EP2322854B1 - Echangeur thermique pour la production de vapeur pour les centrales solaires - Google Patents

Echangeur thermique pour la production de vapeur pour les centrales solaires Download PDF

Info

Publication number
EP2322854B1
EP2322854B1 EP09014365.2A EP09014365A EP2322854B1 EP 2322854 B1 EP2322854 B1 EP 2322854B1 EP 09014365 A EP09014365 A EP 09014365A EP 2322854 B1 EP2322854 B1 EP 2322854B1
Authority
EP
European Patent Office
Prior art keywords
heat
heat exchanger
header
tubes
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09014365.2A
Other languages
German (de)
English (en)
Other versions
EP2322854A1 (fr
Inventor
Jörg Stahlhut
Dirk Band
Wolfgang Dr. Hegner
Vitali Tregubow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balcke Duerr GmbH
Original Assignee
Balcke Duerr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PT90143652T priority Critical patent/PT2322854E/pt
Application filed by Balcke Duerr GmbH filed Critical Balcke Duerr GmbH
Priority to ES09014365T priority patent/ES2435550T3/es
Priority to EP09014365.2A priority patent/EP2322854B1/fr
Priority to KR1020127013213A priority patent/KR20120117748A/ko
Priority to US13/510,374 priority patent/US20130112156A1/en
Priority to CN201080052149.4A priority patent/CN102667338B/zh
Priority to AU2010321334A priority patent/AU2010321334B2/en
Priority to PCT/EP2010/006512 priority patent/WO2011060870A1/fr
Publication of EP2322854A1 publication Critical patent/EP2322854A1/fr
Priority to ZA2012/03459A priority patent/ZA201203459B/en
Priority to MA34955A priority patent/MA33812B1/fr
Application granted granted Critical
Publication of EP2322854B1 publication Critical patent/EP2322854B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/185Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding with additional preformed parts

