EP2161525B1 - Modular heat exchanger - Google Patents

Modular heat exchanger Download PDF

Info

Publication number
EP2161525B1
EP2161525B1 EP08015786.0A EP08015786A EP2161525B1 EP 2161525 B1 EP2161525 B1 EP 2161525B1 EP 08015786 A EP08015786 A EP 08015786A EP 2161525 B1 EP2161525 B1 EP 2161525B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
heat
pipes
inlet
external shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08015786.0A
Other languages
German (de)
French (fr)
Other versions
EP2161525B8 (en
EP2161525A1 (en
Inventor
Wilhelm Bruckmann
Wolfgang Dr. Hegner
Dirk Band
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balcke Duerr GmbH
Original Assignee
Balcke Duerr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balcke Duerr GmbH filed Critical Balcke Duerr GmbH
Priority to ES08015786.0T priority Critical patent/ES2582657T3/en
Priority to PT80157860T priority patent/PT2161525T/en
Priority to EP08015786.0A priority patent/EP2161525B8/en
Priority to US12/327,144 priority patent/US8708035B2/en
Priority to CN200980135138.XA priority patent/CN102149999B/en
Priority to AU2009289762A priority patent/AU2009289762B2/en
Priority to PCT/EP2009/006512 priority patent/WO2010025960A2/en
Priority to KR1020117008093A priority patent/KR20110069804A/en
Publication of EP2161525A1 publication Critical patent/EP2161525A1/en
Application granted granted Critical
Publication of EP2161525B1 publication Critical patent/EP2161525B1/en
Publication of EP2161525B8 publication Critical patent/EP2161525B8/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • F28D7/1646Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates

Definitions

  • the invention relates to a heat exchanger in modular design for plants in which large load and / or temperature fluctuations occur, in particular solar power plants.
  • a heat exchanger according to the preamble of claims 1 and 2 is made GB 653 540 A known.
  • the invention is based on the object DE 29510720 U1 known heat exchanger to improve and specify a heat exchanger, which allows a more compact design, so that even less space is required for the heat exchanger. It is another object of the invention to allow in addition to the reduction of production costs a flexible design.
  • the heat exchanger according to the invention is modular.
  • the heat exchanger modules which are at least one preheater, at least one evaporator and at least one superheater module, are arranged in a common outer jacket, in which a heat-emitting medium flows around the heat exchanger modules with the meandering tube bundles:
  • the heat exchanger combines at least three different apparatuses in one ,
  • the heat exchange takes place according to the counter or cross flow principle.
  • the meandering tubes are flowed through by a heat-absorbing medium, for example water.
  • the meandering arrangement of the tube bundles reduces the size of the heat exchanger, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermo-elasticity of the structure.
  • the invention is based inter alia on the finding that the size of the heat exchanger is significantly reduced by the arrangement of the individual heat exchanger modules in a common outer shell with the same or even increased performance of the heat exchanger.
  • Another advantage of the modular design is the possibility of flexible adaptation of individual heat exchanger modules depending on the requirements. Thus, for example, individual modules can be added as needed or only individual modules can be modified, for example, by changing the tube bundle lengths. This eliminates the effort for a comprehensive overall design of the heat exchanger.
  • production costs can be reduced because common parts or identical modules can be used instead of the cost-intensive individual production of heat exchanger components.
  • By saving additional pipe connections between the individual modules and by the compact design not only material costs are reduced but also increases the efficiency of the heat exchanger, since the heat loss to the environment is effectively reduced thanks to the decrease in the surface, which is in contact with the environment ,
  • the parallel connection of several evaporator modules by means of a steam drum further increases flexibility and efficiency.
  • faster start-up can be achieved with higher temperature gradients, which is of enormous importance with changing load and temperature conditions of, for example, solar power plants.
  • the tubes through which the heat-absorbing medium flows from the outlet header of the respective evaporator module to the steam drum are connected to one another, that they have only one common entry into the steam drum. This will continue to reduce material costs and heat loss to the environment.
  • the tubes, through which the heat-absorbing medium flows from the steam drum to the inlet header of the respective evaporator module be interconnected so that they have a single common outlet from the steam drum.
  • the heat exchanger can be set up either horizontally or vertically.
  • the vertical installation allows even better land use.
  • several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area.
  • the space conditions are unfavorable because the parabolic trough collectors take up a lot of space.
  • the space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner.
  • the temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.
  • the horizontal heat exchanger module has a number of horizontal pipe layers, each pipe layer is formed from an equal number of tubes, and that the tube layers are arranged so that the tubes of the individual tube layers in the vertical direction exactly superimposed are aligned, wherein the flow directions of the heat-absorbing medium in the vertically adjacent, arranged transversely to the central axis of the outer shell pipe sections are opposite.
  • the design of the tube bundles in individual tube layers allows an extremely compact design.
  • the fact that the tubes lie vertically exactly above each other, conventional spacers between the tubes can be used.
  • the opposite flow in the vertically adjacent pipe sections, which are arranged transversely to the central axis of the outer shell favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis.
  • the pipe layers are compared to the horizontal lineup rotated by 90 °, vertically next to each other, expediently the preheater module is the lowest in the common outer jacket.
  • the inlet and outlet collectors preferably have a circular cross section.
  • the tubes of a tube layer are on a circumferential plane of the respective inlet and outlet collector offset from each other by an equal angle with the respective inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.
  • the tubes of the adjacent tube layers are connected to the respective inlet and outlet header, that the tubes of a tube layer with respect to the tubes of the adjacent tube layer are arranged offset by an angle on an adjacent circumferential plane of the respective inlet and outlet collector.
  • the peripheral surfaces of the input or. Outlet collectors are optimally utilized, so that the arrangement of the tube layers can be made compact. There is still enough space for welding, machining or other work on the collectors.
  • the tubes of the heat exchanger modules are arranged in a common inner housing, which is arranged concentrically within the outer shell and has an inlet and an outlet opening for the heat-emitting medium.
  • the cross-sectional profile of the inner housing is preferably rectangular, so that the raw bundles are as closely as possible enclosed by this inner housing.
  • the additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment.
  • the space between the outer shell and the inner housing can be used as an additional flow channel for the heat-emitting medium. In this way, the residence time of the heat-emitting medium is extended in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved.
  • FIG. 1 shows a first embodiment.
  • the heat exchanger 1 is placed vertically in a space-saving manner.
  • the outer jacket 70 is an inner housing 80, which has a rectangular cross-sectional profile.
  • the meandering tubes 120 of the individual heat exchanger modules 10, 20, 30, 40, 50 are arranged in the inner housing.
  • the heat-absorbing medium for example water, enters the inlet header 11 of the preheater module 10 via the pipeline 91. After flowing through the tubes 120 of the preheater module 10, it passes through the outlet header 12 of the preheater module 10 and via the pipe 92 in the steam drum 60. From the steam drum 60, the heated water passes through the pipes 93, 94, 95 in the parallel-connected evaporator modules 20th , 30, 40.
  • the water-vapor mixture from the evaporator modules 20, 30, 40 flows back into the steam drum 60.
  • the steam drum 60 has means (not shown here) for separating the water from the water vapor Mixture, so that the dry steam for overheating via the pipe 97 into the inlet header 51 of the superheater module 50 passes.
  • the now superheated in the superheater module 50 steam passes through the pipe 98 from the heat exchanger and passes, for example, to generate electricity in the downstream turbine.
  • FIG. 2 shows the same embodiment Fig. 1 , but here the flow path of the heat-emitting medium is shown in more detail.
  • the heat-emitting medium which in this case is a thermal oil heated by solar energy, enters via the inlet connection 71 of the outer jacket 70 at a temperature of approximately 400 ° C.
  • the thermal oil enters the inner housing 80, in which the thermal oil, the tubes 120 of the superheater module 50, the three evaporator modules 40, 30, 20 and the preheater module 10 of Flows around in rows and thereby gives off the heat to water. Subsequently, the cooled thermal oil flows through the outlet nozzle 72 from the heat exchanger. 1
  • FIG. 3 shows a further embodiment of the invention, wherein the heat exchanger 1 is set up horizontally.
  • FIG. 4 the sectional view along the line BB Fig. 3 , the modular design of the heat exchanger 1 is best visible.
  • the preheater module 10 with the inlet header 11 and the outlet header 12 has meandering tubes 120.
  • the construction of the others Heat exchanger modules, namely the evaporator modules 20, 30, 40 and the superheater module 50 is identical. They only differ in their dimensions.
  • the evaporator modules 20, 30, 40 are exactly the same.
  • the number of evaporator modules 20, 30, 40 can be adjusted as needed. Since exactly the same parts are used, this results in advantages in terms of manufacturing costs.
  • one or more defective heat exchanger modules can be easily removed and replaced by new ones in case of faults.
  • FIG. 5 an inventive collector is shown enlarged. These are the outlet header 42 of the third evaporator module 40. Essentially, the inlet and outlet header of the various heat exchanger modules differ only slightly from each other. Again, advantages of the modular design can be seen. According to a preferred embodiment, the tubes 101, 102, 103, 104 of a first layer 100 open in a horizontal plane offset by an equal angle ⁇ in the collector 42. Likewise open the tubes 111, 112, 113, 114 of a second layer 110 around the same angle ⁇ offset in the collector 42nd
  • FIG. 6 shows a plan view of the collector 42.
  • the angle ⁇ by which a tube of a layer is offset from the next tube of the same position, in this case is in each case 45 °.
  • FIG. 7 shows the enlarged detail view "X" Fig. 3 , All tubes of different layers are arranged so that they lie vertically exactly above each other. Due to the horizontal and vertical exact alignment, simple spacers 130 can be uniformly arranged.
  • a further advantage in the arrangement of the tubes 120 in layers is that the flow directions in the vertically adjacent tube sections 210, which are arranged transversely to the central axis 200 of the outer jacket 70, are opposite.
  • FIG. 8 shows a further advantage of the invention. Due to the adjacent arrangement of the inlet and outlet headers 42, 51 of adjacent heat exchanger modules 40, 50, the overall length of the heat exchanger 1 can be further reduced. Conventionally, the collectors were arranged centrally on the central axis 200 of the heat carrier 1.
  • FIGS. 9 and 10 show the structure of the individual pipe layers 100 and 110.
  • each tube with respect to its vertically adjacent tube in a horizontal position or with respect to its horizontally adjacent tube in a vertical position an opposite direction the pipe flow on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

