EP2162917A1 - Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants - Google Patents

Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants

Info

Publication number
EP2162917A1
EP2162917A1 EP08768806A EP08768806A EP2162917A1 EP 2162917 A1 EP2162917 A1 EP 2162917A1 EP 08768806 A EP08768806 A EP 08768806A EP 08768806 A EP08768806 A EP 08768806A EP 2162917 A1 EP2162917 A1 EP 2162917A1
Authority
EP
European Patent Office
Prior art keywords
forming
switching element
reversible resistance
memory cell
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08768806A
Other languages
German (de)
English (en)
Inventor
April Schricker
S. Brad Herner
Mark Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SanDisk 3D LLC
Original Assignee
SanDisk 3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/772,088 external-priority patent/US7902537B2/en
Priority claimed from US11/772,082 external-priority patent/US7824956B2/en
Application filed by SanDisk 3D LLC filed Critical SanDisk 3D LLC
Publication of EP2162917A1 publication Critical patent/EP2162917A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/028Formation of switching materials, e.g. deposition of layers by conversion of electrode material, e.g. oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Definitions

  • the present invention relates to non-volatile memories and more particularly to a memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same.
  • Non-volatile memories formed from reversible resistance-switching elements are known.
  • U.S. Patent Application Serial No. 11/125,939 filed May 9, 2005 and titled “REWRITEABLE MEMORY CELL COMPRISING A DIODE AND A RESISTANCE-SWITCHING MATERIAL" (hereinafter "the ⁇ 939
  • a rewriteable non-volatile memory cell that includes a diode coupled in series with a reversible resistivity-switching material such as a metal oxide or metal nitride.
  • a method of forming a memory cell includes (1) forming a steering element above a substrate; and (2) forming a reversible resistance-switching element coupled to the steering element using a selective growth process.
  • a method of forming a memory cell includes (1) forming a first conductor above a substrate; (2) forming a reversible resistance-switching element above the first conductor using a selective growth process; (3) forming a diode above the first conductor; and (4) forming a second conductor above the diode and the reversible resistance- switching element.
  • a method of forming a memory cell includes (1) forming a first conductor above a substrate; (2) forming a titanium nitride layer above the first conductor; (3) selectively forming a reversible resistance-switching element by oxidizing the titanium nitride layer; (4) forming a vertical polycrystalline diode above the reversible resistance- switching element; and (5) forming a second conductor above the vertical polycrystalline diode.
  • a method of forming a memory cell includes (1) forming a thin film transistor having a source region and a drain region; (2) forming a first conductor coupled to the source region or the drain region of the transistor; (3) forming a titanium nitride layer above the first conductor; (4) selectively forming a reversible resistance-switching element by oxidizing the titanium nitride layer; and (5) forming a second conductor above the reversible resistance- switching element.
  • a memory cell in a fifth aspect of the invention, includes (1) a steering element; and (2) a reversible resistance-switching element coupled to the steering element and formed using a selective growth process.
  • a memory cell in a sixth aspect of the invention, includes (1) a first conductor; (2) a second conductor formed above the first conductor; (3) a diode formed between the first and second conductors; and (4) a reversible resistance-switching element formed between the first and second conductors using a selective growth process .
  • a memory cell in a seventh aspect of the invention, includes (1) a first conductor; (2) a titanium nitride layer formed above the first conductor; (3) a reversible resistance-switching element selectively formed by oxidizing the titanium nitride layer; (4) a vertical polycrystalline diode formed above the reversible resistance-switching element; and (5) a second conductor formed above the vertical polycrystalline diode.
  • a memory cell in an eighth aspect of the invention, includes (1) a thin film transistor having a source region and a drain region; (2) a first conductor coupled to the source region or the drain region; (3) a titanium nitride layer formed above the first conductor; (4) a reversible resistance-switching element selectively formed by oxidizing the titanium nitride layer; and (5) a second conductor formed above the reversible resistance-switching element .
  • a plurality of nonvolatile memory cells include (1) a first plurality of substantially parallel, substantially coplanar conductors extending in a first direction; (2) a plurality of diodes; (3) a plurality of reversible resistance- switching elements; and (4) a second plurality of substantially parallel, substantially coplanar conductors extending in a second direction different from the first direction.
  • one of the diodes and one of the reversible resistance-switching elements are arranged in series, disposed between one of the first conductors and one of the second conductors.
  • Each reversible resistance- switching element is formed using a selective growth process .
  • a monolithic three dimensional memory array in a tenth aspect of the invention, includes a first memory level formed above a substrate and having a plurality of memory cells. Each memory cell of the first memory level includes (1) a steering element; and (2) a reversible resistance-switching element coupled to the steering element and formed using a selective growth process.
  • the monolithic three dimensional memory array also includes at least a second memory level monolithically formed above the first memory level. Numerous other aspects are provided.
  • FIG. 1 is a schematic illustration of an exemplary memory cell provided in accordance with the present invention.
  • FIG. 2A is a simplified perspective view of a first embodiment of a memory cell provided in accordance with the present invention.
  • FIG. 2B is a simplified perspective view of a portion of a first memory level formed from a plurality of the memory cells of FIG. 2A.
  • FIG. 2C is a simplified perspective view of a portion of a first exemplary three dimensional memory array provided in accordance with the present invention.
  • FIG. 2D is a simplified perspective view of a portion of a second exemplary three dimensional memory array provided in accordance with the present invention.
  • FIG. 3 is a cross-sectional view of an exemplary embodiment of the memory cell of FIG. 2A.
  • FIGS. 4A-D illustrate cross sectional views of a portion of a substrate during fabrication of a single memory level in accordance with the present invention.
  • FIG. 5 is a cross sectional view of an alternative memory cell provided in accordance with the present invention.
  • fabricating memory devices from rewriteable resistivity-switching materials is difficult.
