EP2322854B1 - Heat exchanger for creating steam for solar power plants - Google Patents
Heat exchanger for creating steam for solar power plants Download PDFInfo
- Publication number
- EP2322854B1 EP2322854B1 EP09014365.2A EP09014365A EP2322854B1 EP 2322854 B1 EP2322854 B1 EP 2322854B1 EP 09014365 A EP09014365 A EP 09014365A EP 2322854 B1 EP2322854 B1 EP 2322854B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- heat exchanger
- header
- tubes
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
- F28D7/082—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
- F28D7/085—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
- F28D7/087—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/061—Construction of tube walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/061—Construction of tube walls
- F22B29/062—Construction of tube walls involving vertically-disposed water tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/04—Arrangements for sealing elements into header boxes or end plates
- F28F9/16—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
- F28F9/18—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
- F28F9/185—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding with additional preformed parts
Definitions
- the invention relates to a heat exchanger for generating steam for solar power plants according to the preamble of claim 1.
- Modular heat exchangers are known from the prior art, which operate according to the so-called circulation principle, natural or forced circulation.
- the heat exchanger comprises a number of heat exchanger modules, for example a preheater module, one or more evaporator modules and a superheater module, which are interconnected by means of respective inlet and outlet headers, circulation pipes and an external steam drum to form a functional unit.
- a generic heat exchanger with running parallel to the longitudinal axis of the outer shell circulation pipe layers is eg in FR 1,359,081 A disclosed.
- the invention has for its object to provide a heat exchanger, which allows a compact design, cost-effective production and safe operation.
- the heat exchanger according to the invention for generating steam for solar power plants comprises an outer jacket with an inlet and an outlet for a heat-emitting medium. Furthermore, the heat exchanger comprises an inlet and an outlet header for a heat-absorbing medium, preferably water, wherein the inlet and the outlet header are arranged substantially inside the outer shell.
- a tube bundle with a number of tube layers with continuous tubes which are formed by the heat-emitting medium completely flow around and which are formed as flow paths for the heat-absorbing medium from the inlet collector to the outlet collector. In this case, the tube bundle is formed meandering.
- the heat exchanger according to the invention is designed for steam generation according to the forced-circulation principle, so that the heat-absorbing medium fed into the inlet collector successively undergoes preheating, evaporation and superheating in the course of the flow paths, so that a superheated steam exits from the outlet collector.
- the energy required for the preheating, evaporation and overheating is provided essentially only by the heat transfer from the heat-emitting medium to the heat-absorbing medium within the outer shell.
- the heat exchanger thus combines at least three different apparatus, namely preheater, evaporator and superheater, in one. Due to the meandering arrangement of the tubes, the heat exchange takes place according to the counter or cross flow principle.
- the meandering tubes are flowed through by a heat-absorbing medium, preferably water. Due to the meandering arrangement of the tube bundles, the size of the heat exchanger is reduced overall, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermal resilience of the structure.
- the heat-absorbing medium preferably water
- the heat-absorbing medium preferably water
- evaporated and then superheated becomes an extremely compact and efficient steam generator realized.
- the water entering the heat exchanger via the inlet header in the liquid state is preheated, evaporated and superheated in the course of its flow within the heat exchanger tubes in the direction of the outlet header that via the outlet collector, a superheated steam leaves the heat exchanger, which can be supplied to the steam turbine for power generation.
- Continuous tubes in this context means that each tube, which defines a respective flow path for the heat-absorbing medium, has no branching or mixing points between the inlet header and the outlet header.
- the tubes run completely "inside the outer jacket", which means that no parts of the tube bundle are outside the outer jacket and that the pipes are completely surrounded by the heat-emitting medium. So no external energy sources are needed to promote preheating, evaporation or overheating.
- the heating surfaces of the continuous tubes themselves thus form successively the preheater, evaporator and superheater zones viewed in the direction of flow. Externally, these individual “zones" are not recognizable, since only one tube bundle is arranged between the inlet header and the outlet header and the tube bundle has a constant course with a repetitive meandering pattern.
- the heat exchanger is set up vertically. Vertical placement is preferred because it allows even better land use.
- several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area.
- the space conditions are unfavorable because the parabolic trough collectors take up a lot of space.
- the space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner. The temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.
- a further preferred embodiment of the invention provides that the tube bundle has a number of vertical pipe layers when mounted vertically, each pipe layer an equal number of tubes is formed, and that the tube layers are arranged so that the tubes of the individual tube layers in the horizontal direction are aligned exactly juxtaposed, the flow directions of the heat-absorbing medium in the horizontally adjacent, arranged transversely to the central axis of the outer shell pipe sections opposite are.
- the design of the tube bundles in individual tube layers allows an extremely compact design.
- the fact that the tubes lie horizontally exactly next to each other, conventional spacers between the tubes can be used.
- the opposite flow in the horizontally adjacent pipe sections, which are arranged transversely to the central axis of the outer shell favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis.
- the inlet and the outlet header have a circular cross-section.
- the tubes of a pipe layer on a circumferential line of the inlet or outlet collector are offset from each other by an equal angle with the inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.
- the tubes of the adjacent tube layers are connected to the inlet and outlet header such that the tubes of one tube layer are offset relative to the tubes of the adjacent tube layer by an angle on an adjacent circumferential line of the respective inlet and outlet header.
- the tube bundle has a separate section, in which predominantly the preheating of the heat-absorbing medium takes place.
- the separate preheater section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this preheater section takes place mainly the preheating of the heat-absorbing medium. Alternatively, the preheating could be done completely outside the outer shell, ie in a separate preheater. In this case, the heat exchanger according to the invention would be designed primarily for the evaporation and overheating of the heat-absorbing medium.
- the tube bundle has a separate section in which predominantly the evaporation of the heat-absorbing medium takes place.
- the separate evaporator section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this evaporator section mainly the evaporation of the heat-absorbing medium takes place. Alternatively, the evaporation could completely outside the outer shell, d. H. in a separate evaporator. In this case, the heat exchanger according to the invention would be designed primarily for preheating and overheating of the heat-absorbing medium.
- the tube bundle has a separate section in which predominantly the overheating of the heat-absorbing medium takes place.
- the separate superheater section can be realized for example by a local separation within the outer jacket. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this superheater section takes place mainly the overheating of the heat-absorbing medium. Alternatively, the overheating could be completely outside the outer shell, d. H. in a separate superheater, done. In this case, the heat exchanger according to the invention would be designed primarily for the preheating and the evaporation of the heat-absorbing medium.
- the tubes are connected via nipples to the inlet and outlet header.
- the connection of the compact tube bundle at the inlet and outlet collector is simplified.
- the connection between the nipples and the individual tubes is preferably cohesively, for example by welding. The welding process can be automated. Subsequently, the welds are checked individually, for example with the help of X-rays.
- the tubes are connected without nipple directly to the inlet and outlet header.
- the connection between the collectors and the individual tubes is preferably cohesively, for example by welding. The welding process can also be automated here. Subsequently, the welds are checked individually, for example with the help of X-rays.
- the nipples are in turn cohesively, for example by welding, connected to the inlet and outlet collector. Again, the welding process can take place automatically.
- the nipples are machined directly from the material of the inlet or outlet collector.
- the nipples can be milled out of the initially tubular material of the inlet or outlet collector. This will reduce any damage due to welding. In addition, this eliminates the examination of the individual welds between the nipples and the respective collector.
