EP2322854B1 - Heat exchanger for creating steam for solar power plants - Google Patents

Heat exchanger for creating steam for solar power plants Download PDF

Info

Publication number
EP2322854B1
EP2322854B1 EP09014365.2A EP09014365A EP2322854B1 EP 2322854 B1 EP2322854 B1 EP 2322854B1 EP 09014365 A EP09014365 A EP 09014365A EP 2322854 B1 EP2322854 B1 EP 2322854B1
Authority
EP
European Patent Office
Prior art keywords
heat
heat exchanger
header
tubes
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09014365.2A
Other languages
German (de)
French (fr)
Other versions
EP2322854A1 (en
Inventor
Jörg Stahlhut
Dirk Band
Wolfgang Dr. Hegner
Vitali Tregubow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balcke Duerr GmbH
Original Assignee
Balcke Duerr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP09014365.2A priority Critical patent/EP2322854B1/en
Application filed by Balcke Duerr GmbH filed Critical Balcke Duerr GmbH
Priority to ES09014365T priority patent/ES2435550T3/en
Priority to PT90143652T priority patent/PT2322854E/en
Priority to AU2010321334A priority patent/AU2010321334B2/en
Priority to PCT/EP2010/006512 priority patent/WO2011060870A1/en
Priority to KR1020127013213A priority patent/KR20120117748A/en
Priority to US13/510,374 priority patent/US20130112156A1/en
Priority to CN201080052149.4A priority patent/CN102667338B/en
Publication of EP2322854A1 publication Critical patent/EP2322854A1/en
Priority to ZA2012/03459A priority patent/ZA201203459B/en
Priority to MA34955A priority patent/MA33812B1/en
Application granted granted Critical
Publication of EP2322854B1 publication Critical patent/EP2322854B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/185Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding with additional preformed parts

Definitions

  • the invention relates to a heat exchanger for generating steam for solar power plants according to the preamble of claim 1.
  • Modular heat exchangers are known from the prior art, which operate according to the so-called circulation principle, natural or forced circulation.
  • the heat exchanger comprises a number of heat exchanger modules, for example a preheater module, one or more evaporator modules and a superheater module, which are interconnected by means of respective inlet and outlet headers, circulation pipes and an external steam drum to form a functional unit.
  • a generic heat exchanger with running parallel to the longitudinal axis of the outer shell circulation pipe layers is eg in FR 1,359,081 A disclosed.
  • the invention has for its object to provide a heat exchanger, which allows a compact design, cost-effective production and safe operation.
  • the heat exchanger according to the invention for generating steam for solar power plants comprises an outer jacket with an inlet and an outlet for a heat-emitting medium. Furthermore, the heat exchanger comprises an inlet and an outlet header for a heat-absorbing medium, preferably water, wherein the inlet and the outlet header are arranged substantially inside the outer shell.
  • a tube bundle with a number of tube layers with continuous tubes which are formed by the heat-emitting medium completely flow around and which are formed as flow paths for the heat-absorbing medium from the inlet collector to the outlet collector. In this case, the tube bundle is formed meandering.
  • the heat exchanger according to the invention is designed for steam generation according to the forced-circulation principle, so that the heat-absorbing medium fed into the inlet collector successively undergoes preheating, evaporation and superheating in the course of the flow paths, so that a superheated steam exits from the outlet collector.
  • the energy required for the preheating, evaporation and overheating is provided essentially only by the heat transfer from the heat-emitting medium to the heat-absorbing medium within the outer shell.
  • the heat exchanger thus combines at least three different apparatus, namely preheater, evaporator and superheater, in one. Due to the meandering arrangement of the tubes, the heat exchange takes place according to the counter or cross flow principle.
  • the meandering tubes are flowed through by a heat-absorbing medium, preferably water. Due to the meandering arrangement of the tube bundles, the size of the heat exchanger is reduced overall, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermal resilience of the structure.
  • the heat-absorbing medium preferably water
  • the heat-absorbing medium preferably water
  • evaporated and then superheated becomes an extremely compact and efficient steam generator realized.
  • the water entering the heat exchanger via the inlet header in the liquid state is preheated, evaporated and superheated in the course of its flow within the heat exchanger tubes in the direction of the outlet header that via the outlet collector, a superheated steam leaves the heat exchanger, which can be supplied to the steam turbine for power generation.
  • Continuous tubes in this context means that each tube, which defines a respective flow path for the heat-absorbing medium, has no branching or mixing points between the inlet header and the outlet header.
  • the tubes run completely "inside the outer jacket", which means that no parts of the tube bundle are outside the outer jacket and that the pipes are completely surrounded by the heat-emitting medium. So no external energy sources are needed to promote preheating, evaporation or overheating.
  • the heating surfaces of the continuous tubes themselves thus form successively the preheater, evaporator and superheater zones viewed in the direction of flow. Externally, these individual “zones" are not recognizable, since only one tube bundle is arranged between the inlet header and the outlet header and the tube bundle has a constant course with a repetitive meandering pattern.
  • the heat exchanger is set up vertically. Vertical placement is preferred because it allows even better land use.
  • several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area.
  • the space conditions are unfavorable because the parabolic trough collectors take up a lot of space.
  • the space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner. The temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.
  • a further preferred embodiment of the invention provides that the tube bundle has a number of vertical pipe layers when mounted vertically, each pipe layer an equal number of tubes is formed, and that the tube layers are arranged so that the tubes of the individual tube layers in the horizontal direction are aligned exactly juxtaposed, the flow directions of the heat-absorbing medium in the horizontally adjacent, arranged transversely to the central axis of the outer shell pipe sections opposite are.
  • the design of the tube bundles in individual tube layers allows an extremely compact design.
  • the fact that the tubes lie horizontally exactly next to each other, conventional spacers between the tubes can be used.
  • the opposite flow in the horizontally adjacent pipe sections, which are arranged transversely to the central axis of the outer shell favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis.
  • the inlet and the outlet header have a circular cross-section.
  • the tubes of a pipe layer on a circumferential line of the inlet or outlet collector are offset from each other by an equal angle with the inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.
  • the tubes of the adjacent tube layers are connected to the inlet and outlet header such that the tubes of one tube layer are offset relative to the tubes of the adjacent tube layer by an angle on an adjacent circumferential line of the respective inlet and outlet header.
  • the tube bundle has a separate section, in which predominantly the preheating of the heat-absorbing medium takes place.
  • the separate preheater section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this preheater section takes place mainly the preheating of the heat-absorbing medium. Alternatively, the preheating could be done completely outside the outer shell, ie in a separate preheater. In this case, the heat exchanger according to the invention would be designed primarily for the evaporation and overheating of the heat-absorbing medium.
  • the tube bundle has a separate section in which predominantly the evaporation of the heat-absorbing medium takes place.
  • the separate evaporator section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this evaporator section mainly the evaporation of the heat-absorbing medium takes place. Alternatively, the evaporation could completely outside the outer shell, d. H. in a separate evaporator. In this case, the heat exchanger according to the invention would be designed primarily for preheating and overheating of the heat-absorbing medium.
  • the tube bundle has a separate section in which predominantly the overheating of the heat-absorbing medium takes place.
  • the separate superheater section can be realized for example by a local separation within the outer jacket. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this superheater section takes place mainly the overheating of the heat-absorbing medium. Alternatively, the overheating could be completely outside the outer shell, d. H. in a separate superheater, done. In this case, the heat exchanger according to the invention would be designed primarily for the preheating and the evaporation of the heat-absorbing medium.
  • the tubes are connected via nipples to the inlet and outlet header.
  • the connection of the compact tube bundle at the inlet and outlet collector is simplified.
  • the connection between the nipples and the individual tubes is preferably cohesively, for example by welding. The welding process can be automated. Subsequently, the welds are checked individually, for example with the help of X-rays.
  • the tubes are connected without nipple directly to the inlet and outlet header.
  • the connection between the collectors and the individual tubes is preferably cohesively, for example by welding. The welding process can also be automated here. Subsequently, the welds are checked individually, for example with the help of X-rays.
  • the nipples are in turn cohesively, for example by welding, connected to the inlet and outlet collector. Again, the welding process can take place automatically.
  • the nipples are machined directly from the material of the inlet or outlet collector.
  • the nipples can be milled out of the initially tubular material of the inlet or outlet collector. This will reduce any damage due to welding. In addition, this eliminates the examination of the individual welds between the nipples and the respective collector.
  • the tubes of the tube bundle are arranged in an inner housing, which is arranged concentrically within the outer jacket and has an inlet and an outlet opening for the heat-emitting medium.
  • the cross-sectional profile of the inner housing is preferably rectangular, so that the Rohbündel is as closely as possible enclosed by this inner housing.
  • the additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment.
  • the inlet and the outlet opening of the inner housing may be connected to the corresponding inlet or outlet nozzle in such a way that a separate space between the outer shell and the inner housing is provided.
  • a flow of the heat-emitting medium along the inner wall of the outer shell can be allowed.
  • the inlet and the outlet of the heat-emitting medium in the vertical installation of the heat exchanger in the lower part of the outer shell are arranged.
  • the compactness of the heat exchanger is further increased.
  • the maintenance is facilitated because the shell-side connections are located within reach of the ground.
  • the space between the outer shell and the inner housing is used as a flow channel for the heat-emitting medium.
  • the hot heat-emitting medium passes through the inlet port of the outer shell and the inlet opening of the inner housing in the interior of the inner housing and flows upward.
  • the heat-emitting medium flows through the annular flow channel, which results from the concentric arrangement of the outer shell and the inner housing, back down, where it then leaves the outer jacket via the outlet port.
  • the residence time of the heat-emitting medium is prolonged in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved overall.
  • FIGS 1 and 2 show an embodiment of the heat exchanger according to the invention 1.
  • the heat exchanger 1 is placed vertically in a space-saving manner.
  • the outer casing 2 is an inner housing 3, which has a rectangular cross-sectional profile.
  • the meandering tubes of the tube bundle 11 are arranged in the inner housing 3.
  • the heat-absorbing medium for example water, enters the heat exchanger 1 via the inlet header 6. After flowing through the tubes of the tube bundle 11, it passes out of the heat exchanger 1 via the outlet collector 7. On the way from the inlet collector 6 to the outlet collector 7, the water is preheated, then evaporated and then superheated. The exiting from the heat exchanger 1 superheated steam is passed to generate electricity in the downstream steam turbine (not shown).
  • the forced-circulation principle for example Benson principle, working heat exchanger 1 for steam generation generated from the feed water, which enters the inlet collector in liquid form, in the course of the flow within the heat exchanger 1, a superheated steam, which can be removed from the outlet collector 7 ,
  • the claws 8 are used to mount the heat exchanger 1.
  • the heat-emitting medium is preferably thermal oil, which is heated in the absorber tubes of the parabolic troughs to about 400 ° C.
  • thermal oil enters via the inlet port 4 of the outer shell 2 in the heat exchanger 1. From there it flows in the direction of the outlet nozzle 5 and flows around the meandering shaped tube bundle 11. After the thermal oil has released a portion of its heat energy to the water, it passes through the outlet nozzle 5 from the heat exchanger 1 out.
  • the shell-side flow of the thermal oil can be directed so that the thermal oil in the lower part of the heat exchanger 1 and exits.
  • the space between the inner housing 3 and the outer shell 2 serves as a flow path for the downwardly flowing thermal oil.
  • both the inlet and the outlet are arranged in the lower region of the vertically mounted heat exchanger 1.
  • FIG. 2 two pipes of a pipe layer are indicated.
  • the number of tubes and the tube layers of a tube bundle 11 can be adapted to the different conditions.
  • FIG. 3 a pipe layer 20 with four tubes 21, 22, 23, 24 shown. This clearly shows the meandering pattern of the tube bundle 11.
  • FIG. 4 the arrangement of the individual pipe layers 20, 30 relative to one another is illustrated.
  • the pipe sections 15 which are arranged transversely to the central axis 10 of the outer shell 1, each tube with respect to its horizontally adjacent tube when mounted vertically an opposite direction of the pipe flow.
  • This opposite flow in the respectively adjacent pipe layers 20, 30 additionally ensures a uniform temperature distribution within the heat exchanger 1. Due to the uniform and compact arrangement of pipes and pipe layers to each other simple spacers 12 can be used.
  • FIG. 5 an inventive collector is shown enlarged. These are the inlet header 6. Inlet and outlet header 6, 7 differ only slightly from each other. Well recognizable are the nipples 22a, 33a, which serve to secure the tubes 22, 33 to the inlet header 6. The nipples 21a, 22a, 23a, 24a and thus also the tubes 21, 22, 23, 24 of the first tube layer 20 lie on a first circumferential line 13 and each open at an equal angle ⁇ offset in the collector 6. Likewise, the tubes open 31st , 32, 33, 34 with the respective nipples 31 a, 32 a, 33 a, 34 a on an adjacent circumferential line 14 offset by the same angle ⁇ in the collector. 6
  • FIG. 6 shows a plan view of the collector 6.
  • the angle ⁇ by which a tube of a layer is offset from the next tube of the same position, in this case is in each case 45 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Die Erfindung betrifft einen Wärmetauscher zur Dampferzeugung für Solarkraftwerkegemäß dem Oberbegriff des Anspruchs 1.The invention relates to a heat exchanger for generating steam for solar power plants according to the preamble of claim 1.

