gap nozzle hood at the level of the outlet openings Annular gap is formed.
  • a central nozzle are provided with a lying on the main longitudinal axis of the nozzle outlet opening and at least two further, the main longitudinal axis of the nozzle annular surrounding individual nozzles, wherein an end face of the annular gap nozzle hood has one or more annular gap openings, so that at the level of the outlet openings, a distance between an outer circumference of the individual nozzles and the annular gap or openings or the outer circumference of adjacent individual nozzles is substantially equal.
  • annular gap width of the annular gap nozzle can be achieved by an annular gap opening in the annular gap nozzle hood, for example in the form of a star with rounded points or, if appropriate, also irregularly designed annular gap opening.
  • annular gap between the housings of the individual nozzles then has the substantially constant annular gap width, so that approximately the same flow velocity of the annular gap air is achieved substantially over the entire annular gap, which may have a geometrically irregular shape. If cylindrical housings of the individual nozzles contact one another, a constant annular gap width can not or only approximately be achieved.
  • a throttle element may be provided upstream of the annular gap in the intermediate space between the individual nozzles or the inside of the annular gap nozzle hood be to reduce the pressure of the annular gap air in a suitable manner.
  • annular gap nozzle is surrounded by an annular Schleier Kunststoffdüse.
  • annular gap nozzle in the region of the nozzle orifice can be shielded from flue gases in the process space.
  • a nozzle carrier body is provided on which a plurality of nozzle bodies projecting outwardly in the outflow direction are arranged individual nozzles, wherein the individual nozzles are arranged on a discharge face viewed in the generally concave front of the nozzle carrier body.
  • a concave front not only a curved front, but for example, a front surface is considered, which consists of a plurality of flat partial surfaces, which together form a depression.
  • the outlet openings are provided in a nozzle mouthpiece, wherein the nozzle mouthpiece has a base body with a conical outer surface and surrounding the base body and partially fitting on the outer surface hood and wherein the base body and / or the hood have at the outlet openings ending nozzle channel grooves.
  • the nozzle channels in the arrangement according to the invention can be realized in a simple manner by the milling of grooves in the cone-shaped base body and / or the hood. To the grooves are then closed at their open side and form the nozzle channels.
  • the grooves are applied, for example, on the cone-like base body as in the manufacture of a helical bevel gear.
  • FIG. 1 gives a rough outline of the prior art and shows a multi-hole nozzle 3 with an axis of symmetry 16, consisting of a feed tube 2 for the liquid to be atomized 1, a feed pipe 4 for the compressed gas or for the compressed air 6, an inlet part 20 for liquid. 1 and compressed gas 6 in the mixing chamber 7 with a bore 10 for the liquid supply 1 and a plurality of bores 5 for the compressed air supply 6.
  • an anvil 15 is arranged with a baffle 11, is already divided at the entering through the bore 10 liquid in relatively small drops. This primary droplet spray is conveyed by the compressed air to the outlet holes 8.
  • the medium-sized droplets 9 producing in the mixing chamber 7 are broken down into substantially smaller droplets. From the holes 8, the compressed gas-promoted droplets 18 exit. Very fine drops are present in the jet core, while at the edge of the jet comparatively large drops occur which result from the decay of wall-liquid films in the bores 8, in particular at the bore edges. This in any case if no annular clearance air is provided. At the nozzle, a central Feststoffbelag 14 has formed. By Rezirkulationswirbel 17 smaller drops are deposited on the central coating 14 and form a liquid film 12. At the tip of the nose 21 of the solid coating 14 very large secondary drops 13 dissolve out of the liquid film.
  • Fig. 1 For the sake of simplification, the external configuration of a bundle nozzle 26 according to the prior art is shown.
  • the individual nozzles 36 are mounted on the front surface 38 of an outwardly curved cone, ie in the outflow direction, that is convex.
  • this overall spray jets are readily obtainable with a large total opening angle ⁇ , but these conventional nozzles have a very large cold front surface 38, which is not readily shielded by the use of fog air and easy on it to the formation of large secondary drops triggering deposit formation can come.
  • the individual nozzles consist of single-substance atomizing nozzles or of compressed air-supported two-component nozzles.
  • Fig. 3 1 shows a plurality of individual nozzles, namely a central nozzle 46 and one of six annular nozzles 47 which are arranged around the central nozzle 46 in such a way that they almost touch the central nozzle 46 in the mouth region 40 ,
  • any other number of individual nozzles larger than two may be provided.
  • the central longitudinal axes of these arranged as a ring ring nozzles 47 do not intersect with the main longitudinal axis 16 of the central nozzle 46; Rather, the ring nozzles 47 "aim" laterally past the central nozzle 46.
  • the central longitudinal axes of the annular nozzles 47 are thus skewed aligned with each other, with a distance between the central longitudinal axes of the annular nozzles 47 and the central longitudinal axis of the central nozzle 46, which simultaneously represents the main longitudinal axis 16 of the entire nozzle, seen in the outflow initially reduced.
  • the central longitudinal axes of the annular nozzles 47 do not intersect the main longitudinal axis 16. Rather, the distance between the central longitudinal axes of the annular nozzles 47 and the central longitudinal axis 16 increases again after passing through a minimum distance or smallest cross section of the total exit jet. This region of minimum distance is a little more than the diameter of the outlet openings of the individual nozzles 46, 47 downstream of these outlet openings. Overall, therefore, so that an initially convergent and after passing through the smallest cross-section again divergent arrangement of the spray jets 18 of the individual nozzles is achieved.
  • the spray jets 18 emerging from the annular nozzles 47 have, as in Fig. 3 can be seen, all an equal circumferential component with respect to the main longitudinal axis 16, as seen in the circumferential direction about the main longitudinal axis 16 are all inclined in the same direction.
  • the central longitudinal axes of the annular nozzles 47 and the spray jets 18 of these annular nozzles 47 are due to the annular arrangement of the annular nozzles 47 thus on the lateral surface of a Rotationshyperboloids.
  • the overall jet of the bundle nozzle 45 is affected by the selected orientation of the annular nozzles 47 in total with a twist about the main longitudinal axis 16.
  • each spray jet 18 can propagate largely freely in the process space downstream of the nozzle 45, so that a total spray jet with a sufficiently large opening angle ⁇ is formed.
  • the bundle nozzle 45 has a central lance tube 2 for the supply of liquid to be sprayed 1 and a lance tube 4, which coaxially surrounds the central lance tube 2, for the supply of compressed air 6.
  • a nozzle support body 41 with concave front surface on which the annular nozzles 47 and the central nozzle 46 are arranged bores 27 for the supply of liquid to the individual nozzles 36, 37 are provided.
  • the mixing chamber inlet parts 28 which are each arranged at the transition between the nozzle support body 41 and the nozzle tubes of the individual nozzles 46, 47, the liquid enters the mixing chambers 7 a.
  • the annular nozzles 47 are identical to the central nozzle 46 is formed. Furthermore, the compressed air 6 initially flows through large bores 31 into a primary compressed gas chamber 32 and reaches the mixing chambers 7 via bores 5 in the nozzle tubes of the central nozzle 46 or the annular nozzles 47.
  • the liquid is atomized at sound velocities of the gas phase to such fine droplets that a further constriction at the downstream end of the nozzle tube, which forms the respective outlet opening 8, is usually not required.
  • the primary compressed gas chamber 32 is formed between the nozzle support body 41, a nozzle hood 23, the nozzle tubes of the central nozzle 46 and the annular nozzles 47 and a throttle disc 35.
  • the throttle disc 35 has a plurality of openings through each of which a single nozzle, so the central nozzle 46 and the annular nozzles 47, projects therethrough, wherein the respective openings are slightly larger than the outer diameter of the respective nozzle tubes, so that an annular gap between the throttle plate 35 and each Nozzle tube is formed.
  • a secondary compressed gas space 34 downstream of the throttle plate 35 is surrounded by the nozzle hood 23 of the annular gap nozzle so that only relatively narrow gaps 25 between the nozzle tubes 40 of the individual nozzles 46, 47 and the nozzle hood 23 of the annular gap nozzle arise at the nozzle outlet, from which the gap air at high speed exit.
  • the opening of the annular gap cover 23 is irregular and designed so that the resulting annular gap has a substantially constant width.
  • the concept presented by means of the bundling nozzle 45 which is designed as a two-substance nozzle, with a flow focus corresponding to a convergent / divergent arrangement of the individual exit jets 18 in the vicinity of the nozzle orifice 40 can of course also be applied to single-component atomizing nozzles.
  • a central nozzle 46 and around this central nozzle 46 around six further annular nozzles 47 are grouped, which lean against the outlet section of the central nozzle 46 and which are inclined in the same direction in the circumferential direction in the form of a twist rose.
  • the bundle nozzle 45 After passing through the flow focus, ie the minimum cross section of the total exit jet, the bundle nozzle 45, the individual spray jets 18 thus run divergent, so that sufficiently large total jet opening angles ⁇ can be generated.
  • a nozzle configuration of this type there is hardly any front surface available for the growth of coverings, and thus only a small volume of bleed air through the sander air nozzle 29 is required. Furthermore, such nozzle heads can be made relatively slim.
  • a bundle nozzle of this type can be constructed from individual nozzles, which are each equipped with annular gap atomization at the nozzle orifice, as for example in the international patent publication with the file reference PCT / EP 2007/001384 for single nozzles has been described.
  • bundle nozzles it is also possible to supply the annular gap air 25 for the individual nozzles of the nozzle bundle via the contiguous primary compressed air space 32.
  • a throttle element between the primary compressed air space 32, from which the primary atomizing air for the individual nozzles 46, 47 is removed, and the annular gap 24 supplying secondary compressed air space 34 can be installed.
  • the secondary compressed air space 34 is limited by the throttle disk 35, the nozzle hood 23 and the nozzle tubes 36.
  • the throttle element in the form of a throttle plate 35 with a number of passage openings corresponding to the number of nozzles 46, 47, thus the space within the annular gap nozzle hood 23 is divided into the primary compressed air space 32 and the secondary compressed air space 34.
  • the atomizing air is diverted via the holes 5 in the mixing chambers 7 of the individual nozzles 46, 47.
  • the annular gap 24 of the annular gap nozzle can be adapted to the contour of the individual nozzles 46, 47 at a distance of, for example, 0.5 to 1 mm.
  • a relatively simple production technique consists here of first producing the blank of the nozzle hood 23 of the annular-gap nozzle with a closed front surface and placing it on the blank of the nozzle-carrying body 41 of the bundle nozzle.
  • the passage bores for the individual nozzles on the front surface of the nozzle hood 23 of the annular gap nozzle can be introduced with a position of the bore axes which coincide with the position of the central longitudinal axes of the individual nozzles 46, 47 to be installed later.
  • the individual bores are driven through the front surface of the nozzle hood 23 of the annular gap nozzle into the nozzle support body 41, so that a perfect alignment of the central longitudinal axes of the individual nozzles and the axes of the individual annular gap openings is ensured.
  • an envelope or Schleierluftdüse 29 may be provided in addition, requires no further explanation for the expert.
  • the veiling air 33 would only be required to avoid deposits on the nozzle lance or on the outer edge of the annular gap nozzle, so that it is possible to work with a comparatively small amount of veiling air.
  • the outer contour of the annular gap nozzle or the inner contour of the Schleierluftdüse could be designed such that annular gaps arise in the form of rounded stars corresponding to the envelope of the individual nozzles.
  • Fig. 4 shows a multi-hole nozzle 43 according to the invention.
  • the principle is followed that all spray jets 18, which originate from the individual outlet openings, emerge from the central region of the nozzle head.
  • the directivity of the spray jets 18 is also achieved here in that the holes 8, at the downstream end of the outlet openings, within the nozzle head in the view of Fig. 4 approximately diagonal.
  • the central longitudinal axes 44 of the individual bores 8 and thus the outlet openings are skewed to each other, inclined in the same direction with respect to a circumferential direction about the main longitudinal axis 16 of the nozzle and the distance of the central longitudinal axes 44 to the main longitudinal axis 16 of the total nozzle initially decreases, seen in the outflow, without the main longitudinal axis 16 to cut. After passing through a minimum distance between the central longitudinal axes 44 and the main longitudinal axis 16 of the overall nozzle, this distance increases again, so that a convergent / divergent arrangement is formed.
  • the central longitudinal axes 44 of the individual bores 8 are thus due to the annular arrangement of the outlet openings at the downstream end of the bores 8 on the lateral surface of an imaginary Rotationshyperboloids.
  • Drop-loaded fluid 9 from the in Fig. 4 right section of the mixing chamber 7 thus exits on the left side of the nozzle orifice 40, wherein the bores 8, however, are guided past the central axis 16.
  • the axes 44 of the individual beams or the associated holes 8 are so twisted about the main longitudinal axis 16 and inclined in two planes to this main longitudinal axis 16, the individual beams 18 can propagate largely without interaction with each other in the gas space 42.
  • the baffle plate 11 for which different geometries in question, to the mixing chamber inlet part 20.
  • many concepts can be used in principle come.
  • the conical front portion 19 of the multi-hole nozzle can be manufactured with the individual nozzle holes as the nozzle center body 50, which is inserted into a conical cap 52 same opening angle, which is schematically in Fig. 5 is shown.
  • the conical nozzle central body 50 can then also represent a configuration in the manner of a helical bevel gear, wherein cutouts 54 replace the holes 8.
  • this multi-hole nozzle 43 according to Fig. 4 be equipped with a nozzle hood 23 an annular gap nozzle.
  • annular gap nozzle outside surrounded Schleierluftdüse be provided.
  • the liquid 1 is thus injected in a known manner into a mixing chamber 7 or divided on a baffle 11 into relatively large primary drops 9.
  • compressed air is introduced in the same mixing chamber 7 and compressed air is introduced.
  • This compressed air takes the primary droplets with it, and in the strongly accelerating passage through the outlet channels 8, the primary droplets are divided into smaller droplets.
  • the outlet channels 8 are arranged around the main axis 16, that the focus of the individual droplets 18 is approximately in the nozzle exit plane, as in the bundle nozzle 45 according to Fig. 3 was described in detail unlike Fig. 3 but still within the front section 19 or mouthpiece.
  • FIG. 5 shown embodiment of a nozzle orifice 49 outlet channels are arranged on the type of grooves on a helical bevel gear whose smaller diameter is located in the nozzle outlet opening and wherein the fluid exits through the channels between the adjacent teeth.
  • the said channels are according to Fig. 5 have been produced by cutouts 54 on the conical nozzle central body 50, as in the manufacture of helical bevel gears of the Case is. After placing the cone-shaped outer body 52 channels are then formed with a closed cross-section.
  • the holes 8 of the multi-hole nozzle are of circular design, it may be advantageous to insert short tubes into the outlet holes 8. As with the bundle nozzles, a narrow annular gap configuration for the supply of the gap air can be achieved in this way. In this case, the nozzle hood 23 of the annular gap nozzle would then have passage openings adapted to the outer dimensions of the inserted tubes in its front surface.