- the tubes of the tube bundle are arranged in an inner housing, which is arranged concentrically within the outer jacket and has an inlet and an outlet opening for the heat-emitting medium.
- the cross-sectional profile of the inner housing is preferably rectangular, so that the Rohbündel is as closely as possible enclosed by this inner housing.
- the additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment.
- the inlet and the outlet opening of the inner housing may be connected to the corresponding inlet or outlet nozzle in such a way that a separate space between the outer shell and the inner housing is provided.
- a flow of the heat-emitting medium along the inner wall of the outer shell can be allowed.
- the inlet and the outlet of the heat-emitting medium in the vertical installation of the heat exchanger in the lower part of the outer shell are arranged.
- the compactness of the heat exchanger is further increased.
- the maintenance is facilitated because the shell-side connections are located within reach of the ground.
- the space between the outer shell and the inner housing is used as a flow channel for the heat-emitting medium.
- the hot heat-emitting medium passes through the inlet port of the outer shell and the inlet opening of the inner housing in the interior of the inner housing and flows upward.
- the heat-emitting medium flows through the annular flow channel, which results from the concentric arrangement of the outer shell and the inner housing, back down, where it then leaves the outer jacket via the outlet port.
- the residence time of the heat-emitting medium is prolonged in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved overall.
- FIGS 1 and 2 show an embodiment of the heat exchanger according to the invention 1.
- the heat exchanger 1 is placed vertically in a space-saving manner.
- the outer casing 2 is an inner housing 3, which has a rectangular cross-sectional profile.
- the meandering tubes of the tube bundle 11 are arranged in the inner housing 3.
- the heat-absorbing medium for example water, enters the heat exchanger 1 via the inlet header 6. After flowing through the tubes of the tube bundle 11, it passes out of the heat exchanger 1 via the outlet collector 7. On the way from the inlet collector 6 to the outlet collector 7, the water is preheated, then evaporated and then superheated. The exiting from the heat exchanger 1 superheated steam is passed to generate electricity in the downstream steam turbine (not shown).
- the forced-circulation principle for example Benson principle, working heat exchanger 1 for steam generation generated from the feed water, which enters the inlet collector in liquid form, in the course of the flow within the heat exchanger 1, a superheated steam, which can be removed from the outlet collector 7 ,
- the claws 8 are used to mount the heat exchanger 1.
- the heat-emitting medium is preferably thermal oil, which is heated in the absorber tubes of the parabolic troughs to about 400 ° C.
- thermal oil enters via the inlet port 4 of the outer shell 2 in the heat exchanger 1. From there it flows in the direction of the outlet nozzle 5 and flows around the meandering shaped tube bundle 11. After the thermal oil has released a portion of its heat energy to the water, it passes through the outlet nozzle 5 from the heat exchanger 1 out.
- the shell-side flow of the thermal oil can be directed so that the thermal oil in the lower part of the heat exchanger 1 and exits.
- the space between the inner housing 3 and the outer shell 2 serves as a flow path for the downwardly flowing thermal oil.
- both the inlet and the outlet are arranged in the lower region of the vertically mounted heat exchanger 1.
- FIG. 2 two pipes of a pipe layer are indicated.
- the number of tubes and the tube layers of a tube bundle 11 can be adapted to the different conditions.
- FIG. 3 a pipe layer 20 with four tubes 21, 22, 23, 24 shown. This clearly shows the meandering pattern of the tube bundle 11.
- FIG. 4 the arrangement of the individual pipe layers 20, 30 relative to one another is illustrated.
- the pipe sections 15 which are arranged transversely to the central axis 10 of the outer shell 1, each tube with respect to its horizontally adjacent tube when mounted vertically an opposite direction of the pipe flow.
- This opposite flow in the respectively adjacent pipe layers 20, 30 additionally ensures a uniform temperature distribution within the heat exchanger 1. Due to the uniform and compact arrangement of pipes and pipe layers to each other simple spacers 12 can be used.
- FIG. 5 an inventive collector is shown enlarged. These are the inlet header 6. Inlet and outlet header 6, 7 differ only slightly from each other. Well recognizable are the nipples 22a, 33a, which serve to secure the tubes 22, 33 to the inlet header 6. The nipples 21a, 22a, 23a, 24a and thus also the tubes 21, 22, 23, 24 of the first tube layer 20 lie on a first circumferential line 13 and each open at an equal angle ⁇ offset in the collector 6. Likewise, the tubes open 31st , 32, 33, 34 with the respective nipples 31 a, 32 a, 33 a, 34 a on an adjacent circumferential line 14 offset by the same angle ⁇ in the collector. 6
- FIG. 6 shows a plan view of the collector 6.
- the angle ⁇ by which a tube of a layer is offset from the next tube of the same position, in this case is in each case 45 °.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Die Erfindung betrifft einen Wärmetauscher zur Dampferzeugung für Solarkraftwerkegemäß dem Oberbegriff des Anspruchs 1.The invention relates to a heat exchanger for generating steam for solar power plants according to the preamble of
Aus dem Stand der Technik sind modular aufgebaute Wärmetauscher bekannt, welche nach dem sogenannten Umlauf-Prinzip, Natur- oder Zwangsumlauf, arbeiten. Dabei umfasst der Wärmetauscher eine Anzahl von Wärmetauschermodulen, beispielsweise ein Vorwärmermodul, ein oder mehrere Verdampfermodule und ein Überhitzermodul, die mittels jeweiliger Eintritts- und Austrittssammler, Umlaufrohre und einer externen Dampftrommel zu einer funktionellen Einheit zusammengeschaltet werden. Ein gattungsgemäßer Wärmetauscher mit parallel zur Längsachse des Außenmantels verlaufenden Umlaufrohrlagen ist z.B. in
In Solarkraftwerken treten unter anderem in Abhängigkeit von der Jahreszeit, Tageszeit und auch der Wetterlage häufig große Last- und Temperaturwechsel auf, so dass sich die Auslegung des Dampferzeugers für solarthermische Kraftwerke als schwierig erweist. Schnelle Anfahrgeschwindigkeiten mit hohen Temperaturgradienten, geringer Platzbedarf sowie geringe Herstellungs- und Betriebskosten sind nur einige der wichtigen Anforderungen an einen Wärmetauscher zur Dampferzeugung für eine Solarkraftanlage.In solar power plants occur, inter alia, depending on the season, time of day and the weather often large load and temperature changes, so that the design of the steam generator for solar thermal power plants proves difficult. Fast approach speeds with high temperature gradients, small footprint and low manufacturing and operating costs are just some of the important requirements for a heat exchanger for steam generation for a solar power plant.
Es besteht also Bedarf an noch kompakteren und noch effizienteren Wärmetauschern für Solarkraftanlagen, die zudem kostengünstig hergestellt und sicher betrieben werden können.There is therefore a need for even more compact and even more efficient heat exchangers for solar power plants, which can also be manufactured inexpensively and safely operated.
Daher liegt der Erfindung die Aufgabe zugrunde, einen Wärmetauscher anzugeben, welcher eine kompakte Bauweise, eine kostengünstige Herstellung sowie einen sicheren Betrieb ermöglicht.Therefore, the invention has for its object to provide a heat exchanger, which allows a compact design, cost-effective production and safe operation.