Aus dem Stand der Technik sind modular aufgebaute Wärmetauscher bekannt, welche nach dem sogenannten Umlauf-Prinzip, Natur- oder Zwangsumlauf, arbeiten. Dabei umfasst der Wärmetauscher eine Anzahl von Wärmetauschermodulen, beispielsweise ein Vorwärmermodul, ein oder mehrere Verdampfermodule und ein Überhitzermodul, die mittels jeweiliger Eintritts- und Austrittssammler, Umlaufrohre und einer externen Dampftrommel zu einer funktionellen Einheit zusammengeschaltet werden. Ein gattungsgemäßer Wärmetauscher mit parallel zur Längsachse des Außenmantels verlaufenden Umlaufrohrlagen ist z.B. in FR 1,359,081 A offenbart.Modular heat exchangers are known from the prior art, which operate according to the so-called circulation principle, natural or forced circulation. In this case, the heat exchanger comprises a number of heat exchanger modules, for example a preheater module, one or more evaporator modules and a superheater module, which are interconnected by means of respective inlet and outlet headers, circulation pipes and an external steam drum to form a functional unit. A generic heat exchanger with running parallel to the longitudinal axis of the outer shell circulation pipe layers is eg in FR 1,359,081 A disclosed.

In Solarkraftwerken treten unter anderem in Abhängigkeit von der Jahreszeit, Tageszeit und auch der Wetterlage häufig große Last- und Temperaturwechsel auf, so dass sich die Auslegung des Dampferzeugers für solarthermische Kraftwerke als schwierig erweist. Schnelle Anfahrgeschwindigkeiten mit hohen Temperaturgradienten, geringer Platzbedarf sowie geringe Herstellungs- und Betriebskosten sind nur einige der wichtigen Anforderungen an einen Wärmetauscher zur Dampferzeugung für eine Solarkraftanlage.In solar power plants occur, inter alia, depending on the season, time of day and the weather often large load and temperature changes, so that the design of the steam generator for solar thermal power plants proves difficult. Fast approach speeds with high temperature gradients, small footprint and low manufacturing and operating costs are just some of the important requirements for a heat exchanger for steam generation for a solar power plant.

Es besteht also Bedarf an noch kompakteren und noch effizienteren Wärmetauschern für Solarkraftanlagen, die zudem kostengünstig hergestellt und sicher betrieben werden können.There is therefore a need for even more compact and even more efficient heat exchangers for solar power plants, which can also be manufactured inexpensively and safely operated.

Daher liegt der Erfindung die Aufgabe zugrunde, einen Wärmetauscher anzugeben, welcher eine kompakte Bauweise, eine kostengünstige Herstellung sowie einen sicheren Betrieb ermöglicht.Therefore, the invention has for its object to provide a heat exchanger, which allows a compact design, cost-effective production and safe operation.

Die Aufgabe wird gelöst mit einem Wärmetauscher gemäß dem unabhängigen Anspruch. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen wiedergegeben.The object is achieved with a heat exchanger according to the independent claim. Preferred developments are given in the dependent claims.