  • many rewriteable resistivity-switching materials are difficult to etch chemically, increasing fabrication costs and complexity associated with their use in integrated circuits.
  • a memory cell that includes a reversible resistivity-switching material formed using a selective growth process so that the reversible resistivity-switching material may be used within the memory cell without being etched.
  • a reversible resistance-switching element may be formed using titanium oxide as a reversible resistivity-switching material. Titanium oxide films have been shown to be suitable for use in memory cells, as described, for example, in the V 939 Application, previously incorporated.
  • Titanium oxide films such as TiO, TiO 2 , TiO x , TiO x N y , etc., are difficult to etch chemically.
  • a titanium oxide layer may be used in a reversible resistance- switching element of a memory cell without the titanium oxide layer being etched.
  • a reversible resistance-switching element may be formed by oxidizing a titanium-containing layer, such as titanium nitride, that is easier to pattern and etch than titanium oxide. In this manner, only the underlying titanium-containing layer (e.g., titanium nitride or titanium) is patterned and/or etched prior to oxidation of the titanium-containing layer and not the titanium oxide layer.
  • titanium oxide may be selectively formed by rapid thermal oxidation of a titanium-containing layer in an oxygen environment such as O 2 , ozone, a combination of the same, or using any other suitable oxidizing species.
  • titanium oxide may be formed by oxidizing a titanium-containing layer using oxygen diffusion in a chemical vapor deposition (CVD) chamber with an ozone or other oxygen source, using gaseous or liquid ozone cleaning, or using any other suitable oxidation process.
  • CVD chemical vapor deposition
  • a layer of Ta, TaN, Nb, NbN, Al, AlN, Hf, HfN, V, VN, etc. may be deposited on a substrate, patterned, etched and/or oxidized similarly to a titanium-containing layer so as to form a reversible resistivity-switching material such as Ta 2 O 5 , Nb 2 O 5 , Al 2 O 3 , HfO 2 , V 2 O 5 , etc.
  • FIG. 1 is a schematic illustration of an exemplary memory cell 100 provided in accordance with the present invention.
  • the memory cell 100 includes a reversible resistance-switching element 102 coupled to a steering element 104.
  • the reversible resistance-switching element 102 includes a reversible resistivity-switching material (not separately shown) having a resistance that may be reversibly switched between two or more states.
  • the reversible resistivity-switching material of the element 102 may be in an initial, low-resistivity state upon fabrication that is switchable to a high-resistivity state upon application of a first voltage and/or current.
  • Application of a second voltage and/or current may return the reversible resistivity-switching material to a low-resistivity state.
  • the reversible resistance-switching element 102 may be in an initial, high-resistance state upon fabrication that is reversibly switchable to a low- resistance state upon application of the appropriate voltage (s) and/or current (s).
  • one resistance state may represent a binary "0" while another resistance state may represent a binary "1", although more than two data/resistance states may be used.
  • Numerous reversible resistivity-switching materials and operation of memory cells employing reversible resistance- switching elements are described, for example, in the ⁇ 939 Application, previously incorporated.
  • the reversible resistance-switching element 102 is formed using a selective growth process. As will be described further below, use of a selective growth process allows a reversible resistivity-switching material to be provided within the reversible resistance-switching element 102 without the reversible resistivity-switching material having to be etched. Fabrication of the reversible resistance-switching element 102 thereby is simplified.
  • the steering element 104 may include a thin film transistor, a diode, or another suitable steering element that exhibits non-ohmic conduction by selectively limiting the voltage across and/or the current flow through the reversible resistance-switching element 102. In this manner, the memory cell 100 may be used as part of a two or three dimensional memory array and data may be written to and/or read from the memory cell 100 without affecting the state of other memory cells in the array.
  • Exemplary embodiments of the memory cell 100, the reversible resistance-switching element 102 and the steering element 104 are described below with reference to FIGS. 2A- 5.
  • FIG. 2A is a simplified perspective view of a first embodiment of a memory cell 200 provided in accordance with the present invention.
  • the memory cell 200 includes a reversible resistance-switching element 202 (shown in phantom) coupled in series with a diode 204 between a first conductor 206 and a second conductor 208.
  • a barrier layer 209 such as titanium nitride, tantalum nitride, tungsten nitride, etc., may be provided between the reversible resistance-switching element 202 and the diode 204.
  • the reversible resistance-switching element 202 is selectively formed so as to simplify fabrication of the memory cell 200.
  • the reversible resistance-switching element 202 includes at least a portion of a titanium oxide layer formed by oxidizing a titanium-containing layer such as titanium nitride.
  • a titanium nitride layer or another similar form of titanium may be deposited above or below the diode 204, patterned and etched (e.g., such as with the first conductor 206) .
  • the titanium nitride (or other) layer then may be oxidized to form titanium oxide (e.g., using rapid thermal oxidation or another oxidation process) .
  • a titanium nitride or similar layer 210 is formed over, and is patterned and etched with, the first conductor 206.
  • the titanium nitride or similar layer 210 then is oxidized to form a titanium oxide layer 212.
  • a portion of the titanium oxide layer 212 that vertically overlaps and/or aligns with the diode 204 may serve as the reversible resistance-switching element 202 between the diode 204 and the first conductor 206 of the memory cell 200.
  • only a portion, such as one or more filaments, of the reversible resistance- switching element 202 may switch and/or be switchable.
  • the titanium oxide layer 212 may include, for example, TiO, TiO 2 , TiO x , TiO x N y or the like. While the reversible resistance- switching element 202 is shown as being positioned below the diode 204 in FIG. 2A, it will be understood that in alternative embodiments, the reversible resistance-switching element 202 may be positioned above the diode 204. Additional details for the reversible resistance-switching element 202 are described below with reference to FIG. 3.
  • the diode 204 may include any suitable diode such as a vertical polycrystalline p-n or p-i-n diode, whether upward pointing with an n-region above a p-region of the diode or downward pointing with a p-region above an n-region of the diode. Exemplary embodiments of the diode 204 are described below with reference to FIG. 3.