Definitions

  • the invention relates to a heat exchanger for generating steam for solar power plants according to the preamble of claim 1.
  • Modular heat exchangers are known from the prior art, which operate according to the so-called circulation principle, natural or forced circulation.
  • the heat exchanger comprises a number of heat exchanger modules, for example a preheater module, one or more evaporator modules and a superheater module, which are interconnected by means of respective inlet and outlet headers, circulation pipes and an external steam drum to form a functional unit.
  • a generic heat exchanger with running parallel to the longitudinal axis of the outer shell circulation pipe layers is eg in FR 1,359,081 A disclosed.
  • the invention has for its object to provide a heat exchanger, which allows a compact design, cost-effective production and safe operation.
  • the heat exchanger according to the invention for generating steam for solar power plants comprises an outer jacket with an inlet and an outlet for a heat-emitting medium. Furthermore, the heat exchanger comprises an inlet and an outlet header for a heat-absorbing medium, preferably water, wherein the inlet and the outlet header are arranged substantially inside the outer shell.
  • a tube bundle with a number of tube layers with continuous tubes which are formed by the heat-emitting medium completely flow around and which are formed as flow paths for the heat-absorbing medium from the inlet collector to the outlet collector. In this case, the tube bundle is formed meandering.
  • the heat exchanger according to the invention is designed for steam generation according to the forced-circulation principle, so that the heat-absorbing medium fed into the inlet collector successively undergoes preheating, evaporation and superheating in the course of the flow paths, so that a superheated steam exits from the outlet collector.
  • the energy required for the preheating, evaporation and overheating is provided essentially only by the heat transfer from the heat-emitting medium to the heat-absorbing medium within the outer shell.
  • the heat exchanger thus combines at least three different apparatus, namely preheater, evaporator and superheater, in one. Due to the meandering arrangement of the tubes, the heat exchange takes place according to the counter or cross flow principle.
  • the meandering tubes are flowed through by a heat-absorbing medium, preferably water. Due to the meandering arrangement of the tube bundles, the size of the heat exchanger is reduced overall, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermal resilience of the structure.
  • the heat-absorbing medium preferably water
  • the heat-absorbing medium preferably water
  • evaporated and then superheated becomes an extremely compact and efficient steam generator realized.
  • the water entering the heat exchanger via the inlet header in the liquid state is preheated, evaporated and superheated in the course of its flow within the heat exchanger tubes in the direction of the outlet header that via the outlet collector, a superheated steam leaves the heat exchanger, which can be supplied to the steam turbine for power generation.
  • Continuous tubes in this context means that each tube, which defines a respective flow path for the heat-absorbing medium, has no branching or mixing points between the inlet header and the outlet header.
  • the tubes run completely "inside the outer jacket", which means that no parts of the tube bundle are outside the outer jacket and that the pipes are completely surrounded by the heat-emitting medium. So no external energy sources are needed to promote preheating, evaporation or overheating.
  • the heating surfaces of the continuous tubes themselves thus form successively the preheater, evaporator and superheater zones viewed in the direction of flow. Externally, these individual “zones" are not recognizable, since only one tube bundle is arranged between the inlet header and the outlet header and the tube bundle has a constant course with a repetitive meandering pattern.
  • the heat exchanger is set up vertically. Vertical placement is preferred because it allows even better land use.
  • several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area.
  • the space conditions are unfavorable because the parabolic trough collectors take up a lot of space.
  • the space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner. The temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.
  • a further preferred embodiment of the invention provides that the tube bundle has a number of vertical pipe layers when mounted vertically, each pipe layer an equal number of tubes is formed, and that the tube layers are arranged so that the tubes of the individual tube layers in the horizontal direction are aligned exactly juxtaposed, the flow directions of the heat-absorbing medium in the horizontally adjacent, arranged transversely to the central axis of the outer shell pipe sections opposite are.