Landscapes

  • Nozzles (AREA)
  • Tents Or Canopies (AREA)

Description

  • Die Erfindung betrifft eine Vielloch- oder Bündeldüse mit mehreren Austrittsöffnungen für zu zerstäubendes Fluid.
  • Als Viellochdüsen werden Düsen bezeichnet, bei denen der Tropfenspray, ausgehend von einer gemeinsamen Vorkammer oder Mischkammer, über mehrere Einzelbohrungen austritt.
  • Bündeldüsen sind Düsen, bei denen mehrere prinzipiell funktionsfähige Einzeldüsen an einem Düsenkopf oder innerhalb eines Düsenkopfes montiert sind.
  • Viellochdüsen und Bündeldüsen ist gemein, dass mehrere Sprühstrahlen gleichzeitig aus der Düse austreten und einen Gesamtaustrittsstrahl bilden. Innerhalb des Gesamtaustrittsstrahls kann, muss aber nicht zwingend eine Wechselwirkung oder Vermischung der Einzelstrahlen erfolgen. Die Erfindung betrifft also Düsen zur Zerstäubung von Flüssigkeiten ohne und mit Einsatz von Druckluft, wobei alternativ mehrere Einzeldüsen an einem Düsenlanzenkopf angebracht sind, oder aus einer gemeinsamen Kammer Flüssigkeit oder ein Tropfen-Gas-Gemisch aus mehreren Austrittsöffnungen im Düsenaustrittsteil ausströmt. Mit der Erfindung sollen bei solchen Vielloch- oder Bündeldüsen neuartige Maßnahmen zur Erzeugung eines feinen Tropfensprays unter Vermeidung von Belägen am Düsenaustrittsteil eingesetzt werden.
  • In vielen verfahrenstechnischen Anlagen werden Flüssigkeiten in ein gasförmiges Fluid, z.B. in zu reinigendes oder abzukühlendes Rauchgas, also zur Rauchgasreinigung oder für eine Verdunstungskühlung, eingesprüht. Dabei ist es häufig von entscheidender Bedeutung, dass die Flüssigkeit in möglichst feine Tropfen zerstäubt wird. Je feiner die Tropfen sind, umso größer ist die spezifische Tropfenoberfläche. Daraus können sich erhebliche verfahrenstechnische Vorteile ergeben. So hängen beispielsweise die Größe eines Reaktionsbehälters und seine Herstellungskosten entscheidend von der mittleren Tropfengröße ab. Aber vielfach ist es keineswegs ausreichend, dass die mittlere Tropfengröße einen bestimmten Grenzwert unterschreitet. Schon einige wenige wesentlich größere Tropfen können zu erheblichen Betriebsstörungen führen. Dies ist insbesondere dann der Fall, wenn die Tropfen aufgrund ihrer Größe nicht schnell genug verdunsten, so dass noch Tropfen oder auch teigige Partikel in den nachfolgenden Komponenten, z.B. auf Gewebefilterschläuchen oder an Gebläseschaufeln, abgeschieden werden und zu Betriebsstörungen durch Inkrustierungen, Korrosion oder Unwucht führen.
  • Wenn Flüssigkeiten zu einem möglichst feinen Tropfenspray zerstäubt werden sollen, kommen neben Hochdruck-Einstoffdüsen, die nur mit der zu zerstäubenden Flüssigkeit beschickt werden, häufig sogenannte druckgasgestützte Zweistoffdüsen zum Einsatz. Bei diesen Düsen wird die Flüssigkeit mit Hilfe eines Druckgases, z.B. Druckluft oder Druckdampf, dem ersten gasförmigen Fluid, in ein zweites gasförmiges Fluid, z.B. in Rauchgas, eingesprüht.
  • Definitionen:
  • Im Interesse einer sprachlichen Vereinfachung wird nachfolgend zur Benennung des ersten gasförmigen Fluids vielfach die Bezeichnung "Druckluft" verwandt, wobei die Bezeichnung "Druckluft" die Verwendung von Druckgas oder Druckdampf mit im Wesentlichen beliebiger chemischer Zusammensetzung mit einschließt. Ferner wird in der Regel das zweite gasförmige Fluid als Rauchgas bezeichnet, wobei die Verwendung der Bezeichnung "Rauchgas" jedwedes andere gasförmige und eventuell zusätzlich feststoffbeladene Fluid einschließt.
  • Die Beschreibung der Erfindung konzentriert sich auf den komplizierteren Fall der druckluftgestützten Zweistoffdüse. Die Erfindung ist jedoch auch auf Einstoff-Druckzerstäuberdüsen anwendbar, sofern diese als Vielloch- oder Bündeldüsen gestaltet sind.
  • Betriebliche Probleme bei Düsen und Schwächen von Laboruntersuchungen:
  • In Verbindung mit dem für die Zerstäubung erforderlichen Energieaufwand ist die Charakteristik des erzeugten Tropfensprays von entscheidender Bedeutung. In diesem Zusammenhang muss auf die folgende Problematik hingewiesen werden: Die messtechnische Erfassung der Tropfengrößenverteilung im Spray, der mit einer Düse erzeugt wird, erfolgt in aller Regel unter idealisierten Randbedingungen in Strömungslaboratorien. Dabei werden die in großtechnischen Anlagen auftretenden Randbedingungen zum Teil erheblich verfälscht. So wird beispielsweise der Staubgehalt des Rauchgases bzw. die Beladung des Rauchgases mit leicht kondensierbaren Gasen im Labor nicht nachgebildet. Und aus diesem Grunde sind die im Labor erzielten Ergebnisse auch nur bedingt auf den Langzeitbetrieb an Großanlagen zu übertragen. Als leicht kondensierbare gasförmige Inhaltsstoffe von Rauchgas sind insbesondere Schwefeltrioxid oder Schwefelsäure zu nennen. Aber in Abwesenheit von Schwefelsäure kann auch bereits eine Unterschreitung des Wasserdampftaupunkts zu erheblichen Problemen durch Belagsbildung führen. Während die Schwefelsäure-Taupunktstemperatur beispielsweise Werte zwischen 100°C und 160°C betragen kann, liegen die Wasserdampf-Taupunkts-Temperaturen in Rauchgasen häufig zwischen ca. 45°C und 65°C. Da mit Zweistoffdüsen in aller Regel ein vergleichsweise kaltes Fluid in das Rauchgas eingesprüht wird, liegt die Oberflächentemperatur von Düsenlanze und Düsenkopf, insbesondere auch jene von Bündeldüsenköpfen, deutlich unterhalb der Taupunktstemperaturen der genannten Rauchgasinhaltsstoffe. Aus dem Rauchgas an Düsenlanze und Düsenkopf kondensierende Flüssigkeit kann mit den partikulären Inhaltsstoffen des Rauchgases, den Flugstäuben, chemisch reagieren. So ist leicht einzusehen, dass Flugstäube mit einem hohen Branntkalkgehalt (CaO) mit dem als Schwefelsäure (H2SO4) kondensierenden Schwefeltrioxidgehalt des Rauchgases zu Gips (CaSO4) reagieren, so dass sich harte und fest haftende Beläge aufbauen können. Aber bei Unterschreitung des Wasserdampftaupunkts an der Lanzen- bzw. Düsenoberfläche bedarf es nicht einmal eines Schwefelsäuregehalts des Rauchgases. Bereits ein geringer Schwefeldioxidgehalt ist für den Aufbau harter Beläge ausreichend, sofern die Flugstäube, z.B. CaO oder MgO enthalten. Und eine Belagsbildung ist auch dann schon möglich, wenn nur Wasserdampf kondensiert und das Kondensat mit abgeschiedenen Flugstäuben abbindet.
  • Wenn jedoch im Bereich der Düsen-Austrittsöffnungen Beläge aufwachsen, ist kaum zu vermeiden, dass auch Tröpfchen aus dem Spray an diesen Belägen abgeschieden werden und dass sich hier Flüssigkeitsfilme bilden, wie bei der Diskussion zu Fig. 1 noch näher erläutert wird. Von diesen Flüssigkeitsfilmen lösen sich im Bereich geringer Schubspannungskräfte vergleichsweise große Sekundärtropfen ab. Während mit einer modernen Zweistoffdüse grundsätzlich maximale Tropfengrö-βen von z.B. 20 bis 100 µm erreichbar sind, können die Tropfen, die sich von den Flüssigkeitsfilmen ablösen, durchaus Durchmesser von 500 bis 3000 µm aufweisen. Für derart große Tropfen ist die Verweilzeit selbst in großtechnischen Anlagen viel zu kurz, als dass eine auch nur annähernd vollständige Verdunstung gelingen könnte. Unzulässig hohe Feuchtegehalte des in nachfolgenden Komponenten der Anlage anfallenden Produkts können die Folge sein. Heimtückisch ist hierbei, dass sich die Beläge an den Düsenköpfen in aller Regel erst nach einiger Zeit soweit entwickelt haben, dass sie einen stark störenden Einfluss auf die Tropfengrößenverteilung ausüben. Während in einer mit Düsen frisch bestückten Anlage sehr gute Ergebnisse erzielt werden, kann es mit der Zeit zu einer erheblichen Beeinträchtigung des Betriebes kommen, wenn die Beläge entsprechend stark angewachsen sind.
  • Somit besteht ein großes Interesse an einer weitestgehenden Vermeidung von Belägen an Düsenlanzen im Nahbereich der Düsen und an den Düsen selbst.
  • Bei Düsen mit einer einzelnen Austrittsbohrung können Beläge in bekannter Weise mit Hilfe einer Schleier- oder Hüllluft-Vorrichtung vermieden werden, siehe z.B. die internationale Patentveröffentlichung WO 2007/098865 ( PCT/EP 2007/001384 ). Hierbei wird Luft mit einem vergleichsweise niedrigen Vordruck, z.B. ca. 40 mbar, durch ein die eigentliche Düsenlanze umschließendes Hüllrohr zum Düsenkopf geleitet, und mit vergleichsweise geringer Geschwindigkeit als gegen das Rauchgas abschirmender Hüllluft- oder Schleierluft-Mantel um den aus der Düse austretenden Tropfenstrahl gelegt. Somit ist hier eine Belagsbildung an der Einzeldüsenbohrung weitestgehend auszuschließen. Und selbst an den Düsenlanzen wird die Belagsbildung weitgehend unterdrückt. Letzteres ist darauf zurückzuführen, dass die Schleierluftschicht im Außenrohr eine Wärmedämmung gegenüber der kalten Düsenlanze darstellt, so dass die Außenhaut des Hüllluft-Rohres näherungsweise die Rauchgastemperatur annimmt, womit ein Austauen von Rauchgasinhaltsstoffen in den meisten Fällen unterbunden wird.