  • the first and/or second conductor 206, 208 may include any suitable conductive material such as tungsten, any appropriate metal, heavily doped semiconductor material, a conductive suicide, a conductive silicide-germanide, a conductive germanide, or the like.
  • the first and second conductors 206, 208 are rail- shaped and extend in different directions (e.g., substantially perpendicular to one another) .
  • Other conductor shapes and/or configurations may be used.
  • barrier layers, adhesion layers, antireflection coatings and/or the like may be used with the first and/or second conductors 206, 208 to improve device performance and/or aid in device fabrication.
  • reversible resistance-switching element 202 may be used to form the reversible resistance-switching element 202.
  • materials such as Ta, TaN, Nb, NbN, Al, AlN, Hf, HfN, V, VN, etc., may be similarly deposited over (and/or patterned and etched with) the first conductor 206 and then oxidized to form the layer 212, which includes the reversible resistance-switching element 202.
  • FIG. 2B is a simplified perspective view of a portion of a first memory level 214 formed from a plurality of the memory cells 200 of FIG. 2A.
  • the memory array 214 is a "cross-point" array including a plurality of bit lines (second conductors 208) and word lines (first conductors 206) to which multiple memory cells are coupled (as shown) .
  • Other memory array configurations may be used, as may multiple levels of memory.
  • FIG. 2C is a simplified perspective view of a portion of a monolithic three dimensional array 216 that includes a first memory level 218 positioned below a second memory level 220.
  • each memory level 218, 220 includes a plurality of memory cells 200 in a cross-point array. It will be understood that one or more additional layers (e.g., an interlevel dielectric) may be present between the first and second memory levels 218 and 220, but are not shown in FIG. 2C for simplicity. Other memory array configurations may be used, as may additional levels of memory. In the embodiment of FIG. 2C, all diodes may be present.
  • the memory levels may be formed, as described, for example, in U.S. Patent No. 6,952,030, "High-density three-dimensional memory cell” which is hereby incorporated by reference herein in its entirety for all purposes.
  • the upper conductors of a first memory level may be used as the lower conductors of a second memory level that is positioned above the first memory level as shown in FIG. 2D.
  • the diodes on adjacent memory levels preferably point in opposite directions as described in U.S.
  • the diodes of the first memory level 218 may be upward pointing diodes as indicated by arrow Ai (e.g., with p regions at the bottom of the diodes), while the diodes of the second memory level 220 may be downward pointing diodes as indicated by arrow A 2 (e.g., with n regions at the bottom of the diodes), or vice versa.
  • a monolithic three dimensional memory array is one in which multiple memory levels are formed above a single substrate, such as a wafer, with no intervening substrates.
  • the layers forming one memory level are deposited or grown directly over the layers of an existing level or levels.
  • stacked memories have been constructed by forming memory levels on separate substrates and adhering the memory levels atop each other, as in Leedy, U.S. Patent No. 5,915,167, "Three dimensional structure memory.”
  • the substrates may be thinned or removed from the memory levels before bonding, but as the memory levels are initially formed over separate substrates, such memories are not true monolithic three dimensional memory arrays.
  • FIG. 3 is a cross-sectional view of an exemplary embodiment of the memory cell 200 of FIG. 2A.
  • the memory cell 200 includes the reversible resistance-switching element 202 (e.g., a portion of a layer of reversible resistivity-switching material, namely titanium oxide layer 212 in this embodiment) , the diode 204 and the first and second conductors 206, 208.
  • the reversible resistance-switching element 202 may be a portion of the titanium oxide layer 212 that vertically overlies and/or overlaps with the diode 204.
  • the reversible resistance- switching element 202 is formed by a selective growth process.
  • the titanium oxide layer 212 may be selectively formed on the titanium-containing layer 210 by oxidizing the titanium-containing layer 210. In this manner, only the titanium-containing layer 210, and not the titanium oxide layer 212, is etched, such as during the pattern and etch step(s) for the first conductor 206.
  • the titanium-containing layer 210 may be oxidized by any suitable process. For instance, the titanium-containing layer 210 may be oxidized using thermal oxidation in oxygen, ozone, a combination of the same or another oxygen source (e.g., using rapid thermal oxidation).
  • the titanium-containing layer 210 may be oxidized using oxygen diffusion in a CVD chamber with an ozone or other oxygen source, using gaseous or liquid ozone cleaning, or using any other suitable oxidation process to form titanium oxide.
  • other reversible resistance-switching materials may be similarly formed by oxidizing Ta, TaN, Nb, NbN, Al, AlN, Hf, HfN, V, VN, etc.
  • rapid thermal oxidation may be performed at a temperature of about 300 0 C to about 800 0 C for about one second to about 5 minutes at an oxygen flow rate of about 2 seem to about 40 seem, depending on the desired oxide thickness and/or other properties.
  • Other oxidizing species, temperatures, times and/or flow rates may be used.
  • Oxidation by ozone diffusion in a CVD chamber may be performed at a temperature of about 300 0 C to about 800°C, more preferably at a temperature of about 350 0 C to about 450 0 C, for about 2 minutes to about 4 hours, more preferably for about 15 to 25 minutes, at a suitable ozone flow rate, such as between about 10 and 60 seem, depending on the desired oxide thickness and/or other properties.
  • Other oxidizing species, temperatures, times and/or flow rates may be used.
  • any desired thickness of titanium oxide may be formed.
  • the diode 204 may be a vertical p-n or p-i-n diode, which may either point upward or downward.
  • adjacent memory levels preferably have diodes that point in opposite directions such as downward-pointing p-i-n diodes for a first memory level and upward-pointing p- i-n diodes for an adjacent, second memory level (or vice versa) .
  • the diode 204 may be formed from a polycrystalline semiconductor material such as polysilicon, a polycrystalline silicon-germanium alloy, polygermanium or any other suitable material.
  • the diode 204 may include a heavily doped n+ polysilicon region 302, a lightly doped or an intrinsic (unintentionally doped) polysilicon region 304 above the n+ polysilicon region 302 and a heavily doped, p+ polysilicon region 306 above the intrinsic region 304.
  • a thin (e.g., a few hundred angstroms or less) germanium and/or silicon-germanium alloy layer (not shown) , with about 10 at% or more of germanium when using a silicon-germanium alloy layer, may be formed on the n+ polysilicon region 302 to prevent and/or reduce dopant migration from the n+ polysilicon region 302 into the intrinsic region 304, as described, for example, in U.S. Patent Application Serial No.