  • the design of the tube bundles in individual tube layers allows an extremely compact design.
  • the fact that the tubes lie horizontally exactly next to each other, conventional spacers between the tubes can be used.
  • the opposite flow in the horizontally adjacent pipe sections, which are arranged transversely to the central axis of the outer shell favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis.
  • the inlet and the outlet header have a circular cross-section.
  • the tubes of a pipe layer on a circumferential line of the inlet or outlet collector are offset from each other by an equal angle with the inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.
  • the tubes of the adjacent tube layers are connected to the inlet and outlet header such that the tubes of one tube layer are offset relative to the tubes of the adjacent tube layer by an angle on an adjacent circumferential line of the respective inlet and outlet header.
  • the tube bundle has a separate section, in which predominantly the preheating of the heat-absorbing medium takes place.
  • the separate preheater section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this preheater section takes place mainly the preheating of the heat-absorbing medium. Alternatively, the preheating could be done completely outside the outer shell, ie in a separate preheater. In this case, the heat exchanger according to the invention would be designed primarily for the evaporation and overheating of the heat-absorbing medium.
  • the tube bundle has a separate section in which predominantly the evaporation of the heat-absorbing medium takes place.
  • the separate evaporator section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this evaporator section mainly the evaporation of the heat-absorbing medium takes place. Alternatively, the evaporation could completely outside the outer shell, d. H. in a separate evaporator. In this case, the heat exchanger according to the invention would be designed primarily for preheating and overheating of the heat-absorbing medium.
  • the tube bundle has a separate section in which predominantly the overheating of the heat-absorbing medium takes place.
  • the separate superheater section can be realized for example by a local separation within the outer jacket. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this superheater section takes place mainly the overheating of the heat-absorbing medium. Alternatively, the overheating could be completely outside the outer shell, d. H. in a separate superheater, done. In this case, the heat exchanger according to the invention would be designed primarily for the preheating and the evaporation of the heat-absorbing medium.
  • the tubes are connected via nipples to the inlet and outlet header.
  • the connection of the compact tube bundle at the inlet and outlet collector is simplified.
  • the connection between the nipples and the individual tubes is preferably cohesively, for example by welding. The welding process can be automated. Subsequently, the welds are checked individually, for example with the help of X-rays.
  • the tubes are connected without nipple directly to the inlet and outlet header.
  • the connection between the collectors and the individual tubes is preferably cohesively, for example by welding. The welding process can also be automated here. Subsequently, the welds are checked individually, for example with the help of X-rays.
  • the nipples are in turn cohesively, for example by welding, connected to the inlet and outlet collector. Again, the welding process can take place automatically.
  • the nipples are machined directly from the material of the inlet or outlet collector.
  • the nipples can be milled out of the initially tubular material of the inlet or outlet collector. This will reduce any damage due to welding. In addition, this eliminates the examination of the individual welds between the nipples and the respective collector.
  • the tubes of the tube bundle are arranged in an inner housing, which is arranged concentrically within the outer jacket and has an inlet and an outlet opening for the heat-emitting medium.
  • the cross-sectional profile of the inner housing is preferably rectangular, so that the Rohbündel is as closely as possible enclosed by this inner housing.
  • the additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment.
  • the inlet and the outlet opening of the inner housing may be connected to the corresponding inlet or outlet nozzle in such a way that a separate space between the outer shell and the inner housing is provided.