Die Aufgabe wird gelöst mit einem Wärmetauscher gemäß dem unabhängigen Anspruch. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen wiedergegeben.The object is achieved with a heat exchanger according to the independent claim. Preferred developments are given in the dependent claims.
Der erfindungsgemäße Wärmetauscher zur Dampferzeugung für Solarkraftwerke umfasst einen Außenmantel mit einem Einlass- und einem Auslassstutzen für ein wärmeabgebendes Medium. Ferner umfasst der Wärmetauscher einen Eintritts- und einen Austrittssammler für ein wärmeaufnehmendes Medium, vorzugsweise Wasser, wobei der Eintritts- und der Austrittssammler im Wesentlichen innerhalb des Außenmantels angeordnet sind. Darüber hinaus befindet sich innerhalb des Außenmantels ein Rohrbündel mit einer Anzahl von Rohrlagen mit durchgehenden Rohren, welche vom wärmeabgebenden Medium vollständig umströmbar ausgebildet sind und welche als Strömungswege für das wärmeaufnehmende Medium vom Eintrittssammler zum Austrittssammler ausgebildet sind. Dabei ist das Rohrbündel mäanderartig ausgebildet. Der erfindungsgemäße Wärmetauscher ist für eine Dampferzeugung nach dem Zwangsdurchlauf-Prinzip ausgelegt, so dass das in den Eintrittssammler eingespeiste wärmeaufnehmende Medium im Verlauf der Strömungswege nacheinander eine Vorwärmung, eine Verdampfung und eine Überhitzung erfährt, so dass aus dem Austrittssammler ein überhitzter Dampf austritt. Dabei wird die für die Vorwärmung, Verdampfung und Überhitzung erforderliche Energie im Wesentlichen nur durch die Wärmeübertragung vom wärmeabgebenden Medium auf das wärmeaufnehmende Medium innerhalb des Außenmantels zur Verfügung gestellt.The heat exchanger according to the invention for generating steam for solar power plants comprises an outer jacket with an inlet and an outlet for a heat-emitting medium. Furthermore, the heat exchanger comprises an inlet and an outlet header for a heat-absorbing medium, preferably water, wherein the inlet and the outlet header are arranged substantially inside the outer shell. In addition, located within the outer shell, a tube bundle with a number of tube layers with continuous tubes, which are formed by the heat-emitting medium completely flow around and which are formed as flow paths for the heat-absorbing medium from the inlet collector to the outlet collector. In this case, the tube bundle is formed meandering. The heat exchanger according to the invention is designed for steam generation according to the forced-circulation principle, so that the heat-absorbing medium fed into the inlet collector successively undergoes preheating, evaporation and superheating in the course of the flow paths, so that a superheated steam exits from the outlet collector. In this case, the energy required for the preheating, evaporation and overheating is provided essentially only by the heat transfer from the heat-emitting medium to the heat-absorbing medium within the outer shell.
Der Wärmetauscher vereint also mindestens drei verschiedene Apparate, nämlich Vorwärmer, Verdampfer und Überhitzer, in einem. Durch die mäanderartige Anordnung der Rohre erfolgt der Wärmeaustausch nach dem Gegen- bzw. Kreuzstromprinzip. Die mäanderförmigen Rohre werden von einem wärmeaufnehmenden Medium, vorzugsweise Wasser, durchströmt. Durch die mäanderförmige Anordnung der Rohrbündel wird die Baugröße des Wärmetauschers insgesamt verringert, die Wärmeübertragung vom wärmeabgebenden zum wärmeaufnehmenden Medium verbessert und ferner die Thermoelastizität des Aufbaus erhöht.The heat exchanger thus combines at least three different apparatus, namely preheater, evaporator and superheater, in one. Due to the meandering arrangement of the tubes, the heat exchange takes place according to the counter or cross flow principle. The meandering tubes are flowed through by a heat-absorbing medium, preferably water. Due to the meandering arrangement of the tube bundles, the size of the heat exchanger is reduced overall, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermal resilience of the structure.
Durch die Auslegung des Wärmetauschers zur Dampferzeugung für Solarkraftanlagen nach dem Zwangsdurchlauf-Prinzip, d. h. das eingespeiste wärmeaufnehmende Medium, vorzugsweise Wasser, wird "in einem Durchlauf" vom Eintrittssammler hin zum Austrittssammler vorgewärmt, anschließend verdampft und anschließend überhitzt, wird ein äußert kompakter und effizienter Dampferzeuger verwirklicht. Anstelle der Verwendung von mehreren, separaten Wärmetauschermodulen, die eine kostenaufwändige und komplizierte Zusammenschaltung benötigen, wird das Wasser, welches in flüssigem Zustand über den Eintrittssammler in den Wärmetauscher eintritt, im Verlauf seiner Strömung innerhalb der Wärmetauscherrohre in Richtung Austrittssammler vorgewärmt, verdampft und überhitzt, so dass über den Austrittssammler ein überhitzter Dampf den Wärmetauscher verlässt, welcher der Dampfturbine zur Stromgewinnung zugeführt werden kann.Due to the design of the heat exchanger for steam generation for solar power plants according to the forced flow principle, ie the heat-absorbing medium, preferably water, "preheated in one pass" from the inlet header to the outlet header, then evaporated and then superheated, becomes an extremely compact and efficient steam generator realized. Instead of using a plurality of separate heat exchanger modules, which require a costly and complicated interconnection, the water entering the heat exchanger via the inlet header in the liquid state is preheated, evaporated and superheated in the course of its flow within the heat exchanger tubes in the direction of the outlet header that via the outlet collector, a superheated steam leaves the heat exchanger, which can be supplied to the steam turbine for power generation.
Durch die Einsparung von zusätzlichen Dampftrommeln, Umlaufleitungen und Verbindungen zwischen den Einzelmodulen werden nicht nur Materialkosten in erheblichem Maße reduziert, sondern auch die Herstellungs- und Betriebskosten, da ein Großteil von aufwändigen Schweißarbeiten und die anschließende Prüfung derselben entfallen. Durch den Wegfall der sich außerhalb des Außenmantels befindlichen Bauteile, wie beispielsweise Dampftrommel sowie diversen Rohrleitungen, wird erfindungsgemäß ein kompakter Aufbau ermöglicht und zugleich ein höherer Wirkungsgrad des Wärmetauschers erzielt, da die Wärmeübertragung zur Dampferzeugung im Wesentlichen nur innerhalb des Außenmantels des Wärmetauschers stattfindet und somit keine zusätzlichen Wärmeverluste aufgrund von sich außerhalb des Wärmetauscheraußenmantels befindlichen Bauteilen auftreten.By saving additional steam drums, circulation lines and connections between the individual modules not only material costs are significantly reduced, but also the manufacturing and operating costs, since a large part of elaborate welding and the subsequent examination account for the same. By eliminating the located outside the outer shell components, such as steam drum and various pipelines, a compact design is achieved and at the same time achieves a higher efficiency of the heat exchanger, since the heat transfer takes place to generate steam substantially only within the outer jacket of the heat exchanger and thus no additional heat losses due to located outside the heat exchanger outer shell components occur.
