EP2167525A2 - 17ß-CYANO-19-ANDROST-4-EN-DERIVAT, DESSEN VERWENDUNG UND DAS DERIVAT ENTHALTENDE ARZNEIMITTEL - Google Patents

17ß-CYANO-19-ANDROST-4-EN-DERIVAT, DESSEN VERWENDUNG UND DAS DERIVAT ENTHALTENDE ARZNEIMITTEL

Info

Publication number
EP2167525A2
EP2167525A2 EP08760962A EP08760962A EP2167525A2 EP 2167525 A2 EP2167525 A2 EP 2167525A2 EP 08760962 A EP08760962 A EP 08760962A EP 08760962 A EP08760962 A EP 08760962A EP 2167525 A2 EP2167525 A2 EP 2167525A2
Authority
EP
European Patent Office
Prior art keywords
cyano
androst
methylene
methyl
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08760962A
Other languages
English (en)
French (fr)
Inventor
Joachim Kuhnke
Jan Huebner
Rolf Bohlmann
Thomas Frenzel
Ulrich Klar
Frederik Menges
Sven Ring
Steffen Borden
Hans-Peter Muhn
Katja Prelle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Schering Pharma AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Schering Pharma AG filed Critical Bayer Schering Pharma AG
Publication of EP2167525A2 publication Critical patent/EP2167525A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0094Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 containing nitrile radicals, including thiocyanide radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/12Drugs for genital or sexual disorders; Contraceptives for climacteric disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/18Feminine contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/34Gestagens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • A61P5/42Drugs for disorders of the endocrine system of the suprarenal hormones for decreasing, blocking or antagonising the activity of mineralocorticosteroids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J53/00Steroids in which the cyclopenta(a)hydrophenanthrene skeleton has been modified by condensation with a carbocyclic rings or by formation of an additional ring by means of a direct link between two ring carbon atoms, including carboxyclic rings fused to the cyclopenta(a)hydrophenanthrene skeleton are included in this class
    • C07J53/002Carbocyclic rings fused
    • C07J53/0043 membered carbocyclic rings
    • C07J53/0073 membered carbocyclic rings in position 6-7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J53/00Steroids in which the cyclopenta(a)hydrophenanthrene skeleton has been modified by condensation with a carbocyclic rings or by formation of an additional ring by means of a direct link between two ring carbon atoms, including carboxyclic rings fused to the cyclopenta(a)hydrophenanthrene skeleton are included in this class
    • C07J53/002Carbocyclic rings fused
    • C07J53/0043 membered carbocyclic rings
    • C07J53/0083 membered carbocyclic rings in position 15/16

Definitions

  • the invention relates to certain 17ß-cyano-19-androst-4-ene derivatives, their use and derivatives containing gestagenic drugs, for example, for the treatment of pre-, peri- and postmenopausal as well as premenstrual complaints.
  • the literature discloses compounds with gestagenic, antimineralcorticoid, anti-drogenic or antiestrogenic action based on a steroid skeleton which are derived, for example, from 19-androst-4-en-3-one or a derivative thereof (the numbering of the steroid skeleton is, for example, Fresenius / Görlitzer 3rd edition 1991 "Organic chemical nomenclature" p. 60 ff.).
  • WO 2006072467 A1 discloses the gestagenic compound 6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -dimethylene-3-oxo-17-pregn-4-ene-21,17 ⁇ -carbolactone (drospirenone), which is used, for example, in an oral contraceptive and a preparation used to treat postmenopausal symptoms.
  • drospirenone due to its relatively low affinity for the progestagen receptor and its comparatively high ovulation inhibitory dose, drospirenone is included in the contraceptive in the relatively high daily dose of 3 mg.
  • drospirenone is characterized by the fact that it has aldosteronantagonist (antimineralcorticoid) and antiandrogenic effects in addition to gestagenic effects.
  • WO 2006072467 A1 further proposes an 18-methyl-19-nor-17-pregn-4-ene-21,17-carbolactone and also pharmaceutical preparations containing it which have a higher progestational potency than Drospirenone.
  • US Pat. No. 3,705,179 discloses steroids which have an antiandrogenic activity and are suitable for the treatment of diseases which occur in the Related to androgens.
  • 17 ⁇ -cyano-17 ⁇ -methyl-androst-4-en-3-one derivatives are disclosed.
  • the object of the present invention is to provide compounds which have a strong binding to the gestagen receptor.
  • the compounds should preferably also have an antimineralcorticoid effect.
  • the present invention relates to a 17 ⁇ -cyano-19-androst-4-ene derivative having the general chemical formula 1
  • Z is selected from the group comprising O, two hydrogen atoms, NOR and NNHSO 2 R, wherein R is hydrogen or C 1 -C 4 -alkyl,
  • R 1 , R 2 are independently hydrogen or methyl or
  • R 1 and R 2 together form methylene or omitted to form a double bond between C 1 and C 2 ,
  • R 4 is hydrogen or halogen
  • R 6a , R 6b together form methylene or 1,2-ethanediyl or R 6a is hydrogen and R 6b is selected from the group comprising hydrogen,
  • R 7 is selected from the group comprising hydrogen, C 1 -C 4 -alkyl,
  • R 6a is hydrogen and R 6b and R 7 together form methylene or omitted to form a double bond between C 6 and C 7
  • R 6a is methyl and R 6b and R 7 are omitted to form a double bond between C 6 and C 7,
  • R 15 , R 16 are hydrogen or together form methylene
  • R 17 is selected from the group comprising hydrogen, C 1 -C 4 -alkyl and allyl
  • the compounds of the general chemical formula A excluded from the present invention are the following compounds:
  • the numbering of the C-skeleton of the derivative according to the invention with the general chemical formula 1 follows in a conventional manner the numbering of a steroid skeleton, for example described in Fresenius, loc. Cit.
  • the numbering of the radicals indicated in the claims corresponds in an analogous manner to their binding position on the C-skeleton of the derivative.
  • the radical R 4 binds to the C 4 position of the derivative according to the invention.
  • C 1 -C 4 -alkyl is in each case to be understood as meaning a straight-chain or branched alkyl radical, such as, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl, especially the unbranched radicals. Particularly preferred are methyl, ethyl and n-propyl.
  • alkyl radicals attached in the 17 ⁇ -position may be perfluorinated, so that in this case R 17 may also be trifluoromethyl, pentafluoroethyl, n-heptafluoropropyl, isoheptafluoropropyl, n-nonafluorobutyl, iso-nonafluorobutyl and tert-nonafluorobutyl.
  • C 2 -C 3 -alkenyl is preferably vinyl or allyl.
  • Halogen is in each case fluorine, chlorine, bromine or iodine.
  • Isomers are to be understood as meaning chemical compounds having the same empirical formula but differing chemical structure. All possible isomers and mixtures of isomers (racemates) are expressly included, the 17 ⁇ -cyano position being specified in the derivative according to the invention.
  • constitutional isomers and stereoisomers are distinguished.
  • Constitutional isomers have the same molecular formula, but differ in how their atoms or atomic groups are linked. These include functional isomers, positional isomers, tautomers or valence isomers.
  • Stereoisomers basically have the same structure (constitution) and thus also the same molecular formula, but differ in the spatial arrangement of the atoms.
  • configuration isomers and conformational isomers are distinguished.
  • Configuration isomers are stereoisomers that can only be converted into each other by bond breaking. These include enantiomers, diastereomers and E / Z (ice / trans) isomers.
  • Enantiomers are stereoisomers that behave in the same way as image and mirror image and have no plane of symmetry. All stereoisomers, which are not enantiomers are called diastereomers. A special case is E / Z (ice / trans) isomers of double bonds. Conformational isomers are stereoisomers that can be converted into each other by the rotation of single bonds. For the delimitation of the Isomehe species from each other see also the IUPAC rules, Section E (Pure Appl. Chem. 45, 11-30 (1976)).
  • the derivatives of general chemical formula 1 according to the invention also include the possible tautomeric forms and include the E or Z isomers or, if a chiral center is present, also the racemates and enantiomers. These are also to be understood as meaning double bond isomers.
  • the derivatives according to the invention can also be present in the form of solvates, in particular of hydrates, the compounds according to the invention accordingly containing polar solvents, in particular of water, as structural element of the crystal lattice of the compounds according to the invention.
  • the polar solvent, in particular water may be present in a stoichiometric or even unstoichiometric ratio.
  • stoichiometric solvates hydrates, we also speak of hemi, (semi-), mono-, sesqui-, di-, tri-, tetra-, penta-, etc. solvates or hydrates.
  • R 1 and R 2 are each hydrogen or together form methylene, more preferably ⁇ -methylene. More preferably, R 1 is ⁇ -methyl.
  • R 4 is preferably hydrogen or chlorine.
  • R 6a and R 6b preferably together form 1, 2-ethanediyl or are each hydrogen.
  • R 7 is preferably selected from the group comprising hydrogen and methyl, where the methyl group may be both ⁇ - ⁇ and ⁇ - ⁇ .
  • R 6b and R 7 preferably together form methylene, where the methylene group may be both ⁇ - ⁇ and ⁇ - ⁇ .
  • R 17 is preferably selected from the group comprising hydrogen and methyl.
  • radicals R 6a , R 6b , R 7 , R 15 and R 16 may be both ⁇ - and ß-constantly.
  • 17 ⁇ -cyano-19-nor-androst-4-ene derivatives of the invention selected from the group comprising:
  • the novel compounds of general chemical formula 1 can be used alone or in combination with estrogens in contraceptive medicines.
  • the derivatives according to the invention are therefore particularly suitable for the preparation of a medicament for oral contraception and for the treatment of pre-, peri- and post-menopausal complaints, including the use in preparations for hormone replacement therapy (HRT).
  • HRT hormone replacement therapy
  • Treatment with the derivatives of the invention preferably takes place on humans, but can also be carried out on related mammalian species, such as, for example, dogs and cats.
  • the derivatives according to the invention are combined with at least one suitable pharmaceutically acceptable additive, for example a carrier.
  • the additive is suitable, for example, for parenteral, preferably oral, administration.
  • These are pharmaceutically suitable organic or inorganic inert adjunct materials, such as, for example, water, gelatin, gum arabic, lactose, starch, magnesium stearate, talc, vegetable oils, polyalkylene glycols, etc.
  • the medicaments can be in solid form, for example as Tablets, dragees, suppositories, capsules, or in liquid form, for example as solutions, suspensions or emulsions.
  • auxiliaries such as preservatives, stabilizers, wetting agents or emulsifiers, salts for varying the osmotic pressure or buffers.
  • Oily solutions for example solutions in sesame oil, castor oil and cottonseed oil, are particularly suitable for parenteral administration.
  • solubilizers such as benzyl benzoate or benzyl alcohol, may be added. It is also possible to incorporate the derivatives of the invention into a transdermal system and thus to apply them transdermally. For oral administration in particular tablets, dragees, capsules, pills, suspensions or solutions in question.
  • the dosage of the derivatives according to the invention in contraceptive preparations should be 0.01 to 10 mg per day.
  • the daily dose for the treatment of premenstrual disorders is about 0.1 to 20 mg.
  • the gestagenic derivatives according to the invention are preferably administered orally in contraceptive preparations and in the medicaments for the treatment of premenstrual symptoms.
  • the daily dose was preferably administered once.
  • the gestagenic and estrogenic active ingredient components are preferably administered orally together in contraceptive preparations.
  • the daily dose was preferably administered once.
  • Suitable estrogens are synthetic estrogens, preferably ethinylestradiol, but also mestranol.
  • the estrogen was administered in a daily amount equivalent to that of 0.01 to 0.04 mg of ethinylestradiol.
  • Suitable starting materials for the 17 ⁇ -cyanoandrost-4-en-3-one derivatives described herein are various steroidal starting materials, such as androst-4-ene-3,17-dione (see, for example, J. Am. Chem. Soc , 3727 (1965)), or the partially reduced analogs, such as testosterone or prasterone.
  • Suitable starting materials which carry a 15 ⁇ , 16 ⁇ or also 15 ⁇ , 16 ⁇ -methylene group are likewise known from the literature (for example 15 ⁇ , 16 ⁇ -methylene-androst-5-en-17-one-3 ⁇ -ol, see Chem. Ber. 106, 888 (1973); the corresponding ⁇ 4-3,17-dione, see DE-A 21 09 555 (1972)
  • the 15 ⁇ , 16 ⁇ -methylene-androst-4-ene-3,17-dione is in Izv. Nauk SSSR Ser.
  • nitrile in position 17 (C 17 ) of the steroid skeleton can be done in many ways. Both single-stage and multi-stage variants are considered here. Preference is given here to methods which ultimately mean the replacement of an oxygen function by cyanide. Many possible process variants are described in Science of Synthesis Houben-Weyl Methods of Molecular Transformations Category 3 Volume 19 pp. 197-213 (2004 Georg Thieme Verlag Stuttgart, New York) and in Houben-Weyl Methods of Organic Chemistry Volume E5 Part 2 P. 1318-1527 (1985 Georg Thieme Verlag Stuttgart, New York).
  • a 17-ketosteroid with tosylmethyl isocyanide in suitable solvents such as dimethoxyethane, dimethyl sulfoxide, ethers, alcohols or else mixtures thereof, using suitable bases, such as alkali metal alkoxides, alkali metal hydrides, potassium hexamethyldisilazide, or alkali metal amides, such as lithium diisopropylamide, in a temperature range of 0 0 C to 100 0 C implemented.
  • suitable bases such as alkali metal alkoxides, alkali metal hydrides, potassium hexamethyldisilazide, or alkali metal amides, such as lithium diisopropylamide, in a temperature range of 0 0 C to 100 0 C implemented.
  • 17-epimer mixtures can be separated by chromatography, fractional crystallization or by a combination of these methods.
  • a suitable leaving group at position 17 such as a halide (preferably iodine or bromine), or even a sulfonic acid ester of a 17-alcohol against cyanide comes into consideration.
  • a suitable leaving group at position 17 such as a halide (preferably iodine or bromine), or even a sulfonic acid ester of a 17-alcohol against cyanide comes into consideration.
  • cyanide sources inorganic cyanides such as lithium, sodium and potassium cyanide are preferably used.
  • a 17-ketone was converted into the corresponding 17-exomethylene compound by means of a Wittig olefination, which after hydroboration and oxidation to the aldehyde can be converted to the corresponding 17-carbaldehyde oxime. Dehydration of the oxime then leads to 17-nitrile.
  • the introduction of the nitrile can be carried out either at the beginning of a synthesis sequence or at any later time, provided that any further functional groups present are suitably protected.
  • the 17-cyano compounds may optionally be alkylated, resulting in stereochemically uniform 17 ⁇ -cyano-17 ⁇ -substituted derivatives.
  • the 17-cyanosteroid was deprotonated in a suitable solvent, such as ethers, for example tetrahydrofuran.
  • a suitable solvent such as ethers, for example tetrahydrofuran.
  • various bases may be used, for example, an alkali amide such as lithium diisopropylamide.
  • an alkylating agent such as an alkyl or alkenyl halide
  • the dienol ether bromination of compound 5 can be carried out, for example, analogously to the procedure of Steroids 1, 233 (1963).
  • the Bromwasserstoffabspaltung succeeds by heating the 6-bromine compound with basic reagents, such as LiBr or Li 2 CO 3 , in aprotic solvents, such as dimethylformamide, at temperatures from 50 0 C to 120 0 C or by the 6-bromo compounds in a solvent, such as collidine or lutidine, are heated to compound 6.
  • Compound 7 is prepared by methenylation of the 6,7-double bond by known methods, e.g. with dimethylsulfoxonium methylide (see, for example, DE-A 11 83 500, DE-A 29 22 500, EP-A 0 019 690, US-A 4,291,029, J. Am. Chem. Soc., 84, 867 (1962)) into a Compound 8 converted to give a mixture of ⁇ - and ß-isomers, for example can be separated into the individual isomers by chromatography.
  • dimethylsulfoxonium methylide see, for example, DE-A 11 83 500, DE-A 29 22 500, EP-A 0 019 690, US-A 4,291,029, J. Am. Chem. Soc., 84, 867 (1962)
  • Compound 8 converted to give a mixture of ⁇ - and ß-isomers, for example can be separated into the individual isomers by chromatography.
  • the synthesis of the spirocyclic compound 12 is based on 2, which was first converted into a 3-amino-3,5-diene-dehydrate 9.
  • the 6-hydroxymethylene Dehvat 10 was obtained.
  • compound 13 can be prepared by reaction with th-methylsulfoxonium iodide using bases such as alkali metal hydroxides, alkali alcoholates, in suitable solvents such as dimethylsulfoxide , represent.
  • compound 10 can be dehydrated with, for example, hydrochloric acid in dioxane / water. It is also possible to produce 6-methylene from 11 (see DE-A 34 02 3291, EP-A 0 150 157, US-A 4,584,288, J. Med. Chem., 34, 2464 (1991)).
  • 6-methylene compounds Another way to prepare 6-methylene compounds is to directly react the 4 (5) unsaturated 3-ketones, such as compound 2, with acetals of formaldehyde in the presence of sodium acetate with e.g. Phosphorus oxychloride or phosphorus pentachloride in suitable solvents such as chloroform (see, e.g., K. Annen, H. Hofmeister, H. Laurent and R. Wiechert, Synthesis 34 (1982)).
  • suitable solvents such as chloroform
  • the 6-methylene compounds can be used to prepare compounds of general formula 1 in which R 6a is methyl and R 6b and R 7 are omitted to form a double bond between C 6 and C 7, is used.
  • 6-methyl-4,6-dien-3-one derivatives can also be prepared directly (see K. Annen, H. Hofmeister, H. Laurent and R. Wiechert, Lieb, Ann. 712 (1983)).
  • R 6b represents an ⁇ -methyl function
  • R 6b represents an ⁇ -methyl function
  • the targeted representation of 6ß-methyl compounds is possible.
  • the 4-en-3-ones such as compound 2, for example, with ethylene glycol, trimethyl orthoformate in dichloromethane in the presence of catalytic amounts of an acid, eg p-toluenesulfonic acid, converted to the corresponding 3-ketals.
  • an acid eg p-toluenesulfonic acid
  • the double bond isomerizes to position 5 (C 5 ).
  • Selective epoxidation of this 5-double bond is achieved, for example, by using organic peracids, for example m-chloroperbenzoic acid, in suitable solvents, such as dichloromethane.
  • the epoxidation can also be carried out with hydrogen peroxide in the presence of, for example, hexachloroacetone or 3-nitrotrifluoroacetophenone.
  • the formed 5,6 ⁇ -epoxides can then be opened axially using appropriate alkylmagnesium halides or alkyllithium compounds. This gives 5 ⁇ -hydroxy-6 ⁇ -alkyl compounds.
  • the cleavage of the 3-keto protective group can be carried out by treatment under mild acidic conditions (acetic acid or 4N hydrochloric acid at 0 ° C.) to obtain the 5 ⁇ -hydroxy function.
  • the compounds obtained with the general chemical formula I, in which Z is an oxygen atom, can be converted by reaction with hydroxylamine hydrochloride in the presence of a tertiary amine at temperatures between -20 and + 40 0 C in their corresponding oximes (general chemical formula I with Z in the meaning of NOH, where the hydroxy group can be syn or antistatic).
  • Suitable tertiary bases are, for example, trimethylamine, triethylamine, pyridine, N, N-dimethylaminopyhdin, 1, 5-diazabicyclo [4.3.0] non-5-ene (DBN) and 1, 5-diazabicyclo [5.4.0] undec-5-ene (DBU), pyridine being preferred.
  • the compounds according to the invention are surprisingly distinguished by strong gestagenic activity and are highly active in the pregnancy maintenance test in the rat after subcutaneous administration.
  • Rats were mated overnight during Proestrus. The mating was controlled on the morning of the following day by the assessment of a vaginal smear. The presence of sperm was assessed as day 1 of an incipient pregnancy. On day 8 of pregnancy the animals were ovariectomized under ether anesthesia. Treatment with test compound and exogenous estrogen (estrone, 5 ⁇ g / kg / day) was performed subcutaneously once a day from day 8 to day 15 or day 21 of pregnancy. The first application on day 8 was performed two hours before castration. Intact control animals received vehicle only.
  • the animals were sacrificed under CO 2 atmosphere and live fetuses (beating heart fetuses) and implantation sites (early resorptions and dead fetuses including autolysis and atrophic placentas) in both uterine horns.
  • live fetuses beating heart fetuses
  • implantation sites early resorptions and dead fetuses including autolysis and atrophic placentas
  • malformations In uteri without fetuses or implantation sites, the number of nidation sites was determined by staining with 10% ammonium sulfide solution.
  • the pregnancy maintenance rate was calculated as the quotient of the number of live fetuses and the total number of nidation sites (both resorbed and dead fetuses and nidation sites).
  • ED50 pregnancy-preserving doses
  • the derivatives of general chemical formula 1 according to the invention have a very strong gestagenic activity. It has also been found that the derivatives of the invention show in vitro antimineralcorticoid activity. They should therefore have in vivo potassium retiring, natriuretic (antimeralcorticoid) effect. These properties were determined by the test described below:
  • DMEM Dulbecco's Modified Eagle Medium: 4500 mg / ml glucose, PAA, # E15-009) with 10% FCS (Biochrom, S0115, Lot # 615B), 4 mM L-glutamine was used as a culture medium , 1% penicillin / streptomycin, 1 mg / ml G418 and 0.5 ⁇ g / ml puromycin.
  • Reporter cell lines were grown at a density of 4x10 4 cells per well in white, 96-well opaque tissue culture plates (PerkinElmer, # P12-106-017) and in 6% DCC-FCS (charcoal treated serum, for removal in serum contained interfering components).
  • the compounds to be tested were added eight hours later and the cells were incubated with the compounds for 16 hours. The experiments were carried out in triplicate. At the end of the incubation, the effector-containing medium was removed and replaced with lysis buffer. After luciferase assay substrate (Proega, # E1501) was added, the 96-well plates were then placed in a microplate luminometer (Pherastar, BMG labtech) and the luminescence was measured. The IC50 values were determined using a Software for calculating dose-response relationships evaluated. Table 1 shows experimental results:
  • reaction mixture was poured onto ice-cold, half-saturated sodium chloride solution, the precipitated product filtered off with suction, washed with water and dried overnight in a vacuum oven (50 0 C, 200 mbar). 17 ⁇ -Cyano-3-methoxy-15 ⁇ , 16 ⁇ -methylene-androstane-3 (4), 5 (6) -diene (23.7 g) were obtained as beige crystals.
  • reaction mixture was treated at -15 ° C with 30 ml of 2 M hydrochloric acid, stirred for 0.5 hours at room temperature, added to water, extracted three times with ethyl acetate, dried over sodium sulfate, concentrated in vacuo, and on silica gel with hexane / ethyl acetate (0-50%) chromatographed. 17 ⁇ -Cyano-7 ⁇ -methyl-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one (149 mg) was obtained.
  • reaction mixture was allowed to warm slowly to room temperature overnight.
  • the reaction was stopped by the addition of saturated ammonium chloride solution, extracted with ethyl acetate, washed with water and saturated sodium chloride solution. Drying of the organic phase with sodium sulfate, evaporation to dryness and flash chromatography on silica gel [hexane / ethyl acetate (0-30%)] afforded 17 ⁇ -cyano-3-methoxy-17 ⁇ -methyl-15 ⁇ , 16 ⁇ -methylene-androstane-3 (cf. 4), 5 (6) -dies (6.5 g).
  • Example 9a According to the method of Example 9a was obtained from 1 g of 17-cyano-3-methoxy-15ß, 16ß-methylene-androstane-3 (4), 5 (6) -diene with allyl bromide as the alkylating agent after flash chromatography 17 ⁇ -allyl -17 ⁇ -cyano-3-methoxy-15 ⁇ , 16 ⁇ -methylene-androstane-3 (4), 5 (6) -diene (358 mg).
  • Example 2 The method of Example 2 was obtained from 5.90 g of 17 ⁇ -cyano-17 ⁇ -methyl-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one after crystallization from ethyl acetate and flash chromatography of the mother liquors on silica gel [hexane / Ethyl acetate (0-50%)] 17 ⁇ -cyano-6 ⁇ -hydroxymethyl-17 ⁇ -methyl-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one (2.22 g).
  • Example 2 The procedure of Example 2 was used to obtain from 3.0 g of 17 ⁇ -cyano-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one after flash chromatography on silica gel [hexane / ethyl acetate (0-50%)] 17 ⁇ -Cyano-6 ⁇ -hydroxymethyl-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one (850 mg).
  • Example 3a By the method of Example 3a was obtained from 700 mg of 17 ⁇ -cyano-6 ⁇ -hydroxymethyl-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one after flash chromatography on silica gel [hexane / ethyl acetate (0-50 %)] 17 ⁇ -cyano-15 ⁇ , 16 ⁇ -methylene-6 ⁇ -tosyloxy-methyl-androst-4-en-3-one (880 mg) and in its precursor as minor component 17 ⁇ -cyano-6-exo-methylene-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one (22 mg).
  • Example 9a By the method of Example 9a was obtained from 5.29 g 17 ⁇ -cyano-15 ⁇ , 16 ⁇ -methylene-3ß-isopropylsilyoxy-androst-5 (6) -en with Me-I as alkylating agent after In flash chromatography, the mixture of the 17-epimers of 17-cyano-17-methyl-15 ⁇ , 16 ⁇ -methylene-3 ⁇ -triisopropylsilyoxy-androst-5 (6) -ens (3.65 g).
  • Example 12b By the method of Example 12b was obtained from 1, 9 g of the 17-epimers of 17-cyano-3ß-hydroxy-17-methyl-15 ⁇ , 16 ⁇ -methylene-androst-5 (6) -ens after preparative HPLC chromatography 17ß -Cyano-17 ⁇ -methyl-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one (335 mg).
  • the 17-epimer of 17-cyano-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one was obtained from 7 g of the 17-epimer of the 17-cyano group after work-up by the method of Example 1a.
  • Example 6 By the method of Example 6 was obtained from 7.6 g of the 17-epimers of 17-cyano-3-methoxy-15 ⁇ , 16 ⁇ -methylene-androst-3 (4), 5 (6) -diene by preparative HPLC chromatography Part of the crude product obtained 17 ⁇ -cyano-15 ⁇ , 16 ⁇ -methylene-androsta-4,6-dien-3-one (48 mg)
  • 17 ⁇ -cyano-androst-4-en-3-one was reacted analogously to the procedure specified in Example 1a, with trimethyl orthoformate being exchanged for methyl orthoformate. 17 ⁇ -Cyano-3-ethoxy-androst-3,5-diene was obtained.
  • 17 ⁇ -Cyano-androsta-4,6-dien-3-one was reacted analogously to the instructions given in Example 8, using ethylmagnesium bromide instead of the methylmagnesium bromide used there. 17 ⁇ -Cyano-7 ⁇ -ethyl-androst-4-en-3-one was obtained
  • 17 ⁇ -cyano-androsta-4,6-dien-3-one was reacted analogously to the instructions given in Example 7. 17 ⁇ -Cyano-6 ⁇ , 7 ⁇ -methylene-androst-4-en-3-one and 17 ⁇ -cyano-6 ⁇ , 7 ⁇ -methylene-androst-4-en-3-one were obtained.
  • 17 ⁇ -Cyano-6 ⁇ -hydroxymethyl-androst-4-en-3-one was reacted analogously to the examples given in Examples 3a and 3b, the intermediate tosylate being reacted further in crude form. 17 ⁇ -cyano-6,6-ethylidene-androst-4-en-3-one was obtained.
  • 17 ⁇ -Cyano-3,3-ethanediylbisoxy-androst-5-ene was reacted analogously to the method given in Example 9a. 17 ⁇ -Cyano-3,3-ethanediylbisoxy-17 ⁇ -methyl-androst-5-ene was obtained.
  • 17-Cyano-3,3-ethanediylbisoxy-androst-5-ene was reacted analogously to the method given in Example 9a, allyl bromide being used instead of the methyl iodide used there. 17 ⁇ -Allyl-17 ⁇ -cyano-3,3-ethanediylbisoxy-androst-5-ene was obtained.
  • Example 16a 16 ⁇ -bismethylene-3 ⁇ , 5 ⁇ -dihydroxy-androstan-17-one (Angew. Chemie 1982, 94, 718-719) and tert-butyldimethylsilyl chloride as a silylating reagent after crystallization were obtained from 6 ⁇ , 7 ⁇ -15 ⁇ 6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -bismethylene-3 ⁇ -tert-butyldimethylsilyloxy-5 ⁇ -hydroxy-androstan-17-one.
  • 6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -bismethylene-3 ⁇ -tert-butyldimethylsilyloxy-17-cyano-5 ⁇ -hydroxyandrostan-17-one was synthesized analogously to the methods given in Examples 9a and 16c. implemented. There were obtained 6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -bismethylene-3 ⁇ -5 ⁇ -bis-hydroxy-17 ⁇ -cyano-17 ⁇ -methyl-androstane.
  • 17 ⁇ -Allyl-6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -bisnethylene-3 ⁇ -5 ⁇ -bis-hydroxy-17 ⁇ -cyano-androstane was reacted analogously to the method given in Example 3Oe. 17 ⁇ -Allyl-6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -bismethylene-17 ⁇ -cyano-androst-4-en-3-one were obtained.
  • 17-cyano-15SS be 16ss-methylene-androst-4-en-3-one dissolved in 8 ml of pyridine and cooled to 0 0 C. After addition of 0.32 ml of sulfuryl chloride is stirred for 1.5 hours at this temperature. After addition of saturated aqueous sodium bicarbonate solution, water and ethyl acetate, the phases are separated and the organic phase washed with water and saturated aqueous sodium chloride solution. After drying the organic phase over Nathumsulfat and filtration is concentrated and the product recrystallized from ethyl acetate. 4-Chloro-17 ⁇ -cyano-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one (211 mg) is obtained.
  • Example 36 17 ⁇ -Cyano-17 ⁇ -methyl-15 ⁇ , 16 ⁇ -methylene-androsta-4,6-dien-3-one
  • 17.7 g of 17 ⁇ -cyano-3-methoxy-17 ⁇ -methyl-15 ⁇ , 16 ⁇ -methylene-androstane-3 (4), 5 (6) -diene are obtained according to the method of Example 6 from 17 ⁇ -cyano- 17 ⁇ -methyl-15 ⁇ , 16 ⁇ -methylene-androsta-4,6-dien-3-one (5.84 g).
  • Example 7 According to the method of Example 7 is obtained from 3.0 g of 17 ⁇ -cyano-17 ⁇ -methyl-15ß, 16ß-methylene-androsta-4,6-dien-3-one after HPLC separation of the crude product on silica gel as a non-polar fraction 6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -bismethylene-17 ⁇ -cyano-17 ⁇ -methyl-androst-4-en-3-one (475 mg) and as polar fraction 6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -bismethylene-17 ⁇ -cyano-17 ⁇ - methyl-androst-4-en-3-one (1.2 g).
  • Example 9a gives 18.0 g of 17 ⁇ -cyano-3-methoxy-15 ⁇ , 16 ⁇ -methylene-androstane-3 (4), 5 (6) -diene and the use of ethyl iodide instead of methyl iodide after crystallization 17 ⁇ -cyano-17 ⁇ -ethyl-3-methoxy-15 ⁇ , 16 ⁇ -methylene-androstane-3 (4), 5 (6) -diene (6.85 g) and after flash chromatography of the mother liquor 17 ⁇ -cyano-17 ⁇ - ethyl-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one (338 mg).
  • Example 6 According to the method of Example 6, 6.0 g of 17 ⁇ -cyano-17 ⁇ -ethyl-3-methoxy-15 ⁇ , 16 ⁇ -methylene-androstane-3 (4), 5 (6) -diene are obtained after crystallization and subsequent flash reaction. Chromatography of the mother liquor 17 ⁇ -cyano-17 ⁇ -ethyl-15 ⁇ , 16 ⁇ -methylene-androsta-4,6-dien-3-one (4.87 g).
  • Example 7 By the method of Example 7 is obtained from 2.5 g of 17 ⁇ -cyano-17 ⁇ -ethyl-15ß, 16ß-methylene-androsta-4,6-dien-3-one by HPLC separation of the crude product on silica gel as a nonpolar fraction 6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -bismethylene-17 ⁇ -cyano-17 ⁇ -ethyl-androst-4-en-3-one (290 mg) and as the polar fraction 6 ⁇ , 7 ⁇ -15 ⁇ , 16 ⁇ -bis-methylene-17 ⁇ -cyano-17 ⁇ - ethyl-androst-4-en-3-one (670 mg).
  • Example 8 According to the method of Example 8 is obtained from 1, 0 g 17ß-cyano-17 ⁇ -ethyl-15ß, 16ß-methylene-androsta-4,6-dien-3-one after HPLC separation of the crude product on silica gel as non-polar fraction 17ß -Cyano-17 ⁇ -ethyl-7 ⁇ -methyl-15 ⁇ , 16 ⁇ -methylene-androst-4-en-3-one (165 mg) and as a polar fraction 17 ⁇ -cyano-17 ⁇ -ethyl-7 ⁇ -methyl-15 ⁇ , 16 ⁇ - methylene-androst-4-en-3-one (292 mg).
  • Androst-4-en-17-one (see, for example, HeIv. Chim. Acta (45) 1962, 2575) is reacted analogously to the method given in Example 1b. After chromatography of the resulting crude product on silica gel with a mixture of ethyl acetate and n-hexane, the product-containing fractions are concentrated and rechromatographed by HPLC. Besides 17 ⁇ -cyanoandrost-4-ene, 17 ⁇ -cyanoandrost-4-ene is obtained. 17-Cvanoandrost-4-ene