Die Erfindung betrifft einen Wärmetauscher in Modulbauweise für Anlagen, in denen große Last- und/oder Temperaturschwankungen auftreten, insbesondere Solarkraftwerke. Ein Wärmetauscher nach dem Oberbegriff des Ansprüche 1 und 2 ist aus GB 653 540 A bekannt.The invention relates to a heat exchanger in modular design for plants in which large load and / or temperature fluctuations occur, in particular solar power plants. A heat exchanger according to the preamble of claims 1 and 2 is made GB 653 540 A known.

Aus DE 29510720 U1 der Anmelderin ist ein Wärmetauscher bekannt, der sich insbesondere als Kühlluftkühler für Gasturbinen bestens bewährt hat. Dieser weist Rohre zur Trennung des wärmeabgebenden Mediums und des wärmeaufnehmenden Mediums auf. Die Rohre sind mäanderförmig verlaufend zwischen einem Einlaß-Sammelrohr und einem Auslaß-Sammelrohr angeordnet und werden von einem wärmeaufnehmenden Medium durchströmt. Das wärmeabgebende Medium umströmt diese mäanderförmig verlaufenden Rohre.Out DE 29510720 U1 the applicant is known a heat exchanger, which has proven to be particularly well as a cooling air cooler for gas turbines. This has pipes for the separation of the heat-emitting medium and the heat-absorbing medium. The tubes are arranged meandering between an inlet manifold and an outlet manifold and are flowed through by a heat-absorbing medium. The heat-emitting medium flows around these meandering tubes.

Mit Hilfe des aus DE 29510720 U1 bekannten Wärmetauschers können die aufgrund der häufigen Last- und Temperaturwechsel auftretenden Belastungen mechanischer und thermischer Art erfolgreich gemindert werden. Ferner erlaubt die mäanderartige Formgebung der Rohrbündel ein "Downsizing" des Wärmetauschers bei gleichbleibender Leistung. Trotz der aufgeführten Vorteile besteht weiterhin Bedarf an noch kompakteren und noch effizienteren Wärmetauschern, die flexibel, aber trotzdem kostengünstig hergestellt werden können. Wärmetauscher für Solarkraftwerke, insbesondere Parabolrinnenkraftwerke, müssen außerdem schnellere Anfahrgeschwindigkeiten mit hohen Temperaturgradienten aufweisen.With the help of the DE 29510720 U1 known heat exchanger can be successfully reduced due to the frequent load and temperature changes loads mechanical and thermal nature. Furthermore, the meandering shape of the tube bundles allows a "downsizing" of the heat exchanger at a constant power. Despite the advantages listed, there is still a need for even more compact and more efficient heat exchangers, which can be produced flexibly but nevertheless inexpensively. Heat exchangers for solar power plants, in particular parabolic trough power plants, must also have faster start-up speeds with high temperature gradients.

Daher liegt der Erfindung die Aufgabe zugrunde, den aus DE 29510720 U1 bekannten Wärmetauscher weiter zu verbessern und einen Wärmetauscher anzugeben, welcher eine noch kompaktere Bauweise ermöglicht, so dass noch weniger Platzbedarf für den Wärmetauscher erforderlich ist. Ferner ist es Aufgabe der Erfindung, neben der Senkung der Produktionskosten eine flexible Bauweise zu ermöglichen.Therefore, the invention is based on the object DE 29510720 U1 known heat exchanger to improve and specify a heat exchanger, which allows a more compact design, so that even less space is required for the heat exchanger. It is another object of the invention to allow in addition to the reduction of production costs a flexible design.