  • a barrier layer 308 such as titanium nitride, tantalum nitride, tungsten nitride, etc., may be formed between the titanium oxide layer 212 and the n+ region 302 (e.g., to prevent and/or reduce migration of metal atoms into the polysilicon regions) .
  • a metal barrier layer may form an unwanted rectifying contact between the barrier layer 308 and the titanium oxide layer 212.
  • a thin conductive layer (not shown) , such as titanium, nickel, other conductive materials, etc., may be formed between the titanium oxide layer 212 and the barrier layer 308 (e.g., for work function tuning, to reduce or prevent formation of a rectifying contact) .
  • a suicide layer 310 may be formed on the diode 204 to place the deposited silicon in a low resistivity state, as fabricated.
  • a low resistivity state allows for easier programming of the memory cell 200 as a large voltage is not required to switch the deposited silicon to a low resistivity state.
  • a silicide-forming metal layer 312 such as titanium or cobalt, may be deposited on the p+ polysilicon region 306.
  • the silicide-forming metal layer 312 and the deposited silicon of the diode 204 interact to form the suicide layer 310, consuming all or a portion of the silicide-forming metal layer 312.
  • silicide-forming materials such as titanium and cobalt react with deposited silicon during annealing to form a suicide layer.
  • the lattice spacings of titanium suicide and cobalt suicide are close to that of silicon, and it appears that such suicide layers may serve as "crystallization templates" or "seeds" for adjacent deposited silicon as the deposited silicon crystallizes (e.g., the suicide layer 310 enhances the crystalline structure of the silicon diode 204 during annealing) .
  • Lower resistivity silicon thereby is provided. Similar results may be achieved for silicon-germanium alloy and/or germanium diodes.
  • the top conductor 208 is formed.
  • one or more barrier layers and/or adhesion layers 314 may be formed over the silicide-forming metal layer 312 prior to deposition of a conductive layer 315.
  • the conductive layer 315, barrier layer 314 and silicide-forming metal layer 312 may be patterned and/or etched together to form the top conductor 208.
  • the memory cell 200 may be annealed to crystallize the deposited semiconductor material of the diode 204 (and/or to form the suicide layer 310) .
  • the anneal may be performed for about 10 seconds to about 2 minutes in nitrogen at a temperature of about 600 to 800 0 C, and more preferably between about 650 and 750 0 C. Other annealing times, temperatures and/or environments may be used.
  • the suicide layer 310 may serve as a "crystallization template" or “seed” during annealing for underlying deposited semiconductor material that forms the diode 204. Lower resistivity diode material thereby is provided.
  • FIGS. 4A-D illustrate cross sectional views of a portion of a substrate 400 during fabrication of a first memory level in accordance with the present invention.
  • the single memory level includes a plurality of memory cells that each include a reversible resistance-switching element formed using a selective growth process. Additional memory levels may be fabricated above the first memory level (as described previously with reference to FIGS. 2C-2D) .
  • the substrate 400 is shown as having already undergone several processing steps.
  • the substrate 400 may be any suitable substrate such as a silicon, germanium, silicon-germanium, undoped, doped, bulk, silicon-on-insulator (SOI) or other substrate with or without additional circuitry.
  • the substrate 400 may include one or more n-well or p-well regions (not shown) .
  • the isolation layer 402 is formed above the substrate 400.
  • the isolation layer 402 may be a layer of silicon dioxide, silicon nitride, silicon oxynitride or any other suitable insulating layer.
  • the isolation layer 402 may be a shallow trench isolation (STI) region formed by etching a trench in the substrate 400, depositing a dielectric such as silicon dioxide, silicon nitride or another dielectric over the substrate 400 to fill the trench and planarizing the substrate 400 to re- expose a top surface 403 of the substrate 400.
  • STI shallow trench isolation
  • a silicon nitride or similar protective layer may be formed over active regions (not shown) of the substrate 400 prior to isolation region formation (e.g., to protect the active regions).
  • a localized oxidation of silicon (LOCOS) process or any other suitable process may be employed to define the isolation layer 402.
  • an adhesion layer 404 is formed over the isolation layer 402 (e.g., by physical vapor deposition or another method).
  • the adhesion layer 404 may be about 20 to about 500 angstroms, and preferably about 100 angstroms, of titanium nitride or another suitable adhesion layer such as tantalum nitride, tungsten nitride, combinations of one or more adhesion layers, or the like. Other adhesion layer materials and/or thicknesses may be employed.
  • the adhesion layer 404 may be optional.
  • the conductive layer 406 may include any suitable conductive material such as tungsten or another appropriate metal, heavily doped semiconductor material, a conductive suicide, a conductive silicide-germanide, a conductive germanide, or the like deposited by any suitable method (e.g., chemical vapor deposition, physical vapor deposition, etc.). In at least one embodiment, the conductive layer 406 may comprise about 200 to about 2500 angstroms of tungsten. Other conductive layer materials and/or thicknesses may be used.
  • a titanium-containing layer 407 such as titanium nitride, is formed over the conductive layer 406 (e.g., using physical vapor deposition or another method) .
  • the titanium-containing layer 407 includes about 20 to about 1200 angstroms of titanium nitride.
  • Other titanium- containing layer materials such as titanium, a titanium alloy, TiSi 2 , TiW, etc., and/or thicknesses may be used.
  • the adhesion layer 404, the conductive layer 406 and the titanium-containing layer 407 are patterned and etched.
  • the adhesion layer 404, the conductive layer 406 and the titanium-containing layer 407 may be patterned and etched using conventional lithography techniques, with a soft or hard mask, and wet or dry etch processing.
  • the adhesion layer 404, the conductive layer 406 and the titanium-containing layer 407 are patterned and etched so as to form substantially parallel, substantially co-planar conductors 408 (as shown in FIG. 4A) .
  • Exemplary widths for the conductors 408 and/or spacings between the conductors 408 range from about 200 to about 2500 angstroms, although other conductor widths and/or spacings may be used.
  • a dielectric layer 410 is deposited over the substrate 400 so as to fill the voids between the conductors 408.
  • a dielectric layer 410 is deposited over the substrate 400 so as to fill the voids between the conductors 408.
  • approximately 3000-7000 angstroms of silicon dioxide may be deposited on the substrate 400 and planarized using chemical mechanical polishing or an etchback process to form a planar surface 412.
  • the planar surface 412 includes exposed, discrete regions 407a-f of titanium-containing layer material 407 separated by dielectric material 410, as shown.