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Reproductive Health (AREA)
  • Diabetes (AREA)
  • Gynecology & Obstetrics (AREA)
  • Toxicology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die 17ß-Cyano-19-androst-4-en-Derivate der vorliegenden Erfindung besitzen gestagene Wirksamkeit. Sie haben die allgemeine chemische Formel (1), in der Z ausgewählt ist aus der Gruppe, umfassend O, zwei Wasserstoffatome, NOR und NNHSO2R, worin R Wasserstoff oder C1-C4-Alkyl ist, R1, R2 unabhängig voneinander Wasserstoff oder Methyl sind oder R1 und R2 gemeinsam Methylen bilden oder unter Bildung einer Doppelbindung zwischen C1 und C2 entfallen, R4 Wasserstoff oder Halogen ist, ferner entweder: R6a, R6b gemeinsam Methylen oder 1,2-Ethandiyl bilden oder R6a Wasserstoff und R6b aus der Gruppe ausgewählt ist, umfassend Wasserstoff, Methyl und Hydroxymethylen, und R7 ausgewählt ist aus der Gruppe, umfassend Wasserstoff, C1-C4-Alkyl, C2-C3-Alkenyl und Cyclopropyl, oder: R6a Wasserstoff und R6b und R7 gemeinsam Methylen bilden oder unter Bildung einer Doppelbindung zwischen C6 und C7 entfallen oder R6a Methyl ist und R6b und R7 unter Bildung einer Doppelbindung zwischen C6 und C7 entfallen, R15, R16 Wasserstoff sind oder gemeinsam Methylen bilden, R17 ausgewählt ist aus der Gruppe, umfassend Wasserstoff, C1-C4-Alkyl und AIIyI, und umfassen außerdem deren Solvate, Hydrate, Stereoisomere, Diastereomere, Enantiomere und Salze, mit der Maßgabe, dass bestimmte Verbindungen ausgenommen sind.