Die Aufgabe wird gelöst durch einen Wärmetauscher gemäß den unabhängigen Ansprüchen 1 und 2. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen wiedergegeben.The object is achieved by a heat exchanger according to the independent claims 1 and 2. Preferred developments are given in the dependent claims.

Der erfindungsgemäße Wärmetauscher ist modular aufgebaut. Die Wärmetauschermodule, welche mindestens ein Vorwärmer-, mindestens ein Verdampfer- und mindestens ein Überhitzermodul sind, werden in einem gemeinsamen Außenmantel angeordnet, in welchem ein wärmeabgebendes Medium die Wärmetauschermodule mit den mäanderförmig verlaufenden Rohrbündeln umströmt: Der Wärmetauscher vereint also mindestens drei verschiedene Apparate in einem. Der Wärmeaustausch erfolgt nach dem Gegen- bzw. Kreuzstromprinzip. Die mäanderförmigen Rohre werden von einem wärmeaufnehmenden Medium, beispielsweise Wasser, durchströmt. Durch die mäanderförmige Anordnung der Rohrbündel wird die Baugröße des Wärmetauschers verringert, die Wärmeübertragung vom wärmeabgebenden zum wärmeaufnehmenden Medium verbessert und ferner die Thermoelastizität des Aufbaus erhöht.The heat exchanger according to the invention is modular. The heat exchanger modules, which are at least one preheater, at least one evaporator and at least one superheater module, are arranged in a common outer jacket, in which a heat-emitting medium flows around the heat exchanger modules with the meandering tube bundles: Thus, the heat exchanger combines at least three different apparatuses in one , The heat exchange takes place according to the counter or cross flow principle. The meandering tubes are flowed through by a heat-absorbing medium, for example water. The meandering arrangement of the tube bundles reduces the size of the heat exchanger, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermo-elasticity of the structure.

Die Erfindung beruht unter anderem auf der Erkenntnis, dass durch die Anordnung der einzelnen Wärmetauschermodule in einem gemeinsamen Außenmantel die Baugröße des Wärmetauschers bei gleicher oder gar erhöhter Leistungsfähigkeit des Wärmetauschers deutlich verringert wird. Ein weiterer Vorteil der modularen Bauweise besteht in der Möglichkeit der flexiblen Anpassung einzelner Wärmetauschermodule je nach den Anforderungen. So können beispielsweise je nach Bedarf einzelne Module hinzugefügt werden oder nur einzelne Module beispielsweise durch Änderung der Rohrbündellängen modifiziert werden. Dadurch entfällt der Aufwand für eine umfangreiche Gesamtauslegung des Wärmetauschers. Außerdem können Produktionskosten gesenkt werden, da anstelle der kostenintensiven Einzelanfertigung von Wärmetauscherkomponenten Gleichteile bzw. gleiche Module verwendet werden können. Durch die Einsparung von zusätzlichen Rohrverbindungen zwischen den Einzelmodulen und durch die kompakte Bauweise werden nicht nur Materialkosten gesenkt sondern auch der Wirkungsgrad des Wärmetauschers erhöht, da der Wärmeverlust an die Umgebung dank der Abnahme der Oberfläche, welche mit der Umgebung in Kontakt steht, effektiv verringert wird.The invention is based inter alia on the finding that the size of the heat exchanger is significantly reduced by the arrangement of the individual heat exchanger modules in a common outer shell with the same or even increased performance of the heat exchanger. Another advantage of the modular design is the possibility of flexible adaptation of individual heat exchanger modules depending on the requirements. Thus, for example, individual modules can be added as needed or only individual modules can be modified, for example, by changing the tube bundle lengths. This eliminates the effort for a comprehensive overall design of the heat exchanger. In addition, production costs can be reduced because common parts or identical modules can be used instead of the cost-intensive individual production of heat exchanger components. By saving additional pipe connections between the individual modules and by the compact design not only material costs are reduced but also increases the efficiency of the heat exchanger, since the heat loss to the environment is effectively reduced thanks to the decrease in the surface, which is in contact with the environment ,

Durch die Parallelschaltung mehrerer Verdampfermodule mittels einer Dampftrommel wird die Flexibiltät und die Effizienz weiter gesteigert. Zudem kann schnelleres Anfahren mit höheren Temperaturgradienten erreicht werden, was bei wechselnden Last- und Temperaturbedingungen von beispielsweise Solarkraftwerken von enormer Bedeutung ist. Gemäß einer bevorzugten Ausführungsvariante der Erfindung sind die Rohre, durch die das wärmeaufnehmende Medium vom Austrittssammler des jeweiligen Verdampfermoduls zur Dampftrommel strömt, so miteinander verbunden, dass sie nur einen einzigen gemeinsamen Eintritt in die Dampftrommel aufweisen. Dadurch werden weiterhin Materialkosten und auch der Wärmeverlust an die Umgebung verringert.The parallel connection of several evaporator modules by means of a steam drum further increases flexibility and efficiency. In addition, faster start-up can be achieved with higher temperature gradients, which is of enormous importance with changing load and temperature conditions of, for example, solar power plants. According to a preferred embodiment of the invention, the tubes through which the heat-absorbing medium flows from the outlet header of the respective evaporator module to the steam drum are connected to one another, that they have only one common entry into the steam drum. This will continue to reduce material costs and heat loss to the environment.

Ebenso können gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung die Rohre, durch die das wärmeaufnehmende Medium von der Dampftrommel zum Eintrittssammler des jeweiligen Verdampfermoduls strömt, so miteinander verbunden sein, dass sie einen einzigen gemeinsamen Austritt aus der Dampftrommel aufweisen.Likewise, according to a further advantageous embodiment of the invention, the tubes, through which the heat-absorbing medium flows from the steam drum to the inlet header of the respective evaporator module, be interconnected so that they have a single common outlet from the steam drum.

Gemäß der Erfindung kann der Wärmetauscher entweder horizontal oder vertikal aufgestellt werden. Die vertikale Aufstellung erlaubt eine noch bessere Flächennutzung. Dabei können mehrere der erfindungsgemäßen Wärmetauscher nebeneinander parallel auf einer relativ kleinen Fläche betrieben werden. Bei insbesondere Solarkraftanlagen sind die Platzverhältnisse ungünstig, da die Parabolrinnenkollektoren sehr viel Platz einnehmen. Die platzsparende Bauweise der erfindungsgemäßen Wärmetauscher erlaubt eine fast ortsungebundene Aufstellung, so dass die Strömungswege der aufgeheizten Medien zum Wärmetauscher zweckmäßiger Weise verkürzt werden können. Die Temperaturen des wärmeabgebenden Mediums bei Eintritt in den Wärmetauscher sind höher, so dass die Wärmeausbeute besser wird.According to the invention, the heat exchanger can be set up either horizontally or vertically. The vertical installation allows even better land use. In this case, several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area. In particular solar power plants, the space conditions are unfavorable because the parabolic trough collectors take up a lot of space. The space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner. The temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.