  • the discrete titanium-containing layer regions 407a-f may be used to selectively form a titanium oxide reversible resistance-switching element for each memory cell being formed above the substrate 400 (as described further below) .
  • dielectric materials such as silicon nitride, silicon oxynitride, low K dielectrics, etc., and/or other dielectric layer thicknesses may be used.
  • Exemplary low K dielectrics include carbon doped oxides, silicon carbon layers, or the like.
  • the titanium-containing layer 407 may be replaced with a layer of the material to be oxidized, such as Ta, TaN, Nb, NbN, Al, AlN, Hf, HfN, V, VN, etc.
  • a reversible resistance-switching element 413a-f is formed over each titanium-containing layer region 407a-f.
  • a titanium oxide layer may be selectively formed over each titanium-containing layer region 407a-f by oxidizing the titanium-containing layer regions 407a-f. Some or all of each titanium-containing layer region 407a-f may be consumed during oxidation to create reversible resistance-switching elements 413a-f.
  • any suitable method may be employed to oxidize the titanium-containing layer regions 407a-f such as rapid thermal oxidation in an oxygen environment such as O 2 , ozone, a combination of the same, or using any other suitable oxidizing species.
  • a titanium- containing layer region may be oxidized using oxygen diffusion in a CVD chamber with an ozone or other oxygen source, using gaseous or liquid ozone cleaning, or using any other suitable oxidation process to form titanium oxide.
  • the diode structures of each memory cell are formed.
  • An optional thin conductive layer (not shown) , such as about 10 to about 300 angstroms of titanium, nickel, etc., may be formed over the titanium oxide layer regions (e.g., for work function tuning).
  • a barrier layer 414 such as titanium nitride, tantalum nitride, tungsten nitride, etc., may also be formed over the titanium oxide layer regions prior to diode formation (e.g., to prevent and/or reduce migration of metal atoms into the polysilicon regions) .
  • the barrier layer 414 may be on top of, in addition to or in place of the thin conductive layer and may be about 20 to about 500 angstroms, and preferably about 100 angstroms, of titanium nitride or another suitable barrier layer such as tantalum nitride, tungsten nitride, combinations of one or more barrier layers, barrier layers in combination with other layers such as titanium/titanium nitride, tantalum/tantalum nitride or tungsten/tungsten nitride stacks, or the like. Other barrier layer materials and/or thicknesses may be employed.
  • each diode may be a vertical p-n or p-i-n diode as previously described.
  • each diode is formed from a polycrystalline semiconductor material such as polysilicon, a polysilicon-germanium alloy, germanium or any other suitable material. For convenience, formation of a polysilicon, downward-pointing diode is described herein. It will be understood that other materials and/or diode configurations may be used.
  • n+ silicon layer 416 is deposited on the barrier layer 414.
  • the n+ silicon layer 416 is in an amorphous state as deposited.
  • the n+ silicon layer 416 is in a polycrystalline state as deposited.
  • Chemical vapor deposition or another suitable process may be employed to deposit the n+ silicon layer 416.
  • the n+ silicon layer 416 may be formed, for example, from about 100 to about 1000 angstroms, preferably about 100 angstroms, of phosphorus or arsenic doped silicon having a doping concentration of about 10 21 cm "3 .
  • n+ silicon layer 416 may be doped in situ, for example, by flowing a donor gas during deposition. Other doping methods may be used (e.g., implantation).
  • a lightly doped, intrinsic and/or unintentionally doped silicon layer 418 is formed over the n+ silicon layer 416.
  • the intrinsic silicon layer 418 is in an amorphous state as deposited. In other embodiments, the intrinsic silicon layer 418 is in a polycrystalline state as deposited. Chemical vapor deposition or another suitable deposition method may be employed to deposit the intrinsic silicon layer 418.
  • the intrinsic silicon layer 418 may be about 500 to about 4800 angstroms, preferably about 2500 angstroms, in thickness. Other intrinsic layer thicknesses may be used.
  • a thin (e.g., a few hundred angstroms or less) germanium and/or silicon-germanium alloy layer may be formed on the n+ silicon layer 416 prior to deposition of the intrinsic silicon layer 418 to prevent and/or reduce dopant migration from the n+ silicon layer 416 into the intrinsic silicon layer 418 (as described in the ⁇ 331 Application, previously incorporated) .
  • the n+ silicon layer 416, the intrinsic silicon layer 418, the barrier layer 414 and/or any conductive layer are patterned and etched so as to form silicon pillars 420 overlying the conductors 408 (as shown) .
  • Conventional lithography techniques, with a soft or hard mask, and wet or dry etch processing may be employed to form the silicon pillars 420.
  • a dielectric layer 422 is deposited to fill the voids between the silicon pillars 420.
  • a dielectric layer 422 is deposited to fill the voids between the silicon pillars 420.
  • approximately 200- 7000 angstroms of silicon dioxide may be deposited and planarized using chemical mechanical polishing or an etchback process to form a planar surface 424.
  • the planar surface 424 includes exposed top surfaces of the silicon pillars 420 separated by dielectric material 422, as shown.
  • dielectric materials such as silicon nitride, silicon oxynitride, low K dielectrics, etc., and/or other dielectric layer thicknesses may be used.
  • Exemplary low K dielectrics include carbon doped oxides, silicon carbon layers, or the like.
  • a p+ silicon region 426 is formed within each silicon pillar 420, near the upper surface of the silicon pillars 420.
  • a blanket p+ implant may be employed to implant boron a predetermined depth within the silicon pillars 420.
  • Exemplary implantable molecular ions include BF 2 , BF 3 , B and the like.
  • an implant dose of about 1- 5xlO 15 ions/cm 2 may be employed.
  • Other implant species and/or doses may be used.
  • a diffusion process may be employed to dope the upper portion of the silicon pillars 420.
  • the p+ silicon regions 426 have a depth of about 100-700 angstroms, although other p+ silicon region sizes may be used. (Note that if the diodes to be formed are upward pointing p-n or p-i-n diodes, the upper portion of the silicon pillars 420 will be doped n-type) . Each silicon pillar 420 thereby includes a downward-pointing, p-i-n diode 428. With reference to FIG. 4D, after completion of the p-i- n diodes 428, a silicide-forming metal layer 430 is deposited over the substrate 400. Exemplary silicide- forming metals include sputter or otherwise deposited titanium or cobalt.
  • the silicide- forming metal layer 430 has a thickness of about 10 to about 200 angstroms, preferably about 20 to about 50 angstroms and more preferably about 20 angstroms. Other silicide-forming metal layer materials and/or thicknesses may be used. As will be described further below, annealing of the structure causes metal from the silicide-forming metal layer 430 and silicon from the p+ silicon regions 426 to react to form a suicide region 432 adjacent each p+ silicon region 426.