Description

17ß-Cyano-19-androst-4-en-Derivat, dessen Verwendung und das Derivat enthaltende Arzneimittel
Beschreibung:
Die Erfindung betrifft bestimmte 17ß-Cyano-19-androst-4-en-Derivate, deren Verwendung sowie die Derivate enthaltende Arzneimittel mit gestagener Wirkung, beispielsweise zur Behandlung von prä-, peri- und postmenopausalen sowie von prämenstruellen Beschwerden.
Aus der Literatur sind Verbindungen mit gestagener, antimineralcorticoider, antian- drogener oder antiestrogener Wirkung auf Basis eines Steroidgerüstes bekannt, welche beispielsweise von 19-Androst-4-en-3-on oder einem Derivat davon abgeleitet sind (die Nummerierung des Steroidgerüstes ist beispielsweise Fresenius/Görlitzer 3.Aufl. 1991 „Organisch-chemische Nomenklatur" S. 60 ff. zu entnehmen).
So offenbart WO 2006072467 A1 die als Gestagen wirkende Verbindung 6ß,7ß- 15ß,16ß-Dimethylen-3-oxo-17-pregn-4-en-21 ,17ß-carbolacton (Drospirenon), welche beispielsweise in einem oralen Kontrazeptivum sowie einem Präparat zur Behandlung postmenopausaler Beschwerden verwendet wurde. Aufgrund seiner vergleichsweise geringen Affinität zum Gestagenrezeptor und seiner vergleichsweise hohen Ovulationshemmdosis ist Drospirenon in dem Kontrazeptivum jedoch in der relativ hohen täglichen Dosis von 3 mg enthalten. Drospirenon zeichnet sich darüber hinaus auch dadurch aus, dass es zusätzlich zur gestagenen Wirkung über aldosteronanta- gonistische (antimineralcorticoide) sowie antiandrogene Wirkung verfügt. Diese beiden Eigenschaften machen Drospirenon in seinem pharmakologischen Profil dem natürlichen Gestagen Progesteron sehr ähnlich, welches aber anders als Drospirenon nicht ausreichend oral bioverfügbar ist. Um die zu verabreichende Dosis zu senken, werden in WO 2006072467 A1 weiter ein 18-Methyl-19-nor-17-pregn-4-en- 21 ,17-carbolacton sowie diese enthaltende pharmazeutische Präparate vorgeschlagen, welche über eine höhere gestagene Potenz als Drospirenon verfügen.
Daneben offenbart beispielsweise US-A 3,705,179 Steroide, welche eine antiandrogene Aktivität aufweisen und sich zur Behandlung von Krankheiten eignen, die im Zusammenhang mit Androgenen stehen. Unter anderem werden 17ß-Cyano-17α- methyl-androst-4-en-3-on-Derivate offenbart.
In DE 22 26 552 B2 sind weiter 17-Cyano-19-nor-androst-4-en-3-on-Verbindungen beschrieben, welche progestomimetische, antiandrogene sowie antiestrogene Wirkungen mit exogenem Charakter zeigen.
Die Aufgabe der vorliegenden Erfindung ist es, Verbindungen zur Verfügung zu stellen, die über eine starke Bindung an den Gestagenrezeptor verfügen. Außerdem sollen die Verbindungen bevorzugt auch eine antimineralcorticoide Wirkung aufweisen.
Diese Aufgabe wurde durch die erfindungsgemäßen 17ß-Cyano-19- androst-4-en- Derivate gemäß Anspruch 1 , die Verwendung der erfindungsgemäßen Derivate gemäß Anspruch 15 sowie ein mindestens ein erfindungsgemäßes Derivat enthaltendes Arzneimittel gemäß Anspruch 17 gelöst. Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben.
Die vorliegende Erfindung betrifft demnach ein 17ß-Cyano-19-androst-4-en-Derivat mit der allgemeinen chemischen Formel 1
(1)
wobei Z ausgewählt ist aus der Gruppe, umfassend O, zwei Wasserstoffatome, NOR und NNHSO2R, worin R Wasserstoff oder d-C4-Alkyl ist,
R1 , R2 unabhängig voneinander Wasserstoff oder Methyl sind oder
R1 und R2 gemeinsam Methylen bilden oder unter Bildung einer Doppelbindung zwischen C1 und C2 entfallen,
R4 Wasserstoff oder Halogen ist,
ferner entweder:
R6a, R6b gemeinsam Methylen oder 1 ,2-Ethandiyl bilden oder R6a Wasserstoff ist und R6b aus der Gruppe ausgewählt ist, umfassend Wasserstoff,
Methyl und Hydroxymethylen, und R7 ausgewählt ist aus der Gruppe, umfassend Wasserstoff, Ci-C4-Alkyl,
C2-C3-Alkenyl und Cyclopropyl,
oder:
R6a Wasserstoff ist und R6b und R7 gemeinsam Methylen bilden oder unter Bildung einer Doppelbindung zwischen C6 und C7 entfallen
oder:
R6a Methyl ist und R6b und R7 unter Bildung einer Doppelbindung zwischen C6 und C7 entfallen,
R15, R16 Wasserstoff sind oder gemeinsam Methylen bilden, R17 ausgewählt ist aus der Gruppe, umfassend Wasserstoff, Ci-C4-Alkyl und AIIyI,
sowie deren Solvate, Hydrate, Stereoisomere, Diastereomere, Enantiomere und Salze,
mit der Maßgabe, dass Verbindungen mit folgender allgemeiner chemischer Formel A ausgenommen sind:
worin X Wasserstoff oder Methyl ist und die Doppelbindungen zwischen C1 und C2 sowie zwischen C6 und C7 optionale Doppelbindungen sind und
mit der weiteren Maßgabe, dass außerdem 17ß-Cyano-androst-4-en-3-on ausgenommen ist.
Die von der vorliegenden Erfindung ausgenommenen Verbindungen gemäß der allgemeinen chemischen Formel A sind die folgenden Verbindungen:
"./.": nicht vorhanden; „+": vorhanden
Die Nummerierung des C-Gerüstes des erfindungsgemäßen Derivates mit der allgemeinen chemischen Formel 1 folgt in üblicher Weise der Nummerierung eines Steroid-Gerüstes, beispielsweise beschrieben in Fresenius, a.a.O. Die Nummerierung der in den Ansprüchen angegebenen Reste entspricht in analoger Weise ihrer Bindungsposition am C-Gerüst des Derivates. So bindet beispielsweise der Rest R4 an die C4-Position des erfindungsgemäßen Derivates. Hinsichtlich der zu Z definierten Gruppen binden die Gruppen NOR und NNHSO2R jeweils mit einer Doppelbindung über N an das C-Gerüst des Derivates gemäß =NOR bzw. =N-NH-SO2R. OR in NOR und NHSO2R in NNHSO2R können syn- oder antiständig stehen.
Unter d-C4-Alkyl ist jeweils ein geradkettiger oder verzweigter Alkylrest, wie beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl oder tert.-Butyl, zu verstehen, vor allem die unverzweigten Reste. Besonders bevorzugt sind Methyl, Ethyl und n-Propyl. In 17α-Stellung gebundene Alkylreste können außerdem perfluoriert sein, so dass R17 in diesem Falle außerdem Trifluormethyl, Pentafluorethyl, n- Heptafluorpropyl, iso-Heptafluorpropyl, n-Nonafluorbutyl, iso-Nonafluorbutyl und tert- Nonafluorbutyl sein kann.
Unter C2-C3-Alkenyl ist vorzugsweise Vinyl oder AIIyI zu verstehen.
Unter Halogen ist jeweils Fluor, Chlor, Brom oder Jod zu verstehen.
Unter Isomeren sind chemische Verbindungen mit der gleichen Summenformel, aber unterschiedlicher chemischer Struktur, zu verstehen. Es werden ausdrücklich alle möglichen Isomeren sowie Isomerengemische (Racemate) ausdrücklich mit einbezogen, wobei die 17ß-Cyano-Stellung im erfindungsgemäßen Derivat vorgegeben ist.
Es werden im Allgemeinen Konstitutionsisomere und Stereoisomere unterschieden. Konstitutionsisomere besitzen die gleiche Summenformel, unterscheiden sich jedoch durch die Verknüpfungsweise ihrer Atome oder Atomgruppen. Hierzu zählen funktionelle Isomere, Stellungsisomere, Tautomere oder Valenzisomere. Stereoisomere haben grundsätzlich die gleiche Struktur (Konstitution) und damit auch die gleiche Summenformel, unterscheiden sich aber durch die räumliche Anordnung der Atome. Im Allgemeinen werden Konfigurationsisomere und Konformationsisomere unterschieden. Konfigurationsisomere sind Stereoisomere, die sich nur durch Bindungsbruch ineinander überführen lassen. Hierzu zählen Enantiomere, Diastereomere und E / Z (eis / trans) Isomere. Enantiomere sind Stereoisomere, die sich wie Bild und Spiegelbild zueinander verhalten und keine Symmetrieebene aufweisen. Alle Stereoisomere, die keine Enantiomere sind, bezeichnet man als Diastereomere. Ein Spezialfall sind E / Z (eis / trans) Isomere an Doppelbindungen. Konformationsisomere sind Stereoisomere, die sich durch die Drehung von Einfachbindungen ineinander überführen lassen. Zur Abgrenzung der Isomehe-Arten voneinander siehe auch die IUPAC Regeln, Sektion E (Pure Appl. Chem. 45, 11 -30 (1976)).
Die erfindungsgemäßen Derivate mit der allgemeinen chemischen Formel 1 beinhalten auch die möglichen tautomeren Formen und umfassen die E- oder Z-Isomeren oder, falls ein chirales Zentrum vorhanden ist, auch die Racemate und Enantiomere. Hierunter sind auch Doppelbindungsisomere zu verstehen.
Die erfindungsgemäßen Derivate können auch in Form von Solvaten, insbesondere von Hydraten vorliegen, wobei die erfindungsgemäßen Verbindungen demgemäß polare Lösungsmittel, insbesondere von Wasser, als Strukturelement des Kristallgitters der erfindungsgemäßen Verbindungen enthalten. Das polare Lösungsmittel, insbesondere Wasser, kann in einem stöchiomethschen oder auch unstöchiometrischen Verhältnis vorliegen. Bei stöchiometrischen Solvaten, Hydraten spricht man auch von Hemi-, (Semi-), Mono-, Sesqui-, Di-, Tri-, Tetra-, Penta-, usw. Solvaten oder Hydraten.
Es wurde gefunden, dass die erfindungsgemäßen Verbindungen bzw. Derivate eine gute gestagene Wirkung in vivo aufweisen. Außerdem wirken einige interessante erfindungsgemäße Verbindungen als Antagonisten zum Mineralcorticoidrezeptor.
Bevorzugt sind erfindungsgemäße Derivate mit der vorgenannten allgemeinen chemischen Formel 1 , in denen Z ausgewählt ist aus der Gruppe, umfassend O, NOH und NNHSO2H. Besonders bevorzugt steht Z für O.
Unabhängig von der Auswahl von Z sind weiterhin erfindungsgemäße Derivate mit der vorgenannten allgemeinen chemischen Formel 1 bevorzugt, in denen folgende Varianten alternativ oder aber zumindest zum Teil gemeinsam vorkommen und unabhängig voneinander ausgewählt sind: Vor allem bilden vorzugsweise R15 und R16 gemeinsam Methylen, wobei sowohl eine α-ständige als auch eine ß-ständige Methylengruppe in diesen Positionen gebunden sein kann.
Ferner sind vorzugsweise R1 und R2 jeweils Wasserstoff oder bilden gemeinsam Methylen, besonders bevorzugt α-Methylen. Weiter bevorzugt ist R1 α-Methyl.
Ferner ist R4 vorzugsweise Wasserstoff oder Chlor.
Ferner bilden R6a und R6b vorzugsweise gemeinsam 1 ,2-Ethandiyl oder sind jeweils Wasserstoff.
Ferner ist R7 vorzugsweise ausgewählt ist aus der Gruppe, umfassend Wasserstoff und Methyl, wobei die Methylgruppe sowohl α-ständig als auch ß-ständig sein kann.
Ferner bilden R6b und R7 vorzugsweise gemeinsam Methylen, wobei die Methylengruppe sowohl α-ständig als auch ß-ständig sein kann.
Ferner ist R17 vorzugsweise ausgewählt ist aus der Gruppe, umfassend Wasserstoff und Methyl.
Ferner können die Reste R6a, R6b, R7, R15 und R16 sowohl α- als auch ß-ständig sein.
Besonders bevorzugt sind die erfindungsgemäßen 17ß-Cyano-19-nor-androst-4-en- Derivate, ausgewählt aus der Gruppe, umfassend:
Ganz besonders bevorzugt sind die 15α,16α- und die 15ß,16ß-Methylen-Derivate in der vorstehenden Liste. Aufgrund ihrer gestagenen Wirksamkeit können die neuen Verbindungen mit der allgemeinen chemischen Formel 1 allein oder in Kombination mit Estrogenen in Arzneimitteln zur Kontrazeption verwendet werden.
Die erfindungsgemäßen Derivate eignen sich daher insbesondere zur Herstellung eines Arzneimittels zur oralen Kontrazeption und zur Behandlung von prä-, peri- und postmenopausalen Beschwerden, einschließlich der Verwendung in Präparaten für die Hormon-Substitutionstherapie (HRT).
Wegen ihres günstigen Wirkungsprofils sind die erfindungsgemäßen Derivate außerdem besonders gut geeignet zur Behandlung prämenstrueller Beschwerden, wie Kopfschmerzen, depressiver Verstimmungen, Wasserretention und Mastodynie.
Besonders bevorzugt ist die Verwendung der erfindungsgemäßen Derivate zur Herstellung eines Arzneimittels mit gestagener und antimineralcorticoider Wirkung.
Eine Behandlung mit den erfindungsgemäßen Derivaten findet bevorzugt am Menschen statt, kann aber auch an verwandten Säugetierspezies, wie beispielsweise an Hund und Katze, durchgeführt werden.
Zur Verwendung der erfindungsgemäßen Derivate als Arzneimittel werden diese mit mindestens einem geeigneten pharmazeutisch unbedenklichen Zusatzstoff, beispielsweise Trägerstoff, kombiniert. Der Zusatzstoff ist beispielsweise für die parenterale, vorzugsweise orale, Applikation geeignet. Es handelt sich dabei um pharmazeutisch geeignete organische oder anorganische inerte Zusatzmaterialien, wie zum Beispiel, Wasser, Gelatine, Gummi arabicum, Milchzucker, Stärke, Magnesiumstea- rat, Talk, pflanzliche Öle, Polyalkylenglykole usw. Die Arzneimittel können in fester Form, zum Beispiel als Tabletten, Dragees, Suppositorien, Kapseln, oder in flüssiger Form, zum Beispiel als Lösungen, Suspensionen oder Emulsionen, vorliegen. Gegebenenfalls enthalten sie darüber hinaus Hilfsstoffe, wie Konservierungs-, Stabilisie- rungs-, Netzmittel oder Emulgatoren, Salze zur Veränderung des osmotischen Druckes oder Puffer. Für die parenterale Applikation sind insbesondere ölige Lösungen, wie zum Beispiel Lösungen in Sesamöl, Rizinusöl und Baumwollsamenöl, geeignet. Zur Erhöhung der Löslichkeit können Lösungsvermittler, wie zum Beispiel Benzyl- benzoat oder Benzylalkohol, zugesetzt werden. Es ist auch möglich, die erfindungsgemäßen Derivate in ein transdermales System einzuarbeiten und sie damit transdermal zu applizieren. Für die orale Applikation kommen insbesondere Tabletten, Dragees, Kapseln, Pillen, Suspensionen oder Lösungen in Frage.
Die Dosierung der erfindungsgemäßen Derivate in Kontrazeptionspräparaten soll 0,01 bis 10 mg pro Tag betragen. Die Tagesdosis bei der Behandlung prämenstrueller Beschwerden liegt bei etwa 0,1 bis 20 mg. Die erfindungsgemäßen gestagenen Derivate werden in Kontrazeptionspräparaten sowie in den Arzneimitteln zur Behandlung prämenstrueller Beschwerden vorzugsweise oral appliziert. Die tägliche Dosis wurde vorzugsweise einmalig verabreicht.
Die gestagenen und estrogenen Wirkstoffkomponenten werden in Kontrazeptionspräparaten vorzugsweise zusammen oral appliziert. Die tägliche Dosis wurde vorzugsweise einmalig verabreicht.
Als Estrogene kommen synthetische Estrogene, vorzugsweise Ethinylestradiol, aber auch Mestranol in Betracht.
Das Estrogen wurde in einer täglichen Menge verabfolgt, die der von 0,01 bis 0,04 mg Ethinylestradiol entspricht.
Als Estrogene in den Arzneimitteln zur Behandlung von prä-, peri- und postmeno- pausalen Beschwerden sowie für die Hormon-Substitutionstherapie kommen in erster Linie natürliche Estrogene zur Anwendung, vor allem das Estradiol oder dessen Ester, beispielsweise Estradiolvalerat, oder auch konjugierte Estrogene (CEEs = Conjugated Equine Estrogens).
Soweit die Herstellung der Ausgangsverbindungen hier nicht beschrieben ist, sind diese dem Fachmann bekannt oder analog zu bekannten Verbindungen oder hier beschriebenen Verfahren herstellbar. Die Isomerengemische können nach üblichen Methoden, wie beispielsweise Kristallisation, Chromatographie oder Salzbildung, in die Enantiomeren, E/Z-Isomeren bzw. Epimeren aufgetrennt werden. Die erfindungsgemäßen Derivate mit der allgemeinen chemischen Formel 1 werden wie nachstehend beschrieben hergestellt.
Als Startmaterialien für die hier beschriebenen 17ß-Cyanoandrost-4-en-3-on- Derivate eignen sich diverse steroidale Ausgangsmaterialien, wie beispielsweise Androst-4-en-3,17-dion (siehe z.B. J. Am. Chem. Soc. 87, 3727 (1965)), oder die teilreduzierten Analoga, wie Testosteron oder auch Prasteron.
Geeignete Startmaterialien, die eine 15α,16α- oder auch 15ß,16ß-Methylengruppe tragen, sind ebenfalls literaturbekannt (z.B. 15α,16α-Methylen-androst-5-en-17-on- 3ß-ol, siehe Chem. Ber. 106, 888 (1973); das korrespondierende Δ4- 3,17-Dion, siehe DE-A 21 09 555 (1972). Das 15ß,16ß-Methylen-androst-4-en-3,17-dion ist in Izv. Nauk SSSR Ser. Khim. 8, 1893 (1985) und in Chem.Ber. 107, 128-134 (1974) beschrieben; der korrespondierende Δ5-3-Alkohol in Ängew. Chem. 94 (9), 718 (1982). Dem Fachmann selbstverständlich ist, dass bei den Beschreibungen der synthetischen Transformationen immer vorausgesetzt wurde, dass gegebenenfalls am Steroidgerüst vorhandene sonstige funktionelle Gruppen in geeigneter Form geschützt sind.