  • a flow of the heat-emitting medium along the inner wall of the outer shell can be allowed.
  • the inlet and the outlet of the heat-emitting medium in the vertical installation of the heat exchanger in the lower part of the outer shell are arranged.
  • the compactness of the heat exchanger is further increased.
  • the maintenance is facilitated because the shell-side connections are located within reach of the ground.
  • the space between the outer shell and the inner housing is used as a flow channel for the heat-emitting medium.
  • the hot heat-emitting medium passes through the inlet port of the outer shell and the inlet opening of the inner housing in the interior of the inner housing and flows upward.
  • the heat-emitting medium flows through the annular flow channel, which results from the concentric arrangement of the outer shell and the inner housing, back down, where it then leaves the outer jacket via the outlet port.
  • the residence time of the heat-emitting medium is prolonged in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved overall.
  • FIGS 1 and 2 show an embodiment of the heat exchanger according to the invention 1.
  • the heat exchanger 1 is placed vertically in a space-saving manner.
  • the outer casing 2 is an inner housing 3, which has a rectangular cross-sectional profile.
  • the meandering tubes of the tube bundle 11 are arranged in the inner housing 3.
  • the heat-absorbing medium for example water, enters the heat exchanger 1 via the inlet header 6. After flowing through the tubes of the tube bundle 11, it passes out of the heat exchanger 1 via the outlet collector 7. On the way from the inlet collector 6 to the outlet collector 7, the water is preheated, then evaporated and then superheated. The exiting from the heat exchanger 1 superheated steam is passed to generate electricity in the downstream steam turbine (not shown).
  • the forced-circulation principle for example Benson principle, working heat exchanger 1 for steam generation generated from the feed water, which enters the inlet collector in liquid form, in the course of the flow within the heat exchanger 1, a superheated steam, which can be removed from the outlet collector 7 ,
  • the claws 8 are used to mount the heat exchanger 1.
  • the heat-emitting medium is preferably thermal oil, which is heated in the absorber tubes of the parabolic troughs to about 400 ° C.
  • thermal oil enters via the inlet port 4 of the outer shell 2 in the heat exchanger 1. From there it flows in the direction of the outlet nozzle 5 and flows around the meandering shaped tube bundle 11. After the thermal oil has released a portion of its heat energy to the water, it passes through the outlet nozzle 5 from the heat exchanger 1 out.
  • the shell-side flow of the thermal oil can be directed so that the thermal oil in the lower part of the heat exchanger 1 and exits.
  • the space between the inner housing 3 and the outer shell 2 serves as a flow path for the downwardly flowing thermal oil.
  • both the inlet and the outlet are arranged in the lower region of the vertically mounted heat exchanger 1.
  • FIG. 2 two pipes of a pipe layer are indicated.
  • the number of tubes and the tube layers of a tube bundle 11 can be adapted to the different conditions.
  • FIG. 3 a pipe layer 20 with four tubes 21, 22, 23, 24 shown. This clearly shows the meandering pattern of the tube bundle 11.
  • FIG. 4 the arrangement of the individual pipe layers 20, 30 relative to one another is illustrated.
  • the pipe sections 15 which are arranged transversely to the central axis 10 of the outer shell 1, each tube with respect to its horizontally adjacent tube when mounted vertically an opposite direction of the pipe flow.
  • This opposite flow in the respectively adjacent pipe layers 20, 30 additionally ensures a uniform temperature distribution within the heat exchanger 1. Due to the uniform and compact arrangement of pipes and pipe layers to each other simple spacers 12 can be used.
  • FIG. 5 an inventive collector is shown enlarged. These are the inlet header 6. Inlet and outlet header 6, 7 differ only slightly from each other. Well recognizable are the nipples 22a, 33a, which serve to secure the tubes 22, 33 to the inlet header 6. The nipples 21a, 22a, 23a, 24a and thus also the tubes 21, 22, 23, 24 of the first tube layer 20 lie on a first circumferential line 13 and each open at an equal angle ⁇ offset in the collector 6. Likewise, the tubes open 31st , 32, 33, 34 with the respective nipples 31 a, 32 a, 33 a, 34 a on an adjacent circumferential line 14 offset by the same angle ⁇ in the collector. 6
  • FIG. 6 shows a plan view of the collector 6.
  • the angle ⁇ by which a tube of a layer is offset from the next tube of the same position, in this case is in each case 45 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (12)