"Durchgehende Rohre" bedeutet in diesem Zusammenhang, dass jedes Rohr, welches jeweils einen Strömungsweg für das wärmeaufnehmende Medium definiert, zwischen dem Eintrittssammler und dem Austrittssammler keinerlei Verzweigungs- oder Vermischungsstellen aufweist. Die Rohre verlaufen zudem vollständig "innerhalb des Außenmantels", das bedeutet, dass keine Teile des Rohrbündels sich außerhalb des Außenmantels befinden und dass die Rohre vollständig vom wärmeabgebenden Medium umströmt werden. Es werden also keinerlei externe Energiequellen benötigt, die eine Vorwärmung, Verdampfung oder Überhitzung fördern. Die Heizflächen der durchgehenden Rohre selbst bilden also in Strömungsrichtung betrachtet nacheinander die Vorwärmer-, Verdampfer- und Überhitzerzone. Äußerlich sind diese einzelnen "Zonen" nicht erkennbar, da nur ein Rohrbündel zwischen dem Eintrittssammler und dem Austrittssammler angeordnet ist und das Rohrbündel einen gleichbleibenden Verlauf mit sich wiederholendem Mäander-Muster aufweist."Continuous tubes" in this context means that each tube, which defines a respective flow path for the heat-absorbing medium, has no branching or mixing points between the inlet header and the outlet header. In addition, the tubes run completely "inside the outer jacket", which means that no parts of the tube bundle are outside the outer jacket and that the pipes are completely surrounded by the heat-emitting medium. So no external energy sources are needed to promote preheating, evaporation or overheating. The heating surfaces of the continuous tubes themselves thus form successively the preheater, evaporator and superheater zones viewed in the direction of flow. Externally, these individual "zones" are not recognizable, since only one tube bundle is arranged between the inlet header and the outlet header and the tube bundle has a constant course with a repetitive meandering pattern.
Erfindungsgemäß wird der Wärmetauscher vertikal aufgestellt. Die vertikale Aufstellung ist bevorzugt, da sie eine noch bessere Flächennutzung erlaubt. Dabei können mehrere der erfindungsgemäßen Wärmetauscher nebeneinander parallel auf einer relativ kleinen Fläche betrieben werden. Bei thermischen Solarkraftanlagen sind die Platzverhältnisse ungünstig, da die Parabolrinnenkollektoren sehr viel Platz einnehmen. Die platzsparende Bauweise der erfindungsgemäßen Wärmetauscher erlaubt eine fast ortsungebundene Aufstellung, so dass die Strömungswege der aufgeheizten Medien zum Wärmetauscher zweckmäßiger Weise verkürzt werden können. Die Temperaturen des wärmeabgebenden Mediums bei Eintritt in den Wärmetauscher sind höher, so dass die Wärmeausbeute besser wird.According to the invention, the heat exchanger is set up vertically. Vertical placement is preferred because it allows even better land use. In this case, several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area. In thermal solar power plants, the space conditions are unfavorable because the parabolic trough collectors take up a lot of space. The space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner. The temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.
Eine weitere bevorzugte Ausführungsvariante der Erfindung sieht vor, dass das Rohrbündel bei vertikaler Aufstellung eine Anzahl von vertikalen Rohrlagen aufweist, wobei jede Rohrlage aus einer gleichen Anzahl von Rohren gebildet wird, und dass die Rohrlagen so angeordnet sind, dass die Rohre der einzelnen Rohrlagen in horizontaler Richtung genau nebeneinander liegend ausgerichtet sind, wobei die Strömungsrichtungen des wärmeaufnehmenden Mediums in den horizontal benachbarten, quer zur Mittelachse des Außenmantels angeordneten Rohrabschnitten entgegengesetzt sind. Die Ausführung der Rohrbündel in einzelnen Rohrlagen ermöglicht eine extrem kompakte Bauweise. Dadurch dass die Rohre horizontal genau nebeneinander liegen, können herkömmliche Abstandhalter zwischen den Rohren verwendet werden. Die entgegengesetzte Strömung in den horizontal benachbarten Rohrabschnitten, die quer zur Mittelachse des Außenmantels angeordnet sind, begünstigt die symmetrische Temperaturverteilung im Wärmetauscher in Bezug auf die Mittelachse.A further preferred embodiment of the invention provides that the tube bundle has a number of vertical pipe layers when mounted vertically, each pipe layer an equal number of tubes is formed, and that the tube layers are arranged so that the tubes of the individual tube layers in the horizontal direction are aligned exactly juxtaposed, the flow directions of the heat-absorbing medium in the horizontally adjacent, arranged transversely to the central axis of the outer shell pipe sections opposite are. The design of the tube bundles in individual tube layers allows an extremely compact design. The fact that the tubes lie horizontally exactly next to each other, conventional spacers between the tubes can be used. The opposite flow in the horizontally adjacent pipe sections, which are arranged transversely to the central axis of the outer shell, favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis.
Vorzugsweise weisen der Eintritts- und der Austrittssammler einen kreisförmigen Querschnitt auf. Dabei sind die Rohre einer Rohrlage auf einer Umfangslinie des Eintritts- bzw. Austrittssammlers voneinander um einen gleichen Winkel versetzt mit dem Eintritts- bzw. Austrittssammler verbunden. Auf diese Weise wird das Herstellungsverfahren erleichtert, da genug Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern geboten wird.Preferably, the inlet and the outlet header have a circular cross-section. The tubes of a pipe layer on a circumferential line of the inlet or outlet collector are offset from each other by an equal angle with the inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.
Weiterhin bevorzugt, sind die Rohre der benachbarten Rohrlagen so mit dem Eintritts- bzw. Austrittssammler verbunden, dass die Rohre der einen Rohrlage bezüglich der Rohre der benachbarten Rohrlage um einen Winkel versetzt auf einer benachbarten Umfangslinie des jeweiligen Eintritts- und Austrittssammlers angeordnet sind. Hierdurch können die Umfangsflächen der Ein- bzw. Austrittssammler optimal ausgenutzt werden, so dass die Anordnung der Rohrlagen kompakt gestaltet werden kann. Es bleibt immer noch genügend Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern.Further preferably, the tubes of the adjacent tube layers are connected to the inlet and outlet header such that the tubes of one tube layer are offset relative to the tubes of the adjacent tube layer by an angle on an adjacent circumferential line of the respective inlet and outlet header. As a result, the peripheral surfaces of the inlet and outlet collector can be optimally utilized, so that the arrangement of the pipe layers can be made compact. There is still enough space for welding, machining or other work on the collectors.
Gemäß einer weiteren Ausführungsform der Erfindung weist das Rohrbündel einen separaten Abschnitt auf, in dem vorwiegend die Vorwärmung des wärmeaufnehmenden Mediums stattfindet. Der separate Vorwärmerabschnitt kann beispielsweise durch eine örtliche Trennung innerhalb des Außenmantels realisiert werden. Es ist auch möglich, die Strömung des wärmeabgebenden Medium und folglich die Temperaturverteilung im Wärmetauscher so zu steuern, dass in diesem Vorwärmerabschnitt hauptsächlich die Vorwärmung des wärmeaufnehmenden Mediums stattfindet. Alternativ könnte auch die Vorwärmung komplett außerhalb des Außenmantels, d. h. in einem separaten Vorwärmer, erfolgen. In diesem Fall wäre der erfindungsgemäße Wärmetauscher vorwiegend für die Verdampfung und die Überhitzung des wärmeaufnehmenden Mediums ausgelegt.According to a further embodiment of the invention, the tube bundle has a separate section, in which predominantly the preheating of the heat-absorbing medium takes place. The separate preheater section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this preheater section takes place mainly the preheating of the heat-absorbing medium. Alternatively, the preheating could be done completely outside the outer shell, ie in a separate preheater. In this case, the heat exchanger according to the invention would be designed primarily for the evaporation and overheating of the heat-absorbing medium.