Die Einführung eines Nitrils in Position 17 (C17) des Steroidgerüstes kann auf vielfältige Weise erfolgen. Hier kommen sowohl einstufige Verfahren als auch mehrstufige Varianten in Betracht. Bevorzugt sind hier Methoden, die letztlich den Austausch einer Sauerstofffunktion gegen Cyanid bedeuten. Viele in Betracht kommende Verfahrensvarianten sind beschrieben in Science of Synthesis Houben-Weyl Methods of Molecular Transformations Category 3 Volume 19 S. 197-213 (2004 Georg Thieme Verlag Stuttgart, New York) sowie in Houben-Weyl Methoden der organischen Chemie Band E5 Teil 2 S. 1318-1527 (1985 Georg Thieme Verlag Stuttgart, New York).
Als Einstufenverfahren bietet sich beispielsweise der direkte reduktive Austausch eines Carbonylsauerstoffatoms gegen eine Cyanogruppe an. Hierzu wurde ein 17- Ketosteroid mit Tosylmethylisocyanid in geeigneten Lösemitteln, wie etwa Dimeth- oxyethan, Dimethylsulfoxid, Ethern, Alkoholen oder auch deren Gemischen, unter Verwendung geeigneter Basen, wie etwa Alkalialkoholaten, Alkalihydriden, Kalium- hexamethyldisilazid, oder auch Alkaliamiden, wie etwa Lithiumdiisopropylannid, in einem Temperaturbereich von 00C bis 1000C umgesetzt. Gegebenenfalls entstehende 17-Epimerengemische lassen sich durch Chromatographie, fraktionierte Kristallisation oder mit einer Kombination dieser Methoden trennen.
Auch der SN2-artige Austausch einer geeigneten Abgangsgruppe an Position 17, wie etwa eines Halogenides (bevorzugt Jod oder Brom), oder auch eines Sulfonsäurees- ters eines 17-Alkoholes gegen Cyanid kommt in Betracht. Als Cyanidquellen werden bevorzugt anorganische Cyanide, wie Lithium-, Natrium- und Kaliumcyanid, verwendet.
Als Beispiele für mehrstufige Varianten der Nitrileinführung seien die Folgenden genannt: ein 17-Keton wurde mittels einer Wittig-Olefinierung in die entsprechende 17- Exomethylenverbindung überführt, welche nach Hydroborierung und Oxidation zum Aldehyd zum entsprechenden 17-Carbaldehydoxim umgesetzt werden kann. Dehy- dratisierung des Oxims führt dann zum 17-Nitril.
Die Einführung des Nitriles kann sowohl am Anfang einer Synthesesequenz als auch zu einem beliebigen späteren Zeitpunkt durchgeführt werden, vorausgesetzt, dass gegebenenfalls vorhandene weitere funktionelle Gruppen in geeigneter Weise geschützt sind.
Die 17-Cyanoverbindungen lassen sich gegebenenfalls alkylieren, was zu stereochemisch einheitlichen 17ß-Cyano-17α-substituierten Derivaten führt. Hierzu wurde in einem geeigneten Lösemittel, wie etwa Ethern, beispielsweise Tetrahydrofuran, das 17-Cyanosteroid deprotoniert. Hier können diverse Basen verwendet werden, beispielsweise ein Alkaliamid, wie Lithiumdiisopropylamid. Nach Zusatz eines Alkylie- rungsmittels, wie etwa eines Alkyl- oder Alkenylhalogenides, und Aufarbeitung werden dann die 17ß-Cyano-17α-substituierten Derivate erhalten.
Exemplarisch sei das weitere synthetische Vorgehen an Hand des folgenden Syntheseschemas erläutert, wobei als Edukt die bereits beschriebene Verbindung 2 (Bull. Soc. Chim. Fr. 1835 (1976); US-A 3,705,179 (1971 )) aufgeführt wird: Schema 1
Die Einführung einer 1 ,2-Doppelbindung in die Verbindung 2 führt dann zu 3. Hier kommen neben anderen Dehydrierungsmitteln Selendioxid (J. Org. Chem. 21 , 239 (1956)) oder auch 2,3-Dichlor-5,6-dicyanobenzochinon (Steroids 35 (5), 481 (1980)) in Betracht. Eine 1 ,4-Addition zum 1 -Methylderivat 4 lässt sich beispielsweise mit Tri- methylaluminium unter Zusatz von Trimethylsilylchlorid und Kupferbromid in geeigneten Lösemitteln durchführen (Angewandte 105 (9), 1429 (1993)).
Die Einführung einer 6,7-Doppelbindung erfolgt über Bromierung des 3,5-Dienol- ethers 5 sowie anschließende Bromwasserstoffabspaltung (siehe z.B. J. Fried, J.A. Edwards, Organic Reactions in Steroid Chemistry, von Nostrand Reinhold Company 1972, S. 265-374).
Die Einführung eines Substituenten R4 kann zum Beispiel, ausgehend von einer Verbindung der Formel 2, durch Epoxidierung der 4,5-Doppelbindung mit Wasserstoff- peroxid unter alkalischen Bedingungen und Umsetzung der entstandenen Epoxide in einem geeigneten Lösungsmittel mit Säuren mit der allgemeinen chemischen Formel H-R4 erreicht werden, wobei R4 ein Halogenatom oder ein Pseudohalogen sein kann, oder indem man mit katalytischen Mengen an Mineralsäure umsetzt und gegebenenfalls die erhaltenen 4-Bromverbindungen mit der allgemeinen chemischen Formel 1 (wobei R4 = Brom) mit 2,2-Difluor-2-(fluorsulfonyl)essigsäuremethylester in Dimethyl- formamid in Gegenwart von Kupfer(l )iodid umsetzt.
Die Dienoletherbromierung von Verbindung 5 kann z.B. analog der Vorschrift aus Steroids 1 , 233 (1963) erfolgen. Die Bromwasserstoffabspaltung gelingt durch Erhitzen der 6-Bromverbindung mit basischen Reagenzien, wie z.B. LiBr oder Li2CO3, in aprotischen Lösungsmitteln, wie Dimethylformamid, bei Temperaturen von 500C bis 1200C oder aber indem die 6-Bromverbindungen in einem Lösungsmittel, wie Collidin oder Lutidin, erhitzt werden zu Verbindung 6.
Verbindung 7 wird durch Methenylierung der 6,7-Doppelbindung nach bekannten Verfahren z.B. mit Dimethylsulfoxoniummethylid (siehe z.B. DE-A 11 83 500, DE-A 29 22 500, EP-A 0 019 690, US-A 4,291 ,029; J. Am. Chem. Soc. 84, 867 (1962)) in eine Verbindung 8 umgewandelt, wobei ein Gemisch der α- und ß-lsomeren erhalten wurde, das z.B. durch Chromatographie in die einzelnen Isomeren getrennt werden kann.
Verbindungen vom Typ 7 können wie in den Beispielen beschrieben oder analog zu diesen Vorschriften unter Verwendung analoger zu den dort beschriebenen Reagenzien erhalten werden.
Die Synthese der spirocyclischen Verbindung 12 geht von 2 aus, welches zunächst in ein 3-Amino-3,5-dien-Dehvat 9 überführt wurde. Durch Umsetzung mit Formalin in alkoholischer Lösung wurde das 6-Hydroxymethylen-Dehvat 10 erhalten. Nach Überführung der Hydroxygruppe in eine Fluchtgruppe, wie etwa ein Mesylat, Tosylat (Verbindung 11) oder auch Benzoat, lässt sich Verbindung 13 durch Umsetzung mit Th- methylsulfoxoniumiodid unter Verwendung von Basen, wie etwa Alkalihydroxiden, Alkalialkoholaten, in geeigneten Lösemitteln, wie etwa Dimethylsulfoxid, darstellen. Zur Einführung einer 6-Methylengruppe kann Verbindung 10 mit z.B. Salzsäure in Dioxan/Wasser dehydratisiert werden. Auch aus 11 lässt sich 6-Methylen erzeugen (siehe DE-A 34 02 3291 , EP-A 0 150 157, US-A 4,584,288; J. Med. Chem. 34, 2464 (1991)).
Eine weitere Möglichkeit zur Herstellung von 6- Methylenverbindungen besteht in der direkten Umsetzung der 4(5) ungesättigten 3-Ketone, wie Verbindung 2, mit Acetalen des Formaldehyds in Gegenwart von Natriumacetat mit z.B. Phosphoroxychlorid o- der Phosphorpentachlorid in geeigneten Lösungsmitteln, wie Chloroform (siehe z.B. K. Annen, H. Hofmeister, H. Laurent und R. Wiechert, Synthesis 34 (1982)).
Die 6-Methylenverbindungen können zur Darstellung von Verbindungen mit der allgemeinen Formel 1, in denen R6a gleich Methyl ist und R6b und R7 unter Bildung einer Doppelbindung zwischen C6 und C7 entfallen, genutzt werden.
Hierzu kann man z.B. ein in Tetrahedron 21, 1619 (1965) beschriebenes Verfahren anwenden, bei dem eine Isomehsierung der Doppelbindung durch Erwärmen der 6- Methylenverbindungen in Ethanol mit 5% Palladium-Kohle-Katalysator, der entweder mit Wasserstoff oder durch Erwärmen mit einer geringen Menge Cyclohexen vorbehandelt wurde, erzielt wird. Die Isomerisierung kann auch mit einem nicht vorbehandelten Katalysator erfolgen, wenn zur Reaktionsmischung eine geringe Menge Cyclohexen zugesetzt wurde. Das Auftreten geringer Anteile hydrierter Produkte kann durch Zugabe eines Überschusses an Natriumacetat verhindert werden.
Die 6-Methyl-4,6-dien-3-on-Dehvate können aber auch direkt dargestellt werden (siehe K. Annen, H. Hofmeister, H. Laurent und R. Wiechert, Lieb. Ann. 712 (1983)).
Verbindungen, in denen R6b eine α-Methylfunktion darstellt, können aus den 6-Me- thylenverbindungen durch Hydrierung unter geeigneten Bedingungen dargestellt werden. Die besten Ergebnisse (selektive Hydrierung der exo-Methylenfunktion) werden durch Transfer-Hydrierung erreicht (J. Chem. Soc. 3578 (1954)). Erhitzt man die 6- Methylenderivate in einem geeigneten Lösungsmittel, wie z.B. Ethanol, in Gegenwart eines Hydriddonators, wie z.B. Cyclohexen, so gelangt man in sehr guten Ausbeuten zu 6α-Methylderivaten. Geringe Anteile an 6ß-Methylverbindung können sauer iso- merisiert werden (Tetrahedron 1619 (1965)).
Auch die gezielte Darstellung von 6ß-Methylverbindungen ist möglich. Hierfür werden die 4-En-3-one, wie etwa Verbindung 2, z.B. mit Ethylenglycol, Trimethylorthoformiat in Dichlormethan in Gegenwart katalytischer Mengen einer Säure, z.B. p-Toluolsul- fonsäure, zu den entsprechenden 3-Ketalen umgesetzt. Während dieser Ketalisie- rung isomehsiert die Doppelbindung in die Position 5 (C5). Eine selektive Epoxidie- rung dieser 5-Doppelbindung gelingt z.B. durch Verwendung organischer Persäuren, z.B. von m-Chlorperbenzoesäure, in geeigneten Lösungsmitteln, wie Dichlormethan. Alternativ hierzu kann die Epoxidierung auch mit Wasserstoffperoxid in Gegenwart von z.B. Hexachloraceton oder 3-Nitrotrifluoracetophenon erfolgen. Die gebildeten 5,6α-Epoxide können dann unter Verwendung entsprechender Alkylmagnesiumhalo- genide oder Alkyllithiumverbindungen axial geöffnet werden. Man gelangt so zu 5α- Hydroxy-6ß-Alkylverbindungen. Die Spaltung der 3-Ketoschutzgruppe kann unter Erhalt der 5α-Hydroxyfunktion durch Behandeln unter milden sauren Bedingungen (Essigsäure oder 4 n Salzsäure bei 00C) erfolgen. Basische Eliminierung der 5α- Hydroxyfunktion mit z.B. verdünnter wässriger Natronlauge ergibt die 3-Keto-4-en- Verbindungen mit einer ß-ständigen 6-Alkylgruppe. Alternativ hierzu ergibt die Ketal- spaltung unter drastischeren Bedingungen (wässrige Salzsäure oder eine andere starke Säure) die entsprechenden 6α-Alkylverbindungen.
Die erhaltenen Verbindungen mit der allgemeinen chemischen Formel I , in denen Z für ein Sauerstoffatom steht, können durch Umsetzung mit Hydroxylaminhydrochlorid in Gegenwart eines tertiären Amins bei Temperaturen zwischen -20 und +400C in ihre entsprechenden Oxime überführt werden (allgemeine chemische Formel I mit Z in der Bedeutung von NOH, wobei die Hydroxygruppe syn- oder antiständig sein kann). Geeignete tertiäre Basen sind beispielsweise Trimethylamin, Triethylamin, Py- ridin, N,N-Dimethylaminopyhdin, 1 ,5-Diazabicyclo[4.3.0]non-5-en (DBN) und 1 ,5-Di- azabicyclo[5.4.0]undec-5-en (DBU), wobei Pyridin bevorzugt ist. Dies geht analog wie es in WO-A 98/24801 für die Herstellung entsprechender 3-Oxyimino-Dehvate des Drospirenons beschrieben ist. Die Entfernung der 3-Oxogruppe zur Herstellung eines Endprodukts mit der allgemeinen chemischen Formel 1 mit Z in der Bedeutung von zwei Wasserstoffatomen kann beispielsweise nach der in DE-A 28 05 490 angegebenen Vorschrift durch re- duktive Spaltung eines Thioketals der 3-Ketoverbindung erfolgen.
Die nachfolgenden Beispiele dienen der näheren Erläuterung der Erfindung:
Die erfindungsgemäßen Verbindungen zeichnen sich überraschenderweise durch starke gestagene Wirksamkeit aus und sind im Schwangerschaftserhaltungs-Test an der Ratte nach subcutaner Applikation stark wirksam.
Durchführung des Schwangerschaftserhaltungstests an der Ratte:
In graviden Ratten induziert die Entfernung der Corpora lutea oder Kastration einen Abort. Durch die exogene Zufuhr von Progestinen (Gestagenen) in Kombination mit einer geeigneten Dosis eines Estrogens gelingt die Aufrechterhaltung der Schwangerschaft. Der Schwangerschaftserhaltungstest an ovarektomierten Ratten dient zur Bestimmung der peripheren gestagenen Aktivität einer Verbindung.
Ratten wurden während des Proestrus über Nacht angepaart. Die Anpaarung wurde am Morgen des darauf folgenden Tages durch die Begutachtung eines Vaginalabstriches kontrolliert. Die Anwesenheit von Spermien wurde dabei als Tag 1 einer beginnenden Schwangerschaft bewertet. Am Tag 8 der Schwangerschaft wurden die Tiere unter Etheranesthesie ovarektomiert. Die Behandlung mit Testverbindung und exogenem Estrogen (Estron, 5 μg/kg/Tag) wurde von Tag 8 bis Tag 15 oder Tag 21 der Schwangerschaft einmal täglich subkutan ausgeführt. Die erste Anwendung am Tag 8 wurde zwei Stunden vor der Kastration ausgeführt. Intakte Kontrolltiere erhielten ausschließlich Vehikel.
Auswertung:
Am Ende des Versuches (Tag 15 oder Tag 21 ) wurden die Tiere unter Cθ2-Atmos- phäre getötet, und es wurden lebende Föten (Föten mit schlagendem Herz) und Implantationsstellen (frühe Resorptionen und tote Föten einschließlich Autolyse und atrophische Plazenten) in beiden uterinen Hörnern gezählt. Am Tag 22 konnten Föten außerdem auf Missbildungen untersucht werden. In Uteri ohne Föten oder Implantationsstellen wurde die Anzahl von Nidationsstellen durch Anfärben mit 10%iger Ammoniumsulfid-Lösung ermittelt. Die Schwangerschaftserhaltungsrate wurde als Quotient aus der Anzahl der lebenden Föten und der gesamten Anzahl von Nidationsstellen (sowohl resorbierte und tote Föten als auch Nidationsstellen) berechnet. Für bestimmte Testsubstanzen wurden die in Tabelle 1 angegebenen die Schwangerschaft erhaltenden Dosen (ED50) ermittelt. Für Drospirenon beträgt dieser Wert 3,5 mg/kg/Tag.
Die erfindungsgemäßen Derivate mit der allgemeinen chemischen Formel 1 verfügen über eine sehr starke gestagene Wirksamkeit. Es wurde außerdem gefunden, dass die erfindungsgemäßen Derivate in vitro antimineralcorticoide Wirkung zeigen. Sie sollten deshalb in vivo kaliumretinierende, natriuretische (antimeralcorticoide) Wirkung besitzen. Diese Eigenschaften wurden mit dem nachfolgend beschriebenen Test ermittelt:
Zur Kultivierung der für den Assay verwendeten Zellen wurde als Kultivierungsmedium DMEM (Dulbecco's Modified Eagle Medium: 4500 mg/ml Glukose; PAA, #E15- 009) mit 10% FCS (Biochrom, S0115, Charge #615B), 4 mM L-Glutamin, 1 % Peni- cillin/Streptomycin, 1 mg/ml G418 und 0,5 μg/ml Puromycin verwendet.
Reporter-Zelllinien wurden in einer Dichte von 4 x 104 Zellen pro Vertiefung in weißen, undurchsichtigen Gewebekulturplatten mit jeweils 96 Vertiefungen angezüchtet (PerkinElmer, #P12-106-017) und in 6 % DCC-FCS (Aktivkohle behandeltes Serum, zur Entfernung im Serum enthaltener störender Komponenten) gehalten. Die zu untersuchenden Verbindungen wurden acht Stunden später zugegeben, und die Zellen wurden mit den Verbindungen 16 Stunden lang inkubiert. Die Versuche wurden dreifach ausgeführt. Am Ende der Inkubation wurde das Effektor enthaltende Medium entfernt und durch Lysis-Puffer ersetzt. Nachdem Luciferase-Assay-Substrat (Pro- mega, #E1501 ) zugegeben worden war, wurden die Platten mit den 96 Vertiefungen dann in ein Mikroplatten-Luminometer (Pherastar, BMG labtech) eingeführt, und die Lumineszenz wurde gemessen. Die IC50-Werte wurden unter Verwendung einer Software zur Berechnung von Dosis-Wirkungsbeziehungen ausgewertet. In Tabelle 1 sind Versuchsergebnisse wiedergegeben:
Tabelle 1
Die nachfolgenden Beispiele zur Synthese bevorzugter Erfindung dienen zur weiteren Veranschaulichung der Erfindung. Die in den einzelnen Synthesebeispielen offenbarten neuen Zwischenprodukte sind ebenso wie die erfindungsgemäßen 17ß- Cyano-19-androst-4-en-Derivate erfindungswesentlich.
Viele der im Folgenden beschriebenen Umsetzungen führen zu Epimerengemischen. In der Regel wird die chromatographische Trennung dieser Gemische via präparati- ver HPLC unter folgenden Bedingungen durchgeführt: Trennungen wurden an chira- ler Normalphase durchgeführt, wobei als stationäre Phase in der Regel Chiralpak AD-H 5μ Verwendung fand. Üblicherweise wurde mit einem Gemisch aus Hexan und Ethanol eluiert. In einigen Fällen fanden aber auch andere Eluentengemische, wie etwa Gemische aus Methanol und Ethanol, Verwendung: Beispiel 1 :
17ß-Cyano-15ß,16ß-methylen-androst-4-en-3-on
Ia)
3-Methoxy-15ß,16ß-methylen-androst-3(4),5(6)-dien-17-on