Der erfindungsgemäße Wärmetauscher zur Dampferzeugung für Solarkraftwerke umfasst einen Außenmantel mit einem Einlass- und einem Auslassstutzen für ein wärmeabgebendes Medium. Ferner umfasst der Wärmetauscher einen Eintritts- und einen Austrittssammler für ein wärmeaufnehmendes Medium, vorzugsweise Wasser, wobei der Eintritts- und der Austrittssammler im Wesentlichen innerhalb des Außenmantels angeordnet sind. Darüber hinaus befindet sich innerhalb des Außenmantels ein Rohrbündel mit einer Anzahl von Rohrlagen mit durchgehenden Rohren, welche vom wärmeabgebenden Medium vollständig umströmbar ausgebildet sind und welche als Strömungswege für das wärmeaufnehmende Medium vom Eintrittssammler zum Austrittssammler ausgebildet sind. Dabei ist das Rohrbündel mäanderartig ausgebildet. Der erfindungsgemäße Wärmetauscher ist für eine Dampferzeugung nach dem Zwangsdurchlauf-Prinzip ausgelegt, so dass das in den Eintrittssammler eingespeiste wärmeaufnehmende Medium im Verlauf der Strömungswege nacheinander eine Vorwärmung, eine Verdampfung und eine Überhitzung erfährt, so dass aus dem Austrittssammler ein überhitzter Dampf austritt. Dabei wird die für die Vorwärmung, Verdampfung und Überhitzung erforderliche Energie im Wesentlichen nur durch die Wärmeübertragung vom wärmeabgebenden Medium auf das wärmeaufnehmende Medium innerhalb des Außenmantels zur Verfügung gestellt.The heat exchanger according to the invention for generating steam for solar power plants comprises an outer jacket with an inlet and an outlet for a heat-emitting medium. Furthermore, the heat exchanger comprises an inlet and an outlet header for a heat-absorbing medium, preferably water, wherein the inlet and the outlet header are arranged substantially inside the outer shell. In addition, located within the outer shell, a tube bundle with a number of tube layers with continuous tubes, which are formed by the heat-emitting medium completely flow around and which are formed as flow paths for the heat-absorbing medium from the inlet collector to the outlet collector. In this case, the tube bundle is formed meandering. The heat exchanger according to the invention is designed for steam generation according to the forced-circulation principle, so that the heat-absorbing medium fed into the inlet collector successively undergoes preheating, evaporation and superheating in the course of the flow paths, so that a superheated steam exits from the outlet collector. In this case, the energy required for the preheating, evaporation and overheating is provided essentially only by the heat transfer from the heat-emitting medium to the heat-absorbing medium within the outer shell.

Der Wärmetauscher vereint also mindestens drei verschiedene Apparate, nämlich Vorwärmer, Verdampfer und Überhitzer, in einem. Durch die mäanderartige Anordnung der Rohre erfolgt der Wärmeaustausch nach dem Gegen- bzw. Kreuzstromprinzip. Die mäanderförmigen Rohre werden von einem wärmeaufnehmenden Medium, vorzugsweise Wasser, durchströmt. Durch die mäanderförmige Anordnung der Rohrbündel wird die Baugröße des Wärmetauschers insgesamt verringert, die Wärmeübertragung vom wärmeabgebenden zum wärmeaufnehmenden Medium verbessert und ferner die Thermoelastizität des Aufbaus erhöht.The heat exchanger thus combines at least three different apparatus, namely preheater, evaporator and superheater, in one. Due to the meandering arrangement of the tubes, the heat exchange takes place according to the counter or cross flow principle. The meandering tubes are flowed through by a heat-absorbing medium, preferably water. Due to the meandering arrangement of the tube bundles, the size of the heat exchanger is reduced overall, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermal resilience of the structure.

Durch die Auslegung des Wärmetauschers zur Dampferzeugung für Solarkraftanlagen nach dem Zwangsdurchlauf-Prinzip, d. h. das eingespeiste wärmeaufnehmende Medium, vorzugsweise Wasser, wird "in einem Durchlauf" vom Eintrittssammler hin zum Austrittssammler vorgewärmt, anschließend verdampft und anschließend überhitzt, wird ein äußert kompakter und effizienter Dampferzeuger verwirklicht. Anstelle der Verwendung von mehreren, separaten Wärmetauschermodulen, die eine kostenaufwändige und komplizierte Zusammenschaltung benötigen, wird das Wasser, welches in flüssigem Zustand über den Eintrittssammler in den Wärmetauscher eintritt, im Verlauf seiner Strömung innerhalb der Wärmetauscherrohre in Richtung Austrittssammler vorgewärmt, verdampft und überhitzt, so dass über den Austrittssammler ein überhitzter Dampf den Wärmetauscher verlässt, welcher der Dampfturbine zur Stromgewinnung zugeführt werden kann.Due to the design of the heat exchanger for steam generation for solar power plants according to the forced flow principle, ie the heat-absorbing medium, preferably water, "preheated in one pass" from the inlet header to the outlet header, then evaporated and then superheated, becomes an extremely compact and efficient steam generator realized. Instead of using a plurality of separate heat exchanger modules, which require a costly and complicated interconnection, the water entering the heat exchanger via the inlet header in the liquid state is preheated, evaporated and superheated in the course of its flow within the heat exchanger tubes in the direction of the outlet header that via the outlet collector, a superheated steam leaves the heat exchanger, which can be supplied to the steam turbine for power generation.

Durch die Einsparung von zusätzlichen Dampftrommeln, Umlaufleitungen und Verbindungen zwischen den Einzelmodulen werden nicht nur Materialkosten in erheblichem Maße reduziert, sondern auch die Herstellungs- und Betriebskosten, da ein Großteil von aufwändigen Schweißarbeiten und die anschließende Prüfung derselben entfallen. Durch den Wegfall der sich außerhalb des Außenmantels befindlichen Bauteile, wie beispielsweise Dampftrommel sowie diversen Rohrleitungen, wird erfindungsgemäß ein kompakter Aufbau ermöglicht und zugleich ein höherer Wirkungsgrad des Wärmetauschers erzielt, da die Wärmeübertragung zur Dampferzeugung im Wesentlichen nur innerhalb des Außenmantels des Wärmetauschers stattfindet und somit keine zusätzlichen Wärmeverluste aufgrund von sich außerhalb des Wärmetauscheraußenmantels befindlichen Bauteilen auftreten.By saving additional steam drums, circulation lines and connections between the individual modules not only material costs are significantly reduced, but also the manufacturing and operating costs, since a large part of elaborate welding and the subsequent examination account for the same. By eliminating the located outside the outer shell components, such as steam drum and various pipelines, a compact design is achieved and at the same time achieves a higher efficiency of the heat exchanger, since the heat transfer takes place to generate steam substantially only within the outer jacket of the heat exchanger and thus no additional heat losses due to located outside the heat exchanger outer shell components occur.

"Durchgehende Rohre" bedeutet in diesem Zusammenhang, dass jedes Rohr, welches jeweils einen Strömungsweg für das wärmeaufnehmende Medium definiert, zwischen dem Eintrittssammler und dem Austrittssammler keinerlei Verzweigungs- oder Vermischungsstellen aufweist. Die Rohre verlaufen zudem vollständig "innerhalb des Außenmantels", das bedeutet, dass keine Teile des Rohrbündels sich außerhalb des Außenmantels befinden und dass die Rohre vollständig vom wärmeabgebenden Medium umströmt werden. Es werden also keinerlei externe Energiequellen benötigt, die eine Vorwärmung, Verdampfung oder Überhitzung fördern. Die Heizflächen der durchgehenden Rohre selbst bilden also in Strömungsrichtung betrachtet nacheinander die Vorwärmer-, Verdampfer- und Überhitzerzone. Äußerlich sind diese einzelnen "Zonen" nicht erkennbar, da nur ein Rohrbündel zwischen dem Eintrittssammler und dem Austrittssammler angeordnet ist und das Rohrbündel einen gleichbleibenden Verlauf mit sich wiederholendem Mäander-Muster aufweist."Continuous tubes" in this context means that each tube, which defines a respective flow path for the heat-absorbing medium, has no branching or mixing points between the inlet header and the outlet header. In addition, the tubes run completely "inside the outer jacket", which means that no parts of the tube bundle are outside the outer jacket and that the pipes are completely surrounded by the heat-emitting medium. So no external energy sources are needed to promote preheating, evaporation or overheating. The heating surfaces of the continuous tubes themselves thus form successively the preheater, evaporator and superheater zones viewed in the direction of flow. Externally, these individual "zones" are not recognizable, since only one tube bundle is arranged between the inlet header and the outlet header and the tube bundle has a constant course with a repetitive meandering pattern.