  1. Échangeur de chaleur (1) à installation verticale pour la génération de vapeur pour des génératrices d'énergie solaires, comprenant :
    - une enveloppe extérieure (2) avec un piquage d'entrée (4) et un piquage de sortie (5) pour un fluide dégageant de la chaleur,
    - un collecteur d'entrée (6) et un collecteur de sortie (7) pour un fluide absorbant la chaleur, de préférence de l'eau, le collecteur d'entrée (6) et le collecteur de sortie (7) étant disposés pour l'essentiel à l'intérieur de l'enveloppe extérieure (2),
    - un faisceau de tubes (11) à l'intérieur de l'enveloppe extérieure (2) avec un certain nombre de couches de tubes (20, 30) avec des tubes continus (21, 22, 23, 24, 33, 34), qui peuvent être entièrement parcourus par le fluide dégageant de la chaleur et qui sont conformés comme des voies d'écoulement pour le fluide absorbant la chaleur du collecteur d'entrée (6) au collecteur de sortie (7), le faisceau de tubes (11) étant construit en méandres,
    dans lequel l'échangeur de chaleur (1) pour la génération de vapeur est conçu selon le principe de la circulation forcée, de telle sorte que le fluide absorbant la chaleur amené dans le collecteur d'entrée (6) subit successivement, au long des voies d'écoulement, un préchauffage, une évaporation et une surchauffe, de sorte qu'une vapeur surchauffée sort du collecteur de sortie (7), et
    dans lequel l'énergie nécessaire au préchauffage, à l'évaporation et à la surchauffe est fournie pour l'essentiel uniquement par la transmission de chaleur du fluide dégageant de la chaleur vers le fluide absorbant la chaleur à l'intérieur de l'échangeur de chaleur (1),
    caractérisé en ce que les couches de tubes (20, 30) sont disposées de telle manière que les tubes (21, 22, 23, 24, 33, 34) des différentes couches de tubes (20, 30) soient orientés de façon à se trouver exactement les uns à côté des autres dans le sens horizontal, les sens d'écoulement du fluide absorbant la chaleur étant opposés dans les sections de tube (15) voisines dans le sens horizontal et disposées transversalement par rapport à l'axe médian (10) de l'enveloppe extérieure (2), et en ce que les couches de tubes (20, 30) sont voisines dans le sens vertical, chaque couche de tubes (20, 30) étant formée d'un même nombre de tubes (21, 22, 23, 24, 33, 34).
  2. Échangeur de chaleur (1) selon la revendication 1, caractérisé en ce que le collecteur d'entrée (6) et le collecteur de sortie (7) présentent une section circulaire, et les tubes (21, 22, 23, 24) d'une couche de tubes (20) sont reliés au collecteur d'entrée (6) et au collecteur de sortie (7) en étant décalés les uns par rapport aux autres d'un même angle (α) sur une ligne de circonférence (13) du collecteur d'entrée (6) et du collecteur de sortie (7).
  3. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que les tubes (21, 22, 23, 24, 33, 34) des couches de tubes (20, 30) voisines sont reliés avec le collecteur d'entrée (6) et le collecteur de sortie (7) de telle façon que les tubes (33, 34) d'une couche de tubes (30) soient décalés d'un angle (β) par rapport aux tubes (21, 22, 23, 24) de la couche de tubes (20) voisine sur une ligne de circonférence (14) voisine du collecteur d'entrée (6) et du collecteur de sortie (7).
  4. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que le faisceau de tubes (11) présente une partie séparée dans laquelle a lieu principalement le préchauffage du fluide absorbant la chaleur.
  5. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que le faisceau de tubes (11) présente une partie séparée dans laquelle a lieu principalement l'évaporation du fluide absorbant la chaleur.
  6. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que le faisceau de tubes (11) présente une partie séparée dans laquelle a lieu principalement la surchauffe du fluide absorbant la chaleur.
  7. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que les tubes (21, 22, 23, 24, 33, 34) sont reliés par des raccords (21a, 22a, 23a, 24a, 31a, 32a, 33a, 34a) avec le collecteur d'entrée (6) et le collecteur de sortie (7).
  8. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que les tubes (21, 22, 23, 24, 33, 34) sont reliés sans raccord directement avec le collecteur d'entrée (6) et le collecteur de sortie (7).
  9. Échangeur de chaleur (1) selon la revendication 7, caractérisé en ce que les raccords (21a, 22a, 23a, 24a, 31a, 32a, 33a, 34a) sont reliés par solidarité de matériau avec le collecteur d'entrée (6) et le collecteur de sortie (7).
  10. Échangeur de chaleur (1) selon la revendication 7, caractérisé en ce que les raccords (21a, 22a, 23a, 24a, 31a, 32a, 33a, 34a) sont fabriqués par enlèvement de matière à partir du matériau du collecteur d'entrée (6) et du collecteur de sortie (7).
  11. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que le faisceau de tubes (11) est disposé dans un logement intérieur (3) qui est disposé de façon concentrique à l'intérieur de l'enveloppe extérieure (2) et qui présente une ouverture d'entrée et une ouverture de sortie pour le fluide dégageant de la chaleur.
  12. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que le piquage d'entrée (4) et le piquage de sortie (5) pour le fluide dégageant de la chaleur sont disposés, quand l'échangeur de chaleur (1) est installé verticalement, dans la partie inférieure de l'enveloppe extérieure (2).
EP09014365.2A 2009-11-17 2009-11-17 Echangeur thermique pour la production de vapeur pour les centrales solaires Not-in-force EP2322854B1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES09014365T ES2435550T3 (es) 2009-11-17 2009-11-17 Intercambiador de calor para la generación de vapor para centrales de energía solar.
EP09014365.2A EP2322854B1 (fr) 2009-11-17 2009-11-17 Echangeur thermique pour la production de vapeur pour les centrales solaires
PT90143652T PT2322854E (pt) 2009-11-17 2009-11-17 Permutador térmico para a produção de vapor para centrais de energia solar
US13/510,374 US20130112156A1 (en) 2009-11-17 2010-10-25 Heat exchanger for generating steam for solar power plants
CN201080052149.4A CN102667338B (zh) 2009-11-17 2010-10-25 用于太阳能发电厂的产生蒸汽的热交换器
AU2010321334A AU2010321334B2 (en) 2009-11-17 2010-10-25 Heat exchanger for generating steam for solar power plants
KR1020127013213A KR20120117748A (ko) 2009-11-17 2010-10-25 태양열 발전기용의 증기 발생을 위한 열 교환기
PCT/EP2010/006512 WO2011060870A1 (fr) 2009-11-17 2010-10-25 Echangeur thermique pour la production de vapeur pour centrales solaires
ZA2012/03459A ZA201203459B (en) 2009-11-17 2012-05-11 Heat exchanger for generating steam for solar power plants
MA34955A MA33812B1 (fr) 2009-11-17 2012-06-11 Echangeur thermique pour la production de vapeur pour centrales solaires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09014365.2A EP2322854B1 (fr) 2009-11-17 2009-11-17 Echangeur thermique pour la production de vapeur pour les centrales solaires