50 g 15ß,16ß-Methylen-androst-4-en-3,17-dion wurden in 1 L Methanol und 175 ml Orthoameisensäuretrimethylester gelöst. Unter Rühren bei 25°C wurden 250 mg p-Toluolsulfonsäure zugegeben. Nach kurzer Zeit fiel das Produkt aus. Es wurde 1 Stunde bei 25°C und 1 Stunde bei -5°C gerührt. Es wurde mit Pyridin neutralisiert, abgesaugt, und man erhielt 3-Methoxy-15ß,16ß-methylen-androst-3(4),5(6)-dien-17- on (48 g).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ =
3,54 (s, 0-CH3), 5,12 (m, 4-H), 5,25 (m, 6-H).
MS (Cl+) m/z (rel. Intensität) = 312 (100); entspricht C2IH28O2.
I b) 17ß-Cyano-3-methoxy-15ß,16ß-methylen-androstan-3(4),5(6)-dien
Zu einer Lösung von 25 g 15ß,16ß-Methylen-3-methoxy-androstan-3(4),5(6)-dien-17- on und 45 g Kalium-tert-butylat in 1 L Dimethoxyethan und 300 ml tert-Butanol wurde unter Eiskühlung langsam über einen Zeitraum von 1 ,5 Stunden die Lösung von 23,43 g TOSMIC® in 140 ml Dimethoxyethan gegeben und anschließend noch 3 Stunden bei Raumtemperatur rühren gelassen. Das Reaktionsgemisch wurde auf eiskalte, halbgesättigte Natriumchlorid-Lösung gegossen, das ausgefallene Produkt abgesaugt, mit Wasser gewaschen und über Nacht im Vakuumtrockenschrank (500C, 200 mbar) getrocknet. Man erhielt 17ß-Cyano-3-methoxy-15ß,16ß-methylen- androstan-3(4),5(6)-dien (23,7 g) als beige Kristalle.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,42 [m, 15'-H(ß)], 2,73 [d, J = 4,5 Hz, 17-H(α)], 5,14 (br. s, 4-H), 5,27 (m, 6-H). MS (Cl+) m/z (rel. Intensität) = 324 (100), 341 (85); entspricht C22H29NO. Ic) 17ß-Cyano-15ß,16ß-methylen-androst-4-en-3-on
Zu einer Lösung von 700 mg 17ß-Cyano-3-methoxy-15ß,16ß-methylen-androstan- 3(4),5(6)-dien in 10 ml Methanol wurden bei Raumtemperatur 5 ml Schwefelsäure (8 Gew.-%) gegeben und 2 Stunden unter Rühren bei dieser Temperatur belassen. Nach dem Abbruch der Reaktion mit gesättigter Bicarbonat-Lösung wurde mit Di- chlormethan extrahiert, mit H2O und gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt. Dabei kristallisierte 17ß-Cyano-15ß,16ß-methylen-androst-4-en-3-on (599 mg) aus.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,44 [m, 15'-H(ß)], 2,74 [d, J = 4,5 Hz, 17-H(α)], 5,44 (br. s, 4-H). MS (El+) m/z (rel. Intensität) = 309 (50); entspricht C21 H27NO.
Beispiel 2: 17ß-Cyano-6ß-hydroxymethyl-15ß16ß-methylen-androst-4-en-3-on
9,5 g 17ß-Cyano-15ß,16ß-methylen-androst-4-en-3-on wurden in 60 ml Methanol aufgenommen, mit 4,8 ml Pyrrolidin versetzt und 1 Stunde am Rückfluss erwärmt. Nach dem Abkühlen wurde abgesaugt, mit wenig kaltem Methanol nachgewaschen und trockengezogen. Das Kristallisat (11 g) wurde in 135 ml Toluol und 235 ml Etha- nol gelöst; 11 ,5 ml 30 %-ige Formaldehydlösung wurden zugegeben. Nach 2 Stunden Rühren bei Raumtemperatur wurde zur Trockene eingeengt und an Kieselgel chromatografiert. Man erhielt 17ß-Cyano-6ß-hydroxymethyl-15ß,16ß-methylen-an- drost-4-en-3-on (4,7 g).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ =
0,47 [m, 15'-H(ß)], 2,76 [d, J = 4,5 Hz, 17-H(α)], AB-Signal (δA = 3,68, δB = 3,80, JAB
= 10,5 Hz zusätzlich aufgespalten durch JH(A),6-H = 7,4 Hz, JH(B),6-H = 10,5 Hz) 5,84 (s,
4-H).
MS (El+) m/z (rel. Intensität) = 339 (37); entspricht C22H29NO2. Beispiel 3:
17ß-Cyano-6,6-ethylen-15ß,16ß-methylen-androst-4-en-3-on 3a) 17ß-Cyano-15ß,16ß-methylen-6ß-tosyloxymethyl-androst-4-en-3-on
Zu einer Lösung von 1 ,74 g 17ß-Cyano-6ß-hydroxymethyl-15ß,16ß-methylen-an- drost-4-en-3-on in 20 ml Pyridin wurden in einer Portion 2,93 g Toluolsulfonsäure- chlorid gegeben und 6 Stunden bei Raumtemperatur rühren gelassen. Danach wurden die Reaktionsmischung in eiskalte 1 N Salzsäure gegeben, das ausgefallene Rohprodukt abgesaugt und erneut in Ethylacetat aufgelöst. Nach dem jeweils zweimaligem Waschen mit Wasser, gesättigter Bicarbonat-Lösung und gesättigter Natriumchlorid-Lösung sowie Trocknen der organischen Phase mit Natriumsulfat erhielt man nach dem Einengen zur Trockne 17ß-Cyano-15ß,16ß-methylen-6ß-tosyloxyme- thyl-androst-4-en-3-on, das gleich in der Folgestufe eingesetzt wurde.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,46 [m, 15'-H(ß)], AB-Signal (δA = 3,95, δB = 4,20, JAB = 9,5 Hz zusätzlich aufgespalten durch JH(A),6-H = 7,0 Hz, JH(B),6-H = 9,5 Hz) 5,72 (s, 4-H).
3b) 17ß-Cyano-6,6-ethylen-15ß,16ß-methylen-androst-4-en-3-on
Zu einer Lösung von 6,02 g Trimethylsulfoxoniumiodid in 50 ml trockenem DMSO wurden bei Raumtemperatur portionsweise 913 mg Natriumhydrid gegeben und nach beendeter Zugabe 1 Stunde bei Raumtemperatur rühren gelassen. Anschließend wurde die Lösung von 3,13 g 17ß-Cyano-15ß,16ß-methylen-6ß-tosyloxymethyl-an- drost-4-en-3-on zum gebildeten YNd gegeben und 6 Stunden bei Raumtemperatur nachgerührt. Nach dem Abbruch der Reaktion durch die Zugabe von 350 ml Wasser, zweimaliger Extraktion mit 150 ml Ethylacetat, Wäsche der organischen Phase mit Wasser und gesättigter Kochsalzlösung sowie Trocknen über Natriumsulfat wurde die organische Phase 15 Minuten mit Aktivkohle bei Raumtemperatur behandelt. Nach der Filtration über eine Schicht Celite® kristallisierte 17ß-Cyano-6,6-ethylen- 15ß,16ß-methylen-androst-4-en-3-on beim Einengen der organischen Phase aus (K1 503 mg, K2 379 mg). 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,38-0,53 [m, (3H) spiroethylen], 0,88 [m, (1 H) spiroethylen], 2,75 [d, J = 4,5 Hz, 17- H(α)], 5,65 (s, 4-H). MS (El+) m/z (rel. Intensität) = 335 (100); entspricht C23H29NO.
Beispiel 4: 17ß-Cyano-6-exo-methylen-15ß,16ß-methylen-androst-4-en-3-on
Zu einer Lösung von 1 g 17ß-Cyano-6ß-hydroxymethyl-15ß,16ß-methylen-androst-4- en-3-on in 10 ml Dioxan wurde bei Raumtemperatur 1 ml 6 N Salzsäure gegeben und 2 Stunden bei dieser Temperatur belassen. Anschließend wurde das Reaktionsgemisch auf 250 ml eiskalte, halbgesättigte Bicarbonat-Lösung gegeben und 2 x mit 150 ml Ethylacetat extrahiert. Nach der Behandlung der vereinigten organischen Phasen mit Natriumsulfat und Aktivkohle, wurde über eine Celite®-Schicht filtriert und zur Trockne eingeengt. Flash-Chromatographie an Kieselgel [Hexan / Ethylacetat (0- 25%)] lieferte 17ß-Cyano-6-exo-methylen-15ß,16ß-methylen-androst-4-en-3-on (399 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,48 [m, 15'-H(ß)], 2,77 [d, J = 4,7 Hz, 17-H(α)], 5,02 und 5,12 (dd → t, jeweils J = 2,0 Hz, =CH2), 5,94 (d, J = 0,6 Hz, 4-H). MS (El+) m/z (rel. Intensität) = 321 (96); entspricht C22H27NO.
Beispiel 5: 17ß-Cyano-6α-methyl-15ß,16ß-methylen-androst-4-en-3-on
Zu einer Lösung von 330 mg 17ß-Cyano-6-exo-methylen-15ß,16ß-methylen-androst- 4-en-3-on in 40 ml Toluol und 10 ml Ethanol wurden unter Argon-Atmosphäre 300 mg Wilkinson s-Katalysator gegeben und für 3 Stunden und unter Wasserstoff- Normaldruck mittels Schüttel-Apparatur hydriert. Nach dem Abtrennen des Katalysators per Flash-Chromatographie an Kieselgel [Hexan / Ethylacetat (0-50%)] erhielt man die Mischung der 6-Epimere im Verhältnis 17ß-Cyano-6ß-methyl-15ß,16ß-me- thylen-androst-4-en-3-on : 17ß-Cyano-6α-methyl-15ß,16ß-methylen-androst-4-en-3- on = 2,5 : 1. Saure Epimerisierung in Dichlormethan mit katalytischen Mengen p-To- luolsulfonsäure und erneute Flash-Chromatographie an Kieselgel [Hexan / Ethylace- tat (0-50%)] lieferte reines 17ß-Cyano-6α-methyl-15ß,16ß-methylen-androst-4-en-3- on (39 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,46 [m, 15'-H(ß)], 1 ,12 (d, J = 6,3 Hz, 6-CH3), 2,75 [d, J = 4,6 Hz, 17-H(α)], 5,82 (d, J = 1 ,3 Hz, 4-H). MS (El+) m/z (rel. Intensität) = 324 (95), 341 (55); entspricht C22H29NO.
Beispiel 6: 17ß-Cyano-15ß,16ß-methylen-androsta-4,6-dien-3-on
Eine Suspension von 3,4 g 17ß-Cyano-3-methoxy-15ß,16ß-methylen-androst- 3(4),5(6)-dien in 100 ml 1 -Methyl-2-pyrrolidon wurde nacheinander bei 00C mit 4 ml einer 10%igen Natrumacetatlösung sowie bei dieser Temperatur mit 1 ,6 g 1 ,3-Di- brom-5,5-dimethylhydantoin portionsweise versetzt, 0,5 Stunden bei 00C (Eisbad) gerührt, mit 1 ,5 g Lithiumbromid sowie 1 ,3 g Lithiumcarbonat versetzt, und 3,5 Stunden bei 1000C Badtemperatur gerührt. Anschließend wurde in Eiswasser / Kochsalz eingerührt und der Niederschlag abfiltriert. Man erhielt 17ß-Cyano-15ß,16ß-methy- len-androsta-4,6-dien-3-on (2,42 g).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,53 [m, 15'-H(ß)], 2,78 [d, J = 4,5 Hz, 17-H(α)], 5,70 (s, 4-H), 6,18 (dd, J = 2,8 Hz, J = 9,8 Hz, 5-H*), 6,33 (dd, J = 2,1 Hz, J = 9,8 Hz, 6-H*), * = Zuordnung vertauschbar.
Beispiel 7:
6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-androst-4-en-3-on und
6α,7α-15ß,16ß-Bismethylen-17ß-cyano-androst-4-en-3-on
Zu einer Lösung von 3,09 g Trimethylsulfoxoniumiodid in 25 ml trockenem Dimethyl- sulfoxid wurden bei Raumtemperatur portionsweise 468 mg Natriumhydrid gegeben und nach beendeter Zugabe 1 Stunde bei Raumtemperatur gerührt. Anschließend wurde die Lösung von 1 ,0 g 17ß-Cyano-15ß,16ß-methylen-androsta-4,6-dien-3-on zum gebildeten YNd gegeben und 6 Stunden bei Raumtemperatur nachgerührt. Nach dem Abbruch der Reaktion durch die Zugabe von 150 ml Ammoniumchlorid-Lösung, zweimaliger Extraktion mit 75 ml Ethylacetat, Wäsche der organischen Phase mit Wasser und gesättigter Kochsalzlösung sowie Trocknen über Natriumsulfat wurde die organische Phase zur Trockne eingeengt. Zweimalige Flash-Chromatographie an Kieselgel [Hexan / Ethylacetat (0-50%)] lieferte als unpolarere Fraktion 6α,7α- 15ß,16ß-Bismethylen-17ß-cyano-androst-4-en-3-on (59 mg) sowie als polarere Fraktion 6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-androst-4-en-3-on (67 mg).
Fraktion 1 : 6α,7α-15ß,16ß-Bismethylen-17ß-cvano-androst-4-en-3-on: 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,53 0,63 0,87 sowie 0,98 [4 x m, Ge 1 H) cyclopropyl], 2,80 [d, J = 4,3 Hz, 17-H(α)], 6,01 (s, 4-H). MS (Cl+) m/z (rel. Intensität) = 322 (100), 339 (33); entspricht C22H27NO.
Fraktion 2: 6ß.7ß-15ß.16ß-Bismethylen-17ß-cvano-androst-4-en-3-on: 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,57 und 0,92 [2 x m, Ge 1 H) cyclopropyl], 2,84 [d, J = 4,3 Hz, 17-H(α)], 6,07 (s, 4-H). MS (El+) m/z (rel. Intensität) = 322 (100), 339 (33); entspricht C22H27NO.
Beispiel 7 - Variante 2:
6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-androst-4-en-3-on
7-Variante 2-a)
6ß,7ß-15ß,16ß-Bismethylen-3ß-5ß-bishydroxy-17ß-cyano-androstan und 6ß,7ß-
15ß,16ß-Bismethylen-3ß-5ß-bishydroxy-17α-cyano-androstan
6ß,7ß-15ß,16ß-Bismethylen-3ß,5ß-dihydroxy-androstan-17-on (Angew. Chemie 1982, 94, 718-719) wurde analog der in Beispiel 1 b angegebenen Methode umgesetzt. Nach Chromatographie an Kieselgel mit einem Gemisch aus Hexan und Ethylacetat erhielt man 6ß,7ß-15ß,16ß-Bismethylen-3ß-5ß-bishydroxy-17ß-cyano-andros- tan und 6ß,7ß-15ß,16ß-Bismethylen-3ß-5ß-bishydroxy-17α-cyano-androstan. Gß.Zß-iδß.iGß-BisnnethvIen-Sß-δß-bishvdroxy-I Zß-cvano-androstan: 1H-NMR (D6-DMSO): 0,41 (m,2H), 0,61 (Hn1I H), 0,73(5,3H), 0,83(s,3H); breit,1 H), 3,79(s breit,1 H), 4,31 (s breit,1 H), 4,79(s breit,1 H)
6ß,7ß-15ß,16ß-Bismethylen-3ß-5ß-bishvdroxy-17α-cvano-androstan: 1H-NMR (D6-DMSO): 0,41 (m,2H), 0,61 (m,1 H), 0,73(s,3H), 0,80(s,3H), 3,05(s breit,1 H)
7-Variante 2-b)
6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-androst-4-en-3-on
6ß,7ß-15ß,16ß-Bismethylen-3ß-5ß-bishydroxy-17ß-cyano-androstan wurde analog der in Beispiel 3Oe angegebenen Vorschrift umgesetzt. Man erhielt 6ß,7ß-15ß,16ß-
Bismethylen-17ß-cyano-androst-4-en-3-on.
Die NMR-Daten sind identisch zu den in Beispiel 7 angegebenen.
Beispiel 8: 17ß-Cyano-7α-methyl-15ß,16ß-methylen-androst-4-en-3-on
Zu einer Lösung von 1 ,0 g 17ß-Cyano-15ß,16ß-methylen-androstan-4,6-dien-3-on in 50 ml Tetrahydrofuran wurden bei Raumtemperatur 67 mg Kupfer-I -Chlorid gegeben und 10 Minuten gerührt, bevor auf -15 0C abkühlt wurde, mit 450 mg Aluminiumchlorid versetzt, 30 Minuten bei dieser Temperatur gerührt, mit 4,5 ml Methylmagnesium- bromidlösung (3 M in Tetrahydrofuran) tropfenweise versetzt, und eine Stunde bei -15°C gerührt. Zur Aufarbeitung wurde die Reaktionsmischung bei -15°C mit 30 ml 2 M Salzsäure versetzt, 0,5 Stunden bei Raumtemperatur gerührt, auf Wasser gegeben, dreimal mit Ethylacetat extrahiert, über Natriumsulfat getrocknet, im Vakuum eingeengt, und an Kieselgel mit Hexan / Ethylacetat (0-50%) chromatographiert. Man erhielt 17ß-Cyano-7α-methyl-15ß,16ß-methylen-androst-4-en-3-on (149 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,45 [m, 15'-H(ß)], 0,88 (d, J = 7,1 Hz, 7-Me), 1 ,08 und 1 ,21 [2 x s, jeweils (3H), 2 x Me], 2,75 [d, J = 4,6 Hz, 17-H(α)], 5,76 (s, 4-H). MS (Cl+) m/z (rel. Intensität) = 324 (100), 341 (55); entspricht C22H29NO. Beispiel 9:
17ß-Cyano-17α-methyl-15ß,16ß-methylen-androst-4-en-3-on
9a)
17ß-Cyano-3-methoxy-17α-methyl-15ß,16ß-methylen-androstan-3(4),5(6)-dien
Bei -78°C wurde zu einer Lösung von 8 g 17-Cyano-3-methoxy-15ß,16ß-methylen- androstan-3(4),5(6)-dien eine kalte, frische Lösung von Lithiumdiisopropylamid (LDA) gegeben, die zuvor aus 12,1 ml Diisopropylamin und 54,1 ml n-BuLi (1 ,6 M in Hexan) in 82 ml Tetrahydrofuran bei 00C hergestellt worden war, und beließ die Mischung für 1 Stunde bei -78°C. Vor der nun folgenden Zugabe von 6,9 ml Methyliodid wurde wieter auf -900C abgekühlt. Nach beendeter Zugabe wurde das Reaktionsgemisch langsam über Nacht auf Raumtemperatur erwärmen gelassen. Die Reaktion wurde durch den Zusatz von gesättigter Ammoniumchlorid-Lösung abgebrochen, mit Ethyl- acetat wurde extrahiert, mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Trocknen der organischen Phase mit Natriumsulfat, einengen zur Trockne und Flash-Chromatographie an Kieselgel [Hexan / Ethylacetat (0-30%)] lieferte 17ß- Cyano-3-methoxy-17α-methyl-15ß,16ß-methylen-androstan-3(4),5(6)-dien (6,5 g).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,40 [m, 15'-H(ß)], 1 ,01 (s, Me), 1 ,15 (s, Me), 1 ,38 (s, Me), 3,58 (s, 0-CH3), 5,15 (m, 4-H), 5,27 (m, 6-H). MS (Cl+) m/z (rel. Intensität) = 355 (100), 338 (53); entspricht C23H31NO.
9b) 17ß-Cyano-17α-methyl-15ß,16ß-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 1 c erhielt man aus 385 mg 17ß-Cyano-3-methoxy- 17α-metyhl-15ß,16ß-methylen-androstan-3(4),5(6)-dien nach Kristallisation aus Ethylacetat 17ß-Cyano-17α-methyl-15ß,16ß-methylen-androst-4-en-3-on (285 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,43 [m, 15'-H(ß)], 1 ,16; 1 ,21 und 1 ,38 [3 x s, jeweils (3H), 3 x Me], 5,75 (d, J = 1 ,1 Hz, 4-H). MS (Cl+) m/z (rel. Intensität) = 324 (38), 341 (100); entspricht C22H29NO. Beispiel 10:
17α-Allyl-17ß-cyano-15ß,16ß-methylen-androst-4-en-3-on
10a)
17α-Allyl-17ß-cyano-3-methoxy-15ß,16ß-methylen-androstan-3(4),5(6)-dien
Nach der Methode des Beispiels 9a erhielt man aus 1 g 17-Cyano-3-methoxy- 15ß,16ß-methylen-androstan-3(4),5(6)-dien mit Allylbromid als Alkylierungsmittel nach der Flash-Chromatographie 17α-Allyl-17ß-cyano-3-methoxy-15ß,16ß-methylen- androstan-3(4),5(6)-dien (358 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,41 [m, 15'-H(ß)], 3,58 (s, 0-CH3), 5,15 (m, 4-H), 5,25 [m, (3H), 6-H sowie =CH2], 6,05 [m, (1 H), -CH=].
10b)
17α-Allyl-17ß-cyano-15ß,16ß-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 1 c erhielt man aus 300 mg 17α-Allyl-17ß-cyano-3- methoxy-15ß,16ß-methylen-androstan-3(4),5(6)-dien nach der Flash- Chromatographie 17α-Allyl-17ß-cyano-15ß,16ß-methylen-androst-4-en-3-on (210 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ =
0,45 [m, 15'-H(ß)], 5,18 - 5,30 [m, (2H), =CH2], 5,76 (d, J = 1 ,7 Hz, 4-H), 6,03 [m,
(1 H)1 -CH=].
MS (Cl+) m/z (rel. Intensität) = 350 (100), 367 (68); entspricht C24H31NO.
Beispiel 11 : 17ß-Cyano-6ß-hydroxymethyl-17α-methyl-15ß,16ß-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 2 erhielt man aus 5,90 g 17ß-Cyano-17α-methyl- 15ß,16ß-methylen-androst-4-en-3-on nach Kristallisation aus Ethylacetat und Flash- Chromatographie der Mutterlaugen an Kieselgel [Hexan / Ethylacetat (0-50%)] 17ß- Cyano-6ß-hydroxymethyl-17α-methyl-15ß,16ß-methylen-androst-4-en-3-on (2,22 g). 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,50 [m, 15'-H(ß)], 1 ,21 ; 1 ,27 und 1 ,43 [3 x s, jeweils (3H), 3 x Me], AB-Signal (δA = 3,73, δß = 3,85, JAB ca. 10,0 Hz breite Signale, zusätzlich aufgespalten durch JH(A),6-H = 7,5 Hz, JH(B),6-H ca. 10,0 Hz), 5,89 (s, 4-H). MS (Cl+) m/z (rel. Intensität) = 341 (100), 354 (35), 371 (22); entspricht C23H3INO2.