Gemäß einer weiteren Ausführungsform der Erfindung weist das Rohrbündel einen separaten Abschnitt auf, in dem vorwiegend die Verdampfung des wärmeaufnehmenden Mediums stattfindet. Der separate Verdampferabschnitt kann beispielsweise durch eine örtliche Trennung innerhalb des Außenmantels realisiert werden. Es ist auch möglich, die Strömung des wärmeabgebenden Medium und folglich die Temperaturverteilung im Wärmetauscher so zu steuern, dass in diesem Verdampferabschnitt hauptsächlich die Verdampfung des wärmeaufnehmenden Mediums stattfindet. Alternativ könnte auch die Verdampfung komplett außerhalb des Außenmantels, d. h. in einem separaten Verdampfer, erfolgen. In diesem Fall wäre der erfindungsgemäße Wärmetauscher vorwiegend für die Vorwärmung und die Überhitzung des wärmeaufnehmenden Mediums ausgelegt.According to a further embodiment of the invention, the tube bundle has a separate section in which predominantly the evaporation of the heat-absorbing medium takes place. The separate evaporator section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this evaporator section mainly the evaporation of the heat-absorbing medium takes place. Alternatively, the evaporation could completely outside the outer shell, d. H. in a separate evaporator. In this case, the heat exchanger according to the invention would be designed primarily for preheating and overheating of the heat-absorbing medium.
Gemäß einer weiteren Ausführungsform der Erfindung weist das Rohrbündel einen separaten Abschnitt auf, in dem vorwiegend die Überhitzung des wärmeaufnehmenden Mediums stattfindet. Der separate Überhitzerabschnitt kann beispielsweise durch eine örtliche Trennung innerhalb des Außenmantels realisiert werden. Es ist auch möglich, die Strömung des wärmeabgebenden Medium und folglich die Temperaturverteilung im Wärmetauscher so zu steuern, dass in diesem Überhitzerabschnitt hauptsächlich die Überhitzung des wärmeaufnehmenden Mediums stattfindet. Alternativ könnte auch die Überhitzung komplett außerhalb des Außenmantels, d. h. in einem separaten Überhitzer, erfolgen. In diesem Fall wäre der erfindungsgemäße Wärmetauscher vorwiegend für die Vorwärmung und die Verdampfung des wärmeaufnehmenden Mediums ausgelegt.According to a further embodiment of the invention, the tube bundle has a separate section in which predominantly the overheating of the heat-absorbing medium takes place. The separate superheater section can be realized for example by a local separation within the outer jacket. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this superheater section takes place mainly the overheating of the heat-absorbing medium. Alternatively, the overheating could be completely outside the outer shell, d. H. in a separate superheater, done. In this case, the heat exchanger according to the invention would be designed primarily for the preheating and the evaporation of the heat-absorbing medium.
Vorzugsweise sind die Rohre über Nippel mit dem Eintritts- und Austrittssammler verbunden. Hierdurch wird die Verbindung des kompakten Rohrbündels am Eintritts- und Austrittssammler vereinfacht. Die Verbindung zwischen den Nippeln und den einzelnen Rohren erfolgt vorzugsweise stoffschlüssig, beispielsweise durch Schweißen. Der Schweißvorgang kann automatisiert ablaufen. Anschließend werden die Schweißnähte einzeln überprüft, beispielsweise mit Hilfe des Röntgens.Preferably, the tubes are connected via nipples to the inlet and outlet header. As a result, the connection of the compact tube bundle at the inlet and outlet collector is simplified. The connection between the nipples and the individual tubes is preferably cohesively, for example by welding. The welding process can be automated. Subsequently, the welds are checked individually, for example with the help of X-rays.
In einer bevorzugten Ausführungsform der Erfindung sind die Rohre ohne Nippel direkt mit dem Eintritts- bzw. Austrittssammler verbunden. Auch in diesem Fall erfolgt die Verbindung zwischen den Sammlern und den einzelnen Rohren vorzugsweise stoffschlüssig, beispielsweise durch Schweißen. Der Schweißvorgang kann auch hier automatisiert ablaufen. Anschließend werden die Schweißnähte einzeln überprüft, beispielsweise mit Hilfe des Röntgens.In a preferred embodiment of the invention, the tubes are connected without nipple directly to the inlet and outlet header. Also in this case, the connection between the collectors and the individual tubes is preferably cohesively, for example by welding. The welding process can also be automated here. Subsequently, the welds are checked individually, for example with the help of X-rays.
Vorzugsweise sind die Nippel ihrerseits stoffschlüssig, beispielsweise mittels Schweißen, mit dem Eintritts- und Austrittssammler verbunden. Auch hier kann der Schweißvorgang automatisch ablaufen.Preferably, the nipples are in turn cohesively, for example by welding, connected to the inlet and outlet collector. Again, the welding process can take place automatically.
Gemäß einer weiteren Ausführungsform der Erfindung sind die Nippel direkt aus dem Material des Eintritts- bzw. Austrittssammlers spanend gefertigt. Beispielsweise können die Nippel aus dem zunächst rohrförmigen Material des Eintritts- bzw. Austrittssammlers herausgefräst sein. Hierdurch werden eventuelle Schäden infolge von Schweißarbeiten verringert. Zudem entfällt hierdurch die Prüfung der einzelnen Schweißnähte zwischen den Nippeln und dem jeweiligen Sammler.According to a further embodiment of the invention, the nipples are machined directly from the material of the inlet or outlet collector. For example, the nipples can be milled out of the initially tubular material of the inlet or outlet collector. This will reduce any damage due to welding. In addition, this eliminates the examination of the individual welds between the nipples and the respective collector.
Gemäß einer bevorzugten Weiterbildung der Erfindung sind die Rohre des Rohrbündels in einem Innengehäuse angeordnet, welches konzentrisch innerhalb des Außenmantels angeordnet ist und eine Ein- und eine Austrittsöffnung für das wärmeabgebende Medium aufweist. Das Querschnittsprofil des Innengehäuses ist vorzugsweise rechteckig, so dass das Rohbündel möglichst eng von diesem Innengehäuse umschlossen wird. Durch die zusätzliche Umschließung der wärmeaustauschenden Komponenten wird eine weitere Isolierung zwischen den Wärmetauschermodulen und der Umgebung geschaffen. Dabei können die Eintritts- und die Austrittsöffnung des Innengehäuses mit dem korrespondieren Einlass- bzw. Auslassstutzen derart verbunden sein, dass ein abgetrennter Raum zwischen dem Außenmantel und dem Innengehäuse geschaffen wird. Alternativ kann auch eine Strömung des wärmeabgebenden Medium entlang der Innenwandung des Außenmantels zugelassen werden.According to a preferred embodiment of the invention, the tubes of the tube bundle are arranged in an inner housing, which is arranged concentrically within the outer jacket and has an inlet and an outlet opening for the heat-emitting medium. The cross-sectional profile of the inner housing is preferably rectangular, so that the Rohbündel is as closely as possible enclosed by this inner housing. The additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment. In this case, the inlet and the outlet opening of the inner housing may be connected to the corresponding inlet or outlet nozzle in such a way that a separate space between the outer shell and the inner housing is provided. Alternatively, a flow of the heat-emitting medium along the inner wall of the outer shell can be allowed.