  • Bei herkömmlichen Düsen mit mehreren Austrittsbohrungen oder bei Bündeldüsen bereitet die Versorgung des Düsenkopfbereiches mit Schleierluft große Schwierigkeiten, wie nachfolgend erläutert wird. Bei derartigen Düsen nach dem Stand der Technik ist der Abstand zwischen den einzelnen Durchtrittsöffnungen sehr groß, wie z.B. in Fig. 1 und Fig. 2 zu erkennen ist. Jede einzelne Düse wirkt wie eine Strahlpumpe: Sie saugt gasförmiges Fluid, z.B. Rauchgas, aus der Umgebung an und mischt dieses in den Sprühstrahl ein. Dieses gasförmig Fluid strömt somit teilweise über die kalte Frontfläche der Düse zur Durchtrittsöffnung hin, und demzufolge kann es hier zum Aufwachsen von Belägen kommen, jedenfalls dann, wenn es sich bei dem gasförmigen Fluid um Rauchgas handelt. Aber selbst dann, wenn kein Rauchgas die kalte Frontfläche der Düse erreicht, kann es hier mit der Zeit zur Belagsbildung kommen. In diesem Falle entstehen die Beläge aus den Inhaltsstoffen der zu zerstäubenden Flüssigkeit selbst. Diese besteht in der Regel nicht aus feststofffreier Flüssigkeit, z.B. aus vollentsalztem und feinstfiltriertem Wasser, sondern aus Prozesszusatzwasser, welches mit gelösten Stoffen belastet ist. Wie in Fig. 1 gezeigt ist, können durch den Düsenstrahl Rezirkulationswirbel 17 erzeugt werden, welche kleine Tropfen auf die Frontfläche der Düse zurückführen. Wenn die Flüssigkeit die Gelegenheit findet, hier zu verdunsten, und sei es auch nur teilweise, wachsen die Inhaltsstoffe zwangsläufig als Beläge auf.
  • Für eine Düse mit mehreren Austrittsbohrungen ist dies beispielsweise in Fig. 1 gezeigt, wo auch der Flüssigkeitsfilm 12 auf dem Belag sowie entstehende große Sekundärtropfen 13 dargestellt sind. Kritisch ist bei derartigen Düsen mit mehreren Austrittsbohrungen insbesondere der Zentralbereich, der häufig konstruktionsbedingt keine Austrittsbohrung trägt. Ein erster Schritt zur Verbesserung der Randbedingungen wäre somit eine Umgestaltung der Konstruktion einer Viellochdüse dergestalt, dass eine zentrale Austrittsbohrung möglich wird. Durch Anordnung einer Schleierluft-Düse nach dem Stand der Technik kann die Belagsbildung aus Rauchgasinhaltsstoffen bei derartigen Düsen mit mehreren Austrittsbohrungen unterbunden werden. Allerdings ist ein relativ großer Hüllluft-Volumenstrom erforderlich, wenn eine Belagsbildung an der Frontfläche der Düse zuverlässig vereitelt werden soll. Nun möchte man natürlich nicht unnötig viel Hüllluft dem Düsenstrahl zuführen, denn es soll ja nicht etwa Hüllluft, sondern das Rauchgas durch Tropfenverdunstung gekühlt werden. Somit besteht ein starkes Interesse daran, die für eine Belagsbildung in Frage kommende Frontfläche der Düse möglichst klein zu halten bzw. den Abstand zwischen den einzelnen Düsenaustrittsbohrungen so weit wie möglich zu verringern. Bei Düsen nach dem Stand der Technik ist dies nicht möglich, weil zu diesem Zweck die Austrittsbohrungen nahe um die Zentralachse angeordnet werden müssten, wie Fig. 1 zu entnehmen ist. Dann ist aber die Zuströmung zu diesen Düsenbohrungen sehr ungünstig und mit hohen Druckverlusten sowie mit Strömungsablösung in den Austrittsbohrungen und einer unbefriedigenden Zerstäubung verknüpft.
  • Noch kritischer ist die Situation bei Bündeldüsen nach dem Stand der Technik, wie in Fig. 2 gezeigt ist. Hier müsste mit sehr viel Schleierluft und mit einem konstruktiv aufwändigen Schleierluft-Düsenkopf gearbeitet werden, wenn eine Belagsbildung aus Rauchgasinhaltsstoffen zuverlässig unterbunden werden soll. Eine Belagsbildung aus dem Feststoffgehalt der zu zerstäubenden Flüssigkeit ist hiermit jedoch noch nicht zu vermeiden.
  • Mit der Erfindung soll eine Vielloch- oder Bündeldüse bereitgestellt werden, bei der eine Belagsbildung wenigstens stark verringert ist und die die Erzeugung eines Gesamtsprühstrahls mit großem Sprühwinkel ermöglicht.
  • Erfindungsgemäß ist hierzu eine Vielloch- oder Bündeldüse gemäß dem Anspruch 1 vorgesehen.
  • Durch die Erfindung wird somit eine konvergent/divergente Anordnung der Austrittsstrahlen erreicht, so dass einerseits die Austrittsbohrungen von Düsen mit mehreren Austrittsöffnungen oder von Bündeldüsen möglichst nahe um die Achse des Düsenkopfes gruppiert werden können und andererseits wird die Möglichkeit der Ausbildung eines Gesamtsprühstrahls mit ausreichend großem Sprühwinkel geschaffen. Die erfindungsgemäße Düsenkonfiguration weist darüber hinaus lediglich einen geringen Schleierluftbedarf auf. Der minimale Abstand der Mittellängsachsen der Austrittsöffnungen der Einzeldüsen liegt im Mündungsbereich der Gesamtdüse, kann also noch im Mundstück stromaufwärts der Austrittsöffnungen, auf Höhe der Austrittsöffnungen oder auch stromabwärts der Austrittsöffnungen angeordnet sein. Bevorzugt ist in diesem Fall ein unmittelbar stromabwärts der Austrittsöffnungen liegender Bereich des minimalen Abstands, um kurz nach der Düse eine Aufweitung des Gesamtstrahls realisieren zu können.
  • Durch die konvergent/divergente Anordnung der einzelnen Austrittsstrahlen bilden die aus den einzelnen Düsenlöchern bzw. aus den einzelnen Einzeldüsen austretenden Austrittsstrahlen somit im Mündungsbereich der Gesamtdüse einen Strömungsfokus, wobei dieser Strömungsfokus auch noch innerhalb des Mundstücks liegen kann. Der Begriff "Strömungsfokus" ist dabei nicht im engen Sinne zu sehen, sondern im Sinne eines minimalen Querschnitts des Gesamtstrahles, wobei stromaufwärts und stromabwärts dieses minimalen Querschnitts ein größerer Querschnitt des Gesamtstrahls vorliegt.
  • Die Grundidee der Erfindung besteht somit darin, die einzelnen Düsenstrahlen oder Austrittsstrahlen derart auszurichten, dass das Strahlbündel an der Einmündung in einen Prozessraum, in welchem eingesprüht wird, gewissermaßen einen Strömungsfokus bilden. Die einzelnen Düsenstrahlen oder Austrittsstrahlen verlaufen bereits vor dem Erreichen des Strömungsfokus oder des minimalen Querschnitts zur Hauptachse oder Mittellängsachse des Düse hin geneigt, sind jedoch nicht streng auf diese Mittellängsachse ausgerichtet, sondern zielen an der Mittellängsachse im Zentrum vorbei. Dabei kann das Zentrum des Gesamtstrahles vom Austrittsstrahl einer Zentraldüse gebildet sein, die parallel zur Mittellängsachse ausgerichtet ist.
  • In Weiterbildung der Erfindung sind die wenigstens zwei Austrittsöffnungen ringförmig um die Mittellängsachse der Düse angeordnet.
  • Auf diese Weise wird eine kompakte Anordnung der Austrittsöffnungen erreicht und bei beispielsweise kreisringförmiger Anordnung der Austrittsöffnungen kann ein rotationssymmetrischer Gesamtsprühstrahl erzeugt werden. Zur Anpassung der Form des Gesamtsprühstrahles an gegebene geometrische Verhältnisse können beispielsweise aber auch Ringkonfigurationen in Ellipsenform oder Dreiecksform realisiert werden.
  • In Weiterbildung der Erfindung sind die Mittellängsachsen der wenigstens zwei Austrittsöffnungen, gesehen auf einer die Hauptlängsachse der Düse enthaltenden Ebene, im gleichen Winkel zur Hauptlängsachse an der Düse angeordnet.
  • In Weiterbildung der Erfindung sind die Mittellängsachsen der wenigstens zwei Austrittsöffnungen in Bezug auf eine Umfangsrichtung um die Hauptlängsachse der Düse gleichsinnig geneigt.
  • Auf diese Weise kann dem Gesamtsprühstrahl ein Drall verliehen werden.
  • In Weiterbildung der Erfindung liegen die Mittellängsachsen der wenigstens zwei Austrittsöffnungen auf der Mantelfläche eines gedachten Rotationshyperboloids.
  • Durch diese Maßnahmen kann ein rotationssymmetrischer Gesamtsprühstrahl erzeugt werden, dem ein Drall um die Mittellängsachse der Düse aufgeprägt ist.
  • In Weiterbildung der Erfindung können sich die mittels der wenigstens zwei Austrittsöffnungen erzeugten Düsenstrahlen weitgehend ohne Wechselwirkung miteinander in einem Prozessraum stromabwärts der Austrittsöffnungen ausbreiten.
  • Auf diese Weise kann erreicht werden, dass die Tröpfchengrößen im Gesamtsprühstrahl von Kollisionsvorgängen zwischen Einzeltropfen im Wesentlichen unabhängig sind und ausschließlich von den Zerstäubungseigenschaften der Einzeldüsen bzw. der einzelnen Austrittsöffnungen bestimmt sind.
  • In Weiterbildung der Erfindung ist eine auf der Hauptlängsachse der Düse liegende zentrale Austrittsöffnung vorgesehen, um die die wenigstens zwei weiteren Austrittsöffnungen ringförmig angeordnet sind.
  • Vorteilhafterweise sind bei einer solchen Düse mit zentraler Austrittsöffnung die Mittellängsachsen der wenigstens zwei weiteren Austrittsöffnungen in Bezug auf eine Umfangsrichtung um die Hauptlängsachse der Düse gleichsinnig geneigt, um einen Drall um die Hauptlängsachse der Düse zu erzeugen.