Beispiel 12:
17ß-Cyano-15α,16α-methylen-androst-4-en-3-on
12a)
17ß-Cyano-3ß-hydroxy-15α,16α-methylen-androst-5(6)-en
Nach der Methode des Beispiels 1 b erhielt man aus 24,2 g 3ß-Acetoxy-15α,16α- methylen-androst-5(6)-en nach Flash-Chromatographie an Kieselgel [Hexan / Ethyl- acetat (0-50%)] und fraktionierter Kristallisation aus Ethylacetat 17ß-Cyano-3ß- hydroxy-15α,16α-methylen-androst-5(6)-en (3,2 g) sowie 17α-Cyano-3ß-hydroxy- 15α,16α-methylen-androst-5(6)-en (3,6 g).
17ß-Cvano-3ß-hvdroxy-15α,16α-methylen-androst-5(6)-en:
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ =
0,54 [m, (2H), cyclopropyl], 0,90 [m, (1 H), cyclopropyl], 1 ,03 und 1 ,17 [2 x s, jeweils
(3H), 2 x Me], 3,52 (m, 3-H), 5,37 (m, 6-H).
MS (El+) m/z (rel. Intensität) = 311 (88); entspricht C2i H29NO.
17α-Cvano-3ß-hvdroxy-15α,16α-methylen-androst-5(6)-en: 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,78 [m, (1 H), cyclopropyl], 0,89-0,99 [m, (2H), cyclopropyl], 1 ,02 und 1 ,08 [2 x s, jeweils (3H), 2 x Me], 2,79 [d, J = 7,7 Hz, 17-H (ß)], 3,54 (m, 3-H), 5,38 (m, 6-H).MS (El+) m/z (rel. Intensität) = 311 (18); entspricht C21H29NO. 12b) 17ß-Cyano-15α,16α-methylen-androst-4-en-3-on
Zur Lösung aus 3,2 g 17ß-Cyano-3ß-hydroxy-15a,16a-methylen-androst-5(6)-en in 80 ml 2-Butanon wurden in einer Portion 2,10 g Aluminium-tri-isopropylat gegeben und 15 Stunden lang zum Sieden erhitzt. Anschließend die Reaktion durch Zugabe von gesättigter Ammoniumchlorid-Lösung abgebrochen, 3 mal wurde mit Ethylacetat extrahiert, die organische Phase wurde mit gesättigter Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Nach dem Einengen lieferte die Flash- Chromatograpie an Kieselgel [Hexan / Ethylacetat (0-50%)] 17ß-Cyano-15α,16α- methylen-androst-4-en-3-on (3,0 g).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ =
0,55 [m, (2H), cyclopropyl], 0,81 - 0,97 [m, (3H)], 1 ,21 [s, (6H), 2 x Me], 5,74 (br. s, 4-
H).
MS (Cl+) m/z (rel. Intensität) = 310 (100), 327 (23); entspricht C2iH27NO.
Beispiel 13: 17ß-Cyano-6ß-hydroxymethyl-15α,16α-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 2 erhielt man aus 3,0 g 17ß-Cyano-15α,16α- methylen-androst-4-en-3-on nach Flash-Chromatographie an Kieselgel [Hexan / Ethylacetat (0-50%)] 17ß-Cyano-6ß-hydroxymethyl-15α,16α-methylen-androst-4-en- 3-on (850 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,56 [m, (2H), cyclopropyl], 0,91 [m, (1 H), cyclopropyl], 1 ,22 [s, (6H), 2 x Me], AB- Signal (δA = 3,68, δB = 3,77, stark verbreiterte Signale), 5,83 (s, 4-H). MS (Cl+) m/z (rel. Intensität) = 340 (100), 357 (51 ); entspricht C22H29NO2. Beispiel 14:
17ß-Cyano-15α,16α-methylen-6ß-tosyloxymethyl-androst-4-en-3-on sowie 17ß-Cyano-6-exo-methylen-15α,16α-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 3a erhielt man aus 700 mg 17ß-Cyano-6ß-hydro- xymethyl-15α,16α-methylen-androst-4-en-3-on nach Flash-Chromatographie an Kieselgel [Hexan / Ethylacetat (0-50%)] 17ß-Cyano-15α,16α-methylen-6ß-tosyloxyme- thyl-androst-4-en-3-on (880 mg) und in dessen Vorlauf als Minderkomponente 17ß- Cyano-6-exo-methylen-15α,16α-methylen-androst-4-en-3-on (22 mg).
Fraktion 1 : 17ß-Cvano-6-exo-methylen-15α,16α-methylen-androst-4-en-3-on: 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,64 [m, (2H), cyclopropyl], 1 ,09 [m, (1 H), cyclopropyl], 1 ,16 und 1 ,25 [2 x s, jeweils (3H), 2 x Me], 5,04 und 5,15 (dd → t, jeweils J = 1 ,9 Hz, =CH2), 5,97 (s, 4-H).
MS (Cl+) m/z (rel. Intensität) = 322 (100), 339 (28); entspricht C22H27NO.
Fraktion 2: 17ß-Cvano-15α,16α-methylen-6ß-tosyloxymethyl-androst-4-en-3-on: 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,56 [m, (2H), cyclopropyl], 0,91 [m, (1 H), cyclopropyl], 1 ,13 und 1 ,22 [2 x s, jeweils (3H), 2 x Me], 2,50 [s, (3H), C6H4-CH3], AB-Signal (δA = 3,95, δB = 4,29, JAB = 9,7 Hz zusätzlich aufgespalten durch JH(A),6-H = 6,2 Hz, JH(B),6-H = 9,7 Hz) 5,77 (s, 4-H), AA'BB'-Signal [δA = 7,40, δB = 7,82, jeweils (2H), C6H4]. MS (Cl+) m/z (rel. Intensität) = 494 (5), 511 (15); entspricht C29H35NO4S.
Beispiel 15: 17ß-Cyano-6,6-ethylen-15α,16α-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 3b erhielt man aus 860 mg 17ß-Cyano-15α,16α- methylen-6ß-tosyloxymethyl-androst-4-en-3-on nach Flash-Chromatographie an Kieselgel [Hexan / Ethylacetat (0-50%)] 17ß-Cyano-6,6-ethylen-15α,16α-methylen-an- drost-4-en-3-on (265 mg). 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,45-0,63 [m, (4H) spiroethylen sowie cyclopropyl], 0,88 [m, (1 H) spiroethylen], 1 ,02 [m, (1 H), cyclopropyl], 1 ,28 und 1 ,32 [2 x s, jeweils (3H), 2 x Me], 5,69 (s, 4-H). MS (El+) m/z (rel. Intensität) = 335 (88); entspricht C23H29NO.
Beispiel 16:
17ß-Cyano-17α-methyl-15α,16α-methylen-androst-4-en-3-on 16a) 17α-Cyano-15α,16α-methylen-3ß-triisopropylsilyoxy-androst-5(6)-en
Zu einer Lösung von 3,6 g 17α-Cyano-3ß-hydroxy-15α,16α-methylen-androst-5(6)- en, 1 ,7 g Imidazol und 141 mg Dimethylaminopyridin in 20 ml Dimethylformamid (DMF) wurde bei 00C langsam die Lösung von 5,44 ml Triisopropylsilychlorid in 2,5 ml Tetrahydrofuran gegeben. Anschließend wurde über Nacht auf Raumtemperatur erwärmen gelassen, auf gesättigte Bicarbonat-Lösung gegossen und mit Ethyl- acetat extrahiert. Die organische Phase wurde 5 x mit Wasser und abschließend mit gesättigter Natriumchlorid-Lösung gewaschen und zur Trockne eingeengt. Das Rohprodukt 17α-Cyano-15α,16α-methylen-3ß-triisopropylsilyoxy-androst-5(6)-en (7,3 g) wurde direkt in der Folgestufe eingesetzt.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,78 [m, (1 H), cyclopropyl], 0,88-0,99 [m, (2H), cyclopropyl], 1 ,02 und 1 ,08 [2 x s, jeweils (3H), 2 x Me, überlagert von δ = 1 ,05, br. s, (18H), TiPS-Me], 2,79 [d, J = 7,1 Hz, 17-H (ß)], 3,56 (m, 3-H), 5,33 (d, J = 4,8 Hz, 6-H). MS (El+) m/z (rel. Intensität) = 468 (12); entspricht C30H49NOSi.
16b)
17ß-Cyano-17α-methyl-15α,16α-methylen-3ß-triisopropylsilyoxy-androst-5(6)- en im Gemisch mit
17α-Cyano-17ß-methyl-15α,16α-methylen-3ß-triisopropylsilyoxy-androst-5(6)- en
Nach der Methode des Beispiels 9a erhielt man aus 5,29 g 17α-Cyano-15α,16α- methylen-3ß-thisopropylsilyoxy-androst-5(6)-en mit Me-I als Alkylierungsmittel nach der Flash-Chromatographie die Mischung der 17-Epimere des 17-Cyano-17-methyl- 15α,16α-methylen-3ß-triisopropylsilyoxy-androst-5(6)-ens (3,65 g).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ =
0,60-0,72 [m, (1 H), cyclopropyl], 1 ,05, [br. s, (18H), TiPS-Me], 3,54 (m, 3-H), 5,33 (m,
6-H).
MS (Cl+) m/z (rel. Intensität) = 499 (55); entspricht C3iH5iNOSi.
16c)
17ß-Cyano-3ß-hydroxy-17α-methyl-15α,16α-methylen-androst-5(6)-en im Gemisch mit 17α-Cyano-3ß-hydroxy-17ß-methyl-15α,16α-methylen-androst-5(6)-en
Zu einer Lösung von 3,6 g der 17-Epimere des 17-Cyano-17-methyl-15α,16α-me- thylen-3ß-triisopropylsilyoxy-androst-5(6)-ens in 5 ml Tetra hydrofu ran wurden bei Raumtemperatur 9 ml Tetrabutylammoniumfluorid (TBAF) (1 M in Tetra hydrofu ran) gegeben und für 4 Stunden nachrühren gelassen. Nach dem Abbruch der Reaktion durch Zugabe von gesättigter Bicarbonat-Lösung, Extraktion mit Ethylacetat, Wäsche der organischen Phase mit Wasser und gesättigter Natriumchlorid-Lösung, Trocknen mit Natriumsulfat und Einengen zur Trockne, lieferte die anschließende Flash-Chro- matograpie die 17-Epimerenmischung des 17-Cyano-3ß-hydroxy-17-methyl- 15α,16α-methylen-androst-5(6)-ens (1 ,9 g).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,74 [m, (1 H), cyclopropyl], 3,57 (m, 3-H), 5,42 (m, 6-H).
16d) 17ß-Cyano-17α-methyl-15α,16α-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 12b erhielt man aus 1 ,9 g der 17-Epimere des 17- Cyano-3ß-hydroxy-17-methyl-15α,16α-methylen-androst-5(6)-ens nach präparativer HPLC-Chromatographie 17ß-Cyano-17α-methyl-15α,16α-methylen-androst-4-en-3- on (335 mg). 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,69 [m, (2H), cyclopropyl], 0,82 [m, (1 H), cyclopropyl], 0,96 [m, (1 H), cyclopropyl], 1 ,14; 1 ,21 und 1 ,33 [3 x s, jeweils (3H), 3 x Me], 5,74 (s, 4-H). MS (El+) m/z (rel. Intensität) = 323 (100); entspricht C22H29NO.
Beispiel 17:
17ß-Cyano-15α,16α-methylen-androsta-4,6-dien-3-on 17a)
17ß-Cyano-3-methoxy-15α,16α-methylen-androst-3(4),5(6)-dien-17-on im Gemisch mit 17α-Cyano-3-methoxy-15α,16α-methylen-androst-3(4),5(6)-dien-17-on
Nach der Methode des Beispiels 1 a erhielt man aus 7 g der 17-Epimere des 17-Cy- ano-15α,16α-methylen-androst-4-en-3-ons nach der Aufarbeitung die 17-Epimere des 17-Cyano-3-methoxy-15α,16α-methylen-androst-3(4),5(6)-diens (7,6 g), die direkt in der Folgestufe eingesetzt wurden.
17b) 17ß-Cyano-15α,16α-methylen-androsta-4,6-dien-3-on
Nach der Methode des Beispiels 6 erhielt man aus 7,6 g der 17-Epimere des 17- Cyano-3-methoxy-15α,16α-methylen-androst-3(4),5(6)-diens nach präparativer HPLC-Chromatographie eines Teil des erhaltenen Rohproduktes 17ß-Cyano- 15α,16α-methylen-androsta-4,6-dien-3-on (48 mg)
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,66 [m, (1 H), cyclopropyl], 0,78 [m, (1 H), cyclopropyl], 1 ,19 und 1 ,32 [2 x s, jeweils (3H), 2 x Me], 5,74 (s, 4-H), 6,21 (dd, J = 2,8 Hz, J = 9,8 Hz, 5-H*), 6,34 (dd, J = 1 ,9 Hz, J = 10,0 Hz, 6-H*), * = Zuordnung vertauschbar. MS (El+) m/z (rel. Intensität) = 307 (26); entspricht C2i H25NO. Beispiel 18: 17ß-Cyano-7α-methyl-15α,16α-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 8 erhielt man aus 2,2 g der 17-Epimere des 17- Cyano-15α,16α-methylen-androsta-4,6-dien-3-ons nach präparativer HPLC-Chro- matographie 17ß-Cyano-7α-methyl-15α,16α-methylen-androst-4-en-3-on (257 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,58 [m, (1 H), cyclopropyl], 0,69 [m, (1 H), cyclopropyl], 0,86 (d, J = 7,2 Hz, 6-Me), 1 ,25 und 1 ,26 [2 x s, jeweils (3H), 2 x Me], 5,79 (s, 4-H). MS (El+) m/z (rel. Intensität) = 323 (100); entspricht C22H29NO.
Beispiel 19: 17ß-Cyano-androsta-4,6-dien-3-on
19a) 17ß-Cyano-3-ethoxy-androst-3,5-dien
17ß-Cyano-androst-4-en-3-on wurde analog der in Bespiel 1a angegebenen Vorschrift umgesetzt, wobei Trimethylorthoformiat gegen Thethylorthoformiat ausgetauscht wurde. Man erhielt 17ß-Cyano-3-ethoxy-androst-3,5-dien.
1H-NMR (D6-DMSO): 0,81 (s,3H), 0,86(s,3H), 1 ,17(t,3H,J=7,1 Hz,3-O-CH2-CH3), 3,36(m,2H,3-O-CH2-CH3), 5,09(m,2H,H-4 und H-6)
19b) 17ß-Cyano-androsta-4,6-dien-3-on
17ß-Cyano-3-ethoxy-androst-3,5-dien wurde analog der in Beispiel 6 angegebenen Vorschrift umgesetzt. Man erhielt 17ß-Cyano-androsta-4,6-dien-3-on.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 1 ,02(s,3H), 1 ,13(s,3H), 5,68(s,1 H,H-4), 6,06(s,1 H,6-H), 6,13(s,1 H,7-H) Beispiel 20: 17ß-Cyano-7α-methyl-androst-4-en-3-on
17ß-Cyano-androsta-4,6-dien-3-on wurde analog der in Beispiel 8 angegebenen Vorschrift umgesetzt. Man erhielt 17ß-Cyano-7α-methyl-androst-4-en-3-on
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,77(d,3H,7-CH3, J=7,3Hz)), 0,98(5,3H), 1 ,21 (s,3H), 5,74(s,1 H,H-4)
Beispiel 21 : 17ß-Cyano-7α-ethyl-androst-4-en-3-on
17ß-Cyano-androsta-4,6-dien-3-on wurde analog der in Beispiel 8 angegebenen Vorschrift umgesetzt, wobei statt des dort verwendeten Methylmagnesiumbromids mit Ethylmagnesiumbromid gearbeitet wurde. Man erhielt 17ß-Cyano-7α-ethyl-androst-4- en-3-on
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,88(t,3H,7-CH2-CH3, J=7,3Hz)), 0,98(s,3H), 1 ,22(s,3H), 5,74(s,1 H,H-4)
Beispiel 22:
17ß-Cyano-6α,7α-methylen-androst-4-en-3-on und 17ß-Cyano-6ß,7ß-methylen- androst-4-en-3-on
17ß-Cyano-androsta-4,6-dien-3-on wurde analog der in Beispiel 7 angegebenen Vorschrift umgesetzt. Man erhielt 17ß-Cyano-6α,7α-methylen-androst-4-en-3-on und 17ß-Cyano-6ß,7ß-methylen-androst-4-en-3-on.
17ß-Cvano-6α,7α-methylen-androst-4-en-3-on:
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ =
0,46(m,1 H), 0,77(m,1 H), 0,85(m,1 H), 1 ,01 (s,3H), 1 ,15(s,3H), 5,95(s,1 H,H-4) 17ß-Cvano-6ß,7ß-methylen-androst-4-en-3-on:
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ =
0,79Cm1I H), 0,95(5,3H), 1 ,09(s,3H), 6,01 (s,1 H,H-4)
Beispiel 23: 17ß-Cyano-6ß-hydroxymethyl-androst-4-en-3-on
17ß-Cyano-androst-4-en-3-on wurde analog der in Beispiel 2 angegebenen Vorschrift umgesetzt. Man erhielt 17ß-Cyano-6ß-hydroxymethyl-androst-4-en-3-on.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,98(s,3H), 1 ,21 (s,3H), 3,68(m,2H,6-CH2-OH), 5,82(s,1 H,H-4)
Beispiel 24: 17ß-Cyano-6,6-ethyliden-androst-4-en-3-on
17ß-Cyano-6ß-hydroxymethyl-androst-4-en-3-on wurde analog den in den Beispielen 3a und 3b angegebenen Beispielen umgesetzt, wobei das intermediäre Tosylat roh weiter umgesetzt wurde. Man erhielt 17ß-Cyano-6,6-ethyliden-androst-4-en-3-on.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,42(m,2H), 0,77(m,1 H), 0,99(s,3H), 1 ,26(s,3H), 5,62(s,1 H,H-4)
Beispiel 25: 17ß-Cyano-17α-methyl-androst-4-en-3-on
25a) 17-Cyano-3,3-ethandiylbisoxy-androst-5-en
5 g der Cyanoverbindung wurden in einem Gemisch aus 56 ml Dichlormethan, 14 ml Ethylenglykol, 37 ml Trimethylorthoformiat und 1 ,5 g para-Toluolsulfonsäure zwei Sunden bei Raumtemperatur gerührt. Nach Zugabe von Nathumhydrogencarbonat- lösung und Ethylacetat wurden die Phasen getrennt und die organische Phase mit Wasser und gesättigter Kochsalzlösung gewaschen, über Natriumsulfat getrocknet, filtriert und eingeengt. Das so erhaltene 17ß-Cyano-3,3-ethandiylbisoxy-androst-5-en wurde ohne weitere Reinigung weiterverwendet.
25b) 17ß-Cyano-3,3-ethandiylbisoxy-17α-methyl-androst-5-en
17ß-Cyano-3,3-ethandiylbisoxy-androst-5-en wurde analog der in Beispiel 9a angegebenen Methode umgesetzt. Man erhielt 17ß-Cyano-3,3-ethandiylbisoxy-17α- methyl-androst-5-en.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 1 ,04(s breit,6H), 1 ,28(5,3H), 3,94(m,4H, Ketal), 5,34(s,1 H,H-6)
25c) 17ß-Cyano-17α-methyl-androst-4-en-3-on
17ß-Cyano-3,3-ethandiylbisoxy-17α-methyl-androst-5-en wurden analog der in Beispiel 1 c angegebenen Methode umgesetzt. Man erhielt 17ß-Cyano-17α-methyl- androst-4-en-3-on.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 1 ,09(s,3H), 1 ,20(s,3H), 1 ,28(s,3H), 5,73(s,1 H,H-4)
Beispiel 26:
17ß-Cyano-6ß-hydroxymethyl-17α-methy l-androst-4-en-3-on
17ß-Cyano-17α-methyl-androst-4-en-3-on wurden analog der in Beispiel 2 angegebenen Vorschrift umgesetzt. Man erhielt 17ß-Cyano-6ß-hydroxymethyl-17α-methyl- androst-4-en-3-on.
1H-NMR (D6-DMSO): 1 ,01 (s,3H), 1 ,15(s,3H), 1 ,25(s,3H), 3,35(m,1 H,6-CH2-OH), 3,57(m,1 H,6-CH2-OH), 4,73(t,1 H,J=5,8Hz,6-CH2-OH), 5,65(s,1 H,H-4) Beispiel 27: 17ß-Cyano-6,6-ethandiyl-17α-methyl-androst-4-en-3-on
^ß-Cyano-θß-hydroxymethyl-^α-methyl-androsM-en-S-on wurde analog den in den Beispielen 3a und 3b angegebenen Vorschriften umgesetzt, wobei das intermediäre Tosylat roh weiter umgesetzt wurde. Man erhielt 17ß-Cyano-6,6-ethandiyl-17α- methyl-androst-4-en-3-on.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,42(m,2H), 0,78Cm1I H), 1 ,10(s,3H), 1 ,27(s,3H), 1 ,29(s,3H), 5,63(s,1 H,H-4)
Beispiel 28: 17α-Allyl-17ß-cyano-androst-4-en-3-on
28a) 17ß-Cyano-17α-methyl-androst-4-en-3-on
17-Cyano-3,3-ethandiylbisoxy-androst-5-en wurde analog der in Beispiel 9a angegebenen Methode umgesetzt, wobei statt des dort verwendeten Methyliodids Allylbro- mid verwendet wurde. Man erhielt 17α-Allyl-17ß-cyano-3,3-ethandiylbisoxy-androst- 5-en.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 1 ,10(s,3H), 1 ,13(s,3H), 3,99(m,4H, Ketal), 5,26(m,2H, -CH=CH2), 5,39(s,1 H,H-6) ), 5,97(m,1 H, -CH=CH2)
28b) 17α-Allyl-17ß-cyano-androst-4-en-3-on