Erfindungsgemäß wird der Wärmetauscher vertikal aufgestellt. Die vertikale Aufstellung ist bevorzugt, da sie eine noch bessere Flächennutzung erlaubt. Dabei können mehrere der erfindungsgemäßen Wärmetauscher nebeneinander parallel auf einer relativ kleinen Fläche betrieben werden. Bei thermischen Solarkraftanlagen sind die Platzverhältnisse ungünstig, da die Parabolrinnenkollektoren sehr viel Platz einnehmen. Die platzsparende Bauweise der erfindungsgemäßen Wärmetauscher erlaubt eine fast ortsungebundene Aufstellung, so dass die Strömungswege der aufgeheizten Medien zum Wärmetauscher zweckmäßiger Weise verkürzt werden können. Die Temperaturen des wärmeabgebenden Mediums bei Eintritt in den Wärmetauscher sind höher, so dass die Wärmeausbeute besser wird.According to the invention, the heat exchanger is set up vertically. Vertical placement is preferred because it allows even better land use. In this case, several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area. In thermal solar power plants, the space conditions are unfavorable because the parabolic trough collectors take up a lot of space. The space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner. The temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.

Eine weitere bevorzugte Ausführungsvariante der Erfindung sieht vor, dass das Rohrbündel bei vertikaler Aufstellung eine Anzahl von vertikalen Rohrlagen aufweist, wobei jede Rohrlage aus einer gleichen Anzahl von Rohren gebildet wird, und dass die Rohrlagen so angeordnet sind, dass die Rohre der einzelnen Rohrlagen in horizontaler Richtung genau nebeneinander liegend ausgerichtet sind, wobei die Strömungsrichtungen des wärmeaufnehmenden Mediums in den horizontal benachbarten, quer zur Mittelachse des Außenmantels angeordneten Rohrabschnitten entgegengesetzt sind. Die Ausführung der Rohrbündel in einzelnen Rohrlagen ermöglicht eine extrem kompakte Bauweise. Dadurch dass die Rohre horizontal genau nebeneinander liegen, können herkömmliche Abstandhalter zwischen den Rohren verwendet werden. Die entgegengesetzte Strömung in den horizontal benachbarten Rohrabschnitten, die quer zur Mittelachse des Außenmantels angeordnet sind, begünstigt die symmetrische Temperaturverteilung im Wärmetauscher in Bezug auf die Mittelachse.A further preferred embodiment of the invention provides that the tube bundle has a number of vertical pipe layers when mounted vertically, each pipe layer an equal number of tubes is formed, and that the tube layers are arranged so that the tubes of the individual tube layers in the horizontal direction are aligned exactly juxtaposed, the flow directions of the heat-absorbing medium in the horizontally adjacent, arranged transversely to the central axis of the outer shell pipe sections opposite are. The design of the tube bundles in individual tube layers allows an extremely compact design. The fact that the tubes lie horizontally exactly next to each other, conventional spacers between the tubes can be used. The opposite flow in the horizontally adjacent pipe sections, which are arranged transversely to the central axis of the outer shell, favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis.

Vorzugsweise weisen der Eintritts- und der Austrittssammler einen kreisförmigen Querschnitt auf. Dabei sind die Rohre einer Rohrlage auf einer Umfangslinie des Eintritts- bzw. Austrittssammlers voneinander um einen gleichen Winkel versetzt mit dem Eintritts- bzw. Austrittssammler verbunden. Auf diese Weise wird das Herstellungsverfahren erleichtert, da genug Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern geboten wird.Preferably, the inlet and the outlet header have a circular cross-section. The tubes of a pipe layer on a circumferential line of the inlet or outlet collector are offset from each other by an equal angle with the inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.

Weiterhin bevorzugt, sind die Rohre der benachbarten Rohrlagen so mit dem Eintritts- bzw. Austrittssammler verbunden, dass die Rohre der einen Rohrlage bezüglich der Rohre der benachbarten Rohrlage um einen Winkel versetzt auf einer benachbarten Umfangslinie des jeweiligen Eintritts- und Austrittssammlers angeordnet sind. Hierdurch können die Umfangsflächen der Ein- bzw. Austrittssammler optimal ausgenutzt werden, so dass die Anordnung der Rohrlagen kompakt gestaltet werden kann. Es bleibt immer noch genügend Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern.Further preferably, the tubes of the adjacent tube layers are connected to the inlet and outlet header such that the tubes of one tube layer are offset relative to the tubes of the adjacent tube layer by an angle on an adjacent circumferential line of the respective inlet and outlet header. As a result, the peripheral surfaces of the inlet and outlet collector can be optimally utilized, so that the arrangement of the pipe layers can be made compact. There is still enough space for welding, machining or other work on the collectors.

Gemäß einer weiteren Ausführungsform der Erfindung weist das Rohrbündel einen separaten Abschnitt auf, in dem vorwiegend die Vorwärmung des wärmeaufnehmenden Mediums stattfindet. Der separate Vorwärmerabschnitt kann beispielsweise durch eine örtliche Trennung innerhalb des Außenmantels realisiert werden. Es ist auch möglich, die Strömung des wärmeabgebenden Medium und folglich die Temperaturverteilung im Wärmetauscher so zu steuern, dass in diesem Vorwärmerabschnitt hauptsächlich die Vorwärmung des wärmeaufnehmenden Mediums stattfindet. Alternativ könnte auch die Vorwärmung komplett außerhalb des Außenmantels, d. h. in einem separaten Vorwärmer, erfolgen. In diesem Fall wäre der erfindungsgemäße Wärmetauscher vorwiegend für die Verdampfung und die Überhitzung des wärmeaufnehmenden Mediums ausgelegt.According to a further embodiment of the invention, the tube bundle has a separate section, in which predominantly the preheating of the heat-absorbing medium takes place. The separate preheater section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this preheater section takes place mainly the preheating of the heat-absorbing medium. Alternatively, the preheating could be done completely outside the outer shell, ie in a separate preheater. In this case, the heat exchanger according to the invention would be designed primarily for the evaporation and overheating of the heat-absorbing medium.

Gemäß einer weiteren Ausführungsform der Erfindung weist das Rohrbündel einen separaten Abschnitt auf, in dem vorwiegend die Verdampfung des wärmeaufnehmenden Mediums stattfindet. Der separate Verdampferabschnitt kann beispielsweise durch eine örtliche Trennung innerhalb des Außenmantels realisiert werden. Es ist auch möglich, die Strömung des wärmeabgebenden Medium und folglich die Temperaturverteilung im Wärmetauscher so zu steuern, dass in diesem Verdampferabschnitt hauptsächlich die Verdampfung des wärmeaufnehmenden Mediums stattfindet. Alternativ könnte auch die Verdampfung komplett außerhalb des Außenmantels, d. h. in einem separaten Verdampfer, erfolgen. In diesem Fall wäre der erfindungsgemäße Wärmetauscher vorwiegend für die Vorwärmung und die Überhitzung des wärmeaufnehmenden Mediums ausgelegt.According to a further embodiment of the invention, the tube bundle has a separate section in which predominantly the evaporation of the heat-absorbing medium takes place. The separate evaporator section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this evaporator section mainly the evaporation of the heat-absorbing medium takes place. Alternatively, the evaporation could completely outside the outer shell, d. H. in a separate evaporator. In this case, the heat exchanger according to the invention would be designed primarily for preheating and overheating of the heat-absorbing medium.

Gemäß einer weiteren Ausführungsform der Erfindung weist das Rohrbündel einen separaten Abschnitt auf, in dem vorwiegend die Überhitzung des wärmeaufnehmenden Mediums stattfindet. Der separate Überhitzerabschnitt kann beispielsweise durch eine örtliche Trennung innerhalb des Außenmantels realisiert werden. Es ist auch möglich, die Strömung des wärmeabgebenden Medium und folglich die Temperaturverteilung im Wärmetauscher so zu steuern, dass in diesem Überhitzerabschnitt hauptsächlich die Überhitzung des wärmeaufnehmenden Mediums stattfindet. Alternativ könnte auch die Überhitzung komplett außerhalb des Außenmantels, d. h. in einem separaten Überhitzer, erfolgen. In diesem Fall wäre der erfindungsgemäße Wärmetauscher vorwiegend für die Vorwärmung und die Verdampfung des wärmeaufnehmenden Mediums ausgelegt.According to a further embodiment of the invention, the tube bundle has a separate section in which predominantly the overheating of the heat-absorbing medium takes place. The separate superheater section can be realized for example by a local separation within the outer jacket. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this superheater section takes place mainly the overheating of the heat-absorbing medium. Alternatively, the overheating could be completely outside the outer shell, d. H. in a separate superheater, done. In this case, the heat exchanger according to the invention would be designed primarily for the preheating and the evaporation of the heat-absorbing medium.