Publications (2)

Publication Number Publication Date
EP2322854A1 EP2322854A1 (fr) 2011-05-18
EP2322854B1 true EP2322854B1 (fr) 2013-09-04

Family

ID=43003437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09014365.2A Not-in-force EP2322854B1 (fr) 2009-11-17 2009-11-17 Echangeur thermique pour la production de vapeur pour les centrales solaires

Country Status (10)

Country Link
US (1) US20130112156A1 (fr)
EP (1) EP2322854B1 (fr)
KR (1) KR20120117748A (fr)
CN (1) CN102667338B (fr)
AU (1) AU2010321334B2 (fr)
ES (1) ES2435550T3 (fr)
MA (1) MA33812B1 (fr)
PT (1) PT2322854E (fr)
WO (1) WO2011060870A1 (fr)
ZA (1) ZA201203459B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020253924A1 (fr) 2019-06-17 2020-12-24 Aalborg Csp A/S Échangeur thermique à faisceau de tuyaux
US11739931B2 (en) 2018-10-01 2023-08-29 Header-coil Company A/S Heat exchanger, such as for a solar power plant

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721031A (zh) * 2012-06-11 2012-10-10 东方电气集团东方汽轮机有限公司 一种直流式蒸汽发生器
JP6429904B2 (ja) 2014-06-10 2018-11-28 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft モジュール式排熱回収ボイラを設置する方法
JP6767975B2 (ja) * 2014-07-03 2020-10-14 タイル ソーラー, エルエルシーTyll Solar, Llc 太陽エネルギーシステム
US11150037B2 (en) 2014-10-10 2021-10-19 Baltimore Aircoil Company, Inc. Heat exchange apparatus
CN104949150A (zh) * 2015-07-03 2015-09-30 哈尔滨哈锅锅炉工程技术有限公司 一种锅炉管式空气预热器管箱与连通箱的连接结构
CN107606641A (zh) * 2017-10-27 2018-01-19 四川省洪雅青衣江元明粉有限公司 一种基于mvr技术中的预热器
US11283400B2 (en) 2018-08-11 2022-03-22 Tyll Solar, Llc Solar energy system
CN111912260A (zh) * 2020-06-24 2020-11-10 哈尔滨汽轮机厂辅机工程有限公司 一种集预热、蒸发、过热为一体的换热设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2221382A (en) * 1937-12-14 1940-11-12 Riley Stoker Corp Steam generator
US2547589A (en) * 1947-07-02 1951-04-03 Comb Eng Superheater Inc Apparatus for extracting heat from gases under pressure
US3110288A (en) * 1958-06-26 1963-11-12 Babcock & Wilcox Ltd Heat exchanger construction
US2980083A (en) * 1958-09-22 1961-04-18 Combustion Eng Heat exchange organization
FR1359081A (fr) 1961-09-07 1964-04-24 Foster Wheeler Ltd Perfectionnements aux échangeurs de chaleurs, particulièrement pour centrales nucléaires
FR1351602A (fr) * 1962-12-29 1964-02-07 Babcock & Wilcox France Perfectionnements aux échangeurs de chaleur de récupération
US4296804A (en) * 1979-06-28 1981-10-27 Resistoflex Corporation Corrosion resistant heat exchanger element and method of manufacture
US4325171A (en) * 1979-10-15 1982-04-20 Econo-Therm Energy Systems Corporation Means and method for sealing heat exchanger walls
FR2540971B1 (fr) * 1983-02-10 1985-09-27 Novatome Generateur de vapeur pour un reacteur nucleaire refroidi par du metal liquide
US4753773A (en) * 1985-05-09 1988-06-28 Stone & Webster Engineering Corporation Double tube steam generator
US5044427A (en) * 1990-08-31 1991-09-03 Phillips Petroleum Company Heat exchanger
DE4321250A1 (de) * 1993-06-25 1995-01-05 Fritz Egger Gmbh Rohrbündel-Wärmetauscher
DE29510720U1 (de) * 1995-07-01 1995-09-07 Balcke Duerr Ag Wärmetauscher
DE19545308A1 (de) * 1995-12-05 1997-06-12 Asea Brown Boveri Konvektiver Gegenstromwärmeübertrager
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators
JP2003090690A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 積層型熱交換器及び冷凍サイクル
US6779596B2 (en) * 2002-03-22 2004-08-24 Exxonmobil Research And Engineering Company Heat exchanger with reduced fouling
US6820685B1 (en) * 2004-02-26 2004-11-23 Baltimore Aircoil Company, Inc. Densified heat transfer tube bundle
DE102004032611A1 (de) * 2004-07-05 2006-02-02 Babcock-Hitachi Europe Gmbh Herstellung einer Verbindung zwischen Dampferzeuger-Heizflächen und einem Sammler und/oder Verteiler
CN101245972A (zh) * 2008-03-14 2008-08-20 泰州市新恒盛机械制造有限公司 穿片式换热器
PT2161525T (pt) * 2008-09-08 2016-07-26 Balcke-Dürr GmbH Permutador de calor de construção modular
EP2737261B1 (fr) * 2011-07-29 2019-05-29 The Babcock & Wilcox Company Capteur solaire à sel fondu et à circulation par serpentin vertical assemblé en usine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739931B2 (en) 2018-10-01 2023-08-29 Header-coil Company A/S Heat exchanger, such as for a solar power plant
WO2020253924A1 (fr) 2019-06-17 2020-12-24 Aalborg Csp A/S Échangeur thermique à faisceau de tuyaux

Also Published As

Publication number Publication date
US20130112156A1 (en) 2013-05-09
AU2010321334A1 (en) 2012-06-14
PT2322854E (pt) 2013-09-12
ZA201203459B (en) 2013-01-31
AU2010321334B2 (en) 2015-12-03
CN102667338A (zh) 2012-09-12
WO2011060870A1 (fr) 2011-05-26
EP2322854A1 (fr) 2011-05-18
ES2435550T3 (es) 2013-12-20
CN102667338B (zh) 2015-02-11
MA33812B1 (fr) 2012-12-03
KR20120117748A (ko) 2012-10-24