Die Erfindung sieht vor, dass das Wärmetauschermodul bei horizontaler Aufstellung eine Anzahl von horizontalen Rohrlagen aufweist, wobei jede Rohrlage aus einer gleichen Anzahl von Rohren gebildet wird, und dass die Rohrlagen so angeordnet sind, dass die Rohre der einzelnen Rohrlagen in vertikaler Richtung genau übereinander liegend ausgerichtet sind, wobei die Strömungsrichtungen des wärmeaufnehmenden Mediums in den vertikal benachbarten, quer zur Mittelachse des Außenmantels angeordneten Rohrabschnitten entgegengesetzt sind. Die Ausführung der Rohrbündel in einzelnen Rohrlagen ermöglicht eine extrem kompakte Bauweise. Dadurch dass die Rohre vertikal genau übereinanderliegen, können herkömmliche Abstandhalter zwischen den Rohren verwendet werden. Die entgegengesetzte Strömung in den vertikal benachbarten Rohrabschnitten, die quer zur Mittelachse des Außenmantels angeordnet sind, begünstigt die symmetrische Temperaturverteilung im Wärmetauscher in Bezug auf die Mittelachse. Entsprechendes gilt auch bei der vertikalen Aufstellung des Wärmetauschers. In diesem Fall liegen dann die Rohrlagen gegenüber der horizontalen Aufstellung um 90° verdreht, vertikal nebeneinander, wobei zweckmäßigerweise das Vorwärmermodul im gemeinsamen Außenmantel am tiefsten ist.The invention provides that the horizontal heat exchanger module has a number of horizontal pipe layers, each pipe layer is formed from an equal number of tubes, and that the tube layers are arranged so that the tubes of the individual tube layers in the vertical direction exactly superimposed are aligned, wherein the flow directions of the heat-absorbing medium in the vertically adjacent, arranged transversely to the central axis of the outer shell pipe sections are opposite. The design of the tube bundles in individual tube layers allows an extremely compact design. The fact that the tubes lie vertically exactly above each other, conventional spacers between the tubes can be used. The opposite flow in the vertically adjacent pipe sections, which are arranged transversely to the central axis of the outer shell, favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis. The same applies to the vertical installation of the heat exchanger. In this case, then the pipe layers are compared to the horizontal lineup rotated by 90 °, vertically next to each other, expediently the preheater module is the lowest in the common outer jacket.

Vorzugsweise weisen die Ein- und Austrittssammler einen kreisförmigen Querschnitt auf. Dabei sind die Rohre einer Rohrlage auf einer Umfangsebene des jeweiligen Ein- und Austrittssammlers voneinander um einen gleichen Winkel versetzt mit dem jeweiligen Ein- und Austrittssammler verbunden. Auf diese Weise wird das Herstellungsverfahren erleichtert, da genug Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern geboten wird.The inlet and outlet collectors preferably have a circular cross section. The tubes of a tube layer are on a circumferential plane of the respective inlet and outlet collector offset from each other by an equal angle with the respective inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.

Weiterhin bevorzugt, sind die Rohre der benachbarten Rohrlagen so mit dem jeweiligen Ein- und Austrittssammler verbunden, dass die Rohre der einen Rohrlage bezüglich der Rohre der benachbarten Rohrlage um einen Winkel versetzt auf einer benachbarten Umfangsebene des jeweiligen Ein- und Austrittssammlers angeordnet sind. Hierdurch können die Umfangsflächen der Ein-bzw. Austrittssammler optimal ausgenutzt werden, so dass die Anordnung der Rohriagen kompakt gestaltet werden kann. Es bleibt immer noch genügend Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern.Further preferably, the tubes of the adjacent tube layers are connected to the respective inlet and outlet header, that the tubes of a tube layer with respect to the tubes of the adjacent tube layer are arranged offset by an angle on an adjacent circumferential plane of the respective inlet and outlet collector. As a result, the peripheral surfaces of the input or. Outlet collectors are optimally utilized, so that the arrangement of the tube layers can be made compact. There is still enough space for welding, machining or other work on the collectors.

Gemäß einer bevorzugten Weiterbildung der Erfindung sind die Rohre der Wärmetauschermodule in einem gemeinsamen Innengehäuse angeordnet, welcher konzentrisch innerhalb des Außenmantels angeordnet ist und eine Ein- und eine Austrittsöffnung für das wärmeabgebende Medium aufweist. Das Querschnittsprofil des Innengehäuses ist vorzugsweise rechteckig, so dass die Rohbündel möglichst eng von diesem Innengehäuse umschlossen werden. Durch die zusätzliche Umschließung der wärmeaustauschenden Komponenten wird eine weitere Isolierung zwischen den Wärmetauschermodulen und der Umgebung geschaffen. Alternativ kann der Raum zwischen dem Außenmantel und dem Innengehäuse als zusätzlicher Strömungskanal für das wärmeabgebende Medium genutzt werden. Auf diese Weise wird die Verweilzeit des wärmeabgebenden Mediums im Wärmetauscher verlängert, so dass die Wärmeübertragung zum wärmeaufnehmenden Medium verbessert wird.According to a preferred embodiment of the invention, the tubes of the heat exchanger modules are arranged in a common inner housing, which is arranged concentrically within the outer shell and has an inlet and an outlet opening for the heat-emitting medium. The cross-sectional profile of the inner housing is preferably rectangular, so that the raw bundles are as closely as possible enclosed by this inner housing. The additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment. Alternatively, the space between the outer shell and the inner housing can be used as an additional flow channel for the heat-emitting medium. In this way, the residence time of the heat-emitting medium is extended in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved.