Vorzugsweise sind die Rohre über Nippel mit dem Eintritts- und Austrittssammler verbunden. Hierdurch wird die Verbindung des kompakten Rohrbündels am Eintritts- und Austrittssammler vereinfacht. Die Verbindung zwischen den Nippeln und den einzelnen Rohren erfolgt vorzugsweise stoffschlüssig, beispielsweise durch Schweißen. Der Schweißvorgang kann automatisiert ablaufen. Anschließend werden die Schweißnähte einzeln überprüft, beispielsweise mit Hilfe des Röntgens.Preferably, the tubes are connected via nipples to the inlet and outlet header. As a result, the connection of the compact tube bundle at the inlet and outlet collector is simplified. The connection between the nipples and the individual tubes is preferably cohesively, for example by welding. The welding process can be automated. Subsequently, the welds are checked individually, for example with the help of X-rays.

In einer bevorzugten Ausführungsform der Erfindung sind die Rohre ohne Nippel direkt mit dem Eintritts- bzw. Austrittssammler verbunden. Auch in diesem Fall erfolgt die Verbindung zwischen den Sammlern und den einzelnen Rohren vorzugsweise stoffschlüssig, beispielsweise durch Schweißen. Der Schweißvorgang kann auch hier automatisiert ablaufen. Anschließend werden die Schweißnähte einzeln überprüft, beispielsweise mit Hilfe des Röntgens.In a preferred embodiment of the invention, the tubes are connected without nipple directly to the inlet and outlet header. Also in this case, the connection between the collectors and the individual tubes is preferably cohesively, for example by welding. The welding process can also be automated here. Subsequently, the welds are checked individually, for example with the help of X-rays.

Vorzugsweise sind die Nippel ihrerseits stoffschlüssig, beispielsweise mittels Schweißen, mit dem Eintritts- und Austrittssammler verbunden. Auch hier kann der Schweißvorgang automatisch ablaufen.Preferably, the nipples are in turn cohesively, for example by welding, connected to the inlet and outlet collector. Again, the welding process can take place automatically.

Gemäß einer weiteren Ausführungsform der Erfindung sind die Nippel direkt aus dem Material des Eintritts- bzw. Austrittssammlers spanend gefertigt. Beispielsweise können die Nippel aus dem zunächst rohrförmigen Material des Eintritts- bzw. Austrittssammlers herausgefräst sein. Hierdurch werden eventuelle Schäden infolge von Schweißarbeiten verringert. Zudem entfällt hierdurch die Prüfung der einzelnen Schweißnähte zwischen den Nippeln und dem jeweiligen Sammler.According to a further embodiment of the invention, the nipples are machined directly from the material of the inlet or outlet collector. For example, the nipples can be milled out of the initially tubular material of the inlet or outlet collector. This will reduce any damage due to welding. In addition, this eliminates the examination of the individual welds between the nipples and the respective collector.

Gemäß einer bevorzugten Weiterbildung der Erfindung sind die Rohre des Rohrbündels in einem Innengehäuse angeordnet, welches konzentrisch innerhalb des Außenmantels angeordnet ist und eine Ein- und eine Austrittsöffnung für das wärmeabgebende Medium aufweist. Das Querschnittsprofil des Innengehäuses ist vorzugsweise rechteckig, so dass das Rohbündel möglichst eng von diesem Innengehäuse umschlossen wird. Durch die zusätzliche Umschließung der wärmeaustauschenden Komponenten wird eine weitere Isolierung zwischen den Wärmetauschermodulen und der Umgebung geschaffen. Dabei können die Eintritts- und die Austrittsöffnung des Innengehäuses mit dem korrespondieren Einlass- bzw. Auslassstutzen derart verbunden sein, dass ein abgetrennter Raum zwischen dem Außenmantel und dem Innengehäuse geschaffen wird. Alternativ kann auch eine Strömung des wärmeabgebenden Medium entlang der Innenwandung des Außenmantels zugelassen werden.According to a preferred embodiment of the invention, the tubes of the tube bundle are arranged in an inner housing, which is arranged concentrically within the outer jacket and has an inlet and an outlet opening for the heat-emitting medium. The cross-sectional profile of the inner housing is preferably rectangular, so that the Rohbündel is as closely as possible enclosed by this inner housing. The additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment. In this case, the inlet and the outlet opening of the inner housing may be connected to the corresponding inlet or outlet nozzle in such a way that a separate space between the outer shell and the inner housing is provided. Alternatively, a flow of the heat-emitting medium along the inner wall of the outer shell can be allowed.

In einer vorteilhaften Ausführungsform der Erfindung sind der Einlass- und der Auslassstutzen für das wärmeabgebende Medium bei der vertikalen Aufstellung des Wärmetauschers im unteren Teil des Außenmantels angeordnet. Hierdurch wird die Kompaktheit des Wärmetauschers noch weiter erhöht. Ferner werden dadurch die Wartungsarbeiten erleichtert, da die mantelseitigen Anschlüsse in greifbarer Bodennähe angeordnet sind. Dabei wird der Raum zwischen dem Außenmantel und dem Innengehäuse als Strömungskanal für das wärmeabgebende Medium genutzt. Das heiße wärmeabgebende Medium tritt über den Einlassstutzen des Außenmantels und die Eintrittsöffnung des Innengehäuses in das Innere des Innengehäuses und strömt nach oben. Anschließend strömt das wärmeabgebende Medium durch den ringförmigen Strömungskanal, welcher durch die konzentrische Anordnung des Außenmantels und des Innengehäuses entsteht, zurück nach unten, wo es dann über den Auslassstutzen den Außenmantel verlässt. Auf diese Weise wird die Verweilzeit des wärmeabgebenden Mediums im Wärmetauscher verlängert, so dass die Wärmeübertragung zum wärmeaufnehmenden Medium insgesamt verbessert wird.In an advantageous embodiment of the invention, the inlet and the outlet of the heat-emitting medium in the vertical installation of the heat exchanger in the lower part of the outer shell are arranged. As a result, the compactness of the heat exchanger is further increased. Furthermore, the maintenance is facilitated because the shell-side connections are located within reach of the ground. The space between the outer shell and the inner housing is used as a flow channel for the heat-emitting medium. The hot heat-emitting medium passes through the inlet port of the outer shell and the inlet opening of the inner housing in the interior of the inner housing and flows upward. Subsequently, the heat-emitting medium flows through the annular flow channel, which results from the concentric arrangement of the outer shell and the inner housing, back down, where it then leaves the outer jacket via the outlet port. In this way, the residence time of the heat-emitting medium is prolonged in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved overall.

Nachfolgend wird die Erfindung anhand von Figuren näher beschrieben. Es zeigen schematisch:

  • Fig. 1 eine Seitenansicht einer Ausführungsform des erfindungsgemäßen Wärmetauschers;
  • Fig. 2 eine Schnittansicht entlang der Linie A-A aus Fig. 1;
  • Fig. 3 eine Detailansicht "X" aus Fig. 2;
  • Fig. 4 eine Schnittansicht entlang der Linie B-B aus Fig. 3;
  • Fig. 5 eine Detailansicht des Eintrittssammlers aus Fig. 1 und 2;
  • Fig. 6 eine Draufsicht des Eintrittssammlers aus Fig. 5;
The invention will be described in more detail with reference to figures. They show schematically:
  • Fig. 1 a side view of an embodiment of the heat exchanger according to the invention;
  • Fig. 2 a sectional view taken along the line AA Fig. 1 ;
  • Fig. 3 a detail view "X" off Fig. 2 ;
  • Fig. 4 a sectional view taken along the line BB Fig. 3 ;
  • Fig. 5 a detailed view of the entrance collector from Fig. 1 and 2 ;
  • Fig. 6 a plan view of the inlet collector Fig. 5 ;