  • In Weiterbildung der Erfindung ist eine, die Austrittsöffnungen umgebende und mit Druckluft beaufschlagte Ringspaltdüse vorgesehen.
  • Das Vorsehen einer Ringspaltdüse ist vorteilhaft, um Flüssigkeitsfilme im Bereich der Düsenmündung, die zu Sekundärtropfen mit erheblicher Größe führen können, zu vermeiden. Die Ringspaltdüse kann mit Druckluft mit hohem Druck oder auch zur Erzeugung von Hüllluft lediglich mit Schleierluft mit niedrigem Druck beaufschlagt werden.
  • In Weiterbildung der Erfindung sind die Austrittsöffnungen in einem Düsenmundstück vorgesehen, das von einer Ringspaltdüse umgeben ist.
  • Bei einer solchen Ausbildung sind die Austrittsöffnungen beispielsweise als Bohrungen in einem massiven Düsenmundstück vorgesehen. Dieses Düsenmundstück kann von einer Ringspaltdüse umgeben sein, um das Entstehen großer Sekundärtropfen zu vermeiden.
  • In Weiterbildung der Erfindung ist ein Düsentragkörper vorgesehen, an dem mehrere, vom Düsentragkörper aus in Ausströmrichtung vorragende Einzeldüsen angeordnet sind, wobei die Einzeldüsen wenigstens auf Höhe ihrer Austrittsöffnungen von einer Ringspaltdüsenhaube umgeben sind, so dass zwischen den Einzeldüsen und der Ringspaltdüsenhaube auf Höhe der Austrittsöffnungen ein Ringspalt gebildet ist.
  • Vorteilhafterweise kann bei einer solchen Ausbildung der Düse vorgesehen sein, dass eine Zentraldüse mit einer auf der Hauptlängsachse der Düse liegenden Austrittsöffnung und wenigstens zwei weitere, die Hauptlängsachse der Düse ringförmig umgebende Einzeldüsen vorgesehen sind, wobei eine Stirnseite der Ringspaltdüsenhaube eine oder mehrere Ringspaltöffnungen aufweist, so dass auf Höhe der Austrittsöffnungen ein Abstand zwischen einem Außenumfang der Einzeldüsen und der oder den Ringspaltöffnungen bzw. dem Außenumfang benachbarter Einzeldüsen im Wesentlichen gleich ist.
  • Auf diese Weise lässt sich eine annähernd konstante Ringspaltbreite der Ringspaltdüse durch eine beispielsweise in Form eines Sterns mit abgerundeten Zacken oder gegebenenfalls auch unregelmäßig gestaltete Ringspaltöffnung in der Ringspaltdüsenhaube erreichen. Aber auch ein Ringspalt zwischen den Gehäusen der Einzeldüsen weist dann die im Wesentlichen konstante Ringspaltbreite auf, so dass im Wesentlichen über den gesamten Ringspalt, der eine geometrisch unregelmäßige Form aufweisen kann, annähernd die gleiche Strömungsgeschwindigkeit der Ringspaltluft erreicht wird. Liegen zylindrische Gehäuse der Einzeldüsen aneinander an, lässt sich eine konstante Ringspaltweite nicht oder nur näherungsweise erreichen. Gegebenenfalls kann stromaufwärts des Ringspalts im Zwischenraum zwischen den Einzeldüsen bzw. der Innenseite der Ringspaltdüsenhaube ein Drosselelement vorgesehen sein, um den Druck der Ringspaltluft in geeigneter Weise zu verringern.
  • In Weiterbildung der Erfindung ist die Ringspaltdüse von einer ringförmigen Schleierluftdüse umgeben.
  • Auf diese Weise kann auch die Ringspaltdüse im Bereich der Düsenmündung von Rauchgasen im Prozessraum abgeschirmt werden.
  • In Weiterbildung der Erfindung ist ein Düsentragkörper vorgesehen, an dem mehrere vom Düsenkörper aus in Ausströmrichtung vorragende Einzeldüsen angeordnet sind, wobei die Einzeldüsen an einer in Ausströmrichtung gesehen allgemein konkaven Vorderseite des Düsentragkörpers angeordnet sind.
  • Auf diese Weise lässt sich die konvergent/divergente Anordnung der Austrittsstrahlen der Einzeldüsen bzw. die entsprechende zugehörige Ausrichtung der Einzeldüsen durch die Formgebung des Düsentragkörpers erreichen. Als konkave Vorderseite wird dabei nicht lediglich eine gekrümmte Vorderseite, sondern beispielsweise auch eine Vorderfläche angesehen, die aus mehreren ebenen Teilflächen besteht, die insgesamt eine Vertiefung bilden.
  • In Weiterbildung der Erfindung sind die Austrittsöffnungen in einem Düsenmundstück vorgesehen, wobei das Düsenmundstück einen Grundkörper mit kegelartiger Außenfläche und eine den Grundkörper umgebende und abschnittsweise an dessen Außenfläche anliegende Haube aufweist und wobei der Grundkörper und/oder die Haube an den Austrittsöffnungen endende Düsenkanalnuten aufweisen.
  • Auf diese Weise können die Düsenkanäle in der erfindungsgemäßen Anordnung in einfacher Weise durch das Einfräsen von Nuten in den kegelartigen Grundkörper und/oder die Haube realisiert werden. Nach dem Aufsetzen der Haube auf den Grundkörper sind die Nuten dann an ihrer offenen Seite verschlossen und bilden die Düsenkanäle. Die Nuten werden beispielsweise auf den kegelartigen Grundkörper wie bei der Herstellung eines schräg verzahnten Kegelrades aufgebracht.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung im Zusammenhang mit den Zeichnungen. Einzelmerkmale der dargestellten und beschriebenen Ausführungsformen lassen sich dabei in beliebiger Weise miteinander kombinieren, ohne den Rahmen der Erfindung zu überschreiten. In den Zeichnungen zeigen:
  • Fig. 1
    eine Schnittansicht einer Viellochdüse nach dem Stand der Technik,
    Fig. 2
    eine stark vereinfachte Seitenansicht einer Bündeldüse nach dem Stand der Technik,
    Fig. 3
    eine abschnittsweise Schnittansicht einer Bündeldüse gemäß einer ersten Ausführungsform der Erfindung,
    Fig. 4
    eine Schnittansicht einer Viellochdüse gemäß einer zweiten Ausführungsform der Erfindung und
    Fig. 5
    eine schematisch Darstellung eines Düsenmundstücks gemäß einer dritten Ausführungsform der Erfindung.
  • Die Darstellung der Fig. 1 gibt in groben Zügen den Stand der Technik wieder und zeigt eine Viellochdüse 3 mit einer Symmetrieachse 16, bestehend aus einem Zuführrohr 2 für die zu zerstäubende Flüssigkeit 1, einem Zuführungsrohr 4 für das Druckgas bzw. für die Druckluft 6, einem Eintrittsteil 20 für Flüssigkeit 1 und Druckgas 6 in die Mischkammer 7 mit einer Bohrung 10 für die Flüssigkeitszufuhr 1 und mehreren Bohrungen 5 für die Druckluftzufuhr 6. In der Mischkammer 7 ist ein Amboss 15 mit einer Prallfläche 11 angeordnet, an der durch die Bohrung 10 eintretende Flüssigkeit bereits in relativ kleine Tropfen zerteilt wird. Dieser primäre Tropfenspray wird von der Druckluft zu den Austrittsbohrungen 8 gefördert. Durch die starke Druckabsenkung und Beschleunigung stromabwärts der Austrittsbohrungen 8 werden die in der Mischkammer 7 erzeugenden mittelgroßen Tropfen 9 in wesentlich kleinere Tropfen zerlegt. Aus den Bohrungen 8 treten die druckgasgeförderten Tropfenstrahlen 18 aus. Dabei liegen im Strahlkern sehr feine Tropfen vor, während am Strahlrand vergleichsweise große Tropfen auftreten, die aus dem Zerfall von Wandflüssigkeitsfilmen in den Bohrungen 8, insbesondere an den Bohrungsrändern, herrühren. Dies jedenfalls dann, wenn keine Ringspaltluft vorgesehen ist. An der Düse hat sich ein zentraler Feststoffbelag 14 gebildet. Durch die Rezirkulationswirbel 17 werden kleinere Tropfen auf dem Zentralbelag 14 abgeschieden und bilden hier einen Flüssigkeitsfilm 12. An der Nasenspitze 21 des Feststoffbelages 14 lösen sich sehr große Sekundärtropfen 13 aus dem Flüssigkeitsfilm heraus.
  • Die Darstellung der Fig. 1 zeigt stark vereinfachend die äußerliche Konfiguration einer Bündeldüse 26 nach dem Stand der Technik. Bei Bündeldüsen nach dem Stand der Technik sind die Einzeldüsen 36 auf der Frontfläche 38 eines nach außen gewölbten, in Ausströmrichtung gesehen also konvexen Kegels angebracht. Hiermit sind zwar ohne weiteres Gesamtsprühstrahlen mit einem großen Gesamtöffnungswinkel α zu erzielen, aber diese konventionellen Düsen weisen eine sehr große kalte Frontfläche 38 auf, die nicht ohne weiteres mit Hilfe von Schleierluft abzuschirmen ist und an der es leicht zu einer die Entstehung großer Sekundärtropfen auslösenden Belagsbildung kommen kann. Dabei spielt es grundsätzlich keine Rolle, ob die Einzeldüsen aus Einstoff-Druckzerstäuber-Düsen oder aus druckluftunterstützten Zweistoffdüsen bestehen.