Nachfolgend wird die Erfindung anhand von Figuren näher beschrieben. Es zeigen schematisch:

  • Fig. 1 einen Längsschnitt durch eine erste Ausführungsvariante mit Darstellung der rohrseitigen Strömungswege bei vertikaler Aufstellung;
  • Fig. 2 einen Längsschnitt wie Fig. 1, allerdings mit Darstellung der mantelseitigen Strömungswege;
  • Fig. 3 einen Längsschnitt durch eine zweite Ausführungsvariante bei horizontaler Aufstellung;
  • Fig. 4 eine Schnittansicht entlang der Linie B-B aus Fig. 3;
  • Fig. 5 eine vergrößerte Detailansicht aus Fig. 8;
  • Fig. 6 eine Draufsicht von Fig. 5;
  • Fig. 7 eine vergrößerte Detailansicht aus Fig. 3;
  • Fig. 8 eine Schnittansicht entlang der Linie A-A aus Fig. 3.
The invention will be described in more detail with reference to figures. They show schematically:
  • Fig. 1 a longitudinal section through a first embodiment variant showing the pipe-side flow paths in vertical installation;
  • Fig. 2 a longitudinal section like Fig. 1 , but with representation of the shell-side flow paths;
  • Fig. 3 a longitudinal section through a second embodiment of a horizontal installation;
  • Fig. 4 a sectional view taken along the line BB Fig. 3 ;
  • Fig. 5 an enlarged detail view Fig. 8 ;
  • Fig. 6 a top view of Fig. 5 ;
  • Fig. 7 an enlarged detail view Fig. 3 ;
  • Fig. 8 a sectional view taken along the line AA Fig. 3 ,

Figur 1 zeigt ein erstes Ausführungsbeispiel. Der Wärmetauscher 1 ist in platzsparender Weise vertikal aufgestellt. In dem Außenmantel 70 befindet sich ein Innengehäuse 80, welches ein rechteckiges Querschnittsprofil aufweist. In dem Innengehäuse sind die mäanderförmig verlaufenden Rohre 120 der einzelnen Wärmetauschermodule 10, 20, 30, 40, 50 angeordnet. Das wärmeaufnehmende Medium, beispielsweise Wasser, tritt über die Rohrleitung 91 in den Eintrittssammler 11 des Vorwärmermoduls 10 ein. Nach dem Durchströmen der Rohre 120 des Vorwärmermoduls 10 tritt es über den Austrittssammler 12 des Vorwärmermoduls 10 und über die Rohrleitung 92 in die Dampftrommel 60. Aus der Dampftrommel 60 tritt das aufgeheizte Wasser über die Rohrleitungen 93, 94, 95 in die parallel geschalteten Verdampfermodule 20, 30, 40. Über eine gemeinsame Rückflussleitung 96 strömt das Wasser-Dampf-Gemisch aus den Verdampfermodulen 20, 30, 40 wieder in die Dampftrommel 60. Die Dampftrommel 60 weist Mittel (hier nicht gezeigt) zur Abscheidung des Wassers aus dem Wasser-Dampf-Gemisch, so dass der trockene Dampf zur Überhitzung über die Rohrleitung 97 in den Eintrittssammler 51 des Überhitzermoduls 50 gelangt. Der nun im Überhitzermodul 50 überhitzte Dampf tritt über die Rohrleitung 98 aus dem Wärmetauscher und gelangt beispielsweise zur Stromerzeugung in die nachgeschaltete Turbine. FIG. 1 shows a first embodiment. The heat exchanger 1 is placed vertically in a space-saving manner. In the outer jacket 70 is an inner housing 80, which has a rectangular cross-sectional profile. In the inner housing, the meandering tubes 120 of the individual heat exchanger modules 10, 20, 30, 40, 50 are arranged. The heat-absorbing medium, for example water, enters the inlet header 11 of the preheater module 10 via the pipeline 91. After flowing through the tubes 120 of the preheater module 10, it passes through the outlet header 12 of the preheater module 10 and via the pipe 92 in the steam drum 60. From the steam drum 60, the heated water passes through the pipes 93, 94, 95 in the parallel-connected evaporator modules 20th , 30, 40. Via a common return line 96, the water-vapor mixture from the evaporator modules 20, 30, 40 flows back into the steam drum 60. The steam drum 60 has means (not shown here) for separating the water from the water vapor Mixture, so that the dry steam for overheating via the pipe 97 into the inlet header 51 of the superheater module 50 passes. The now superheated in the superheater module 50 steam passes through the pipe 98 from the heat exchanger and passes, for example, to generate electricity in the downstream turbine.

Figur 2 zeigt das gleiche Ausführungsbeispiel aus Fig. 1, allerdings wird hier der Strömungsweg des wärmeabgebenden Mediums genauer dargestellt. Das wärmeabgebende Medium, welches in diesem Fall ein über die Sonnenenergie aufgeheiztes Thermoöl ist, tritt über den Eintrittsstutzen 71 des Außenmantels 70 mit einer Temperatur von ca. 400°C ein. Über den Kanal 73, der durch den Außenmantel 70 und das Innengehäuse 80 gebildet wird, tritt das Thermoöl in das Innengehäuse 80 ein, in dem das Thermoöl die Rohre 120 des Überhitzermoduls 50, der drei Verdampfermodule 40, 30, 20 und des Vorwärmermoduls 10 der Reihe nach umströmt und dadurch die Wärme an Wasser abgibt. Anschließend strömt das abgekühlte Thermoöl über den Austrittsstutzen 72 aus dem Wärmetauscher 1. FIG. 2 shows the same embodiment Fig. 1 , but here the flow path of the heat-emitting medium is shown in more detail. The heat-emitting medium, which in this case is a thermal oil heated by solar energy, enters via the inlet connection 71 of the outer jacket 70 at a temperature of approximately 400 ° C. Via the channel 73, which is formed by the outer jacket 70 and the inner housing 80, the thermal oil enters the inner housing 80, in which the thermal oil, the tubes 120 of the superheater module 50, the three evaporator modules 40, 30, 20 and the preheater module 10 of Flows around in rows and thereby gives off the heat to water. Subsequently, the cooled thermal oil flows through the outlet nozzle 72 from the heat exchanger. 1

Figur 3 zeigt ein weiteres Ausführungsbeispiel der Erfindung, wobei der Wärmetauscher 1 hierbei horizontal aufgestellt ist. FIG. 3 shows a further embodiment of the invention, wherein the heat exchanger 1 is set up horizontally.

In Figur 4, der Schnittansicht entlang der Linie B-B aus Fig. 3, ist die Modulbauweise des Wärmetauschers 1 am besten sichtbar. Das Vorwärmermodul 10 mit dem Eintrittssammler 11 und dem Austrittssammler 12 weist mäanderförmig verlaufende Rohre 120 auf. Die Bauweise der anderen Wärmetauschermodule, nämlich der Verdampfermodule 20, 30, 40 sowie des Überhitzermoduls 50 ist identisch. Sie unterscheiden sich lediglich in ihren Dimensionen. Die Verdampfermodule 20, 30, 40 allerdings sind exakt gleich. Die Anzahl der Verdampfermodule 20, 30, 40 kann nach Bedarf angepasst werden. Da exakt gleiche Teile verwendet werden, ergeben sich hieraus Vorteile hinsichtlich der Herstellungskosten. Außerdem können bei Störungen ein oder mehrere, defekte Wärmetauschermodule einfach ausgebaut und durch neue ersetzt werden.In FIG. 4 , the sectional view along the line BB Fig. 3 , the modular design of the heat exchanger 1 is best visible. The preheater module 10 with the inlet header 11 and the outlet header 12 has meandering tubes 120. The construction of the others Heat exchanger modules, namely the evaporator modules 20, 30, 40 and the superheater module 50 is identical. They only differ in their dimensions. The evaporator modules 20, 30, 40, however, are exactly the same. The number of evaporator modules 20, 30, 40 can be adjusted as needed. Since exactly the same parts are used, this results in advantages in terms of manufacturing costs. In addition, one or more defective heat exchanger modules can be easily removed and replaced by new ones in case of faults.