Figuren 1 und 2 zeigen ein Ausführungsbeispiel des erfindungsgemäßen Wärmetauschers 1. Der Wärmetauscher 1 ist in platzsparender Weise vertikal aufgestellt. In dem Außenmantel 2 befindet sich ein Innengehäuse 3, welches ein rechteckiges Querschnittsprofil aufweist. In dem Innengehäuse 3 sind die mäanderförmig verlaufenden Rohre des Rohrbündels 11 angeordnet. Das wärmeaufnehmende Medium, beispielsweise Wasser, tritt über den Eintrittssammler 6 in den Wärmetauscher 1 ein. Nach dem Durchströmen der Rohre des Rohrbündels 11 tritt es über den Austrittssammler 7 aus dem Wärmetauscher 1 heraus. Auf dem Weg vom Eintrittssammler 6 zum Austrittssammler 7 wird das Wasser vorgewärmt, anschließend verdampft und anschließend überhitzt. Der aus dem Wärmetauscher 1 austretende überhitzte Dampf wird zur Stromerzeugung in die nachgeschaltete Dampfturbine (nicht dargestellt) geleitet. Äußerlich sind die einzelnen "Zonen", nämlich Vorwärmer, Verdampfer und Überhitzer, nicht erkennbar. Der nach dem Zwangsdurchlauf-Prinzip, beispielsweise Benson-Prinzip, arbeitende Wärmetauscher 1 zur Dampferzeugung erzeugt aus dem Speisewasser, das in flüssiger Form in den Eintrittssammler eintritt, im Laufe der Strömung innerhalb des Wärmetauschers 1 einen überhitzten Wasserdampf, welcher dem Austrittssammler 7 entnommen werden kann. Damit entfallen die üblicherweise verwendeten Dampftrommeln, Umlaufrohre, Eintritts- und Austrittssammler sowie unzählige Schweißnähte, so dass die Kompaktheit erhöht wird und die Produktionskosten eingespart werden. Die Pratzen 8 dienen der Montage des Wärmetauschers 1. Über die Mannlöcher 9, die durchsichtige Glasfenster und/oder Verschlussmittel aufweisen, können in einfacher Weise Wartungsarbeiten durchgeführt werden. Figures 1 and 2 show an embodiment of the heat exchanger according to the invention 1. The heat exchanger 1 is placed vertically in a space-saving manner. In the outer casing 2 is an inner housing 3, which has a rectangular cross-sectional profile. In the inner housing 3, the meandering tubes of the tube bundle 11 are arranged. The heat-absorbing medium, for example water, enters the heat exchanger 1 via the inlet header 6. After flowing through the tubes of the tube bundle 11, it passes out of the heat exchanger 1 via the outlet collector 7. On the way from the inlet collector 6 to the outlet collector 7, the water is preheated, then evaporated and then superheated. The exiting from the heat exchanger 1 superheated steam is passed to generate electricity in the downstream steam turbine (not shown). Externally, the individual "zones", namely preheater, evaporator and superheater, are not recognizable. The forced-circulation principle, for example Benson principle, working heat exchanger 1 for steam generation generated from the feed water, which enters the inlet collector in liquid form, in the course of the flow within the heat exchanger 1, a superheated steam, which can be removed from the outlet collector 7 , This eliminates the commonly used steam drums, circulation pipes, inlet and outlet collectors and countless welds, so that the compactness is increased and the production costs are saved. The claws 8 are used to mount the heat exchanger 1. About the manholes 9, which have transparent glass windows and / or closure means, maintenance work can be performed in a simple manner.

Beim wärmeabgebenden Medium handelt es sich um vorzugsweise Thermoöl, welches in den Absorberrohren der Parabolrinnen auf ca. 400 °C erhitzt wird. Alternativ können flüssige Salze oder andere geeignete Wärmeträgermedien verwendet werden. Das Thermoöl tritt über den Einlassstutzen 4 des Außenmantels 2 in den Wärmetauscher 1 ein. Von dort strömt es in Richtung des Auslassstutzens 5 und umströmt dabei das mäanderartig geformte Rohrbündel 11. Nachdem das Thermoöl einen Teil seiner Wärmeenergie an das Wasser abgegeben hat, tritt es über den Austrittsstutzen 5 aus dem Wärmetauscher 1 heraus.The heat-emitting medium is preferably thermal oil, which is heated in the absorber tubes of the parabolic troughs to about 400 ° C. Alternatively, liquid salts or other suitable heat transfer media may be used. The thermal oil enters via the inlet port 4 of the outer shell 2 in the heat exchanger 1. From there it flows in the direction of the outlet nozzle 5 and flows around the meandering shaped tube bundle 11. After the thermal oil has released a portion of its heat energy to the water, it passes through the outlet nozzle 5 from the heat exchanger 1 out.

Gemäß einem nicht dargestellten Ausführungsbeispiel kann die mantelseitige Strömung des Thermoöls derart geleitet werden, dass das Thermoöl im unteren Teil des Wärmetauschers 1 ein- und austritt. Dabei dient der Raum zwischen dem Innengehäuse 3 und dem Außenmantel 2 als Strömungsweg für das nach unten strömende Thermoöl. In diesem Fall sind sowohl der Einlass- als auch der Auslassstutzen im unteren Bereich des vertikal aufgestellten Wärmetauschers 1 angeordnet.According to an embodiment, not shown, the shell-side flow of the thermal oil can be directed so that the thermal oil in the lower part of the heat exchanger 1 and exits. The space between the inner housing 3 and the outer shell 2 serves as a flow path for the downwardly flowing thermal oil. In this case, both the inlet and the outlet are arranged in the lower region of the vertically mounted heat exchanger 1.

In Figur 2 sind zwei Rohre einer Rohrlage angedeutet. Selbstverständlich kann die Anzahl der Rohre sowie der Rohrlagen eines Rohrbündels 11 den unterschiedlichen Bedingungen entsprechend angepasst werden. So ist beispielsweise in Figur 3 eine Rohrlage 20 mit vier Rohren 21, 22, 23, 24 dargestellt. Darin ist deutlich das mäanderartige Muster des Rohrbündels 11 erkennbar.In FIG. 2 two pipes of a pipe layer are indicated. Of course, the number of tubes and the tube layers of a tube bundle 11 can be adapted to the different conditions. For example, in FIG. 3 a pipe layer 20 with four tubes 21, 22, 23, 24 shown. This clearly shows the meandering pattern of the tube bundle 11.

Figur 4 verschaulicht die Anordnung der einzelnen Rohrlagen 20, 30 zueinander. In den Rohrabschnitten 15 (Fig. 3), die quer zur Mittelachse 10 des Außenmantels 1 angeordnet sind, weist jedes Rohr bezüglich seines horizontal benachbarten Rohres bei vertikaler Aufstellung eine entgegengesetzte Richtung der Rohrströmung auf. Dies bedeutet beispielsweise, dass die Strömung im Rohr 21 der Strömung im horizontal benachbarten Rohr 34 entgegengesetzt ist. Diese entgegengesetzte Strömung in den jeweils benachbarten Rohrlagen 20, 30 sorgt zusätzlich für eine gleichmäßige Temperaturverteilung innerhalb des Wärmetauschers 1. Aufgrund der gleichmäßigen und kompakten Anordnung von Rohren und Rohrlagen zueinander können einfache Abstandshalter 12 verwendet werden. FIG. 4 the arrangement of the individual pipe layers 20, 30 relative to one another is illustrated. In the pipe sections 15 ( Fig. 3 ), which are arranged transversely to the central axis 10 of the outer shell 1, each tube with respect to its horizontally adjacent tube when mounted vertically an opposite direction of the pipe flow. This means, for example, that the flow in the tube 21 is opposite to the flow in the horizontally adjacent tube 34. This opposite flow in the respectively adjacent pipe layers 20, 30 additionally ensures a uniform temperature distribution within the heat exchanger 1. Due to the uniform and compact arrangement of pipes and pipe layers to each other simple spacers 12 can be used.