  • Fig. 3 zeigt eine Ausführungsform einer Bündeldüse 45 nach der Erfindung mit einer Hauptlängsachse 16. Dargestellt sind mehrere Einzeldüsen, nämlich eine Zentraldüse 46 und eine von sechs Ringdüsen 47, die um die Zentraldüse 46 herum derart angeordnet sind, dass sie die Zentraldüse 46 im Mündungsbereich 40 fast tangieren. Anstelle von sechs Ringdüsen 47 kann auch jede andere Zahl von Einzeldüsen größer als zwei vorgesehen sein. Die Mittellängsachsen dieser als Ring angeordneten Ringdüsen 47 schneiden sich nicht mit der Hauptlängsachse 16 der Zentraldüse 46; vielmehr "zielen" die Ringdüsen 47 seitlich an der Zentraldüse 46 vorbei. Die Mittellängsachsen der Ringdüsen 47 sind somit windschief zueinander ausgerichtet, wobei sich ein Abstand zwischen den Mittellängsachsen der Ringdüsen 47 und der Mittellängsachse der Zentraldüse 46, die gleichzeitig die Hauptlängsachse 16 der Gesamtdüse darstellt, in Ausströmrichtung gesehen zunächst verringert. Die Mittellängsachsen der Ringdüsen 47 schneiden die Hauptlängsachse 16 aber nicht. Vielmehr vergrößert sich der Abstand zwischen den Mittellängsachsen der Ringdüsen 47 und der Mittellängsachse 16 nach Durchlaufen eines minimalen Abstandes oder kleinsten Querschnitts des Gesamtaustrittsstrahls wieder. Dieser Bereich minimalen Abstandes liegt dabei um etwas mehr als den Durchmesser der Austrittsöffnungen der Einzeldüsen 46, 47 stromabwärts dieser Austrittsöffnungen. Insgesamt wird damit also eine zunächst konvergente und nach Durchlaufen des kleinsten Querschnitts wieder divergente Anordnung der Sprühstrahlen 18 der einzelnen Düsen erreicht.
  • Die Sprühstrahlen 18, die aus den Ringdüsen 47 austreten, weisen, wie in Fig. 3 zu erkennen ist, alle eine gleichsinnige Umfangskomponente bezüglich der Hauptlängsachse 16 auf, indem sie in Umfangsrichtung um die Hauptlängsachse 16 gesehen alle gleichsinnig geneigt sind. Die Mittellängsachsen der Ringdüsen 47 bzw. die Sprühstrahlen 18 dieser Ringdüsen 47 liegen aufgrund der kreisringförmigen Anordnung der Ringdüsen 47 somit auf der Mantelfläche eines Rotationshyperboloids.
  • Der Gesamtstrahl der Bündeldüse 45 ist durch die gewählte Ausrichtung der Ringdüsen 47 insgesamt mit einem Drall um die Hauptlängsachse 16 behaftet.
  • Da sich die einzelnen Sprühstrahlen 18 nicht gegenseitig durchdringen, kann sich jeder Sprühstrahl 18 weitgehend frei im Prozessraum stromabwärts der Düse 45 ausbreiten, so dass ein Gesamtsprühstrahl mit einem ausreichend großen Öffnungswinkel α entsteht.
  • Die Bündeldüse 45 verfügt über ein zentrales Lanzenrohr 2 für die Zuleitung der zu versprühenden Flüssigkeit 1 sowie über ein Lanzenrohr 4, das das zentrale Lanzenrohr 2 koaxial umgibt, für die Zuleitung der Druckluft 6. In einem Düsentragkörper 41 mit konkaver Vorderfläche, auf der die Ringdüsen 47 und die Zentraldüse 46 angeordnet sind, sind Bohrungen 27 für die Zuleitung der Flüssigkeit zu den einzelnen Düsen 36, 37 vorgesehen. Über feinere Bohrungen 10 in Mischkammereintrittsteilen 28, die jeweils am Übergang zwischen dem Düsentragkörper 41 und den Düsenrohren der Einzeldüsen 46, 47 angeordnet sind, tritt die Flüssigkeit in die Mischkammern 7 ein. Die Ringdüsen 47 sind dabei identisch zu der Zentraldüse 46 ausgebildet. Ferner strömt die Druckluft 6 zunächst über große Bohrungen 31 in einen primären Druckgasraum 32 ein und erreicht die Mischkammern 7 über Bohrungen 5 in den Düsenrohren der Zentraldüse 46 bzw. den Ringdüsen 47.
  • In der Mischkammer 7 und in dem sich anschließenden Düsenkanal wird die Flüssigkeit bei schallnahen Geschwindigkeiten der Gasphase zu derart feinen Tropfen zerstäubt, dass eine weitere Engstelle am stromabwärts gelegenen Ende des Düsenrohres, das die jeweilige Austrittsöffnung 8 bildet, in aller Regel nicht erforderlich ist.
  • Der primäre Druckgasraum 32 ist zwischen dem Düsentragkörper 41, einer Düsenhaube 23, den Düsenrohren der Zentraldüse 46 und der Ringdüsen 47 sowie einer Drosselscheibe 35 gebildet. Die Drosselscheibe 35 weist mehrere Öffnungen auf, durch die die jeweils eine Einzeldüse, also die Zentraldüse 46 und die Ringdüsen 47, hindurch ragt, wobei die jeweiligen Öffnungen etwas größer sind als die Außendurchmesser der jeweiligen Düsenrohre, so dass ein ringförmiger Spalt zwischen der Drosselscheibe 35 und jedem Düsenrohr gebildet ist.
  • Ein sekundärer Druckgasraum 34 stromabwärts der Drosselscheibe 35 ist von der Düsenhaube 23 der Ringspaltdüse derart umschlossen, dass am Düsenaustritt 40 nur relativ schmale Spalte 25 zwischen den Düsenrohren der Einzeldüsen 46, 47 und der Düsenhaube 23 der Ringspaltdüse entstehen, aus welchen die Spaltluft mit hoher Geschwindigkeit austritt. Die Öffnung der Ringspalthaube 23 ist dabei unregelmäßig und so gestaltet, dass der entstehende Ringspalt im Wesentlichen eine konstante Breite hat.
  • Im Zentralbereich dieser Bündeldüse 45 können keine Beläge aufwachsen, da hier keine entsprechenden Flächen angeboten werden. Beläge könnten allenfalls auf der Stirnseite der Düsenhaube 23 der Ringspaltdüse aufwachsen, da diese leicht unter eine Taupunkttemperatur des Rauchgases abgekühlt sein kann. Durch eine Schleierluftdüse 29, welche mit Spülluft bei vergleichsweise niedrigem Druck, z.B. 40 mbar, beschickt ist, wird die Ringspaltdüse 23 gegen das Rauchgas abgeschirmt. Die Außenhaut der Schleierluftdüse 29 erreicht näherungsweise die Rauchgastemperatur, so dass hier in aller Regel nicht mit einem Unterschreiten einer Taupunktstemperatur zu rechnen ist und eine Belagsbildung weitestgehend ausgeschlossen werden kann. Das anhand der Bündeldüse 45, die als Zweistoffdüse ausgebildet ist, vorgestellte Konzept mit einem Strömungsfokus entsprechend einer konvergent/divergenten Anordnung der einzelnen Austrittsstrahlen 18 im Nahbereich der Düsenmündung 40 kann selbstverständlich auch bei Einstoff-Druckzerstäuber-Düsen angewandt werden.
  • Gemäß der Erfindung sind bei der Bündeldüse 45 somit eine Zentraldüse 46 und um diese Zentraldüse 46 herum sechs weitere Ringdüsen 47 gruppiert, die sich an den Austrittsabschnitt der Zentraldüse 46 anlehnen und die in Umfangsrichtung in Gestalt einer Drallrose gleichsinnig geneigt sind. Nach dem Passieren des Strömungsfokus, also dem minimalen Querschnitt des Gesamtaustrittsstrahles, der Bündeldüse 45 verlaufen die Einzelsprühstrahlen 18 somit divergent, so dass ausreichend große Gesamtstrahlöffnungswinkel α erzeugt werden können. Bei einer Düsenkonfiguration dieser Art wird kaum Frontfläche für das Aufwachsen von Belägen angeboten, und somit wird auch nur ein geringer Schleierluft-Volumenstrom durch die Schleiferluftdüse 29 benötigt. Ferner können derartige Düsenköpfe verhältnismäßig schlank ausgeführt werden.
  • Selbstverständlich kann eine Bündeldüse dieser Art aus Einzeldüsen aufgebaut werden, die an der Düsenmündung jeweils mit Ringspaltzerstäubung ausgestattet sind, wie z.B. in der internationalen Patentveröffentlichung mit dem Aktenzeichen PCT/EP 2007/001384 für Einzeldüsen beschrieben wurde. Aber bei Bündeldüsen besteht natürlich auch die Möglichkeit, die Ringspaltluft 25 für die einzelnen Düsen des Düsenbündels über den zusammenhängenden primären Druckluftraum 32 zuzuführen. Um nicht zu viel energieträchtige Druckluft über die Ringspaltzerstäubung zu verlieren, kann ein Drosselelement zwischen dem primären Druckluftraum 32, aus welchem die primär Zerstäuberluft für die Einzeldüsen 46, 47 entnommen wird, und dem, den Ringspalt 24 versorgenden sekundären Druckluftraum 34 eingebaut werden. Der sekundäre Druckluftraum 34 wird durch die Drosselscheibe 35, die Düsenhaube 23 und die Düsenrohre 36 begrenzt. Durch das Drosselelement in Form einer Drosselscheibe 35 mit einer Anzahl von Durchgangsöffnungen, die der Anzahl der Düsen 46, 47 entspricht, wird somit der Raum innerhalb der Ringspaltdüsenhaube 23 in den primären Druckluftraum 32 und den sekundären Druckluftraum 34 unterteilt. Im primären Druckluftraum 32 herrscht ein größerer Druck und ausgehend von diesem primären Druckluftraum 32 wird die Zerstäubungsluft über die Bohrungen 5 in die Mischkammern 7 der einzelnen Düsen 46, 47 abgezweigt. Im sekundären Druckluftraum 34 herrscht ein geringerer Luftdruck, der dann den Ringspalt 24 zwischen der Ringspaltdüsenhaube 23 und dem jeweiligen Außenumfang der Düsenrohre sowie den Spalt zwischen den Düsenrohren der einzelnen Düsen 46, 47 speist. Um den Druckluftverbrauch für die Ringspaltversorgung noch weiter zu verringern, kann der Ringspalt 24 der Ringspaltdüse mit einem Abstand von z.B. 0,5 bis 1 mm an die Kontur der Einzeldüsen 46, 47 angepasst werden. Eine verhältnismäßig einfache Fertigungstechnik besteht hier darin, den Rohling der Düsenhaube 23 der Ringspaltdüse zunächst mit einer geschlossenen Frontfläche herzustellen und auf den Rohling des Düsentragkörpers 41 der Bündeldüse aufzusetzen. Dann können die Durchtrittsbohrungen für die Einzeldüsen an der Frontfläche der Düsenhaube 23 der Ringspaltdüse mit einer Lage der Bohrungsachsen eingebracht werden, die mit der Lage der Mittellängsachsen der später einzubauenden Einzeldüsen 46, 47 übereinstimmen. Die Einzelbohrungen werden dabei durch die Frontfläche der Düsenhaube 23 der Ringspaltdüse bis in den Düsentragkörper 41 vorgetrieben, so dass ein einwandfreies Fluchten der Mittellängsachsen der Einzeldüsen und der Achsen der einzelnen Ringspaltöffnungen sichergestellt ist.