In Figur 5 wird ein erfindungsgemäßer Sammler vergrößert dargestellt. Es handelt sich hierbei um den Austrittssammler 42 des dritten Verdampfermoduls 40. Im wesentlichen unterscheiden sich die Ein- und Austrittssammler der verschiedenen Wärmetauschermodule nur geringfügig voneinander. Auch hier werden Vorteile der Modulbauweise erkennbar. Gemäß einer bevorzugten Ausführungsvariante münden die Rohre 101, 102, 103, 104 einer ersten Lage 100 in einer horizontalen Ebene um einen gleichen Winkel α versetzt in den Sammler 42. Ebenso münden die Rohre 111, 112, 113, 114 einer zweiten Lage 110 um den gleichen Winkel α versetzt in den Sammler 42.In FIG. 5 an inventive collector is shown enlarged. These are the outlet header 42 of the third evaporator module 40. Essentially, the inlet and outlet header of the various heat exchanger modules differ only slightly from each other. Again, advantages of the modular design can be seen. According to a preferred embodiment, the tubes 101, 102, 103, 104 of a first layer 100 open in a horizontal plane offset by an equal angle α in the collector 42. Likewise open the tubes 111, 112, 113, 114 of a second layer 110 around the same angle α offset in the collector 42nd

Figur 6 zeigt eine Draufsicht auf den Sammler 42. Der Winkel α, um den ein Rohr einer Lage vom nächsten Rohr der gleichen Lage versetzt ist, beträgt in diesem Fall jeweils 45°. Die zweite Lage 110, die zur ersten Lage 100 vertikal benachbart ist, ist auf dem Sammler 42 gegenüber der ersten Lage 100 um genau β = 22,5° versetzt angeordnet, so dass die Rohre 111, 112, 113, 114 der zweiten Lage 110 in Figur 6 jeweils mittig zwischen den Rohren 101, 102, 103, 104 der ersten Lage 100 sichtbar sind. Durch diese regelmäßig horizontal und vertikal versetzte Anordnung von Einmündungen am Sammler 42 bleibt trotz der hohen Kompaktheit immer ein genügender Abstand für Schweißarbeiten oder weitere Fertigungsschritte. FIG. 6 shows a plan view of the collector 42. The angle α, by which a tube of a layer is offset from the next tube of the same position, in this case is in each case 45 °. The second layer 110, which is vertically adjacent to the first layer 100, is offset on the collector 42 relative to the first layer 100 by exactly β = 22.5 °, so that the tubes 111, 112, 113, 114 of the second layer 110 in FIG. 6 each centrally between the tubes 101, 102, 103, 104 of the first layer 100 are visible. By this regularly horizontally and vertically offset arrangement of junctions on the collector 42 remains despite the high compactness always a sufficient distance for welding or other manufacturing steps.

Figur 7 zeigt die vergrößerte Detailansicht "X" aus Fig. 3. Alle Rohre der unterschiedlichen Lagen sind so angeordnet, dass sie vertikal genau übereinanderliegen. Durch die horizontal und vertikal genaue Ausrichtung können einfache Abstandshalter 130 gleichmäßig angeordnet werden. Ein weiterer Vorteil bei der Anordnung der Rohre 120 in Lagen besteht darin, dass die Strömungsrichtungen in den vertikal benachbarten Rohrabschnitten 210, die quer zur Mittelachse 200 des Außenmantels 70 angeordnet sind, entgegengesetzt sind. FIG. 7 shows the enlarged detail view "X" Fig. 3 , All tubes of different layers are arranged so that they lie vertically exactly above each other. Due to the horizontal and vertical exact alignment, simple spacers 130 can be uniformly arranged. A further advantage in the arrangement of the tubes 120 in layers is that the flow directions in the vertically adjacent tube sections 210, which are arranged transversely to the central axis 200 of the outer jacket 70, are opposite.

Figur 8 zeigt einen weiteren Vorteil der Erfindung. Durch die benachbarte Anordnung der Ein- bzw. Austrittssammler 42, 51 benachbarter Wärmetauschermodule 40, 50 kann die Gesamtlänge des Wärmetauschers 1 weiter reduziert werden. Herkömmlich wurden die Sammler mittig auf der Mittelachse 200 des Wärmeträgers 1 angeordnet. FIG. 8 shows a further advantage of the invention. Due to the adjacent arrangement of the inlet and outlet headers 42, 51 of adjacent heat exchanger modules 40, 50, the overall length of the heat exchanger 1 can be further reduced. Conventionally, the collectors were arranged centrally on the central axis 200 of the heat carrier 1.

Die Figuren 9 und 10 zeigen den Aufbau der einzelnen Rohrlagen 100 und 110. In den Rohrabschnitten 210, die quer zur Mittelachse 200 des Außenmantels 70 angeordnet sind, weist jedes Rohr bezüglich seines vertikal benachbarten Rohres bei horizontaler Aufstellung bzw. bezüglich seines horizontal benachbarten Rohres bei vertikaler Aufstellung eine entgegengesetzte Richtung der Rohrströmung auf.The FIGS. 9 and 10 show the structure of the individual pipe layers 100 and 110. In the pipe sections 210, which are arranged transversely to the central axis 200 of the outer shell 70, each tube with respect to its vertically adjacent tube in a horizontal position or with respect to its horizontally adjacent tube in a vertical position an opposite direction the pipe flow on.