17α-Allyl-17ß-cyano-3,3-ethandiylbisoxy-androst-5-en wurde analog der in Beispiel 1c angegebenen Methode umgesetzt. Man erhielt 17α-Allyl-17ß-cyano-androst-4-en- 3-on. 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,97Cm1I H), 1 ,17(5,3H), 1 ,25(s,3H), 5,25(m,2H, -CH=CH2), 5,79(s,1 H,4-H), 5,96(m,1 H, -CH=CH2)
Beispiel 29:
17ß-Cyano-1α-methyl-androst-4-en-3-on 29a) 17ß-Cyano-androst-1,4-dien-3-on
2,5 g 17ß-Cyano-androst-4-en-3-on und 2,7 g Dichlordicyanobenzochinon wurden in 50 ml Dioxan 3 Stunden gekocht. Nach Abkühlung wurde mit Dichlormethan vedünnt und filtriert. Das Filtrat wurde mit Natriumhydrogencarbonatlösung, Wasser und gesättigter Kochsalzlösung gewaschen. Nach Trocknung über Natriumsulfat, Filtration und Einengen des Filtrates wurde an Kieselgel mit einem Hexan/Ethylacetat-Ge- misch chromatographiert. Man erhielt 17ß-Cyano-androst-1 ,4-dien-3-on.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 1 ,00(s,3H), 1 ,25(s,3H), 6,07(s,1 H,H-4), 6,25(s breit,1 H,H-2), 7,06(s,1 H,H-1 )
29b) 17ß-Cyano-1α-methyl-androst-4-en-3-on
0,6 g 17ß-Cyano-androst-1 ,4-dien-3-on warden in 6 ml Tetrahydrofuran nacheinander mit 6 mg Kupfer(l )bromid, 1 ,1 ml Trimethylaluminium und 0,31 ml Trimethylsilyl- chlorid versetzt. Nach dreistündigem Ruhen bei Raumtemperatur wurde zwischen Wasser und Ethylacetat verteilt. Die organische Phase wurde sukzessive mit Wasser und gesättigter Kochsalzlösung gewaschen, über Natriumsulfat getrocknet, filtriert und eingeengt. Nach Chromatographie an Kieselgel mit einem Gemisch aus He- xan/Ethylacetat erhielt man 17ß-Cyano-1 α-methyl-androst-4-en-3-on.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,94(d,3H,1 -CH3)), 0,98(s,3H), 1 ,29(s,3H), 5,71 (s,1 H,H-4) Beispiel 30:
6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-17α-methlyl-androst-4-en-3-on
30a)
6ß,7ß-15ß,16ß-Bismethylen-3ß-tert-butyldimethylsilyloxy-5ß-hydroxy- androstan-17-on
Nach der Methode des Beispiels 16a erhielt man aus 6ß,7ß-15ß,16ß-Bismethylen- 3ß,5ß-dihydroxy-androstan-17-on (Angew. Chemie 1982, 94, 718-719) und tert- Butyldimethylsilylchlorid als Silylierungsreagenz nach Kristallisation 6ß,7ß-15ß,16ß- Bismethylen-3ß-tert-butyldimethylsilyloxy-5ß-hydroxy-androstan-17-on.
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,08 und 0,11 [2 x s, jeweils (3H), Si-Me], 4,13 (s, 3-H), 4,40 (s, 5-OH). MS (Cl+) m/z (rel. Intensität) = 445 (50), 462 (15); entspricht C27H44NO3Si.
30b) βßJß-ISß.iβß-Bismethylen-Sß-tert-butyldimethylsilyloxy-^-cyano-Sß-hydroxy- androstan-17-on
6ß,7ß-15ß,16ß-Bismethylen-3ß-tert-butyldimethylsilyloxy-5ß-hydroxy-androstan-17- on wurde analog der in Beispiel 1 b beschriebenen Methode umgesetzt. Man erhielt 6ß,7ß-15ß,16ß-Bismethylen-3ß-tert-butyldimethylsilyloxy-17-cyano-5ß-hydroxy- androstan-17-on als Gemisch der 17-epimeren Nitrile welches ohne Epimerentren- nung weiterverarbeitet wurde.
1H-NMR (D6-DMSO): 0,02(s,3H), 0,04(s,3H), 0,40(m,2H), 0,60(m,1 H), 0,74(s,3H), 0,82(s breit,12H), 2,36(m,2H), 2,97(m,1 H), 4,01 (m,1 H)
30c) 6ß,7ß-15ß,16ß-Bismethylen-3ß-5ß-bishydroxy-17ß-cyano-17α-methyl-androstan
6ß,7ß-15ß,16ß-Bismethylen-3ß-tert-butyldimethylsilyloxy-17-cyano-5ß-hydroxy- androstan-17-on wurde analog den in den Beispielen 9a und 16c angegebenen Me- thoden umgesetzt. Man erhielt 6ß,7ß-15ß,16ß-Bismethylen-3ß-5ß-bishydroxy-17ß- cyano-17α-methyl-androstan.
1H-NMR (D6-DMSO): 0,40(m,2H), 0,61 (Hn1I H), 0,74(5,3H), 0,93(s,3H), 1 ,36(s,3H), 1 ,93(m,1 H), 2,03(m,1 H), 3,79(m,1 H)
3Oe) 6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-17α-methlyl-androst-4-en-3-on
310 mg 6ß,7ß-15ß,16ß-Bismethylen-3ß-5ß-bishydroxy-17ß-cyano-17α-methyl- androstan wurden in 10 ml Aceton gelöst und mit 0,42 ml Jones-Reagenz versetzt. Nach 15 Minuten wurden dem Ansatz 0,4 ml Isopropanol zugesetzt. Anschließend wurde zwischen Wasser und Ethylacetat verteilt, die organische Phase mit gesättigter Kochsalzlösung gewaschen, über Natriumsulfat getrocknet, filtriert und eingeengt. Nach Chromatographie an Kieselgel mit einem Gemisch aus Hexan und Ethylacetat erhielt man 6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-17α-methyl-androst-4-en-3-on.
1H-NMR (D6-DMSO): 0,41 (m,1 H), 0,85(m,1 H), 0,99(s,3H), 1 ,02(s,3H), 1 ,31 (s,3H), 5,86(s,1 H,4-H)
Beispiel 31 :
17α-Allyl-6ß,7ß-15ß,16ß-bismethylen-17ß-cyano-androst-4-en-3-on
31 a)
17α-Allyl-6ß,7ß-15ß,16ß-bismethylen-3ß-5ß-bishydroxy-17ß-cyano-androstan
6ß,7ß-15ß,16ß-Bismethylen-3ß-tert-butyldimethylsilyloxy-17-cyano-5ß-hydroxy- androstan-17-on wurde analog den in den Beispielen 9a (Austausch des dort verwendeten Methyliodids gegen Allylbromid) und 16c angegebenen Methoden umgesetzt. Man erhielt 17α-Allyl-6ß,7ß-15ß,16ß-bismethylen-3ß-5ß-bishydroxy-17ß-cya- no-androstan.
1H-NMR (D6-DMSO): 0,40(m,2H), 0,61 (m,1 H), 0,74(s,3H), 0,96(s,3H), 2,02(m,2H), 3,79(m,1 H), 4,78(m,1 H), 5,19(s,1 H), 5,24(m,1 H), 5,94(m,1 H) 31 b) 17α-Allyl-6ß,7ß-15ß,16ß-bismethylen-17ß-cyano-androst-4-en-3-on
17α-Allyl-6ß,7ß-15ß,16ß-bisnnethylen-3ß-5ß-bishydroxy-17ß-cyano-androstan wurde analog der in Beispiel 3Oe angegebenen Methode umgesetzt. Man erhielt 17α-Allyl- 6ß,7ß-15ß,16ß-bismethylen-17ß-cyano-androst-4-en-3-on.
1H-NMR (D6-DMSO): 0,43Cm1I H), 0,86Cm1I H), 1 ,02(5,3H), 1 ,03(s,3H), 5,20(171,1 H, -CH=CH2), 5,24(171,1 H, -CH=CH2), 5,87(s,1 H,4-H), 5,94(m,1 H, -CH=CH2)
Beispiel 32: 17ß-Cyano-6-methyl-15ß,16ß-methylen-androsta-4,6-dien-3-on
Zu einer Lösung von 100 mg 17ß-Cyano-6-exo-methylen-15ß,16ß-methylen-androst- 4-en-3-on in 10 ml Ethanol gibt man 25 mg Pd-C (10%ig, wasserfeucht) und erhitzt zum Sieden. Anschließend tropft man langsam über 1 Stunde die Lösung von 0,5 ml Cyclohexen in 2 ml Ethanol und erhitzte noch weitere 7 Stunden am Rückfluss. Nach dem Abkühlen des Reaktionsgemisches, dem Abfiltrieren des Katalysators und dem Einengen erhielt man 17ß-Cyano-6-methyl-15ß,16ß-methylen-androsta-4,6-dien-3- on (25 mg).
1H-NMR (400 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,53 [m, (1 H) cyclopropyl], 2,78 [d, J = 4,5 Hz, 17-H(α)], 5,89 und 6,18 [2 x s, (je 1 H), 4-H und 7-H].
MS (Cl+) m/z (rel. Intensität) = 322 (100), 339 (50); entspricht C22H27NO.
Beispiel 33: 4-Chlor-17ß-cyano-15ß,16ß-methylen-androst-4-en-3-on
700 mg 17ß-Cyano-15ß,16ß-methylen-androst-4-en-3-on werden in 8 ml Pyridin gelöst und auf 00C gekühlt. Nach Zusatz von 0,32 ml Sulfurylchlorid wird 1 ,5 Stunden bei dieser Temperatur nachgerührt. Nach Versetzten mit gesättigter wässriger Natri- umhydrogen-carbonatlösung, Wasser und Ethylacetat werden die Phasen getrennt und die organische Phase mit Wasser und gesättigter wässsriger Natriumchloridlö- sung gewaschen. Nach Trocknung der organischen Phase über Nathumsulfat und Filtration wird eingeengt und das Produkt aus Ethylacetat umkristallisiert. Man erhält 4-Chlor-17ß-cyano-15ß,16ß-methylen-androst-4-en-3-on (211 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,47 [m, (1 H) cyclopropyl], 2,75 [d, J = 4,5 Hz, 17-H(α)], 3,33 (ddd, J1 = 15,3 Hz, J2 = 4,5 Hz, J3 = 2,6 Hz).
Beispiel 34: 17ß-Cyano-3-hydroxyimino-15ß,16ß-methylen-androst-4-en
700 mg 17ß-Cyano-15ß,16ß-methylen-androst-4-en-3-on werden in 5 ml Pyridin gelöst und mit 211 mg Hydroxylaminhydrochlorid versetzt. Nach einstündigem Rühren bei 125°C Badtemperatur wird der Ansatz zwischen Wasser und Ethylacetat verteilt. Die organische Phase wird mit Wasser und gesättigter wässriger Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet, filtriert und eingeengt. Säulenchromatographie lieferte 17ß-Cyano-3-hydroxyimino-15ß,16ß-methylen-androst-4-en-3- on als E/Z-Gemisch der Oxime (157 mg).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,43 [m, (1 H) cyclopropyl], 2,73 [d, J = 4,5 Hz, 17-H(α)], 3,05 (m, 5-H1), 5,79 (m, 4- H).
MS (Cl+) m/z (rel. Intensität) = 325 (100), 342 (76); entspricht C2IH28N2O.
Beispiel 35: 17ß-Cyano-6-exo-methylen-17α-methyl-15ß,16ß-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 4 erhält man aus 130 mg 17ß-Cyano-6ß- hydroxymethyl-17α-methyl-15ß,16ß-methylen-androst-4-en-3-on nach Chromatographie an Kieselgel 17ß-Cyano-6-exo-methylen-17α-methyl-15ß,16ß-methylen- androst-4-en-3-on (86 mg). 17ß-Cvano-6-exo-nnethylen-17α-ιinethyl-15ß,16ß-nnethylen-androst-4-en-3-on 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,47 [m, (1 H), cyclopropyl], 1 ,12, 1 ,16 und 1 ,39 [3 x s, Ge 3H), 3 x Me], 5,02 und 5,12 [2 x t, J = 2 Hz, (je 1 H), =CH2], 5,93 (br. s, 4-H).
Beispiel 36: 17ß-Cyano-17α-methyl-15ß,16ß-methylen-androsta-4,6-dien-3-on
Nach der Methode des Beispiels 6 erhält man aus 17,7 g 17ß-Cyano-3-methoxy- 17α-methyl-15ß,16ß-methylen-androstan-3(4),5(6)-dien nach Kristallisation 17ß- Cyano-17α-methyl-15ß,16ß-methylen-androsta-4,6-dien-3-on (5,84 g).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,52 [m, (1 H), cyclopropyl], 1 ,14, 1 ,21 und 1 ,39 [3 x s, Ge 3H), 3 x Me], 5,70 (s, 4-H), 6,18 (dd, J1 = 9,8 Hz, J2 = 2,8 Hz, 6-H), 6,33 (dd, J1 = 9,6 Hz, J2 = 1 ,8 Hz, 7-H).
MS (Cl+) m/z (rel. Intensität) = 322 (100), 339 (32); entspricht C22H27NO2.
Beispiel 37:
6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-17α-methyl-androst-4-en-3-on sowie
6α,7α-15ß,16ß-Bismethylen-17ß-cyano-17α-methyl-androst-4-en-3-on
Nach der Methode des Beispiels 7 erhält man aus 3,0 g 17ß-Cyano-17α-methyl- 15ß,16ß-methylen-androsta-4,6-dien-3-on nach HPLC-Trennung des Rohproduktes an Kieselgel als unpolare Fraktion 6α,7α-15ß,16ß-Bismethylen-17ß-cyano-17α- methyl-androst-4-en-3-on (475 mg) sowie als polare Fraktion 6ß,7ß-15ß,16ß- Bismethylen-17ß-cyano-17α-methyl-androst-4-en-3-on (1 ,2 g).
Fraktion 1 : 6α,7α-15ß,16ß-Bismethylen-17ß-cvano-17α-methyl-androst-4-en-3-on: 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,46, 0,57, 0,80 und 0,93 [4 x m, (je 1 H), 4 x cyclopropyl], 1 ,15, 1 ,20 und 1 ,39 [3 x s, (je 3H), 3 x Me], 5,96 (s, 4-H). Fraktion 2: 6ß,7ß-15ß,16ß-Bismethylen-17ß-cvano-17a-methyl-androst-4-en-3-on 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,50 und 0,87 [2 x m, Ge 1 H), 2 x cyclopropyl], 1 ,10, 1 ,14 und 1 ,41 [3 x s, (je 3H), 3 x Me], 6,02 (s, 4-H).
MS (Cl+) m/z (rel. Intensität) = 336 (100), 353 (28); entspricht C23H29NO.
Beispiel 38:
17ß-Cyano-17α-ethyl-3-methoxy-15ß,16ß-methylen-androstan-3(4),5(6)-dien sowie 17ß-Cyano-17α-ethyl-15ß,16ß-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 9a) erhält man aus 18,0 g 17ß-Cyano-3-methoxy- 15ß,16ß-methylen-androstan-3(4),5(6)-dien und der Verwendung von Ethyliodid statt Methyliodid nach Kristallisation 17ß-Cyano-17α-ethyl-3-methoxy-15ß,16ß-methylen- androstan-3(4),5(6)-dien (6,85 g) sowie nach Flash-Chromatographie der Mutterlauge 17ß-Cyano-17α-ethyl-15ß,16ß-methylen-androst-4-en-3-on (338 mg).
17ß-Cvano-17α-ethyl-3-methoxy-15ß,16ß-methylen-androstan-3(4),5(6)-dien: 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,42 [m, (1 H), cyclopropyl], 1 ,00, und 1 ,17 [2 x s, (je 3H), 2 x Me], 1 ,21 (t, J = 7,1 Hz, CH2-CH3), 3,58 [s, (3H), OMe], 5,14 (m, 4-H), 5,26 (m, 6-H).
MS (Cl+) m/z (rel. Intensität) = 352 (90), 369 (100); entspricht C24H33NO.
17ß-Cvano-17α-ethyl-15ß,16ß-methylen-androst-4-en-3-on: 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,45 [m, (1 H), cyclopropyl], 1 ,19 und 1 ,21 [2 x s, (je 3H), 2 x Me; überlagert von 1 ,23 (t, J ≥ 6,4 Hz, CH2-CH3)], 5,75 (s, 4-H).
MS (Cl+) m/z (rel. Intensität) = 338 (100), 355 (59); entspricht C23H31NO. Beispiel 39:
17ß-Cyano-17α-ethyl-15ß, 16ß-methylen-androsta-4,6-d ien-3-on
Nach der Methode des Beispiels 6 erhält man aus 6,0 g 17ß-Cyano-17α-ethyl-3- methoxy-15ß,16ß-methylen-androstan-3(4),5(6)-dien nach Kristallisation und anschließender Flash-Chromatographie der Mutterlauge 17ß-Cyano-17α-ethyl- 15ß,16ß-methylen-androsta-4,6-dien-3-on (4,87 g).
1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,59 [m, (1 H), cyclopropyl], 1 ,18 und 1 ,29 [2 x s, (je 3H), 2 x Me; überlagert von 1 ,27 (t, J = 7,4 Hz, CH2-CHs)], 5,75 (s, 4-H), 6,22 (dd, J1 = 9,8 Hz, J2 = 2,8 Hz, 6-H), 6,38 (dd, J1 = 9,6 Hz, J2 = 1 ,9 Hz, 7-H).
MS (Cl+) m/z (rel. Intensität) = 336 (100), 353 (43); entspricht C23H29NO.
Beispiel 40:
6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-17α-ethyl-androst-4-en-3-on sowie
6α,7α-15ß,16ß-Bismethylen-17ß-cyano-17α-ethyl-androst-4-en-3-on
Nach der Methode des Beispiels 7 erhält man aus 2,5 g 17ß-Cyano-17α-ethyl- 15ß,16ß-methylen-androsta-4,6-dien-3-on nach HPLC-Trennung des Rohproduktes an Kieselgel als unpolare Fraktion 6α,7α-15ß,16ß-Bismethylen-17ß-cyano-17α-ethyl- androst-4-en-3-on (290 mg) sowie als polare Fraktion 6ß,7ß-15ß,16ß-Bismethylen- 17ß-cyano-17α-ethyl-androst-4-en-3-on (670 mg).
Fraktion 1 : 6α,7α-15ß,16ß-Bismethylen-17ß-cvano-17α-ethyl-androst-4-en-3-on: 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,48, 0,53, 0,80 und 0,93 [4 x m, (je 1 H), 4 x cyclopropyl], 1 ,16 und 1 ,23 [2 x s, (je 3H), 2 x Me; überlagert von 1 ,22 (t, J = 6,3 Hz, CH2-CH3)], 5,96 (s, 4-H).
Fraktion 2: 6ß,7ß-15ß,16ß-Bismethylen-17ß-cvano-17α-ethyl-androst-4-en-3-on 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,50 und 0,86 [2 x m, (je 1 H), 2 x cyclopropyl], 1 ,09 und 1 ,15 [2 x s, Ge 3H), 2 x Me], 1 ,22 (t, J = 7,3 Hz, CH2-CHs), 6,00 (s, 4-H).
Beispiel 41 :
17ß-Cyano-17α-ethyl-7ß-methyl-15ß,16ß-methylen-androst-4-en-3-on sowie 17ß- Cyano-17α-ethyl-7α-methyl-15ß, 16ß-methylen-androst-4-en-3-on
Nach der Methode des Beispiels 8 erhält man aus 1 ,0 g 17ß-Cyano-17α-ethyl- 15ß,16ß-methylen-androsta-4,6-dien-3-on nach HPLC-Trennung des Rohproduktes an Kieselgel als unpolare Fraktion 17ß-Cyano-17α-ethyl-7α-methyl-15ß,16ß- methylen-androst-4-en-3-on (165 mg) sowie als polare Fraktion 17ß-Cyano-17α- ethyl-7ß-methyl-15ß,16ß-methylen-androst-4-en-3-on (292 mg).
17ß-Cvano-17α-ethyl-7α-methyl-15ß,16ß-methylen-androst-4-en-3-on 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,44 [m, (1 H), cyclopropyl], 0,86 (d, J = 7,2 Hz, 7-Me), 1 ,08 [m, (1 H), cyclopropyl], 1 ,19 und 1 ,21 [2 x s, (je 3H), 2 x Me; überlagert von 1 ,22 (t, J = 7,4 Hz, CH2-CHs)], 5,75 (s, 4-H).
17ß-Cvano-17α-ethyl-7ß-methyl-15ß,16ß-methylen-androst-4-en-3-on 1H-NMR (300 MHz, CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,53 und 1 ,04 [2 x m, (je 1 H), 2 x cyclopropyl], 1 ,16 - 1 ,26 (m, 7-Me, 2 x Me, und CH2-CHs)], 5,73 (br. s, 4-H).
Beispiel 42: 17ß-Cyanoandrost-4-en
Androst-4-en-17-on (siehe z.B. HeIv. Chim. Acta (45) 1962, 2575) wird analog der in Beispiel 1 b angegebenen Methode umgesetzt. Nach Chromatographie des erhaltenen Rohproduktes an Kieselgel mit einem Gemisch aus Ethylacetat und n-Hexan werden die produkthaltigen Fraktionen eingeengt und per HPLC rechroma- tographiert. Neben 17α-Cyanoandrost-4-en erhält man 17ß-Cyanoandrost-4-en. 17ß-Cvanoandrost-4-en
1H-NMR (CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,94 [s, 3H, - CH3], 1,04 [s, 3H, -CH3], 1,13 [m, 1H], 1,21 [m, 1H], 2,11 [m, 1H], 2,20 [m, 1H], 2,26 [m, 1H], 5,31 [s breit, 1H,4-H]
Beispiel 43: 4-Chlor-17ß-cyanoandrost-4-en-3-on
17ß-Cyanoandrost-4-en-3-on werden analog der in Beispiel 33 angegebenen Methode umgesetzt und aufgearbeitet. Man erhält 4-Chlor-17ß-cyanoandrost-4-en-3-on.
1H-NMR (CDCI3 TMS als interner Standard, ausgewählte Signale): δ = 0,98 [s, 3H, CH3], 1,24 [s, 3H, CH3], 2,58 [m, 1H, 17-H], 3,26 [ddd, J1 = 15,1 Hz, J2= 4,0 Hz, J3 = 2,6 Hz]
Beispiel 44 6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-androst-1,4-dien-3-on
6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-androst-4-en-3-on wird analog Beispiel 29a umgesetzt und man erhält 6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-androst-1,4-dien- 3-on.
1H-NMR (300 MHz, CDCI3 ):δ = 0.55(m,1H),1.10(s,3H), 1.14(s,3H), 2.81(d,1H, H-17) 6.18(m,1H,H-2), 6.33(m,1H,H-4), 6.85(s,1H,H-1)
Beispiel 45
1 α,2α-6ß,7ß-15ß, 16ß-Trismethylen-17ß-cyano-androst-4-en-3-on
6ß,7ß-15ß,16ß-Bismethylen-17ß-cyano-androst-1,4-dien-3-on wird analog Beispiel 7 umgesetzt und man erhält 1α,2α-6ß,7ß-15ß,16ß-Trismethylen-17ß-cyano-androst-4- en-3-on
1H-NMR (300 MHz, CDCI3 ): δ = 0.52 (m,1H), 0.74(m,1H), 0.82(m,1H), 1.07(s,3H), 1.14(s,3H), 2.81(d,1H,H-17), 5.86(m,1H,H-4)

