EP2178622A2 - Procede pour eliminer le mercure d'un gaz contenant du co2 et de l'oxygene - Google Patents

Procede pour eliminer le mercure d'un gaz contenant du co2 et de l'oxygene

Info

Publication number
EP2178622A2
EP2178622A2 EP08826487A EP08826487A EP2178622A2 EP 2178622 A2 EP2178622 A2 EP 2178622A2 EP 08826487 A EP08826487 A EP 08826487A EP 08826487 A EP08826487 A EP 08826487A EP 2178622 A2 EP2178622 A2 EP 2178622A2
Authority
EP
European Patent Office
Prior art keywords
feed gas
mercury
volume
ppm
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08826487A
Other languages
German (de)
English (en)
Inventor
Philippe Court
Arthur Darde
Vladimir Hasanov
Christian Monereau
Serge Moreau
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2178622A2 publication Critical patent/EP2178622A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/30Sorption devices using carbon, e.g. coke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/60Sorption with dry devices, e.g. beds

Definitions

  • the invention relates to a method for purifying a feed gas stream at a pressure of> 3 bars comprising at least 1% by volume of oxygen (O2) and at least 75% by volume of CO2 and mercury. , allowing the elimination of mercury.
  • mercury pollution is known. Indeed, mercury is a toxic element. In humans, exposure to mercury can lead to neurological and developmental disorders.
  • US 4,909,926 discloses a method for capturing mercury in a hydrocarbon stream.
  • the materials cited include Ag and CuS, the supports being alumina or SiO 2 .
  • the regeneration is carried out with an oxygen-containing gas and purging oxygen before returning to service. It is stated in this document that this purge must be done at high temperature to prevent the formation of oxide.
  • the process can be applied in the presence of hydrocarbons, hydrogen, H 2 S, N 2 , H 2 O and CO 2 .
  • Oxygen is effectively described as a regenerative agent, thus desorption of mercury and at low temperature as oxidant and deactivating agent. From there, a problem arises to provide an improved process for purifying a gas stream containing CO 2 , at least 1% oxygen and mercury, so as to obtain a depleted mercury gas.
  • a solution of the invention is a process for purifying a flow of feed gas at a pressure of> 3 bar, comprising at least 1% by volume of oxygen (O 2 ) and at least 75% by volume of CO 2 and mercury, characterized in that it comprises a purification step by adsorption, carried out at a temperature ⁇ 120 ° C., and in which at least one embodiment is used.
  • a fixed bed of adsorbents containing a sulfur and / or silver adsorbent so as to at least partially remove the mercury.
  • the process according to the invention may have one of the following characteristics: the flow of feed gas comprises between 1 and 6% by volume of oxygen;
  • the feed gas stream comprises up to 5000ppm NOx and / or SOx volume, preferably less than 1000 ppm, more preferably less than 100 ppm;
  • the sulfur and / or silver adsorbent comprises an organic or inorganic support; the organic support is activated carbon;
  • the inorganic support is chosen from the group comprising porous glasses and silica, alumina, silica-alumina, silicates, aluminates and silico-aluminates;
  • a dispersant or a solid support selected from the group comprising silica, porous glass, alumina, silica-alumina, silicates, aluminates and silico-aluminates,
  • Porous glass is a chemically inert material, particularly resistant to bases and acids, and has good physical characteristics (crushing, attrition).
  • SiO 2 consists essentially of SiO 2, generally> 90% by weight, preferably> 95% and may contain a minor extent B2O3, Na 2 O, Al2O3, ZrO 2 and / or other metal oxides.
  • VYCOR Porous Porous Glass 7930 from Corning Incorporated, which has a 28% porous volume, 250 m / g internal surface area, and a mean pore diameter of 40 A (4 nanometers).
  • the support of the active compound based on metal may be activated carbon, alumina, silica, silica-alumina silicates, aluminates, silico-aluminates.
  • mercury removal can be carried out in a single adsorber or for example in two adsorbers in series.
  • the adsorbent charge installed will preferably operate without intervention for a minimum of 6 months. In the case of adsorbers in series, it is possible to renew the charges by half. The new load is then used downstream of the load remaining in service ...
  • the polluted charge of mercury can be regenerated in situ.
  • the adsorption purification step may comprise other adsorption purification processes than the mercury alone. It may be the stopping of other heavy metals such as arsenic. In this case, a second adequate bed for this stop will be placed downstream or upstream of the bed for stopping the mercury. It is also conceivable a mixture, homogeneous or not, of different adsorbents, at least one corresponding to the cessation of mercury. One and the same product can also be used for mercury and other heavy metals.
  • the purification step may comprise a drying of the feed gas upstream or downstream of the demercurization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Chimneys And Flues (AREA)