  • Dass zusätzlich eine Hüll- oder Schleierluftdüse 29 vorgesehen sein kann, bedarf für den Fachmann keiner näheren Erklärung. Hier würde die Schleierluft 33 allerdings nur zur Vermeidung von Belägen an der Düsenlanze bzw. am Außenrand der Ringspaltdüse erforderlich sein, so dass mit einer vergleichsweise geringen Schleierluftmenge gearbeitet werden kann. Selbstverständlich könnte auch die Außenkontur der Ringspaltdüse bzw. die Innenkontur der Schleierluftdüse derart ausgebildet sein, dass Ringspalte in Gestalt abgerundeter Sterne entsprechend der Einhüllenden der Einzeldüsen entstehen.
  • Die Darstellung der Fig. 4 zeigt eine Viellochdüse 43 gemäß der Erfindung. Wie bei der Bündeldüse 45, die in Fig. 3 dargestellt ist, wird auch hier das Prinzip verfolgt, dass alle Sprühstrahlen 18, die von den einzelnen Austrittsöffnungen herrühren, aus dem Zentralbereich des Düsenkopfes austreten. Die Richtwirkung auf die Sprühstrahlen 18 wird auch hier dadurch erreicht, dass die Bohrungen 8, an deren stromabwärts gelegenen Ende die Austrittsöffnungen liegen, innerhalb des Düsenkopfes in der Ansicht der Fig. 4 näherungsweise diagonal verlaufen. Die Mittellängsachsen 44 der einzelnen Bohrungen 8 und damit der Austrittsöffnungen sind windschief zueinander ausgerichtet, in Bezug auf eine Umfangsrichtung um die Hauptlängsachse 16 der Düse gleichsinnig geneigt und der Abstand der Mittellängsachsen 44 zur Hauptlängsachse 16 der Gesamtdüse verringert sich in Ausströmrichtung gesehen zunächst, ohne die Hauptlängsachse 16 zu schneiden. Nach Durchlaufen eines Minimalabstandes zwischen den Mittellängsachsen 44 und der Hauptlängsachse 16 der Gesamtdüse vergrößert sich dieser Abstand wieder, so dass eine konvergent/divergente Anordnung gebildet ist. Die Mittellängsachsen 44 der einzelnen Bohrungen 8 liegen aufgrund der ringförmigen Anordnung der Austrittsöffnungen am stromabwärts gelegenen Ende der Bohrungen 8 somit auf der Mantelfläche eines gedachten Rotationshyperboloids. Tropfenbeladenes Fluid 9 aus dem in Fig. 4 rechten Abschnitt der Mischkammer 7 tritt somit auf der linken Seite der Düsenmündung 40 aus, wobei die Bohrungen 8 allerdings an der Zentralachse 16 vorbeigeführt sind. Die Achsen 44 der Einzelstrahlen bzw. der zugeordneten Bohrungen 8 sind derart verdrillt um die Hauptlängsachse 16 angeordnet und in zwei Ebenen zu dieser Hauptlängsachse 16 geneigt, das sich die Einzelstrahlen 18 weitgehend ohne Wechselwirkung miteinander im Gasraum 42 ausbreiten können.
  • Selbstverständlich kann es sinnvoll sein, den Prallteller 11, für welchen unterschiedliche Geometrien in Frage kommen, am Mischkammereintrittsteil 20 zu befestigen. Für die primäre Zerstäubung der Flüssigkeit in der Mischkammer 7 können prinzipiell viele Konzepte zum Einsatz kommen. Bei Abkopplung der Prallfläche 11 vom Düsenaustrittsteil besteht auch wieder die Möglichkeit, eine hier nicht dargestellte Zentralbohrung anzuordnen. Ferner kann der kegelförmige Frontabschnitt 19 der Viellochdüse mit den Einzeldüsenbohrungen als Düsenzentralkörper 50 gefertigt werden, welcher in eine kegelförmigen Haube 52 gleichen Öffnungswinkels eingesetzt wird, was schematisch in Fig. 5 dargestellt ist. Der kegelförmige Düsenzentralkörper 50 kann dann auch wieder eine Konfiguration nach Art eines schräg verzahnten Kegelrades darstellen, wobei Ausfräsungen 54 die Bohrungen 8 ersetzen. Dies bietet insbesondere fertigungstechnische aber auch verfahrenstechnische Vorteile. Selbstverständlich kann auch diese Viellochdüse 43 gemäß Fig. 4 mit einer Düsenhaube 23 einer Ringspaltdüse ausgerüstet werden. Zusätzlich könnte eine in Fig. 4 nicht dargestellte, die Ringspaltdüse außen umgebene Schleierluftdüse vorgesehen werden.
  • Bei der Viellochdüse 43 gemäß Fig. 4 wird die Flüssigkeit 1 somit in bekannter Weise in eine Mischkammer 7 eingespritzt bzw. an einer Prallfläche 11 in noch relativ große Primärtropfen 9 zerteilt. In dieselbe Mischkammer 7 wird auch Druckluft eingeleitet. Diese Druckluft nimmt die Primärtröpfchen mit, und bei der stark beschleunigen Passage durch die Austrittskanäle 8 werden die Primärtröpfchen in kleinere Tröpfchen zerteilt. Auch hier sind die Austrittskanäle 8 derart um die Hauptachse 16 angeordnet, dass der Fokus der einzelnen Tropfenstrahlen 18 näherungsweise in der Düsenaustrittsebene liegt, wie bei der Bündeldüse 45 gemäß Fig. 3 im Detail beschrieben wurde im Unterschied zu Fig. 3 aber noch innerhalb des Frontabschnitts 19 oder Mundstücks. Bei der in Fig. 5 gezeigten Ausführungsform eines Düsenmundstücks 49 sind Austrittskanäle nach Art der Nuten an einem schräg verzahnten Kegelrad angeordnet, dessen kleinerer Durchmesser in der Düsenaustrittsöffnung liegt und bei welchem das Fluid über die Kanäle zwischen den benachbarten Zähnen austritt. Und die besagten Kanäle sind ja gemäß Fig. 5 durch Ausfräsungen 54 an dem kegelförmigen Düsenzentralkörper 50 erzeugt worden, wie dies bei der Herstellung schräg verzahnter Kegelräder der Fall ist. Nach Aufsetzen des kegelhaubenförmigen Außenkörpers 52 sind dann Kanäle mit geschlossenem Querschnitt gebildet.
  • Bei einer derartigen Viellochdüse 43, wie sie anhand Fig. 4 und Fig. 5 beschrieben wurde, bereitet die Anordnung einer Ringspalt-Sekundärzerstäubungs-Düse 23 bzw. einer Schleierluftdüse keinerlei Probleme.
  • Sind die Bohrungen 8 der Viellochdüse kreisrund ausgeführt, kann es vorteilhaft sein, kurze Röhrchen in die Austrittsbohrungen 8 zu stecken. Wie bei den Bündeldüsen ist auf diese Weise eine schmale Ringspaltkonfiguration für die Zuführung der Spaltluft zu erreichen. Die Düsenhaube 23 der Ringspaltdüse würde in diesem Fall dann in ihrer Frontfläche an die Außenabmessungen der eingesteckten Röhrchen angepasste Durchgangsöffnungen aufweisen.
  • Bezugszeichenliste
  • 1
    zu zerstäubende Flüssigkeit
    2
    zentrales Lanzenrohr für die Flüssigkeitszufuhr zum Kopf der Bündeldüse bzw. zur Viellochdüse
    3
    Zweistoff-Viellochdüse nach dem Stand der Technik
    4
    Lanzenrohr für die Zuleitung des Druckgases zur Zweistoffdüse
    5
    Bohrungen für die Einleitung de Druckgases in die Mischkammer
    6
    Druckgas, insbesondere Druckluft
    7
    Mischkammer der Zweistoffdüse
    8
    Düsenaustrittsbohrungen einer Viellochdüse
    9
    Zweistoffgemisch aus Druckgas und Flüssigkeitstropfen in der Mischkammer
    10
    Bohrung für die Einleitung der Flüssigkeit in die Mischkammer
    11
    Prallfläche für die primäre Zerteilung der Flüssigkeit
    12
    Flüssigkeitsfilm auf einer zentralen Belagsnase
    13
    Große Sekundärtropfen, die sich von dem Flüssigkeitsfilm 12 ablösen
    14
    Zentrale Belagsnase
    15
    Amboss
    16
    Hauptlängsachse der Viellochdüse bzw. der Bündeldüse
    17
    Rezirkulationswirbel
    18
    Tropfenstrahl mit feinen Tropfen im Kern und deutlich größeren Randtropfen, die aus Flüssigkeitsfilmen in den Austrittsbohrungen 8 in Abwesenheit einer ausreichend starken Spaltluftströmung entstehen
    19
    Austrittsteil der Viellochdüse, Düsenmundstück
    20
    Eintrittsteil der Mischkammer
    21
    Spitze der zentralen Belagsnase
    22
    Zuleitungsrohr für die Hoch- oder Mitteldruck-Spaltluft
    23
    Ringspaltdüse
    24
    Ringspalt mit kegeligem oder sternförmigem Querschnitt
    25
    Ringspaltluft
    26
    Bündeldüse nach dem Stand der Technik
    27
    Bohrungen für die Zuleitung der Flüssigkeit zu den einzelnen Düsen
    28
    Mischkammereintrittsteil für die Flüssigkeit bei der Bündeldüse
    29
    Schleierluftdüse
    30
    Austrittsspalt für die Schleierluft
    31
    Große Bohrungen für die Einleitung des Zerstäubungsdruckgases in den primären Druckraum 32 der Bündeldüse
    32
    Primärer Druckraum für die Zerstäubungsluft der Bündeldüse
    33
    Aus Ringspalt 30 austretende Schleierluft
    34
    Sekundärer Druckraum für die Ringspaltluft der Bündeldüse
    35
    Drosselelement zur Verringerung des Druckes der Ringspaltluft bzw. zur Abtrennung des primären Druckraumes 32 vom sekundären Druckraum des Druckgases
    36
    Einzeldüsen der Bündeldüse
    37
    Achsen der Einzeldüsen
    38
    Kegelige Frontfläche einer Bündeldüse nach dem Stand der Technik
    39
    Beläge an einer Bündeldüse nach dem Stand der Technik
    40
    Mündungsbereich einer Bündeldüse oder einer Viellochdüse nach der Erfindung
    41
    Düsentragkörper nach der Erfindung
    42
    Rauchgas, in welches eingesprüht wird
    43
    Viellochdüse gemäß der Erfindung
    44
    Achsen der Bohrungen bei der Viellochdüse
    45
    Bündeldüse nach der Erfindung
    46
    Zentraldüse
    47
    Düsen auf einem Ring um die Zentraldüse
    α
    Mittlerer Strahlöffnungswinkel der Bündeldüse bzw. der Viellochdüse