Claims

Patentansprüche
1. 17ß-Cyano-androst-4-en-Dehvat mit der allgemeinen chemischen Formel 1
(1 )
wobei
Z ausgewählt ist aus der Gruppe, umfassend O, zwei Wasserstoffatome, NOR und NNHSO2R, worin R Wasserstoff oder CrC4-AI kyl ist,
R1 , R2 unabhängig voneinander Wasserstoff oder Methyl sind oder
R1 und R2 gemeinsam Methylen bilden oder unter Bildung einer Doppelbindung zwischen C1 und C2 entfallen,
R4 Wasserstoff oder Halogen ist,
ferner entweder:
R6a, R6b gemeinsam Methylen oder 1 ,2-Ethandiyl bilden oder R6a Wasserstoff ist und R6b aus der Gruppe ausgewählt ist, umfassend Wasserstoff,
Methyl und Hydroxymethylen, und R7 ausgewählt ist aus der Gruppe, umfassend Wasserstoff, CrC4-Alkyl,
C2-C3-Alkenyl und Cyclopropyl, oder:
R6a Wasserstoff ist und R6b und R7 gemeinsam Methylen bilden oder unter Bildung einer Doppelbindung zwischen C6 und C7 entfallen
oder:
R6a Methyl ist und R6b und R7 unter Bildung einer Doppelbindung zwischen C6 und C7 entfallen,
R15, R16 Wasserstoff sind oder gemeinsam Methylen bilden, R17 ausgewählt ist aus der Gruppe, umfassend Wasserstoff, CrC4-Alkyl und AIIyI,
sowie deren Solvate, Hydrate, Stereoisomere, Diastereomere, Enantiomere und Salze,
mit der Maßgabe, dass Verbindungen mit folgender allgemeiner chemischer Formel A ausgenommen sind:
worin X Wasserstoff oder Methyl ist und die Doppelbindungen zwischen C1 und C2 sowie zwischen C6 und C7 optionale Doppelbindungen sind und
mit der weiteren Maßgabe, dass außerdem 17ß-Cyano-androst-4-en-3-on ausgenommen ist.
2. 17ß-Cyano-androst-4-en-Derivat nach Anspruch 1 , dadurch gekennzeichnet, dass R15, R16 gemeinsam Methylen bilden.
3. 17ß-Cyano-androst-4-en-Derivat nach Anspruch 1 , dadurch gekennzeichnet, dass Z ausgewählt ist aus der Gruppe, umfassend O, NOH und NNHSO2H.
4. 17ß-Cyano-androst-4-en-Derivat nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass Z für O steht.
5. 17ß-Cyano-androst-4-en-Derivat nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass R1 und R2 jeweils Wasserstoff sind oder gemeinsam α-Methylen bilden.
6. 17ß-Cyano-androst-4-en-Derivat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass R1 α-Methyl ist.
7. 17ß-Cyano-androst-4-en-Derivat nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass R4 Wasserstoff oder Chlor ist.
8. 17ß-Cyano-androst-4-en-Derivat nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass R6b Methyl oder Hydroxymethyl ist.
9. 17ß-Cyano-androst-4-en-Derivat nach einem der vorstehenden Ansprüche, dadduurrcchh ggeekkeennnnzzeeiicchhnneett,, ddaassss RR66aa,, RR66bb gemeinsam Methylen oder 1 ,2-Ethandiyl bilden oder jeweils Wasserstoff sind.
10. 17ß-Cyano-androst-4-en-Derivat nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass R7 ausgewählt ist aus der Gruppe, umfassend Wasserstoff, Methyl und Ethyl.
11. 17ß-Cyano-androst-4-en-Derivat nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass R6b, R7 gemeinsam Methylen bilden.
12. 17ß-Cyano-androst-4-en-Derivat nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass R17 ausgewählt ist aus der Gruppe, umfassend Wasserstoff, Methyl und AIIyI.
13. 17ß-Cyano-androst-4-en-Derivat nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einer der Substituenten R1, R2, R4, R6a, R6b, R7, R15, R16 und R17 ungleich Wasserstoff ist.
14. 17ß-Cyano-androst-4-en-Derivat nach Anspruch 1 , ausgewählt ist aus der Gruppe, umfassend
6ß,7ß; 15ß,16ß-Bismethylen-17ß-cyano-17α-methyl-androst-4-en-3-on,
6ß,7ß; 15ß,16ß-Bismethylen-17ß-cyano-androst-4-en-3-on,
17α-Allyl-6ß,7ß; 15ß,16ß-bismethylen-17ß-cyano-androst-4-en-3-on,
17ß-Cyano-androsta-4,6-dien-3-on,
17ß-Cyano-6α,7α-methylen-androst-4-en-3-on,
17ß-Cyano-6ß,7ß-methylen-androst-4-en-3-on,
17ß-Cyano-6,6-ethandiyl-androst-4-en-3-on,
17α-Allyl-17ß-cyano-androst-4-en-3-on,
17ß-Cyano-1 α-methyl-androst-4-en-3-on,
17ß-Cyano-androst-1 ,4-dien-3-on,
17ß-Cyano-7α-ethyl-androst-4-en-3-on,
17ß-Cyano-15ß,16ß-methylen-androst-4-en-3-on,
17ß-Cyano-15α,16α-methylen-androst-4-en-3-on,
17ß-Cyano-6,6-ethandiyl-17α-methyl-androst-4-en-3-on,
17ß-Cyano-17α-methyl-15ß,16ß-methylen-androst-4-en-3-on,
17ß-Cyano-6,6-ethandiyl-15ß,16ß-methylen-androst-4-en-3-on,
17α-Allyl-17ß-cyano-15ß,16ß-methylen-androst-4-en-3-on,
17ß-Cyano-6,6-exomethylen-15ß,16ß-methylen-androst-4-en-3-on,
17ß-Cyano-6,6-exomethylen-15α,16α-methylen-androst-4-en-3-on,
17ß-Cyano-6,6-ethandiyl-15α,16α-methylen-androst-4-en-3-on,
17ß-Cyano-15ß,16ß-methylen-androsta-4,6-dien-3-on,
17ß-Cyano-6α-methyl-15ß,16ß-methylen-androst-4-en-3-on,
17ß-Cyano-17α-methyl-15α,16α-methylen-androst-4-en-3-on,
6α,7α; 15ß,16ß-Bismethylen-17ß-cyano-androst-4-en-3-on, 17ß-Cyano-15α,16a-methylen-androsta-4,6-dien-3-on
17ß-Cyano-7α-methyl-15α,16α-methylen-androst-4-en-3-on,
17ß-Cyano-6,6-exomethylen-17α-methyl-15α,16α-methylen-androst-4-en-3-on,
17ß-Cyano-7α-methyl-androst-4-en-3-on,
17ß-Cyano-7α-methyl-15ß,16ß-nnethylen-androst-4-en-3-on und
17ß-Cyano-6-methyl-15ß,16ß-methylen-androsta-4,6-dien-3-on.
15. Verwendung des 17ß-Cyano-androst-4-en-Derivats nach einem der Ansprüche 1 bis 14 zur Herstellung eines Arzneimittels zur oralen Kontrazeption und zur Behandlung von prä-, peri- und postmenopausalen Beschwerden.
16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass das Arzneimittel gestagene und antimineralcorticoide Wirkung aufweist.
17. Arzneimittel enthaltend mindestens ein 17ß-Cyano-androst-4-en-Derivat nach einem der Ansprüche 1 bis 14 sowie mindestens einen geeigneten pharmazeutisch unbedenklichen Zusatzstoff.
18. Arzneimittel nach Anspruch 17, enthaltend außerdem mindestens ein Estrogen.
19. Arzneimittel nach Anspruch 18, dadurch gekennzeichnet, dass das Estrogen Ethinylestradiol ist.
20. Arzneimittel nach Anspruch 18, dadurch gekennzeichnet, dass das Estrogen ein natürliches Estrogen ist.
21. Arzneimittel nach Anspruch 20, dadurch gekennzeichnet, dass das natürliche Estrogen Estradiol ist.
22. Arzneimittel nach Anspruch 20, dadurch gekennzeichnet, dass das natürliche Estrogen Estradiolvalerat ist.
3. Arzneimittel nach Anspruch 20, dadurch gekennzeichnet, dass das natürliche Estrogen ein konjugiertes Estrogen ist.
EP08760962A 2007-06-12 2008-06-12 17ß-CYANO-19-ANDROST-4-EN-DERIVAT, DESSEN VERWENDUNG UND DAS DERIVAT ENTHALTENDE ARZNEIMITTEL Withdrawn EP2167525A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007027635A DE102007027635A1 (de) 2007-06-12 2007-06-12 17ß-Cyano-19-androst-4-en-Derivat, dessen Verwendung und das Derivat enthaltende Arzneimittel
US94365107P 2007-06-13 2007-06-13
PCT/EP2008/057427 WO2008152112A2 (de) 2007-06-12 2008-06-12 17ß-CYANO-19-ANDROST-4-EN-DERIVAT, DESSEN VERWENDUNG UND DAS DERIVAT ENTHALTENDE ARZNEIMITTEL

Publications (1)

Publication Number Publication Date
EP2167525A2 true EP2167525A2 (de) 2010-03-31

Family

ID=39986162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08760962A Withdrawn EP2167525A2 (de) 2007-06-12 2008-06-12 17ß-CYANO-19-ANDROST-4-EN-DERIVAT, DESSEN VERWENDUNG UND DAS DERIVAT ENTHALTENDE ARZNEIMITTEL

Country Status (15)

Country Link
US (1) US20100292184A1 (de)
EP (1) EP2167525A2 (de)
JP (1) JP2010529174A (de)
KR (1) KR20100037596A (de)
CN (1) CN101679479A (de)
AU (1) AU2008263857A1 (de)
BR (1) BRPI0812535A2 (de)
CA (1) CA2692997A1 (de)
CL (1) CL2008001720A1 (de)
DE (1) DE102007027635A1 (de)
IL (1) IL202325A0 (de)
MX (1) MX2009013631A (de)
RU (1) RU2010100337A (de)
WO (1) WO2008152112A2 (de)
ZA (1) ZA201000186B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066349A1 (de) * 2008-12-12 2010-06-17 Bayer Schering Pharma Aktiengesellschaft Verwendung von 17beta-cyano-19-androst-4-en-derivaten zur herstellung eines arzneimittels in depot-form zur parenteralen anwendung sowie depot-arzneimittel enthaltend 17beta-cyano-19-androst-4-en-derivate zur parenteralen anwendung
WO2012059594A1 (en) 2010-11-04 2012-05-10 Bayer Pharma Aktiengesellschaft Mineralcorticoid receptor antagonists for the treatment of corticoid-induced obesity
CN105085596A (zh) * 2015-08-18 2015-11-25 湖北竹溪人福药业有限责任公司 一种羧酸黄体酮的制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1183500B (de) 1962-10-12 1964-12-17 Schering Ag Verfahren zur Herstellung von alpha, beta-Methylenketonen der Steroidreihe
GB1089945A (en) * 1965-09-23 1967-11-08 British Drug Houses Ltd Steroidal-6-spirocyclopropyl-4-en-3-ones
DE1593516C3 (de) * 1966-08-25 1975-05-15 Schering Ag, 1000 Berlin Und 4619 Bergkamen 4-Halogen-1,2 alpha; 6,7 betabismethylen-delta hoch 4-3-ketosteroide, Verfahren zu ihrer Herstellung sowie diese Steroide enthaltende Mittel
DE2109555C3 (de) 1971-02-24 1980-10-30 Schering Ag Neue 15 a , 16 a -Methylensteroide, diese enthaltende Arzneimittel sowie Verfahren zu ihrei Herstellung
US3705179A (en) 1971-03-15 1972-12-05 American Home Prod Antiandrogenic steroids
FR2139708B1 (de) 1971-06-01 1974-08-23 Roussel Uclaf
NL7701384A (nl) 1977-02-10 1978-08-14 Akzo Nv Werkwijze voor het bereiden van nieuwe steroiden van de oestraanreeks.
DE2922500A1 (de) 1979-05-31 1980-12-04 Schering Ag 6 beta .7 beta
US4512986A (en) * 1983-07-26 1985-04-23 Research Triangle Institute Progrestationally active steroids
DE3402329A1 (de) 1984-01-20 1985-08-01 Schering AG, 1000 Berlin und 4709 Bergkamen 6,6-ethylen-15,16-methylen-3-oxo-17(alpha)-pregn-4-en-21,17-carbolactone, verfahren zu deren herstellung und diese enthaltende pharmazeutische praeparate
PT85891B (pt) * 1986-10-10 1990-07-31 Roussel Uclaf Processo para a preparacao de 9-alfa-hidroxi-esteroides e dos respectivos derivados 9(11)-deidro bem como de composicoes farmaceuticas que os contem
DE19651000A1 (de) 1996-12-01 1998-06-04 Schering Ag Oxyiminopregnancarbolactone
EP1359154A1 (de) * 2002-04-29 2003-11-05 BOEHRINGER INGELHEIM INTERNATIONAL GmbH Weitere Verfahren zur Herstellung von Cyproteron Azetat
ITMI20042338A1 (it) * 2004-12-06 2005-03-06 Ind Chimica Srl Processo per la preparazione di drospirenone
DE102004063864A1 (de) 2004-12-30 2006-07-13 Schering Ag 18-Methyl-19-nor-17-pregn-4-en21,17-carbolactone, sowie diese enthaltende pharmazeutische Präparate
DE102007027637A1 (de) * 2007-06-12 2008-12-18 Bayer Schering Pharma Aktiengesellschaft 17ß-Cyano-19-nor-androst-4-en-Derivat, dessen Verwendung und das Derivat enthaltende Arzneimittel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008152112A2 *

Also Published As

Publication number Publication date
AU2008263857A1 (en) 2008-12-18
DE102007027635A1 (de) 2008-12-18
WO2008152112A3 (de) 2009-04-30
RU2010100337A (ru) 2011-07-20
IL202325A0 (en) 2010-06-30
CN101679479A (zh) 2010-03-24
CL2008001720A1 (es) 2008-12-19
BRPI0812535A2 (pt) 2017-05-16
JP2010529174A (ja) 2010-08-26
ZA201000186B (en) 2011-03-30
US20100292184A1 (en) 2010-11-18
MX2009013631A (es) 2010-01-20
WO2008152112A2 (de) 2008-12-18
KR20100037596A (ko) 2010-04-09
CA2692997A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
EP2178899B1 (de) 17beta-cyano-18a-homo-19-nor-androst-4-en-derivat, dessen verwendung und das derivat enthaltende arzneimittel
EP1831240B1 (de) 18-methyl-19-nor-17-pregn-4-en-21,17-carbolactone, sowie diese enthaltende pharmazeutische präparate
EP2038294B1 (de) 18-methyl-19-nor-androst-4-en-17,17-spiroether (18-methyl-19-nor-20- spirox-4-en-3-one), sowie diese enthaltende pharmazeutische präparate
EP2170925B1 (de) 17ß-CYANO-19-NOR-ANDROST-4-EN-DERIVAT, DESSEN VERWENDUNG UND DAS DERIVAT ENTHALTENDE ARZNEIMITTEL
WO2008152112A2 (de) 17ß-CYANO-19-ANDROST-4-EN-DERIVAT, DESSEN VERWENDUNG UND DAS DERIVAT ENTHALTENDE ARZNEIMITTEL
EP2238148B1 (de) 15,16-methylen-17-(1'-propenyl)-17,3'-oxidoestra-4-en-3-on-derivat, dessen verwendung und das derivat enthaltende arzneimittel
EP2238149B1 (de) 19-nor-steroidderivate mit einer 15alpha, 16alpha-methylengruppe und einem gesättigten 17,17-spirolactonring, deren verwendung sowie diese derivate enthaltende arzneimittel
EP2238150B1 (de) 15,16-METHYLEN-17-HYDROXY-19-NOR-21-CARBONSÄURE-STEROID y-LACTON-DERIVAT, DESSEN VERWENDUNG UND DAS DERIVAT ENTHALTENDE ARZNEIMITTEL
WO1994009025A1 (de) Gestagen wirksame 19,11-überbrückte 4-estrene
EP2238147B1 (de) 17-(1'-propenyl)-17-3'-oxidoestra-4-en-3-on-derivat, dessen verwendung und das derivat enthaltende arzneimittel
EP2238151A1 (de) 17-hydroxy-19-nor-21-carbonsäure-steroid y-lacton-derivat, dessen verwendung und das derivat enthaltende arzneimittel
WO2010066349A1 (de) Verwendung von 17beta-cyano-19-androst-4-en-derivaten zur herstellung eines arzneimittels in depot-form zur parenteralen anwendung sowie depot-arzneimittel enthaltend 17beta-cyano-19-androst-4-en-derivate zur parenteralen anwendung
WO2010066354A1 (de) VERWENDUNG VON 17β-CYANO-18A-HOMO-19-NOR-ANDROST-4-EN-DERIVATEN ZUR HERSTELLUNG EINES ARZNEIMITTELS IN DEPOT-FORM ZUR PARENTERALEN ANWENDUNG SOWIE DEPOT-ARZNEIMITTEL ENTHALTEND 17β-CYANO-18A-HOMO-19-NOR-ANDROST-4-EN-DERIVATE ZUR PARENTERALEN ANWENDUNG
DE102007063499A1 (de) Steroid-17,17-Lactol-Derivat, dessen Verwendung und das Derivat enthaltende Arzneimittel
WO2010066355A1 (de) VERWENDUNG VON 17β- CYANO-19-NOR-ANDROST-4-EN-DERIVATEN ZUR HERSTELLUNG EINES ARZNEIMITTELS IN DEPOT-FORM ZUR PARENTERALEN ANWENDUNG SOWIE DEPOT-ARZNEIMITTEL ENTHALTEND 17β-CYANO-19-NOR-ANDROST-4-EN-DERIVATE ZUR PARENTERALEN ANWENDUNG
DE102007063498A1 (de) 15,16-Methylen-steroid-17,17-Lactol-Derivat, dessen Verwendung und das Derivat enthaltende Arzneimittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100112

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100317

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER PHARMA AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140531