Abstract

Procédé de purification d'un flux de gaz d'alimentation sous une pression > 3 bars, comprenant au moins 1 % en volume d'oxygène (O2) et au moins 75% en volume de CO2 Ct du mercure, caractérisé en ce qu'il comprend une étape de purification par adsorption dans lequel on met en œuvre au moins un lit fixe d'adsorbants contenant un adsorbant soufré et/ou argenté, de manière à éliminer au moins partiellement le mercure.

Description

Procédé pour éliminer le mercure d'un gaz contenant du CO2Ct de l'oxygène
L'invention porte sur un procédé de purification d'un flux de gaz d'alimentation sous une pression > 3 bars, comprenant au moins 1 % en volume d'oxygène (O2) et au moins 75% en volume de CO2 et du mercure, permettant l'élimination du mercure.
Il s'agit plus précisément de développer un procédé de traitement du CO2 provenant d'une oxy-combustion (combustion à l'oxygène pur ou avec un gaz plus pauvre en azote que l'air).
En effet, les gaz de combustion fossiles et/ou de biomasse ou d'incinération de déchets ou les gaz issus de fours verriers contiennent majoritairement des métaux lourds tels que le mercure, des polluants organiques et des composés type SOx et NOx.
Le danger de la pollution par le mercure est connu. En effet, le mercure est un élément toxique. Chez les êtres humains, l'exposition au mercure peut entraîner des troubles neurologiques et de développement.
Les émissions de mercure peuvent demeurer dans l'atmosphère de quelques heures à plusieurs années.
Aussi, il est essentiel de fournir un procédé d'extraction du mercure pour le traitement des gaz de combustion.
Il est connu que certains métaux, par exemple l'or, l'argent et le cuivre forment des amalgames avec le mercure et que cette propriété est utilisée pour doser le mercure.
Toutefois, l'extraction du mercure par ces métaux n'est pas utilisée industriellement en raison du volume horaire à traiter. Une autre possibilité est de laver le charbon avant la combustion. Cependant, ces lavages ne permettent d'éliminer qu'entre 0 et 60% du mercure.
D'autres solutions telles que les précipitateurs électrostatiques ou les séparateurs à couche filtrante ont été mis en œuvre.
Toutefois, aucun essai n'est concluant. Par ailleurs, le document US-A-4 094 777 décrit un procédé permettant de capter le mercure en phase gaz ou liquide, par fixation sur une masse adsorbante comprenant du sulfure de cuivre, éventuellement du sulfure d'argent déposé sur un support à base de silice et/ou d'alumine. Le procédé est en lit fixe et est utilisable de -500C à 2000C, à des pressions jusqu'à 200 bars. Il est dit que ce procédé s'applique à la démercurisation du gaz naturel ou de l'hydrogène électrolytique. L'exemple donné concerne un gaz naturel contenant du méthane, des hydrocarbures jusqu'au C5, du CO2 et de l'azote. II est également divulgué que la régénération peut se faire avec de l'air à partir d'une température de 2000C et qu'il faut éventuellement re-sulfurer le matériau.
Le document US 4 909 926 décrit un procédé permettant de capter le mercure dans un flux d'hydrocarbures. Les matériaux cités comprennent Ag et CuS, les supports étant de l'alumine ou SiO2. Dans le cas de la mise en œuvre d'un support d'alumine, la régénération s'effectue avec un gaz contenant de l'oxygène et en purgeant l'oxygène avant la remise en service. Il est précisé dans ce document que cette purge doit se faire à haute température pour éviter la formation d'oxyde. Enfin, il est précisé que le procédé peut être appliqué en présence d'hydrocarbures, d'hydrogène, de H2S, N2, H2O et CO2. Ainsi, il semblerait