  • a second set of conductors 436 may be formed above the diodes 428 in a manner similar to the formation of the bottom set of conductors 408.
  • one or more barrier layers and/or adhesion layers 438 may be placed over the silicide-forming metal layer 430 prior to deposition of a conductive layer 440 used to form the upper, second set of conductors 436.
  • the conductive layer 440 may be formed from any suitable conductive material such as tungsten, another suitable metal, heavily doped semiconductor material, a conductive suicide, a conductive silicide-germanide, a conductive germanide, or the like deposited by any suitable method (e.g., chemical vapor deposition, physical vapor deposition, etc.). Other conductive layer materials may be used.
  • Barrier layers and/or adhesion layers 438 may include titanium nitride or another suitable layer such as tantalum nitride, tungsten nitride, combinations of one or more layers, or any other suitable material (s).
  • the deposited conductive layer 440, barrier and/or adhesion layer 438, and/or silicide-forming metal layer 430 may be patterned and/or etched to form the second set of conductors 436.
  • the upper conductors 436 are substantially parallel, substantially coplanar conductors that extend in a different direction than the lower conductors 408.
  • the structure may be annealed to crystallize the deposited semiconductor material of the diodes 428 (and/or to form the suicide regions 432) .
  • the anneal may be performed for about 10 seconds to about 2 minutes in nitrogen at a temperature of about 600 to 800 0 C, and more preferably between about 650 and 750 0 C. Other annealing times, temperatures and/or environments may be used.
  • the suicide regions 432 may serve as
  • diodes 432 “crystallization templates” or “seeds” during annealing for underlying deposited semiconductor material that forms the diodes 432 (e.g., changing any amorphous semiconductor material to polycrystalline semiconductor material and/or improving overall crystalline properties of the diodes 432). Lower resistivity diode material thereby is provided.
  • FIG. 5 is a cross sectional view of an exemplary memory cell 500 provided in accordance with the present invention.
  • the memory cell 500 includes a thin film transistor (TFT) , such as a thin film, metal oxide semiconductor field effect transistor (MOSFET) 502 coupled to a reversible resistance- switching element 504 formed above a substrate 505.
  • TFT thin film transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • the MOSFET 502 may be an n-channel or a p-channel thin film MOSFET formed on any suitable substrate.
  • an insulating region 506 such as silicon dioxide, silicon nitride, oxynitride, etc., is formed above the substrate 505 and a deposited semiconductor region 507 such as deposited silicon, germanium, silicon-germanium, etc., is formed above the insulating region 506.
  • the thin film MOSFET 502 is formed within the deposited semiconductor region 507 and is insulated from the substrate 505 by the insulating region 506.
  • the MOSFET 502 includes source/drain regions 508, 510 and channel region 512, as well as gate dielectric layer 514, gate electrode 516 and spacers 518a-b.
  • the source/drain regions 508, 510 may be doped p-type and the channel region 512 may be doped n-type, while in other embodiments the source/drain regions 508, 510 may be doped n-type and the channel region 512 may be doped p- type. Any other MOSFET configuration or any suitable fabrication techniques may be employed for the thin film MOSFET 502.
  • the MOSFET 502 may be electrically isolated by isolation regions (not shown) formed in the substrate 506 (e.g., formed using an STI, LOCOS or other similar process). Alternatively, gate, source and/or drain regions of the MOSFET 502 may be shared with other transistors (not shown) formed on the substrate 506.
  • the reversible resistance-switching element 504 includes a lower conductor 520, a titanium-containing layer 521 formed over the lower conductor 520, a titanium oxide layer 522 selectively grown over the titanium-containing layer 521 and an upper conductor 524 formed over the reversible resistivity-switching material (titanium oxide layer 522) .
  • the upper and lower conductors 520, 524 may include any suitable conductive material such as tungsten, another metal, heavily doped semiconductor material, a conductive suicide, a conductive silicide-germanide, a conductive germanide, or the like.
  • one or more barrier and/or adhesion layers may be provided between the upper and lower conductors 520, 524 and the reversible resistivity-switching material (titanium oxide layer 522) .
  • the reversible resistivity- switching material (titanium oxide layer 522) is formed using a selective growth process as previously described with reference to the embodiments of FIGS. 1-4D.
  • the titanium oxide layer 522 may be selectively formed by rapid thermal oxidation of the titanium-containing layer 521 in an oxygen environment such as O 2 , ozone, a combination of the same, or using any other suitable oxidizing species.
  • the titanium oxide layer 522 may be formed by oxidizing the titanium-containing layer 521 using oxygen diffusion in a chemical vapor deposition (CVD) chamber with an ozone or other oxygen source, using gaseous or liquid ozone cleaning, or using any other suitable oxidation process.
  • CVD chemical vapor deposition
  • the need for etching of titanium oxide layers may be eliminated and memory cell fabrication significantly simplified.
  • Other materials may be selectively oxidized in accordance with the present invention to form reversible resistivity-switching materials for use in memory cell 500 (e.g., Ta, TaN, Nb, NbN, Al, AlN, Hf, HfN, V, VN, etc.). As shown in FIG.
  • the reversible resistance-switching element 504 is coupled to the source/drain region 510 of the MOSFET 502 by a first conductive plug 526 and to a first metal level (Ml) line 528 by a second conductive plug 530 (which extend through a dielectric layer 532) .
  • a third conductive plug 534 couples the source/drain region 508 of the MOSFET 502 to an Ml line 536.
  • the conductive plugs and/or lines may be formed from any suitable materials (without or without barriers layers) such as tungsten, another metal, heavily doped semiconductor material, a conductive suicide, a conductive silicide-germanide, a conductive germanide, or the like.
  • the dielectric layer 532 may include any suitable dielectric such as silicon dioxide, silicon nitride, silicon oxynitride, low K dielectrics, etc.
  • the thin film MOSFET 502 operates as a steering element in a manner similar to that of the diodes employed in the memory cells of FIGS. 2A-4D, selectively limiting the voltage applied across and/or the current flow through the reversible resistance-switching element 504.
  • the reversible resistance- switching element 504 includes a titanium oxide layer having a thickness of about 500 angstroms or less, and more preferably a thickness of about 300 angstroms or less. Other titanium oxide thicknesses may be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)