In Figur 5 wird ein erfindungsgemäßer Sammler vergrößert dargestellt. Es handelt sich hierbei um den Eintrittssammler 6. Eintritts- und Austrittssammler 6, 7 unterscheiden sich nur geringfügig voneinander. Gut erkennbar sind die Nippel 22a, 33a, die der Befestigung der Rohre 22, 33 am Eintrittssammler 6 dienen. Die Nippel 21a, 22a, 23a, 24a und somit auch die Rohre 21, 22, 23, 24 der ersten Rohrlage 20 liegen auf einer ersten Umfangslinie 13 und münden jeweils um einen gleichen Winkel α versetzt in den Sammler 6. Ebenso münden die Rohre 31, 32, 33, 34 mit den jeweiligen Nippeln 31 a, 32a, 33a, 34a auf einer benachbarten Umfangslinie 14 um den gleichen Winkel α versetzt in den Sammler 6.In FIG. 5 an inventive collector is shown enlarged. These are the inlet header 6. Inlet and outlet header 6, 7 differ only slightly from each other. Well recognizable are the nipples 22a, 33a, which serve to secure the tubes 22, 33 to the inlet header 6. The nipples 21a, 22a, 23a, 24a and thus also the tubes 21, 22, 23, 24 of the first tube layer 20 lie on a first circumferential line 13 and each open at an equal angle α offset in the collector 6. Likewise, the tubes open 31st , 32, 33, 34 with the respective nipples 31 a, 32 a, 33 a, 34 a on an adjacent circumferential line 14 offset by the same angle α in the collector. 6

Figur 6 zeigt eine Draufsicht auf den Sammler 6. Der Winkel α, um den ein Rohr einer Lage vom nächsten Rohr der gleichen Lage versetzt ist, beträgt in diesem Fall jeweils 45°. Die zweite Lage 30, die zur ersten Lage 20 benachbart ist, ist auf dem Sammler 6 gegenüber der ersten Lage 20 um genau β = 22,5° versetzt angeordnet, so dass die Rohre 31, 32, 33, 34 der zweiten Lage 30 in Figur 6 jeweils mittig zwischen den Rohren 21, 22, 23, 24 der ersten Lage 20 sichtbar sind. Durch diese regelmäßig horizontal und vertikal versetzte Anordnung von Nippeln am Sammler 6 bleibt trotz der hohen Kompaktheit immer ein genügender Abstand für Schweißarbeiten oder weitere Fertigungsschritte. FIG. 6 shows a plan view of the collector 6. The angle α, by which a tube of a layer is offset from the next tube of the same position, in this case is in each case 45 °. The second layer 30, which is adjacent to the first layer 20, is arranged offset on the collector 6 with respect to the first layer 20 by exactly β = 22.5 °, so that the tubes 31, 32, 33, 34 of the second layer 30 in FIG. 6 each centrally between the tubes 21, 22, 23, 24 of the first layer 20 are visible. Through this Regularly horizontally and vertically staggered arrangement of nipples on the collector 6 remains despite the high compactness always a sufficient distance for welding or other manufacturing steps.

Claims (12)

  1. A heat exchanger (1) for generating steam for solar power plants, with the heat exchanger being erected vertically, comprising:
    - an outer casing (2) with an inlet nozzle (4) and an outlet nozzle (5) for a heat-emitting medium;
    - an inlet header (6) and an outlet header (7) for a heat-absorbing medium, preferably water, with the inlet header (6) and the outlet header (7) being arranged substantially within the outer casing (2);
    - a tube bundle (11) within the outer casing (2) with a number of tube layers (20, 30) with continuous tubes (21, 22, 23, 24, 33, 34) which are arranged so that the heat-emitting medium can flow around said tubes completely and which are arranged as flow paths for the heat-absorbing medium from the inlet header (6) to the outlet header (7);
    with the tube bundle (11) being arranged in a meandering manner, with the heat exchanger (1) for generating steam being arranged according to the forced-flow principle, so that the heat-absorbing medium supplied to the inlet header (6) is successively subjected in the course of the flow paths to a preheating, an evaporation and a superheating, so that superheated steam exits from the outlet header (7), and with the energy required for the preheating, evaporation and superheating being made available substantially solely by heat transfer from the heat-emitting medium to the heat-absorbing medium within the heat exchanger (1),
    characterized in that
    the tube layers (20, 30) are arranged in such a way that the tubes (21, 22, 23, 24, 33, 34) of the individual tube layers (20, 30) are aligned to lie precisely next to one another in the horizontal direction, with the directions of flow of the heat-absorbing medium being opposite in the horizontally adjacent tube sections (15) which are arranged transversely to the central axis (10) of the outer casing (2), and that the tube layers (20, 30) are vertically adjacent, wherein each tube layer (20, 30) is formed from an equal number of tubes (21, 22, 23, 24, 33, 34).
  2. The heat exchanger (1) according to claim 1,
    characterized in that
    the inlet header (6) and the outlet header (7) have a circular cross section, and the tubes (21, 22, 23, 24) of a tube layer (20) are connected with the inlet header (6) and outlet header (7) on a circumferential line (13) of the inlet header (6) and outlet header (7) offset from one another by the same angle (α).
  3. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the tubes (21, 22, 23, 24, 33, 34) of the adjacent tube layers (20, 30) are connected with the inlet header (6) and outlet header (7) in such a way that the tubes (33, 34) of the one tube layer (30) are arranged with respect to the tubes (21, 22, 23, 24) of the adjacent tube layer (20) offset by an angle (ß) on an adjacent circumferential line (14) of the inlet header (6) and outlet header (7).
  4. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the tube bundle (11) comprises a separate section in which mainly the preheating of the heat-absorbing medium occurs.
  5. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the tube bundle (11) has a separate section in which mainly the evaporation of the heat-absorbing medium occurs.
  6. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the tube bundle (11) has a separate section in which mainly the superheating of the heat-absorbing medium occurs.
  7. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the tubes (21, 22, 23, 24, 33, 34) are connected with the inlet header (6) and outlet header (7) via nipples (21 a, 22a, 23a, 24a, 31 a, 32a, 33a, 34a).
  8. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the tubes (21, 22, 23, 24, 33, 34) are directly connected without nipples with the inlet header (6) and outlet header (7).
  9. The heat exchanger (1) according to claim 7,
    characterized in that
    the nipples (21 a, 22a, 23a, 24a, 31 a, 32a, 33a, 34a) are materially connected with the inlet header (6) and outlet header (7).
  10. The heat exchanger (1) according to claim 7,
    characterized in that
    the nipples (21 a, 22a, 23a, 24a, 31 a, 32a, 33a, 34a) are made by metal cutting from the material of the inlet header (6) and outlet header (7).
  11. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the tube bundle (11) is arranged in an inner housing (3) which is arranged concentrically within the outer casing (2) and comprises an inlet and an outlet opening for the heat-emitting medium.
  12. The heat exchanger (1) according to any one of the preceding claims,
    characterized in that
    the inlet (4) and the outlet nozzle (5) for the heat-emitting medium are arranged in the bottom part of the outer casing (2) of the vertically erected heat exchanger (1).
EP09014365.2A 2009-11-17 2009-11-17 Heat exchanger for creating steam for solar power plants Not-in-force EP2322854B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES09014365T ES2435550T3 (en) 2009-11-17 2009-11-17 Heat exchanger for steam generation for solar power plants.
PT90143652T PT2322854E (en) 2009-11-17 2009-11-17 Heat exchanger for creating steam for solar power plants
EP09014365.2A EP2322854B1 (en) 2009-11-17 2009-11-17 Heat exchanger for creating steam for solar power plants
PCT/EP2010/006512 WO2011060870A1 (en) 2009-11-17 2010-10-25 Heat exchanger for generating steam for solar power plants
KR1020127013213A KR20120117748A (en) 2009-11-17 2010-10-25 Heat exchanger for generating steam for solar power plants
US13/510,374 US20130112156A1 (en) 2009-11-17 2010-10-25 Heat exchanger for generating steam for solar power plants
AU2010321334A AU2010321334B2 (en) 2009-11-17 2010-10-25 Heat exchanger for generating steam for solar power plants
CN201080052149.4A CN102667338B (en) 2009-11-17 2010-10-25 Heat exchanger for generating steam for solar power plants
ZA2012/03459A ZA201203459B (en) 2009-11-17 2012-05-11 Heat exchanger for generating steam for solar power plants
MA34955A MA33812B1 (en) 2009-11-17 2012-06-11 Heat exchanger for steam production for solar power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09014365.2A EP2322854B1 (en) 2009-11-17 2009-11-17 Heat exchanger for creating steam for solar power plants

Publications (2)

Publication Number Publication Date
EP2322854A1 EP2322854A1 (en) 2011-05-18
EP2322854B1 true EP2322854B1 (en) 2013-09-04

Family

ID=43003437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09014365.2A Not-in-force EP2322854B1 (en) 2009-11-17 2009-11-17 Heat exchanger for creating steam for solar power plants

Country Status (10)

Country Link
US (1) US20130112156A1 (en)
EP (1) EP2322854B1 (en)
KR (1) KR20120117748A (en)
CN (1) CN102667338B (en)
AU (1) AU2010321334B2 (en)
ES (1) ES2435550T3 (en)
MA (1) MA33812B1 (en)
PT (1) PT2322854E (en)
WO (1) WO2011060870A1 (en)
ZA (1) ZA201203459B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020253924A1 (en) 2019-06-17 2020-12-24 Aalborg Csp A/S Heat exchanger with pipe bundle
US11739931B2 (en) 2018-10-01 2023-08-29 Header-coil Company A/S Heat exchanger, such as for a solar power plant