que la présence d'oxygène dans un gaz à traiter rend inapplicable sa démercurisation via une adsorption sur un produit contenant du sulfure de cuivre et/ou de l'argent ou du sulfure d'argent. L'oxygène est effectivement décrit comme agent de régénération, donc de désorption du mercure et à basse température comme oxydant et agent de désactivation. Partant de là, un problème qui se pose est de fournir un procédé amélioré de purification d'un flux de gaz contenant du CO2, au moins 1% d'oxygène et du mercure, de manière à obtenir un gaz appauvri en mercure.
Un problème similaire se pose pour les flux de gaz contenant des NOx et/ou des SOx. En effet, ces composés ont des propriétés oxydantes, susceptibles de réagir avec l'adsorbant.
Or, de manière inattendue les inventeurs ont découvert qu'une solution de l'invention est un procédé de purification d'un flux de gaz d'alimentation sous une pression > 3 bars, comprenant au moins 1 % en volume d'oxygène (O2) et au moins 75% en volume de CO2 et du mercure, caractérisé en ce qu'il comprend une étape de purification par adsorption, réalisée à une température < 1200C, et dans lequel on met en œuvre au moins un lit fixe d'adsorbants contenant un adsorbant soufré et/ou argenté, de manière à éliminer au moins partiellement le mercure.
Selon le cas, le procédé selon l'invention peut présenter l'une des caractéristiques suivantes : - le flux de gaz d'alimentation comprend entre 1 et 6 % en volume d'oxygène ;
- le flux de gaz d'alimentation comprend jusqu'à 5000ppm volume de NOx et/ou de SOx, préférentiellement moins de 1000 ppm, encore préférentiellement moins de 100 ppm;
- le flux de gaz d'alimentation n'est pas saturé en eau ;
- le flux de gaz d'alimentation contient moins de 1000 ppm d'eau, de préférence moins de 100 ppm, de préférence encore moins de 1 ppm ;
- le flux de gaz d'alimentation est sous une pression > 10 bars ;
- l'étape de purification est réalisée à une température < 1000C, de préférence encore à une température comprise entre 5°C et 800C ;
- 1 'adsorbant soufré et/ou argenté comprend un support organique ou inorganique ; - le support organique est du charbon actif ;
- le support inorganique est choisi parmi le groupe comprenant les verres poreux et la silice, l'alumine, la silice-alumine, les silicates, les aluminates et les silico-aluminates ;
- ledit lit fixe d'adsorbants comprend :
(a) un dispersant ou un support solide, choisi parmi le groupe comprenant la silice, le verre poreux, l'alumine, la silice-alumine, les silicates, les aluminates et les silico-aluminates,
(b) du cuivre dont au moins 30% sous forme de sulfure et dont le poids total oxyde de cuivre - sulfure de cuivre représente 2 à 65% du poids de la masse adsorbante du lit fixe,
(c) 0 à 5% en poids d'argent ;
- ledit lit fixe d'adsorbants a une surface spécifique comprise entre 20 et 1300 m2/g ; - 80% du cuivre est sous forme de sulfure de cuivre ;
- ledit procédé permet de traiter entre 4 000 et 20 000 v.v.h de flux de gaz d'alimentation ; avec v.v.h = Volume de gaz d'alimentation entrant dans l'adsorbeur par Volume d'adsorbeur et par Heure ; aussi l'unité est h-1 car le Volume de gaz est mesuré par convention dans les conditions normales (1,013 bar abs et 00C); - le flux de gaz d'alimentation est une fumée d'oxy-combustion. Dans certains cas, le lit d'adsorbants comprenant un adsorbant soufré et/ou argenté est un lit de garde.
Le verre poreux est un matériel chimiquement inerte, résistant bien en particulier aux bases et aux acides et présentant de bonnes caractéristiques physiques (écrasement, attrition ).