Claims (7)

  1. A heat exchanger (1) in modular construction, in particular for facilities operated using large load and/or temperature changes, having an external shell (70) and a number of heat exchanger modules, each heat exchanger module, being either a preheater (10), an evaporator (20, 30, 40), or a superheater module (50), comprising an inlet header (11, 21, 31, 41, 51), an outlet header (12, 22, 32, 42, 52), and meandering pipes (120), through which the heat-absorbing medium, in particular water, flows from the inlet header (11, 21, 31, 41, 51) to the outlet header (12, 22, 32, 42, 52), and the heat exchanger modules further being situated inside the shared external shell (70), so that they have the same heat-dissipating medium flowing around them, the evaporator modules (20, 30, 40) being connected in parallel via a steam-collecting drum (60) situated outside the external shell (70), and the heat exchanger (1) being suitable to be set up horizontally or vertically,
    characterized in that
    the heat exchanger module, upon horizontal setup, comprises a number of horizontal pipe layers (100, 110), each pipe layer (100, 110) being formed by an equal number of pipes, and that the pipes of the pipe layers (100, 110) are oriented lying precisely one over another in the vertical direction, the flow directions of the heat-absorbing medium in vertically adjacent pipe sections (210) of adjacent pipe layers (100, 110) situated transversely to the central axis (200) of the external shell (70) being opposite.
  2. A heat exchanger (1) in modular construction, in particular for facilities operated using large load and/or temperature changes, having an external shell (70) and a number of heat exchanger modules, each heat exchanger module, being either a preheater (10), an evaporator (20, 30, 40), or a superheater module (50), comprising an inlet header (11, 21, 31, 41, 51), an outlet header (12, 22, 32, 42, 52), and meandering pipes (120), through which the heat-absorbing medium, in particular water, flows from the inlet header (11, 21, 31, 41, 51) to the outlet header (12, 22, 32, 42, 52), and the heat exchanger modules further being situated inside the shared external shell (70), so that they have the same heat-dissipating medium flowing around them, the evaporator modules (20, 30, 40) being connected in parallel via a steam-collecting drum (60) situated outside the external shell (70), and the heat exchanger (1) being suitable to be set up horizontally or vertically,
    characterized in that
    the heat exchanger module, upon vertical setup, comprises a number of vertical pipe layers (100, 110), each pipe layer (100, 110) being formed by an equal number of pipes, and that the pipes of the pipe layers (100, 110) are oriented lying precisely adjacent to one another in the horizontal direction, the flow directions of the heat-absorbing medium in horizontally adjacent pipe sections (210) of adjacent pipe layers (100, 110) situated transversely to the central axis (200) of the external shell (70) being opposite.
  3. The heat exchanger according to any one of the preceding claims,
    characterized in that
    the inlet (11, 21, 31, 41, 51) and outlet headers (12, 22, 32, 42, 52) have a circular cross-section, and the pipes (101, 102, 103, 104) of a pipe layer (100) are connected to the respective inlet (41) and outlet header (42) offset to one another by an equal angle (α) on a peripheral plane of the respective inlet (41) and outlet header (42).
  4. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the pipes (101, 102, 103, 104, 111, 112, 113, 114) of the adjacent pipe layers (100, 110) are connected to the respective inlet (41) and outlet header (42) in such a way that the pipes (111, 112, 113, 114) of one pipe layer (110) are situated offset by an angle (β) on an adjacent peripheral plane of the respective inlet (41) and outlet header (42) in relation to the pipes (101, 102, 103, 104) of the adjacent pipe layer (100).
  5. The heat exchanger according to any one of the preceding claims,
    characterized in that
    the pipes (120) of the heat exchanger modules are situated in a shared internal housing (80) which is situated concentrically inside the external shell (70), and has an inlet and an outlet opening for the heat-dissipating medium.
  6. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the pipes (96a, 96b, 96c) through which the heat-absorbing medium flows from the outlet header (22, 32, 42) of the respective evaporator module (20, 30, 40) to the steam-collecting drum (60) are connected to one another in such a way that they have a single shared inlet (96) into the steam-collecting drum (60).
  7. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the pipes (93, 94, 95) through which the heat-absorbing medium flows from the steam-collecting drum (60) to the inlet header (21, 31, 41) of the respective evaporator module (20, 30, 40) are connected to one another in such a way that they have a single shared outlet from the steam-collecting drum (60).
EP08015786.0A 2008-09-08 2008-09-08 Modular heat exchanger Not-in-force EP2161525B8 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES08015786.0T ES2582657T3 (en) 2008-09-08 2008-09-08 Heat exchanger in modular construction mode
PT80157860T PT2161525T (en) 2008-09-08 2008-09-08 Modular heat exchanger
EP08015786.0A EP2161525B8 (en) 2008-09-08 2008-09-08 Modular heat exchanger
US12/327,144 US8708035B2 (en) 2008-09-08 2008-12-03 Heat exchanger in a modular construction
CN200980135138.XA CN102149999B (en) 2008-09-08 2009-09-08 Heat exchanger in modular design
AU2009289762A AU2009289762B2 (en) 2008-09-08 2009-09-08 Heat exchanger in modular design
PCT/EP2009/006512 WO2010025960A2 (en) 2008-09-08 2009-09-08 Heat exchanger in modular design
KR1020117008093A KR20110069804A (en) 2008-09-08 2009-09-08 Heat exchanger in modular design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08015786.0A EP2161525B8 (en) 2008-09-08 2008-09-08 Modular heat exchanger

Publications (3)

Publication Number Publication Date
EP2161525A1 EP2161525A1 (en) 2010-03-10
EP2161525B1 true EP2161525B1 (en) 2016-04-20
EP2161525B8 EP2161525B8 (en) 2016-06-08

Family

ID=40347858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08015786.0A Not-in-force EP2161525B8 (en) 2008-09-08 2008-09-08 Modular heat exchanger

Country Status (8)

Country Link
US (1) US8708035B2 (en)
EP (1) EP2161525B8 (en)
KR (1) KR20110069804A (en)
CN (1) CN102149999B (en)
AU (1) AU2009289762B2 (en)
ES (1) ES2582657T3 (en)
PT (1) PT2161525T (en)
WO (1) WO2010025960A2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798701B1 (en) * 2007-05-29 2008-01-28 서동숭 A assembling-type hydraulic-oil cooler
CA2730159A1 (en) * 2008-07-07 2010-01-14 John E. Okonski, Jr. High-efficiency enhanced boiler
ES2435550T3 (en) * 2009-11-17 2013-12-20 Balcke-Dürr GmbH Heat exchanger for steam generation for solar power plants.
US9273865B2 (en) * 2010-03-31 2016-03-01 Alstom Technology Ltd Once-through vertical evaporators for wide range of operating temperatures
DE102010028681A1 (en) * 2010-05-06 2011-11-10 Siemens Aktiengesellschaft Solar thermal forced circulation steam generator with internally ribbed pipes
CN102947663B (en) * 2010-06-18 2016-03-30 乔治洛德方法研究和开发液化空气有限公司 Heat exchanger unit
DE102010041903B4 (en) * 2010-10-04 2017-03-09 Siemens Aktiengesellschaft Continuous steam generator with integrated reheater
ITMI20110465A1 (en) * 2011-03-24 2012-09-25 Rosella Rizzonelli HEAT EXCHANGER DEVICE.
DE102011075930A1 (en) * 2011-05-16 2012-11-22 Siemens Aktiengesellschaft Steam generator, in particular for a solar thermal power plant
DE102011075932A1 (en) * 2011-05-16 2012-11-22 Siemens Aktiengesellschaft Steam generator for solar-thermal power plant, has heating surface pipe arranged in meander form, where free cross section of heating surface pipe is increased in flow direction of medium to be evaporated
CZ305869B6 (en) * 2015-03-10 2016-04-13 Zdeněk Adámek Modular condensation recuperator
US10711653B2 (en) 2015-12-28 2020-07-14 Boundary Turbines Inc Process and system for extracting useful work or electricity from thermal sources
WO2017180910A1 (en) * 2016-04-13 2017-10-19 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
EP3444529A1 (en) * 2017-08-18 2019-02-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Heat recovery method and system
US11199112B2 (en) 2017-08-18 2021-12-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and system for heat recovery
US11209157B2 (en) 2018-07-27 2021-12-28 The Clever-Brooks Company, Inc. Modular heat recovery steam generator system for rapid installation
EP3861269B1 (en) 2018-10-01 2024-05-15 Header-coil Company A/S Heat exchanger, such as for a solar power plant
US11316216B2 (en) 2018-10-24 2022-04-26 Dana Canada Corporation Modular heat exchangers for battery thermal modulation
CN114555258B (en) * 2019-10-08 2023-04-18 气体产品与化学公司 Heat exchange system and method of assembly
CN111912260A (en) * 2020-06-24 2020-11-10 哈尔滨汽轮机厂辅机工程有限公司 Heat exchange equipment integrating preheating, evaporation and overheating
CN112577348B (en) * 2020-12-17 2022-08-02 南通润中石墨设备有限公司 Sleeved shell of round block hole type graphite heat exchanger and production process thereof
EP4290161A1 (en) 2022-06-06 2023-12-13 IGLOO Spolka z ograniczona odpowiedzialnoscia Method for shaping of set of capillaries of collector of heat exchanger, collector of heat exchanger of heat engines with set of capillaries, set of capillaries of collector of heat exchanger
CN117109180B (en) * 2023-10-24 2024-01-02 耐尔能源装备有限公司 Heat conduction oil heater