Similar Documents

Publication Publication Date Title
EP2322854B1 (fr) Echangeur thermique pour la production de vapeur pour les centrales solaires
EP2161525A1 (fr) Echangeur thermique modulaire
DE102007024934B4 (de) Rohrbündelreaktoren mit Druckflüssigkeitskühlung
EP2521861B1 (fr) Centrale solaire thermique à évaporation indirecte et procédé permettant de faire fonctionner une telle centrale solaire thermique
EP2278220B1 (fr) Echangeur thermique destiné à la production de vapeur pour une centrale thermique solaire
EP2324285B1 (fr) Générateur de vapeur à récupération de chaleur
EP2491304B1 (fr) Séparateur cyclonique pour la séparation de phases d'un courant fluidique à plusieurs phases, installation turbine à vapeur dotée d'un séparateur cyclonique et procédé de fonctionnement associé
EP2856055B1 (fr) Procédé d'échange de chaleur entre des sels fondus et un autre agent dans un échangeur de chaleur enroulé
EP2321578B1 (fr) Générateur de vapeur en continu
EP0011834B1 (fr) Générateur de vapeur avec résurchauffeur intégré, chauffé par un métal liquide
DE1927949A1 (de) Dampferzeugungs- und -ueberhitzungsvorrichtung,insbesondere fuer mit geschmolzenem Metall,geschmolzenem Metallsalz od.dgl. als Waermeuebertrager arbeitende Kernreaktoren
WO2013026928A2 (fr) Tube échangeur de chaleur pouvant être chauffé par un agent caloporteur pour une installation solaire thermique et procédé de transfert thermique
DE1932027A1 (de) Waermetauscher
EP0265908B1 (fr) Appareil pour l'ébullition du moût
DE2249811A1 (de) Waermeaustauscher
EP2414730B1 (fr) Dispositif de séparation de phases d'un flux fluidique multiphase, installation de turbines à vapeur pourvue d'un tel dispositif et procédé de fonctionnement associé
EP0172363B1 (fr) Appareil échangeur de chaleur, en particulier pour refroidir les gaz d'un réacteur à haute température
EP2080976B1 (fr) Echangeur thermique
WO2012041989A1 (fr) Dispositif et procédé pour produire de la vapeur d'eau surchauffée au moyen d'énergie solaire sur la base du concept de circulation forcée avec guidage hélicoïdal de l'eau/la vapeur d'eau ainsi qu'utilisation de la vapeur d'eau surchauffée
EP2369265A2 (fr) Collecteur solaire doté d'un tube ondulé et de raccords
DE2711545C2 (de) Wärmetauscher mit einer Vielzahl von Geradrohrbündeln
DE2437016A1 (de) Waermeaustauscher von kreisfoermigem querschnitt
WO1998038457A1 (fr) Centrale solaire, en particulier centrale solaire a canaux paraboliques
DE3215581A1 (de) Waermetauscher fuer eine kernkraftanlage
WO1994005950A1 (fr) Generateur de vapeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20111118

17Q First examination report despatched

Effective date: 20121129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 9/18 20060101ALI20130301BHEP

Ipc: F24J 1/00 20060101ALI20130301BHEP

Ipc: F22B 29/06 20060101AFI20130301BHEP

Ipc: F28D 7/08 20060101ALI20130301BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130701

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20130905

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 630741

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009007930

Country of ref document: DE

Effective date: 20131031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2435550

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131220

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20130402033

Country of ref document: GR

Effective date: 20131118

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

BERE Be: lapsed

Owner name: BALCKE-DURR G.M.B.H.

Effective date: 20131130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009007930

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

26N No opposition filed

Effective date: 20140605

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131204

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009007930

Country of ref document: DE

Effective date: 20140605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091117

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130904

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 630741

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20191104

Year of fee payment: 11

Ref country code: DE

Payment date: 20191122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20191127

Year of fee payment: 11

Ref country code: FR

Payment date: 20191125

Year of fee payment: 11

Ref country code: IT

Payment date: 20191125

Year of fee payment: 11

Ref country code: ES

Payment date: 20191202

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20191104

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009007930

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210517

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117