Claims (15)

  1. Vielloch- oder Bündeldüse mit wenigstens einer Mischkammer zum Erzeugen eines Gas-Tropfen-Gemischs und mehreren stromabwärts der wenigstens einen Mischkammer angeordneten Austrittsöffnungen für das Gas-Tropfen-Gemisch, worin die Mittellängsachsen (44) von wenigstens zwei der Austrittsöffnungen (56) windschief zueinander ausgerichtet sind, wobei sich ein Abstand zwischen den Mittellängsachsen (44) dieser Austrittsöffnungen (56) und der Hauptlängsachse (16) der Düse (43;45) in Ausströmrichtung gesehen zunächst verringert, ohne die Hauptlängsachse (16) zu schneiden, und nach Durchlaufen eines minimalen Abstands wieder vergrößert.
  2. Vielloch- oder Bündeldüse nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens zwei Austrittsöffnungen (56) ringförmig um die Hauptlängsachse (16) der Düse (43; 45) angeordnet sind.
  3. Vielloch- oder Bündeldüse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mittellängsachsen (44) der wenigstens zwei Austrittsöffnungen (56), gesehen auf einer die Hauptlängsachse (16) der Düse (43; 45) enthaltenden Ebene, im gleichen Winkel zur Hauptlängsachse (16) der Düse (43; 45) angeordnet sind.
  4. Vielloch- oder Bündeldüse nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Mittellängsachsen (44) der wenigstens zwei Austrittsöffnungen (56) in Bezug auf eine Umfangsrichtung um die Hauptlängsachse (16) der Düse (43; 45) gleichsinnig geneigt sind.
  5. Vielloch- oder Bündeldüse nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Mittellängsachsen (44) der wenigstens zwei Austrittsöffnungen (56) auf der Mantelfläche eines gedachten Rotationshyperboloids liegen.
  6. Vielloch- oder Bündeldüse nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sich die mittels der wenigstens zwei Austrittsöffnungen (56, 58) erzeugten Düsenstrahlen weitgehend ohne Wechselwirkung miteinander in einem Prozessraum stromabwärts der Austrittsöffnungen (56, 58) ausbreiten können.
  7. Vielloch- oder Bündeldüse nach wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine auf der Hauptlängsachse (16) der Düse (45) liegende zentrale Austrittsöffnung (58) vorgesehen ist, um die die wenigstens zwei weiteren Austrittsöffnungen (56) ringförmig angeordnet sind.
  8. Vielloch- oder Bündeldüse nach Anspruch 7, dadurch gekennzeichnet, dass die Mittellängsachsen (44) der wenigstens zwei weiteren Austrittsöffnungen (56) in Bezug auf eine Umfangsrichtung um die Hauptlängsachse (16) der Düse gleichsinnig geneigt sind, um einen Drall um die Hauptlängsachse (16) der Düse zu erzeugen.
  9. Vielloch- oder Bündeldüse nach wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine, die Austrittsöffnungen (56, 58) umgebende und mit Druckluft beaufschlagte Ringspaltdüse vorgesehen ist.
  10. Vielloch- oder Bündeldüse nach Anspruch 9, dadurch gekennzeichnet, dass die Austrittsöffnungen (56) in einem Düsenmundstück (19; 49) vorgesehen sind, das von einer Ringspaltdüse umgeben ist.
  11. Vielloch- oder Bündeldüse nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Düsentragkörper (41) vorgesehen ist, an dem mehrere, vom Düsentragkörper (41) aus in Ausströmrichtung vorragende Einzeldüsen (46, 47) angeordnet sind, wobei die Einzeldüsen (46, 47) wenigstens auf Höhe ihrer Austrittsöffnungen von einer Ringspaltdüsenhaube (23) umgeben sind, so dass zwischen den Einzeldüsen (46, 47) und der Ringspaltdüsenhaube (23) auf Höhe der Austrittsöffnungen ein Ringspalt gebildet ist.
  12. Vielloch- oder Bündeldüse nach Anspruch 11, dadurch gekennzeichnet, dass eine Zentraldüse (46) mit einer auf der Hauptlängsachse (16) der Düse liegenden Austrittsöffnung und wenigstens zwei weitere, die Hauptlängsachse (16) der Düse ringförmig umgebende Einzeldüsen (47) vorgesehen sind, wobei eine Stirnseite der Düsenhaube (23) eine oder mehrere Ringspaltöffnungen aufweist, so dass auf Höhe der Austrittsöffnungen ein Abstand zwischen einem Außenumfang der Einzeldüsen (46, 47) und der oder den Ringspaltöffnungen beziehungsweise dem Außenumfang benachbarter Einzeldüsen (46, 47) im wesentlichen gleich ist.
  13. Vielloch- oder Bündeldüse nach einem der vorstehenden Ansprüche 9 bis 12 wenn abhängig von Anspruch 9, dadurch gekennzeichnet, dass die Ringspaltdüse von einer ringförmige Schleierluftdüse (29) umgeben ist.
  14. Vielloch- oder Bündeldüse nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Düsentragkörper (41) vorgesehen ist, an dem mehrere vom Düsentragkörper (41) aus in Ausströmrichtung vorragende Einzeldüsen (46, 47) angeordnet sind, wobei die Einzeldüsen (46, 47) an einer in Ausströmrichtung gesehen allgemein konkaven Vorderseite des Düsentragkörpers (41) angeordnet sind.
  15. Vielloch- oder Bündeldüse nach wenigstens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Austrittsöffnungen in einem Düsenmundstück (49) vorgesehen sind, wobei das Düsenmundstück (49) einen Düsenzentralkörper (50) mit kegelartiger Außenfläche und eine den Düsenzentralkörper (50) umgebende und abschnittsweise an dessen Außenfläche anliegende Haube (52) aufweist und wobei der Düsenzentralkörper (50) und/oder die Haube (52) an den Austrittsöffnungen endende Ausfräsungen (54) aufweisen, die Düsenkanalnuten bilden.
EP08802252A 2007-09-17 2008-09-16 Vielloch- oder bündeldüse Not-in-force EP2190587B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08802252T PL2190587T3 (pl) 2007-09-17 2008-09-16 Dysza wielootworowa lub wiązkowa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007044272A DE102007044272A1 (de) 2007-09-17 2007-09-17 Vielloch- oder Bündelkopfdüse ohne und mit Druckluftunterstützung
PCT/EP2008/007722 WO2009036947A1 (de) 2007-09-17 2008-09-16 Vielloch- oder bündeldüse