Abstract

Dans certains de ces aspects, l'invention concerne un procédé de formation d'une cellule de mémoire qui consiste (1) à former un premier conducteur sur un substrat; (2) à former un élément de commutation de résistance réversible sur le premier conducteur au moyen d'un procédé de croissance sélectif; (3) à former une diode sur le premier conducteur; et (4) à former un second conducteur sur la diode et l'élément de commutation de résistance réversible. L'invention concerne de nombreux autres aspects.
EP08768806A 2007-06-29 2008-06-27 Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants Withdrawn EP2162917A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/772,088 US7902537B2 (en) 2007-06-29 2007-06-29 Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US11/772,082 US7824956B2 (en) 2007-06-29 2007-06-29 Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
PCT/US2008/007985 WO2009005699A1 (fr) 2007-06-29 2008-06-27 Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants

Publications (1)

Publication Number Publication Date
EP2162917A1 true EP2162917A1 (fr) 2010-03-17

Family

ID=39720213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08768806A Withdrawn EP2162917A1 (fr) 2007-06-29 2008-06-27 Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants

Country Status (6)

Country Link
EP (1) EP2162917A1 (fr)
JP (1) JP2010532568A (fr)
KR (1) KR20100031698A (fr)
CN (2) CN102709471B (fr)
TW (1) TW200915543A (fr)
WO (1) WO2009005699A1 (fr)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2162916B1 (fr) * 2007-06-29 2013-03-20 Sandisk 3D LLC Procédé de formation d'une cellule de mémoire utilisant un élément de commutation de résistance réversible déposé de manière sélective
KR101127236B1 (ko) 2008-12-29 2012-03-29 주식회사 하이닉스반도체 저항성 메모리 소자의 제조 방법
JP2011066313A (ja) * 2009-09-18 2011-03-31 Toshiba Corp 不揮発性半導体装置
JP5439147B2 (ja) * 2009-12-04 2014-03-12 株式会社東芝 抵抗変化メモリ
JP2011165854A (ja) 2010-02-09 2011-08-25 Toshiba Corp 記憶装置及びその製造方法
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US9012307B2 (en) 2010-07-13 2015-04-21 Crossbar, Inc. Two terminal resistive switching device structure and method of fabricating
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US8198144B2 (en) 2010-06-11 2012-06-12 Crossbar, Inc. Pillar structure for memory device and method
US8441835B2 (en) 2010-06-11 2013-05-14 Crossbar, Inc. Interface control for improved switching in RRAM
US8374018B2 (en) 2010-07-09 2013-02-12 Crossbar, Inc. Resistive memory using SiGe material
US8947908B2 (en) 2010-11-04 2015-02-03 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8569172B1 (en) 2012-08-14 2013-10-29 Crossbar, Inc. Noble metal/non-noble metal electrode for RRAM applications
US8884261B2 (en) * 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US8168506B2 (en) 2010-07-13 2012-05-01 Crossbar, Inc. On/off ratio for non-volatile memory device and method
US8467227B1 (en) 2010-11-04 2013-06-18 Crossbar, Inc. Hetero resistive switching material layer in RRAM device and method
US8404553B2 (en) 2010-08-23 2013-03-26 Crossbar, Inc. Disturb-resistant non-volatile memory device and method
US9401475B1 (en) 2010-08-23 2016-07-26 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8492195B2 (en) 2010-08-23 2013-07-23 Crossbar, Inc. Method for forming stackable non-volatile resistive switching memory devices
US8889521B1 (en) 2012-09-14 2014-11-18 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8558212B2 (en) 2010-09-29 2013-10-15 Crossbar, Inc. Conductive path in switching material in a resistive random access memory device and control
US8391049B2 (en) 2010-09-29 2013-03-05 Crossbar, Inc. Resistor structure for a non-volatile memory device and method
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8088688B1 (en) 2010-11-05 2012-01-03 Crossbar, Inc. p+ polysilicon material on aluminum for non-volatile memory device and method
US8930174B2 (en) 2010-12-28 2015-01-06 Crossbar, Inc. Modeling technique for resistive random access memory (RRAM) cells
US8791010B1 (en) 2010-12-31 2014-07-29 Crossbar, Inc. Silver interconnects for stacked non-volatile memory device and method
US8815696B1 (en) 2010-12-31 2014-08-26 Crossbar, Inc. Disturb-resistant non-volatile memory device using via-fill and etchback technique
US9153623B1 (en) 2010-12-31 2015-10-06 Crossbar, Inc. Thin film transistor steering element for a non-volatile memory device
CN102693985B (zh) * 2011-03-25 2016-03-02 北京兆易创新科技股份有限公司 一种可编程存储器及其制造方法
CN102738390A (zh) * 2011-04-12 2012-10-17 北京大学 阻变存储器单元及其制造方法
US8450710B2 (en) 2011-05-27 2013-05-28 Crossbar, Inc. Low temperature p+ silicon junction material for a non-volatile memory device
US8394670B2 (en) 2011-05-31 2013-03-12 Crossbar, Inc. Vertical diodes for non-volatile memory device
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8619459B1 (en) 2011-06-23 2013-12-31 Crossbar, Inc. High operating speed resistive random access memory
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9166163B2 (en) 2011-06-30 2015-10-20 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US8659929B2 (en) 2011-06-30 2014-02-25 Crossbar, Inc. Amorphous silicon RRAM with non-linear device and operation