Il est composé essentiellement de SiO2, généralement >90% poids, préférentiellement > 95% et peut contenir de façon minoritaire B2O3, Na2O, AI2O3, ZrO2 et/ou d'autres oxydes métalliques.
Ce verre poreux a la particularité comme son nom l'indique d'avoir un taux de vide interne important, généralement supérieur à 25% en volume, sous forme de pores de dimensions variables suivant les produits, ce qui lui permet de développer des surfaces mternes de plusi .eurs centai •nes d 1e m 2 au gramme.
A titre d'exemple, on peut citer VYCOR Brand Porous Glass 7930 de Corning Incorporated qui présente 28% de volume poreux, 250 m /gramme de surface interne pour un diamètre moyen de pore de 40 A ( 4 nanomètres).
Contrairement à l'enseignement qu'on peut tirer de l'état de la technique, il apparaît qu'un mélange contenant au moins 1% en volume d'oxygène et au moins 75 % en volume de CO2 peut être démercurisé par fixation du mercure sur une masse adsorbante soufrée et/ ou argentée. II est possible que la forte pression partielle du CO2 vis-à-vis de celle de l'oxygène limite la réactivité de ce dernier constituant et que la perte éventuelle d'efficacité puisse être compensée par un temps de contact supérieur (ou un volume par volume et par heure inférieure).
Les effets de la pression totale et de la température n'ont pas été étudiés systématiquement dès lors que ledit procédé s'avère être opérationnel industriellement dans les conditions opératoires normales à savoir une teneur en CO2 supérieure ou égale à 75% volume, une teneur en oxygène comprise entre 1 et 6% volume, une pression supérieure ou égale à 3 bar absolus, une température inférieure à 2500C, de préférence inférieure à 1500C, plus préférentiellement encore comprise entre 5 et 80 0C. Les NOx et les SOx sont acceptables dans le flux gazeux traité par le procédé selon l'invention jusqu'à 5000ppm volume. Le support du composé actif à base de métal, majoritairement Cu et/ou Ag mais pouvant contenir minoritairement d'autres métaux tels que Fe, Zr, Zn, pourra être du charbon actif, de l'alumine, de la silice, silice-alumine, silicates, aluminates, silico- aluminates. Comme décrit dans le document US 4,094,777, l'élimination du mercure peut s'effectuer dans un adsorbeur unique ou par exemple dans deux adsorbeurs en série. La charge d'adsorbant installée permettra préférentiellement de fonctionner sans intervention pendant un minimum de 6 mois. Dans le cas d'adsorbeurs en série, il est possible de renouveler les charges par moitié. La nouvelle charge est alors utilisée à l'aval de la charge restant en service ...
Dans une variante du procédé, la charge polluée en mercure peut être régénérée in situ. En présence de grosse quantité de mercure (de l'ordre du milligramme par m de gaz par exemple ), il peut être intéressant d'installer 2 adsorbeurs en parallèle, un en service, l'autre étant alors en régénération. De façon générale, l'étape de purification par adsorption peut comprendre d'autres procédés de purification par adsorption que le seul arrêt du mercure. Il peut s'agir de l'arrêt d'autres métaux lourds tels par exemple que l'arsenic .Dans ce cas, un second lit adéquat pour cet arrêt sera placé en aval ou en amont du lit destiné à l'arrêt du mercure. On peut également concevoir un mélange, homogène ou pas, de différents adsorbants, l'un au moins correspondant à l'arrêt du mercure. Un seul et même produit pourra aussi être utilisé pour le mercure et d'autres métaux lourds. L'étape de purification peut comporter un séchage du gaz d'alimentation en amont ou en aval de la démercurisation.