In einer vorteilhaften Ausführungsform der Erfindung sind der Einlass- und der Auslassstutzen für das wärmeabgebende Medium bei der vertikalen Aufstellung des Wärmetauschers im unteren Teil des Außenmantels angeordnet. Hierdurch wird die Kompaktheit des Wärmetauschers noch weiter erhöht. Ferner werden dadurch die Wartungsarbeiten erleichtert, da die mantelseitigen Anschlüsse in greifbarer Bodennähe angeordnet sind. Dabei wird der Raum zwischen dem Außenmantel und dem Innengehäuse als Strömungskanal für das wärmeabgebende Medium genutzt. Das heiße wärmeabgebende Medium tritt über den Einlassstutzen des Außenmantels und die Eintrittsöffnung des Innengehäuses in das Innere des Innengehäuses und strömt nach oben. Anschließend strömt das wärmeabgebende Medium durch den ringförmigen Strömungskanal, welcher durch die konzentrische Anordnung des Außenmantels und des Innengehäuses entsteht, zurück nach unten, wo es dann über den Auslassstutzen den Außenmantel verlässt. Auf diese Weise wird die Verweilzeit des wärmeabgebenden Mediums im Wärmetauscher verlängert, so dass die Wärmeübertragung zum wärmeaufnehmenden Medium insgesamt verbessert wird.In an advantageous embodiment of the invention, the inlet and the outlet of the heat-emitting medium in the vertical installation of the heat exchanger in the lower part of the outer shell are arranged. As a result, the compactness of the heat exchanger is further increased. Furthermore, the maintenance is facilitated because the shell-side connections are located within reach of the ground. The space between the outer shell and the inner housing is used as a flow channel for the heat-emitting medium. The hot heat-emitting medium passes through the inlet port of the outer shell and the inlet opening of the inner housing in the interior of the inner housing and flows upward. Subsequently, the heat-emitting medium flows through the annular flow channel, which results from the concentric arrangement of the outer shell and the inner housing, back down, where it then leaves the outer jacket via the outlet port. In this way, the residence time of the heat-emitting medium is prolonged in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved overall.
Nachfolgend wird die Erfindung anhand von Figuren näher beschrieben. Es zeigen schematisch:
-
Fig. 1 eine Seitenansicht einer Ausführungsform des erfindungsgemäßen Wärmetauschers; -
Fig. 2 eine Schnittansicht entlang der Linie A-A ausFig. 1 ; -
Fig. 3 eine Detailansicht "X" ausFig. 2 ; -
Fig. 4 eine Schnittansicht entlang der Linie B-B ausFig. 3 ; -
Fig. 5 eine Detailansicht des Eintrittssammlers ausFig. 1 ;und 2 -
Fig. 6 eine Draufsicht des Eintrittssammlers ausFig. 5 ;
-
Fig. 1 a side view of an embodiment of the heat exchanger according to the invention; -
Fig. 2 a sectional view taken along the line AAFig. 1 ; -
Fig. 3 a detail view "X" offFig. 2 ; -
Fig. 4 a sectional view taken along the line BBFig. 3 ; -
Fig. 5 a detailed view of the entrance collector fromFig. 1 and 2 ; -
Fig. 6 a plan view of the inlet collectorFig. 5 ;
Beim wärmeabgebenden Medium handelt es sich um vorzugsweise Thermoöl, welches in den Absorberrohren der Parabolrinnen auf ca. 400 °C erhitzt wird. Alternativ können flüssige Salze oder andere geeignete Wärmeträgermedien verwendet werden. Das Thermoöl tritt über den Einlassstutzen 4 des Außenmantels 2 in den Wärmetauscher 1 ein. Von dort strömt es in Richtung des Auslassstutzens 5 und umströmt dabei das mäanderartig geformte Rohrbündel 11. Nachdem das Thermoöl einen Teil seiner Wärmeenergie an das Wasser abgegeben hat, tritt es über den Austrittsstutzen 5 aus dem Wärmetauscher 1 heraus.The heat-emitting medium is preferably thermal oil, which is heated in the absorber tubes of the parabolic troughs to about 400 ° C. Alternatively, liquid salts or other suitable heat transfer media may be used. The thermal oil enters via the
Gemäß einem nicht dargestellten Ausführungsbeispiel kann die mantelseitige Strömung des Thermoöls derart geleitet werden, dass das Thermoöl im unteren Teil des Wärmetauschers 1 ein- und austritt. Dabei dient der Raum zwischen dem Innengehäuse 3 und dem Außenmantel 2 als Strömungsweg für das nach unten strömende Thermoöl. In diesem Fall sind sowohl der Einlass- als auch der Auslassstutzen im unteren Bereich des vertikal aufgestellten Wärmetauschers 1 angeordnet.According to an embodiment, not shown, the shell-side flow of the thermal oil can be directed so that the thermal oil in the lower part of the
In
In
Claims (12)
- A heat exchanger (1) for generating steam for solar power plants, with the heat exchanger being erected vertically, comprising:- an outer casing (2) with an inlet nozzle (4) and an outlet nozzle (5) for a heat-emitting medium;- an inlet header (6) and an outlet header (7) for a heat-absorbing medium, preferably water, with the inlet header (6) and the outlet header (7) being arranged substantially within the outer casing (2);- a tube bundle (11) within the outer casing (2) with a number of tube layers (20, 30) with continuous tubes (21, 22, 23, 24, 33, 34) which are arranged so that the heat-emitting medium can flow around said tubes completely and which are arranged as flow paths for the heat-absorbing medium from the inlet header (6) to the outlet header (7);with the tube bundle (11) being arranged in a meandering manner, with the heat exchanger (1) for generating steam being arranged according to the forced-flow principle, so that the heat-absorbing medium supplied to the inlet header (6) is successively subjected in the course of the flow paths to a preheating, an evaporation and a superheating, so that superheated steam exits from the outlet header (7), and with the energy required for the preheating, evaporation and superheating being made available substantially solely by heat transfer from the heat-emitting medium to the heat-absorbing medium within the heat exchanger (1),
characterized in that
the tube layers (20, 30) are arranged in such a way that the tubes (21, 22, 23, 24, 33, 34) of the individual tube layers (20, 30) are aligned to lie precisely next to one another in the horizontal direction, with the directions of flow of the heat-absorbing medium being opposite in the horizontally adjacent tube sections (15) which are arranged transversely to the central axis (10) of the outer casing (2), and that the tube layers (20, 30) are vertically adjacent, wherein each tube layer (20, 30) is formed from an equal number of tubes (21, 22, 23, 24, 33, 34). - The heat exchanger (1) according to claim 1,
characterized in that
the inlet header (6) and the outlet header (7) have a circular cross section, and the tubes (21, 22, 23, 24) of a tube layer (20) are connected with the inlet header (6) and outlet header (7) on a circumferential line (13) of the inlet header (6) and outlet header (7) offset from one another by the same angle (α). - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the tubes (21, 22, 23, 24, 33, 34) of the adjacent tube layers (20, 30) are connected with the inlet header (6) and outlet header (7) in such a way that the tubes (33, 34) of the one tube layer (30) are arranged with respect to the tubes (21, 22, 23, 24) of the adjacent tube layer (20) offset by an angle (ß) on an adjacent circumferential line (14) of the inlet header (6) and outlet header (7). - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the tube bundle (11) comprises a separate section in which mainly the preheating of the heat-absorbing medium occurs. - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the tube bundle (11) has a separate section in which mainly the evaporation of the heat-absorbing medium occurs. - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the tube bundle (11) has a separate section in which mainly the superheating of the heat-absorbing medium occurs. - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the tubes (21, 22, 23, 24, 33, 34) are connected with the inlet header (6) and outlet header (7) via nipples (21 a, 22a, 23a, 24a, 31 a, 32a, 33a, 34a). - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the tubes (21, 22, 23, 24, 33, 34) are directly connected without nipples with the inlet header (6) and outlet header (7). - The heat exchanger (1) according to claim 7,
characterized in that
the nipples (21 a, 22a, 23a, 24a, 31 a, 32a, 33a, 34a) are materially connected with the inlet header (6) and outlet header (7). - The heat exchanger (1) according to claim 7,
characterized in that
the nipples (21 a, 22a, 23a, 24a, 31 a, 32a, 33a, 34a) are made by metal cutting from the material of the inlet header (6) and outlet header (7). - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the tube bundle (11) is arranged in an inner housing (3) which is arranged concentrically within the outer casing (2) and comprises an inlet and an outlet opening for the heat-emitting medium. - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the inlet (4) and the outlet nozzle (5) for the heat-emitting medium are arranged in the bottom part of the outer casing (2) of the vertically erected heat exchanger (1).