EP2735028A4 (fr) 2011-07-22 2015-05-06 Crossbar Inc Couche d'ensemencement pour un matériau silicium-germanium p + destiné à un dispositif à mémoire rémanente et procédé associé
US8674724B2 (en) 2011-07-29 2014-03-18 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US10056907B1 (en) 2011-07-29 2018-08-21 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US9729155B2 (en) 2011-07-29 2017-08-08 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8716098B1 (en) 2012-03-09 2014-05-06 Crossbar, Inc. Selective removal method and structure of silver in resistive switching device for a non-volatile memory device
US9087576B1 (en) 2012-03-29 2015-07-21 Crossbar, Inc. Low temperature fabrication method for a three-dimensional memory device and structure
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US8796658B1 (en) 2012-05-07 2014-08-05 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
US8765566B2 (en) 2012-05-10 2014-07-01 Crossbar, Inc. Line and space architecture for a non-volatile memory device
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
US10096653B2 (en) 2012-08-14 2018-10-09 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US8946673B1 (en) 2012-08-24 2015-02-03 Crossbar, Inc. Resistive switching device structure with improved data retention for non-volatile memory device and method
US9312483B2 (en) 2012-09-24 2016-04-12 Crossbar, Inc. Electrode structure for a non-volatile memory device and method
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US11068620B2 (en) 2012-11-09 2021-07-20 Crossbar, Inc. Secure circuit integrated with memory layer
US8982647B2 (en) 2012-11-14 2015-03-17 Crossbar, Inc. Resistive random access memory equalization and sensing
US9412790B1 (en) 2012-12-04 2016-08-09 Crossbar, Inc. Scalable RRAM device architecture for a non-volatile memory device and method
US9406379B2 (en) 2013-01-03 2016-08-02 Crossbar, Inc. Resistive random access memory with non-linear current-voltage relationship
US9112145B1 (en) 2013-01-31 2015-08-18 Crossbar, Inc. Rectified switching of two-terminal memory via real time filament formation
US9324942B1 (en) 2013-01-31 2016-04-26 Crossbar, Inc. Resistive memory cell with solid state diode
US8934280B1 (en) 2013-02-06 2015-01-13 Crossbar, Inc. Capacitive discharge programming for two-terminal memory cells
US9627057B2 (en) 2013-03-15 2017-04-18 Crossbar, Inc. Programming two-terminal memory cells with reduced program current
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
US9299767B1 (en) * 2014-09-26 2016-03-29 Intel Corporation Source-channel interaction in 3D circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1284645A (en) * 1970-01-30 1972-08-09 Welwyn Electric Ltd Then film device
US3796926A (en) * 1971-03-29 1974-03-12 Ibm Bistable resistance device which does not require forming
DE10342026A1 (de) * 2003-09-11 2005-04-28 Infineon Technologies Ag Speicherzelle mit Ionenleitungsspeichermechanismus und Verfahren zu deren Herstellung
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20060250836A1 (en) * 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a diode and a resistance-switching material
KR100622268B1 (ko) * 2005-07-04 2006-09-11 한양대학교 산학협력단 ReRAM 소자용 다층 이원산화박막의 형성방법
JP3889023B2 (ja) * 2005-08-05 2007-03-07 シャープ株式会社 可変抵抗素子とその製造方法並びにそれを備えた記憶装置
US7816659B2 (en) * 2005-11-23 2010-10-19 Sandisk 3D Llc Devices having reversible resistivity-switching metal oxide or nitride layer with added metal
US20070132049A1 (en) * 2005-12-12 2007-06-14 Stipe Barry C Unipolar resistance random access memory (RRAM) device and vertically stacked architecture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009005699A1 *

Also Published As

Publication number Publication date
JP2010532568A (ja) 2010-10-07
TW200915543A (en) 2009-04-01
CN102709471A (zh) 2012-10-03
CN102709471B (zh) 2014-12-24
WO2009005699A1 (fr) 2009-01-08
CN101720508B (zh) 2012-05-23
CN101720508A (zh) 2010-06-02
KR20100031698A (ko) 2010-03-24

Similar Documents

Publication Publication Date Title
US7824956B2 (en) Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US8816315B2 (en) Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
WO2009005699A1 (fr) Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants
US8233308B2 (en) Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US7846785B2 (en) Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US8981347B2 (en) Memory cell that includes a sidewall collar for pillar isolation and methods of forming the same
KR101494335B1 (ko) 선택적으로 증착된 가역 저항-스위칭 소자를 사용하는 메모리 셀과 상기 메모리 셀을 형성하는 방법
US20130148404A1 (en) Antifuse-based memory cells having multiple memory states and methods of forming the same
US20140252298A1 (en) Methods and apparatus for metal oxide reversible resistance-switching memory devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CLARK, MARK

Inventor name: HERNER, S., BRAD

Inventor name: SCHRICKER, APRIL

17Q First examination report despatched

Effective date: 20100623

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120103