Claims

Revendications
1. Procédé de purification d'un flux de gaz d'alimentation sous une pression > 3 bars, comprenant au moins 1 % en volume d'oxygène (O2) et au moins 75% en volume de CO2 et du mercure, caractérisé en ce qu'il comprend une étape de purification par adsorption, réalisée à une température < 1200C, et dans lequel on met en œuvre au moins un lit fixe d'adsorbants contenant un adsorbant soufré et/ou argenté, de manière à éliminer au moins partiellement le mercure.
2. Procédé de purification selon la revendication 1 , caractérisé en ce que le flux de gaz d'alimentation comprend entre 1 et 6 % en volume d'oxygène.
3. Procédé de purification selon l'une des revendications 1 ou 2, caractérisé en ce que le flux de gaz d'alimentation comprend jusqu'à 5000ppm volume de NOx et/ou de SOx, préférentiellement moins de 1000 ppm, encore préférentiellement moins de 100 ppm.
4. Procédé de purification selon l'une des revendications 1 ou 2, caractérisé en ce que le flux de gaz d'alimentation n'est pas saturé en eau.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le flux de gaz d'alimentation contient moins de 1000 ppm d'eau, de préférence moins de 100 ppm, de préférence encore moins de 1 ppm.
6. Procédé de purification selon l'une des revendications précédentes, caractérisé en ce que le flux de gaz d'alimentation est sous une pression > 10 bars.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape de purification est réalisée à une température < 1000C, de préférence encore à une température comprise entre 5°C et 8O0C.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'adsorbant soufré et/ou argenté comprend un support organique ou inorganique.
9. Procédé selon la revendication 8, caractérisé en ce que le support organique est du charbon actif.
10. Procédé selon la revendication 8, caractérisé en ce que le support inorganique est choisi parmi le groupe comprenant les verres poreux et la silice, l'alumine, la silice-alumine, les silicates, les aluminates et les silico-aluminates.
11. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit lit fixe d'adsorbants comprend :
(a) un dispersant ou un support solide, choisi parmi le groupe comprenant la silice, le verre poreux, l'alumine, la silice-alumine, les silicates, les aluminates et les silico-aluminates, (b) du cuivre dont au moins 30% sous forme de sulfure et dont le poids total oxyde de cuivre - sulfure de cuivre représente 2 à 65% du poids de la masse adsorbante du lit fixe, (c) 0 à 5% en poids d'argent.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit lit fixe d'adsorbants a une surface spécifique comprise entre 20 et 1300 m2/g.
13. Procédé selon la revendication 8, caractérisé en ce que 80% du cuivre est sous forme de sulfure de cuivre.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit procédé permet de traiter entre 4 000 et 20 000 v.v.h de flux de gaz d'alimentation.
15. Procédé selon l'une des revendications précédentes, caractérisé en ce que le flux de gaz d'alimentation est une fumée d'oxy-combustion.
EP08826487A 2007-07-13 2008-07-08 Procede pour eliminer le mercure d'un gaz contenant du co2 et de l'oxygene Withdrawn EP2178622A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0756494A FR2918580B1 (fr) 2007-07-13 2007-07-13 Procede pour eliminer le mercure d'un gaz contenant du co2 et de l'oxygene
PCT/FR2008/051275 WO2009010692A2 (fr) 2007-07-13 2008-07-08 Procede pour eliminer le mercure d'un gaz contenant du co2 et de l'oxygene

Publications (1)

Publication Number Publication Date
EP2178622A2 true EP2178622A2 (fr) 2010-04-28

Family

ID=39110571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08826487A Withdrawn EP2178622A2 (fr) 2007-07-13 2008-07-08 Procede pour eliminer le mercure d'un gaz contenant du co2 et de l'oxygene

Country Status (8)

Country Link
US (1) US8535416B2 (fr)
EP (1) EP2178622A2 (fr)
JP (1) JP2010533064A (fr)
CN (1) CN101842144A (fr)
AU (1) AU2008277537B2 (fr)
CA (1) CA2693038A1 (fr)
FR (1) FR2918580B1 (fr)
WO (1) WO2009010692A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2949978B1 (fr) 2009-09-17 2012-08-31 Air Liquide Procede de purification d'un flux gazeux comprenant du mercure
US8690991B2 (en) 2010-09-24 2014-04-08 Phillips 66 Company Supported silver sulfide sorbent
FR2992233B1 (fr) * 2012-06-26 2018-03-16 IFP Energies Nouvelles Masse de captation composee de soufre elementaire depose sur un support poreux pour la captation des metaux lourds
AU2013270629B2 (en) * 2012-12-21 2017-10-19 IFP Energies Nouvelles Polymetallic capture mass for capturing heavy metals
CN110559793A (zh) * 2019-09-29 2019-12-13 河北石兴科技有限公司 一种可再生天然气脱汞新方法
CN112191227B (zh) * 2020-10-12 2021-04-02 西南石油大学 一种用于天然气的脱汞剂及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2656803C2 (de) * 1975-12-18 1986-12-18 Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine Verfahren zur Entfernung von in einem Gas oder in einer Flüssigkeit vorhandenem Quecksilber
US4708853A (en) * 1983-11-03 1987-11-24 Calgon Carbon Corporation Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
US4909926A (en) * 1989-02-01 1990-03-20 Mobil Oil Corporation Method for removing mercury from hydrocarbon oil by high temperature reactive adsorption
US5281258A (en) * 1992-12-21 1994-01-25 Uop Removal of mercury impurity from natural gas
JP3985291B2 (ja) * 1996-12-11 2007-10-03 東ソー株式会社 燃焼排ガス中の水銀除去方法
US6439138B1 (en) * 1998-05-29 2002-08-27 Hamon Research-Cottrell, Inc. Char for contaminant removal in resource recovery unit
US7048781B1 (en) * 2002-10-07 2006-05-23 Ada Technologies, Inc. Chemically-impregnated silicate agents for mercury control
FR2832141B1 (fr) * 2001-11-14 2004-10-01 Ceca Sa Procede de purification de gaz de synthese
US7081434B2 (en) * 2001-11-27 2006-07-25 Sinha Rabindra K Chemical formulations for the removal of mercury and other pollutants present in fluid streams
US7416716B2 (en) * 2005-11-28 2008-08-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
US7704920B2 (en) * 2005-11-30 2010-04-27 Basf Catalysts Llc Pollutant emission control sorbents and methods of manufacture
US20070234902A1 (en) * 2006-03-29 2007-10-11 Fair David L Method for mercury removal from flue gas streams
US7585476B2 (en) * 2006-04-13 2009-09-08 Babcock & Wilcox Power Generation Group Inc. Process for controlling the moisture concentration of a combustion flue gas
US7708804B2 (en) * 2007-07-11 2010-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of a gaseous mixture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009010692A2 *