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721031A (en) * 2012-06-11 2012-10-10 东方电气集团东方汽轮机有限公司 Straight-flow steam generator
JP6429904B2 (en) * 2014-06-10 2018-11-28 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft How to install a modular waste heat recovery boiler
JP6767975B2 (en) * 2014-07-03 2020-10-14 タイル ソーラー, エルエルシーTyll Solar, Llc Solar energy system
US11150037B2 (en) * 2014-10-10 2021-10-19 Baltimore Aircoil Company, Inc. Heat exchange apparatus
CN104949150A (en) * 2015-07-03 2015-09-30 哈尔滨哈锅锅炉工程技术有限公司 Connecting structure of boiler tubular air preheater channel and connecting box
CN107606641A (en) * 2017-10-27 2018-01-19 四川省洪雅青衣江元明粉有限公司 A kind of preheater in the technology based on MVR
WO2020036825A1 (en) 2018-08-11 2020-02-20 Tyll Solar, Llc Solar energy system
CN111912260A (en) * 2020-06-24 2020-11-10 哈尔滨汽轮机厂辅机工程有限公司 Heat exchange equipment integrating preheating, evaporation and overheating

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2221382A (en) * 1937-12-14 1940-11-12 Riley Stoker Corp Steam generator
US2547589A (en) * 1947-07-02 1951-04-03 Comb Eng Superheater Inc Apparatus for extracting heat from gases under pressure
US3110288A (en) * 1958-06-26 1963-11-12 Babcock & Wilcox Ltd Heat exchanger construction
US2980083A (en) * 1958-09-22 1961-04-18 Combustion Eng Heat exchange organization
FR1359081A (en) 1961-09-07 1964-04-24 Foster Wheeler Ltd Improvements to heat exchangers, particularly for nuclear power plants
FR1351602A (en) * 1962-12-29 1964-02-07 Babcock & Wilcox France Improvements to recovery heat exchangers
US4296804A (en) * 1979-06-28 1981-10-27 Resistoflex Corporation Corrosion resistant heat exchanger element and method of manufacture
US4325171A (en) * 1979-10-15 1982-04-20 Econo-Therm Energy Systems Corporation Means and method for sealing heat exchanger walls
FR2540971B1 (en) * 1983-02-10 1985-09-27 Novatome STEAM GENERATOR FOR A NUCLEAR REACTOR COOLED BY LIQUID METAL
US4753773A (en) * 1985-05-09 1988-06-28 Stone & Webster Engineering Corporation Double tube steam generator
US5044427A (en) * 1990-08-31 1991-09-03 Phillips Petroleum Company Heat exchanger
DE4321250A1 (en) * 1993-06-25 1995-01-05 Fritz Egger Gmbh Shell-and-tube heat exchanger (tube-shell heater exchanger)
DE29510720U1 (en) * 1995-07-01 1995-09-07 BDAG Balcke-Dürr AG, 40882 Ratingen Heat exchanger
DE19545308A1 (en) * 1995-12-05 1997-06-12 Asea Brown Boveri Convective counterflow heat transmitter
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators
JP2003090690A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Lamination type heat exchanger and refrigerating cycle
US6779596B2 (en) * 2002-03-22 2004-08-24 Exxonmobil Research And Engineering Company Heat exchanger with reduced fouling
US6820685B1 (en) * 2004-02-26 2004-11-23 Baltimore Aircoil Company, Inc. Densified heat transfer tube bundle
DE102004032611A1 (en) * 2004-07-05 2006-02-02 Babcock-Hitachi Europe Gmbh Establishing a connection between steam generator heating surfaces and a collector and / or distributor
CN101245972A (en) * 2008-03-14 2008-08-20 泰州市新恒盛机械制造有限公司 Fin-penetrating type heat exchanger
ES2582657T3 (en) * 2008-09-08 2016-09-14 Balcke-Dürr GmbH Heat exchanger in modular construction mode
WO2013019670A2 (en) * 2011-07-29 2013-02-07 Babcock & Wilcox Power Generation Group, Inc. Shop assembled vertical serpentine flow molten salt solar receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739931B2 (en) 2018-10-01 2023-08-29 Header-coil Company A/S Heat exchanger, such as for a solar power plant
WO2020253924A1 (en) 2019-06-17 2020-12-24 Aalborg Csp A/S Heat exchanger with pipe bundle

Also Published As

Publication number Publication date
ES2435550T3 (en) 2013-12-20
CN102667338A (en) 2012-09-12
ZA201203459B (en) 2013-01-31
AU2010321334A1 (en) 2012-06-14
CN102667338B (en) 2015-02-11
EP2322854A1 (en) 2011-05-18
US20130112156A1 (en) 2013-05-09
KR20120117748A (en) 2012-10-24
PT2322854E (en) 2013-09-12
MA33812B1 (en) 2012-12-03
WO2011060870A1 (en) 2011-05-26
AU2010321334B2 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
EP2322854B1 (en) Heat exchanger for creating steam for solar power plants
EP2161525B1 (en) Modular heat exchanger
DE102007024934B4 (en) Tube bundle reactors with pressure fluid cooling
EP2521861B1 (en) Solar thermal power plant using indirect evaporation and method for operating such a solar thermal power plant
EP2324285B1 (en) Heat recovery steam generator
EP2278220B1 (en) Heater for creating steam for a solar thermal power plant
EP2321578B1 (en) Continuous steam generator
EP2491304B1 (en) Cyclone separator for the phase separation of a multiphase fluid stream, steam turbine system having a cyclone separator and associated operating method
EP2856055B1 (en) Method for exchanging heat between a salt melt and a further medium in a coiled heat-exchanger
EP0011834B1 (en) Liquid-metal heated steam generator with integrated reheater
DE1927949A1 (en) Steam generation and overheating device, especially for with molten metal, molten metal salt or the like. nuclear reactors working as heat exchangers
WO2013026928A2 (en) Heat exchanger pipe, which can be heated by means of a heat carrier medium, of a solar thermal plant, and heat transfer method
EP0265908B1 (en) Device for boiling wort
EP2414730B1 (en) Device for phase separating a multi-phase fluid flow, steam turbine plant having such a device, and associated operating method
DE2249811A1 (en) HEAT EXCHANGER
EP0172363B1 (en) Heat-exchange apparatus, particularly for cooling gas from a high-temperature reactor
EP2080976B1 (en) Heat exchanger
WO2012041989A1 (en) Device and method for generating superheated steam by means of solar energy on the basis of the forced flow concept having helical water/steam guidance and use of the superheated steam
EP2369265A2 (en) Solar collector with a corrugated pipe and connections
DE2711545C2 (en) Heat exchangers with a large number of straight tube bundles
DE2437016A1 (en) Circular cross-section heat exchanger - having series of concentric annular straight tubes bundles with annular collectors and distributors
WO1998038457A1 (en) Solar power station, specially a solar power station with parabolic troughs
DE3215581A1 (en) Heat exchanger for a nuclear power station
WO1994005950A1 (en) Steam generator
DE1900558A1 (en) Steam generator, especially for nuclear power plants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20111118

17Q First examination report despatched

Effective date: 20121129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 9/18 20060101ALI20130301BHEP

Ipc: F24J 1/00 20060101ALI20130301BHEP

Ipc: F22B 29/06 20060101AFI20130301BHEP

Ipc: F28D 7/08 20060101ALI20130301BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130701

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20130905

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 630741

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009007930

Country of ref document: DE

Effective date: 20131031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2435550

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131220

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20130402033

Country of ref document: GR

Effective date: 20131118

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

BERE Be: lapsed

Owner name: BALCKE-DURR G.M.B.H.

Effective date: 20131130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009007930

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

26N No opposition filed

Effective date: 20140605

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131204

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009007930

Country of ref document: DE

Effective date: 20140605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091117

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 630741

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20191104

Year of fee payment: 11

Ref country code: DE

Payment date: 20191122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20191127

Year of fee payment: 11

Ref country code: FR

Payment date: 20191125

Year of fee payment: 11

Ref country code: IT

Payment date: 20191125

Year of fee payment: 11

Ref country code: ES

Payment date: 20191202

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20191104

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009007930

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210517

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117