Publications (2)

Publication Number Publication Date
EP2190587A1 EP2190587A1 (de) 2010-06-02
EP2190587B1 true EP2190587B1 (de) 2012-04-18

Family

ID=40039951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08802252A Not-in-force EP2190587B1 (de) 2007-09-17 2008-09-16 Vielloch- oder bündeldüse

Country Status (7)

Country Link
US (1) US8672241B2 (de)
EP (1) EP2190587B1 (de)
AT (1) ATE553848T1 (de)
DE (1) DE102007044272A1 (de)
ES (1) ES2384128T3 (de)
PL (1) PL2190587T3 (de)
WO (1) WO2009036947A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4303481A1 (de) * 2022-06-29 2024-01-10 Westnetz GmbH Vorrichtung und verfahren zum bereitstellen eines odorierten erdgas- und wasserstoff-gemisches

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009037828A1 (de) 2008-11-11 2010-05-20 Wurz, Dieter, Prof. Dr. Zweistoffdüse, Bündeldüse und Verfahren zum Zerstäuben von Fluiden
US8151885B2 (en) * 2009-04-20 2012-04-10 Halliburton Energy Services Inc. Erosion resistant flow connector
US8672234B2 (en) * 2010-05-20 2014-03-18 Enginetics, Llc Multi-physics fuel atomizer and methods
US9032760B2 (en) * 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
GB2487934B (en) * 2011-02-08 2015-07-08 Bosch Gmbh Robert Fuel injection apparatus comprising a fuel atomisation system
US9119890B2 (en) 2011-10-05 2015-09-01 Kurt Himmelfreundpointner Method and device for influencing the smell which comes from shaft openings of underground sewers
US9074969B2 (en) 2012-04-18 2015-07-07 Cooper Environmental Services Llc Sample fluid stream probe
JP6166103B2 (ja) * 2013-06-04 2017-07-19 ヤンマー株式会社 尿素水噴射ノズル
KR101536454B1 (ko) * 2013-12-20 2015-07-13 주식회사 포스코 분말 제조 장치 및 분말 형성 방법
JP5931947B2 (ja) * 2014-03-18 2016-06-08 株式会社東芝 ノズルおよび積層造形装置
US10661288B2 (en) * 2014-10-27 2020-05-26 Council Of Scientific & Industrial Research Manually controlled variable coverage high range electrostatic sprayer
CN107614117B (zh) 2015-04-09 2019-06-21 纳克斯空气产品公司 吹嘴
US9746397B2 (en) 2015-07-20 2017-08-29 Cooper Environmental Services Llc Sample fluid stream probe gas sheet nozzle
US11248784B2 (en) 2018-06-07 2022-02-15 Fisher Controls International Llc Desuperheater and spray nozzles therefor
US11221135B2 (en) 2018-06-07 2022-01-11 Fisher Controls International Llc Desuperheater and spray nozzles therefor
JP7218335B2 (ja) * 2020-09-11 2023-02-06 三菱重工業株式会社 金属粉末製造装置及びそのガス噴射器
CN113210327A (zh) * 2021-05-18 2021-08-06 松原市永泰经贸有限责任公司 油管和油杆的物理除垢装置和物理无损除垢方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE948499C (de) * 1952-05-10 1956-08-30 Otto Helm Strahlkopf mit mehreren gleichzeitig verstellbaren, auf einen Punkt zu richtenden Duesen
US2942790A (en) * 1959-01-23 1960-06-28 Gen Electric Air-atomizing liquid spray nozzle
IT1117662B (it) * 1977-01-14 1986-02-17 Italimpianti Bruciatore radiante per combustibile liquidi e gassosi
JPS5549162A (en) * 1978-10-03 1980-04-09 Ikeuchi:Kk Mist producting device
CH636023A5 (en) 1979-04-24 1983-05-13 Labomeka Anstalt Pipe for injecting and spraying liquid waste (residues)
JPH01123012A (ja) * 1987-11-09 1989-05-16 Kawasaki Steel Corp 微粉製造用ノズル
US5372312A (en) * 1993-08-23 1994-12-13 Spraying Systems Co. Air atomizing spray nozzle assembly with angled discharge orifices
GB9709205D0 (en) * 1997-05-07 1997-06-25 Boc Group Plc Oxy/oil swirl burner
DE19855069A1 (de) * 1998-11-28 2000-05-31 Asea Brown Boveri Flüssigbrennstoffaufbereitungseinheit für einen Brenner und Verfahren zum Betrieb derselben
JP2000254554A (ja) * 1999-03-12 2000-09-19 Kimitoshi Mato 微粒化ノズル
FR2815552B1 (fr) 2000-10-24 2002-12-27 Lomapro Buse a effet rotatif amplifie pour le nettoyage de surfaces au moyen d'un melange air-granulat, sec ou humide, support pour une telle buse, et machine de nettoyage associee
US20050284957A1 (en) * 2002-09-23 2005-12-29 Spraying Systems Co. External mix air atomizing spray nozzle assembly
US6863228B2 (en) * 2002-09-30 2005-03-08 Delavan Inc. Discrete jet atomizer
DE102005048489A1 (de) * 2005-10-07 2007-04-19 Dieter Prof. Dr.-Ing. Wurz Zweistoffdüse mit Ringspaltzerstäubung
DE102006009147A1 (de) 2006-02-24 2007-08-30 Wurz, Dieter, Prof. Dr.-Ing. Zweistoffdüse mit Weitwinkelstrahl

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4303481A1 (de) * 2022-06-29 2024-01-10 Westnetz GmbH Vorrichtung und verfahren zum bereitstellen eines odorierten erdgas- und wasserstoff-gemisches

Also Published As

Publication number Publication date
ATE553848T1 (de) 2012-05-15
US8672241B2 (en) 2014-03-18
EP2190587A1 (de) 2010-06-02
PL2190587T3 (pl) 2012-09-28
ES2384128T3 (es) 2012-06-29
US20100219268A1 (en) 2010-09-02
DE102007044272A1 (de) 2009-04-02
WO2009036947A1 (de) 2009-03-26

Similar Documents

Publication Publication Date Title
EP2190587B1 (de) Vielloch- oder bündeldüse
EP1986788B1 (de) Zweistoffdüse mit kreisförmig angeordneten sekundärluftdüsen
EP2444161B1 (de) Zweistoffzerstäubungsdüse
DE69222125T2 (de) Atomisierung von schweren Kohlenwasserstoffen
EP3246095B1 (de) Düse zum versprühen von flüssigkeiten
EP2347180A1 (de) Zweistoffdüse, bündeldüse und verfahren zum zerstäuben von fluiden
WO2011124686A1 (de) Sprühsystem und verfahren zum einsprühen eines sekundären fluids in ein primäres fluid
EP1971444A1 (de) Zweistoffdüse
EP1243343A1 (de) Zweistoffsprühdüse
EP3042724B1 (de) Verfahren zum erzeugen eines sprühstrahls und zweistoffdüse
DE19758526B4 (de) Drallsprühdüse
WO1999033554A1 (de) Vorrichtung zum mischen und anschliessendem versprühen von flüssigkeiten
DE102007034549A1 (de) Energiespardüse mit Druckluftunterstützung
DE10319582B4 (de) Zweistoffsprühdüse
DE3701946C2 (de)
DE4011891C2 (de)
DE102014003877A1 (de) Verfahren und Vorrichtung zur on-line-Reinigung von Zweistoffdüsen
DE19854382B4 (de) Verfahren und Vorrichtung zur Zerstäubung flüssigen Brennstoffs für eine Feuerungsanlage
CH704943B1 (de) Zweistoff-Innenmischdüsenanordnung und Verfahren zur Zerstäubung einer Flüssigkeit.
DE102010012555A1 (de) Zweistoff-Innenmischdüsenanordnung und Verfahren zur Zerstäubung einer Flüssigkeit
DE3619857A1 (de) Verfahren und vorrichtung zur zerstaeubung von fluessigen und/oder pastoesen und/oder pulverfoermigen medien, insbesondere von fluessigkeiten mit teilchen, beispielsweise abrasiven teilchen
DE868238C (de) Einspritzduese fuer Brennkraftmaschinen u. dgl.
DD272422A1 (de) Verfahren und vorrichtung zum zerstaeuben einer fluessigkeit
DE2351051B2 (de) Reaktor fuer plasmachemische verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 7/04 20060101AFI20111103BHEP

Ipc: B08B 5/02 20060101ALI20111103BHEP

Ipc: B05B 7/10 20060101ALI20111103BHEP

Ipc: B05B 7/08 20060101ALI20111103BHEP

Ipc: B05B 1/34 20060101ALI20111103BHEP

Ipc: B05B 7/06 20060101ALI20111103BHEP

Ipc: F28C 3/08 20060101ALN20111103BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B08B 5/02 20060101ALI20111128BHEP

Ipc: B05B 1/34 20060101ALI20111128BHEP

Ipc: F28C 3/08 20060101ALN20111128BHEP

Ipc: B05B 7/04 20060101AFI20111128BHEP

Ipc: B05B 7/10 20060101ALI20111128BHEP

Ipc: B05B 7/08 20060101ALI20111128BHEP

Ipc: B05B 7/06 20060101ALI20111128BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 553848

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008007010

Country of ref document: DE

Effective date: 20120614

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2384128

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120629

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120418

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120818

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120820

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120719

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E014819

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130121

BERE Be: lapsed

Owner name: WURZ, DIETER

Effective date: 20120930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120916

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008007010

Country of ref document: DE

Effective date: 20130121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130401

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120917

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120916

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 553848

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180921

Year of fee payment: 11

Ref country code: DE

Payment date: 20180920

Year of fee payment: 11

Ref country code: FR

Payment date: 20180921

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180823

Year of fee payment: 11

Ref country code: GB

Payment date: 20180924

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008007010

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916