Also Published As

Publication number Publication date
WO2009010692A2 (fr) 2009-01-22
FR2918580B1 (fr) 2010-01-01
WO2009010692A3 (fr) 2009-03-26
AU2008277537B2 (en) 2012-09-06
US8535416B2 (en) 2013-09-17
CA2693038A1 (fr) 2009-01-22
CN101842144A (zh) 2010-09-22
JP2010533064A (ja) 2010-10-21
US20100212494A1 (en) 2010-08-26
FR2918580A1 (fr) 2009-01-16
AU2008277537A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
EP1312406B1 (fr) Procédé de purification de gaz de synthèse
EP2178622A2 (fr) Procede pour eliminer le mercure d&#39;un gaz contenant du co2 et de l&#39;oxygene
JP5350376B2 (ja) 吸着精製ユニットを用いるco2を含むガスの精製方法
JP5362716B2 (ja) Co2を含むガスの精製方法
EP1732668B1 (fr) Procede d&#39;abattement de metaux lourds des gaz de fumees
CA2040745A1 (fr) Procede et dispositif de production d&#39;azote ultra-pur
US9480944B2 (en) Process for removal of siloxanes and related compounds from gas streams
TWI450752B (zh) 氣體流中污染物之移除
CN1705504A (zh) 纯化二氧化碳的方法
JPS63232824A (ja) ガス中の有害物質を除去する方法および装置
EP1132341A1 (fr) Charbon actif amélioré par traitement à l&#39;acide et son utilisation pour séparer des gaz
US20190201842A1 (en) A process for the removal of siloxanes from landfill gases
WO2004110923A1 (fr) Purification d’un melange h2/co par catalyse des impuretes
JP2002058996A (ja) 消化ガス精製剤および消化ガスの精製方法
EP2477720A1 (fr) Procede de purification d&#39;un flux gazeux comprenant du mercure
EP2435163B1 (fr) Epuration d&#39;un gaz contenant des oxydes d&#39;azote
FR3009204A1 (fr) Procede de captation d&#39;un metal lourd contenu dans un gaz humide avec dilution du gaz humide pour controler l&#39;humidite relative du gaz.
WO2013050668A1 (fr) Mise en forme de masses de captation pour la purification d&#39;une charge gaz ou liquide contenant des métaux lourds
FR2668140A1 (fr) Procede d&#39;elaboration d&#39;azote ultra-pur.
JP2020073252A (ja) ガス浄化方法及び装置、並びに有価物生成方法及び装置
JP2020121286A (ja) 吸着材の再生方法
FR2661170A1 (fr) Procede d&#39;elaboration d&#39;azote ultra-pur.
JPH1099677A (ja) ダイオキシン類の吸着除去剤
FR2797780A1 (fr) Procede pour eviter l&#39;empoisonnement des catalyseurs d&#39;oxydation utilises pour purifier de l&#39;air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100215

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20101202

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130611