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2199216A (en) * 1937-12-22 1940-04-30 Conti Piero Ginori Vaporizer
GB653540A (en) * 1947-07-02 1951-05-16 Comb Eng Superheater Inc Improvements in steam boilers and like heat exchangers
US2916263A (en) * 1955-12-21 1959-12-08 Babcock & Wilcox Co Fluid heat exchange apparatus
DE1199281B (en) * 1956-03-22 1965-08-26 Vorkauf Heinrich Steam generator, in particular waste heat boiler, with a pressure-resistant, cylindrical jacket
US3110288A (en) * 1958-06-26 1963-11-12 Babcock & Wilcox Ltd Heat exchanger construction
DE1776011A1 (en) * 1968-09-03 1971-06-03 Buckau Wolf Maschf R Masonry-free waste heat boiler for high gas inlet temperatures
DE3248096C2 (en) * 1982-12-24 1985-01-31 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Standing device for cooling gases under high pressure with a high proportion of dust
US4753773A (en) * 1985-05-09 1988-06-28 Stone & Webster Engineering Corporation Double tube steam generator
EP0745807B1 (en) * 1995-05-31 1999-07-14 Asea Brown Boveri Ag Steam boiler
DE29510720U1 (en) 1995-07-01 1995-09-07 Balcke Duerr Ag Heat exchanger
DE19545308A1 (en) * 1995-12-05 1997-06-12 Asea Brown Boveri Convective counterflow heat transmitter
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators
DE10127830B4 (en) * 2001-06-08 2007-01-11 Siemens Ag steam generator
DE10222974B4 (en) * 2002-05-23 2004-07-08 Enginion Ag Heat exchanger
DE10328746A1 (en) 2003-06-25 2005-01-13 Behr Gmbh & Co. Kg Multi-stage heat exchange apparatus and method of making such apparatus
DE10346255A1 (en) * 2003-09-25 2005-04-28 Deutsch Zentr Luft & Raumfahrt Process for generating superheated steam, steam generation stage for a power plant and power plant

Also Published As

Publication number Publication date
AU2009289762B2 (en) 2015-09-17
EP2161525B8 (en) 2016-06-08
ES2582657T3 (en) 2016-09-14
WO2010025960A2 (en) 2010-03-11
CN102149999A (en) 2011-08-10
PT2161525T (en) 2016-07-26
KR20110069804A (en) 2011-06-23
EP2161525A1 (en) 2010-03-10
CN102149999B (en) 2012-11-14
US8708035B2 (en) 2014-04-29
US20100059216A1 (en) 2010-03-11
WO2010025960A3 (en) 2010-06-17
AU2009289762A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
EP2161525B1 (en) Modular heat exchanger
EP2322854B1 (en) Heat exchanger for creating steam for solar power plants
EP1279805B1 (en) Air-cooled intake air cooler
DE112007002824T5 (en) Two-dimensional multi-fluid heat exchanger
DE2820734A1 (en) WASTE STORAGE
EP2230701A2 (en) Thermoelectric device
EP2825832B1 (en) Heat exchanger
DE102017127005A1 (en) Easy passage-cross-flow heat exchanger
EP2710318A1 (en) Multiplate heat exchanger
EP3516179B1 (en) Method and arrangement for heat energy recovery in systems comprising at least one reformer
DE2732879A1 (en) HEAT EXCHANGER
DE10020797A1 (en) Flexible tube radiator for motor vehicle has angled rows of tubes extending between offset rows of ports in manifolds
DE10333463C5 (en) Tube heat exchanger
EP3102903B1 (en) Heat exchanging device
DE102008038658A1 (en) Tube heat exchanger
EP2369148A2 (en) Cooling device
DE202015103710U1 (en) Gas-fluid counterflow heat exchanger
DE2711545C2 (en) Heat exchangers with a large number of straight tube bundles
WO2015028052A1 (en) Recuperator, micro gas turbine and use of the recuperator
EP1538415A1 (en) Flow duct
DE102015003465B4 (en) Heat exchanger and use of a heat exchanger
EP1008803B1 (en) Feedwater preheater for steam power plants
DE3009532A1 (en) HEAT EXCHANGER
DE102022201290A1 (en) heat exchanger
WO2014198846A1 (en) Heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100825

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20101022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008014110

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28D0007080000

Ipc: F22B0021000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 7/08 20060101ALI20151117BHEP

Ipc: F28D 7/16 20060101ALI20151117BHEP

Ipc: F28F 9/02 20060101ALN20151117BHEP

Ipc: F22B 21/00 20060101AFI20151117BHEP

Ipc: F28F 9/00 20060101ALI20151117BHEP

INTG Intention to grant announced

Effective date: 20151201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BALCKE-DUERR GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 792876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014110

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2161525

Country of ref document: PT

Date of ref document: 20160726

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160715

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2582657

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160914

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008014110

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20160401634

Country of ref document: GR

Effective date: 20161020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

26N No opposition filed

Effective date: 20170123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008014110

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 792876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160908

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080908

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180920

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20180928

Year of fee payment: 11

Ref country code: TR

Payment date: 20180831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20180906

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181001

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908