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES09014365T ES2435550T3 (en) | 2009-11-17 | 2009-11-17 | Heat exchanger for steam generation for solar power plants. |
PT90143652T PT2322854E (en) | 2009-11-17 | 2009-11-17 | Heat exchanger for creating steam for solar power plants |
EP09014365.2A EP2322854B1 (en) | 2009-11-17 | 2009-11-17 | Heat exchanger for creating steam for solar power plants |
PCT/EP2010/006512 WO2011060870A1 (en) | 2009-11-17 | 2010-10-25 | Heat exchanger for generating steam for solar power plants |
KR1020127013213A KR20120117748A (en) | 2009-11-17 | 2010-10-25 | Heat exchanger for generating steam for solar power plants |
US13/510,374 US20130112156A1 (en) | 2009-11-17 | 2010-10-25 | Heat exchanger for generating steam for solar power plants |
AU2010321334A AU2010321334B2 (en) | 2009-11-17 | 2010-10-25 | Heat exchanger for generating steam for solar power plants |
CN201080052149.4A CN102667338B (en) | 2009-11-17 | 2010-10-25 | Heat exchanger for generating steam for solar power plants |
ZA2012/03459A ZA201203459B (en) | 2009-11-17 | 2012-05-11 | Heat exchanger for generating steam for solar power plants |
MA34955A MA33812B1 (en) | 2009-11-17 | 2012-06-11 | Heat exchanger for steam production for solar power plants |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09014365.2A EP2322854B1 (en) | 2009-11-17 | 2009-11-17 | Heat exchanger for creating steam for solar power plants |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2322854A1 EP2322854A1 (en) | 2011-05-18 |
EP2322854B1 true EP2322854B1 (en) | 2013-09-04 |
Family
ID=43003437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09014365.2A Not-in-force EP2322854B1 (en) | 2009-11-17 | 2009-11-17 | Heat exchanger for creating steam for solar power plants |
Country Status (10)
Country | Link |
---|---|
US (1) | US20130112156A1 (en) |
EP (1) | EP2322854B1 (en) |
KR (1) | KR20120117748A (en) |
CN (1) | CN102667338B (en) |
AU (1) | AU2010321334B2 (en) |
ES (1) | ES2435550T3 (en) |
MA (1) | MA33812B1 (en) |
PT (1) | PT2322854E (en) |
WO (1) | WO2011060870A1 (en) |
ZA (1) | ZA201203459B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020253924A1 (en) | 2019-06-17 | 2020-12-24 | Aalborg Csp A/S | Heat exchanger with pipe bundle |
US11739931B2 (en) | 2018-10-01 | 2023-08-29 | Header-coil Company A/S | Heat exchanger, such as for a solar power plant |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102721031A (en) * | 2012-06-11 | 2012-10-10 | 东方电气集团东方汽轮机有限公司 | Straight-flow steam generator |
JP6429904B2 (en) * | 2014-06-10 | 2018-11-28 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | How to install a modular waste heat recovery boiler |
JP6767975B2 (en) * | 2014-07-03 | 2020-10-14 | タイル ソーラー, エルエルシーTyll Solar, Llc | Solar energy system |
US11150037B2 (en) * | 2014-10-10 | 2021-10-19 | Baltimore Aircoil Company, Inc. | Heat exchange apparatus |
CN104949150A (en) * | 2015-07-03 | 2015-09-30 | 哈尔滨哈锅锅炉工程技术有限公司 | Connecting structure of boiler tubular air preheater channel and connecting box |
CN107606641A (en) * | 2017-10-27 | 2018-01-19 | 四川省洪雅青衣江元明粉有限公司 | A kind of preheater in the technology based on MVR |
WO2020036825A1 (en) | 2018-08-11 | 2020-02-20 | Tyll Solar, Llc | Solar energy system |
CN111912260A (en) * | 2020-06-24 | 2020-11-10 | 哈尔滨汽轮机厂辅机工程有限公司 | Heat exchange equipment integrating preheating, evaporation and overheating |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2221382A (en) * | 1937-12-14 | 1940-11-12 | Riley Stoker Corp | Steam generator |
US2547589A (en) * | 1947-07-02 | 1951-04-03 | Comb Eng Superheater Inc | Apparatus for extracting heat from gases under pressure |
US3110288A (en) * | 1958-06-26 | 1963-11-12 | Babcock & Wilcox Ltd | Heat exchanger construction |
US2980083A (en) * | 1958-09-22 | 1961-04-18 | Combustion Eng | Heat exchange organization |
FR1359081A (en) | 1961-09-07 | 1964-04-24 | Foster Wheeler Ltd | Improvements to heat exchangers, particularly for nuclear power plants |
FR1351602A (en) * | 1962-12-29 | 1964-02-07 | Babcock & Wilcox France | Improvements to recovery heat exchangers |
US4296804A (en) * | 1979-06-28 | 1981-10-27 | Resistoflex Corporation | Corrosion resistant heat exchanger element and method of manufacture |
US4325171A (en) * | 1979-10-15 | 1982-04-20 | Econo-Therm Energy Systems Corporation | Means and method for sealing heat exchanger walls |
FR2540971B1 (en) * | 1983-02-10 | 1985-09-27 | Novatome | STEAM GENERATOR FOR A NUCLEAR REACTOR COOLED BY LIQUID METAL |
US4753773A (en) * | 1985-05-09 | 1988-06-28 | Stone & Webster Engineering Corporation | Double tube steam generator |
US5044427A (en) * | 1990-08-31 | 1991-09-03 | Phillips Petroleum Company | Heat exchanger |
DE4321250A1 (en) * | 1993-06-25 | 1995-01-05 | Fritz Egger Gmbh | Shell-and-tube heat exchanger (tube-shell heater exchanger) |
DE29510720U1 (en) * | 1995-07-01 | 1995-09-07 | BDAG Balcke-Dürr AG, 40882 Ratingen | Heat exchanger |
DE19545308A1 (en) * | 1995-12-05 | 1997-06-12 | Asea Brown Boveri | Convective counterflow heat transmitter |
US6019070A (en) * | 1998-12-03 | 2000-02-01 | Duffy; Thomas E. | Circuit assembly for once-through steam generators |
JP2003090690A (en) * | 2001-09-18 | 2003-03-28 | Hitachi Ltd | Lamination type heat exchanger and refrigerating cycle |
US6779596B2 (en) * | 2002-03-22 | 2004-08-24 | Exxonmobil Research And Engineering Company | Heat exchanger with reduced fouling |
US6820685B1 (en) * | 2004-02-26 | 2004-11-23 | Baltimore Aircoil Company, Inc. | Densified heat transfer tube bundle |
DE102004032611A1 (en) * | 2004-07-05 | 2006-02-02 | Babcock-Hitachi Europe Gmbh | Establishing a connection between steam generator heating surfaces and a collector and / or distributor |
CN101245972A (en) * | 2008-03-14 | 2008-08-20 | 泰州市新恒盛机械制造有限公司 | Fin-penetrating type heat exchanger |
ES2582657T3 (en) * | 2008-09-08 | 2016-09-14 | Balcke-Dürr GmbH | Heat exchanger in modular construction mode |
WO2013019670A2 (en) * | 2011-07-29 | 2013-02-07 | Babcock & Wilcox Power Generation Group, Inc. | Shop assembled vertical serpentine flow molten salt solar receiver |
-
2009
- 2009-11-17 ES ES09014365T patent/ES2435550T3/en active Active
- 2009-11-17 PT PT90143652T patent/PT2322854E/en unknown
- 2009-11-17 EP EP09014365.2A patent/EP2322854B1/en not_active Not-in-force
-
2010
- 2010-10-25 US US13/510,374 patent/US20130112156A1/en not_active Abandoned
- 2010-10-25 WO PCT/EP2010/006512 patent/WO2011060870A1/en active Application Filing
- 2010-10-25 CN CN201080052149.4A patent/CN102667338B/en not_active Expired - Fee Related
- 2010-10-25 AU AU2010321334A patent/AU2010321334B2/en not_active Ceased
- 2010-10-25 KR KR1020127013213A patent/KR20120117748A/en not_active Application Discontinuation
-
2012
- 2012-05-11 ZA ZA2012/03459A patent/ZA201203459B/en unknown
- 2012-06-11 MA MA34955A patent/MA33812B1/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11739931B2 (en) | 2018-10-01 | 2023-08-29 | Header-coil Company A/S | Heat exchanger, such as for a solar power plant |
WO2020253924A1 (en) | 2019-06-17 | 2020-12-24 | Aalborg Csp A/S | Heat exchanger with pipe bundle |
Also Published As
Publication number | Publication date |
---|---|
ES2435550T3 (en) | 2013-12-20 |
CN102667338A (en) | 2012-09-12 |
ZA201203459B (en) | 2013-01-31 |
AU2010321334A1 (en) | 2012-06-14 |
CN102667338B (en) | 2015-02-11 |
EP2322854A1 (en) | 2011-05-18 |
US20130112156A1 (en) | 2013-05-09 |
KR20120117748A (en) | 2012-10-24 |
PT2322854E (en) | 2013-09-12 |
MA33812B1 (en) | 2012-12-03 |
WO2011060870A1 (en) | 2011-05-26 |
AU2010321334B2 (en) | 2015-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2322854B1 (en) | Heat exchanger for creating steam for solar power plants | |
EP2161525B1 (en) | Modular heat exchanger | |
DE102007024934B4 (en) | Tube bundle reactors with pressure fluid cooling | |
EP2521861B1 (en) | Solar thermal power plant using indirect evaporation and method for operating such a solar thermal power plant | |
EP2324285B1 (en) | Heat recovery steam generator | |
EP2278220B1 (en) | Heater for creating steam for a solar thermal power plant | |
EP2321578B1 (en) | Continuous steam generator | |
EP2491304B1 (en) | Cyclone separator for the phase separation of a multiphase fluid stream, steam turbine system having a cyclone separator and associated operating method | |
EP2856055B1 (en) | Method for exchanging heat between a salt melt and a further medium in a coiled heat-exchanger | |
EP0011834B1 (en) | Liquid-metal heated steam generator with integrated reheater | |
DE1927949A1 (en) | Steam generation and overheating device, especially for with molten metal, molten metal salt or the like. nuclear reactors working as heat exchangers | |
WO2013026928A2 (en) | Heat exchanger pipe, which can be heated by means of a heat carrier medium, of a solar thermal plant, and heat transfer method | |
EP0265908B1 (en) | Device for boiling wort | |
EP2414730B1 (en) | Device for phase separating a multi-phase fluid flow, steam turbine plant having such a device, and associated operating method | |
DE2249811A1 (en) | HEAT EXCHANGER | |
EP0172363B1 (en) | Heat-exchange apparatus, particularly for cooling gas from a high-temperature reactor | |
EP2080976B1 (en) | Heat exchanger | |
WO2012041989A1 (en) | Device and method for generating superheated steam by means of solar energy on the basis of the forced flow concept having helical water/steam guidance and use of the superheated steam | |
EP2369265A2 (en) | Solar collector with a corrugated pipe and connections | |
DE2711545C2 (en) | Heat exchangers with a large number of straight tube bundles | |
DE2437016A1 (en) | Circular cross-section heat exchanger - having series of concentric annular straight tubes bundles with annular collectors and distributors | |
WO1998038457A1 (en) | Solar power station, specially a solar power station with parabolic troughs | |
DE3215581A1 (en) | Heat exchanger for a nuclear power station | |
WO1994005950A1 (en) | Steam generator | |
DE1900558A1 (en) | Steam generator, especially for nuclear power plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20111118 |
|
17Q | First examination report despatched |
Effective date: 20121129 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28F 9/18 20060101ALI20130301BHEP Ipc: F24J 1/00 20060101ALI20130301BHEP Ipc: F22B 29/06 20060101AFI20130301BHEP Ipc: F28D 7/08 20060101ALI20130301BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130701 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20130905 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 630741 Country of ref document: AT Kind code of ref document: T Effective date: 20130915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009007930 Country of ref document: DE Effective date: 20131031 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2435550 Country of ref document: ES Kind code of ref document: T3 Effective date: 20131220 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20130402033 Country of ref document: GR Effective date: 20131118 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131204 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130717 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140104 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
BERE | Be: lapsed |
Owner name: BALCKE-DURR G.M.B.H. Effective date: 20131130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009007930 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
26N | No opposition filed |
Effective date: 20140605 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131204 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009007930 Country of ref document: DE Effective date: 20140605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091117 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131117 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 630741 Country of ref document: AT Kind code of ref document: T Effective date: 20141117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141117 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20191104 Year of fee payment: 11 Ref country code: DE Payment date: 20191122 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20191127 Year of fee payment: 11 Ref country code: FR Payment date: 20191125 Year of fee payment: 11 Ref country code: IT Payment date: 20191125 Year of fee payment: 11 Ref country code: ES Payment date: 20191202 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20191104 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009007930 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201117 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210601 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201117 |