EP2158789B1 - Dispositif à membrane pour transformateur de mouvement d'air, et transducteur acoustique présentant un tel dispositif à membrane - Google Patents

Dispositif à membrane pour transformateur de mouvement d'air, et transducteur acoustique présentant un tel dispositif à membrane Download PDF

Info

Publication number
EP2158789B1
EP2158789B1 EP08773654A EP08773654A EP2158789B1 EP 2158789 B1 EP2158789 B1 EP 2158789B1 EP 08773654 A EP08773654 A EP 08773654A EP 08773654 A EP08773654 A EP 08773654A EP 2158789 B1 EP2158789 B1 EP 2158789B1
Authority
EP
European Patent Office
Prior art keywords
diaphragm
membrane
segments
segment
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08773654A
Other languages
German (de)
English (en)
Other versions
EP2158789A1 (fr
Inventor
Raimund Mundorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mundorf EB GmbH
Original Assignee
Mundorf EB GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mundorf EB GmbH filed Critical Mundorf EB GmbH
Publication of EP2158789A1 publication Critical patent/EP2158789A1/fr
Application granted granted Critical
Publication of EP2158789B1 publication Critical patent/EP2158789B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/14Non-planar diaphragms or cones corrugated, pleated or ribbed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/323Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/046Construction

Definitions

  • the invention relates to a membrane arrangement for an air-motion transformer (AMT), wherein the membrane arrangement has at least one substantially meander-shaped membrane and the membrane arrangement has air pockets for generating sound through the meandering design of the at least one membrane. Furthermore, the invention relates to a sound transducer with such a membrane arrangement.
  • AMT air-motion transformer
  • the Air-Motion-Transformer (abbreviated to AMT) is an original of Dr. med. Oskar Heil developed sound transducer.
  • AMT Air-Motion-Transformer
  • Such an air-motion transformer has a meandering or accordion-like folded membrane. By this shaping of the membrane air pockets are formed. These air pockets are widened and narrowed for pressing out or for sucking in air and thus for generating sound.
  • the membrane arrangement is vzw. in operative connection with a suitable device. Vzw. are arranged on the flanks of the air pockets tracks.
  • the preferably arranged in a magnetic field membrane or the air pockets are excited to generate sound by an alternating current is passed through the tracks.
  • the flanks of the air pockets are moved against each other, wherein the air is forced out of the air pockets or sucked into these air pockets inside.
  • Air-motion transformers can be used in particular in hi-fi speakers as a tweeter in the frequency range from about 1 kHz to a maximum of about 25 kHz. Due to the small moving mass of the membrane, Air Motion Transformers are characterized by their excellent impulse behavior, since an AMT loudspeaker can reproduce a pulsed signal with only very low input or decay processes.
  • the international patent application WO 99/07183 A1 discloses an AMT loudspeaker with a diaphragm configured to emit different frequencies of sound.
  • Fig. 1 shows a schematic representation of a known in the prior art membrane assembly 1 for a not shown in detail, electrodynamic mixing Sound converter, here a speaker.
  • the here meander-shaped membrane assembly 1 which here has a single membrane 1a, takes this form substantially in its operating state, said membrane assembly 1 then vzw. is arranged between two pole plates, not shown here in an air gap.
  • the membrane assembly 1 is first prepared as a sheet-like element, the illustrated interconnects 2 vzw. be formed on the membrane 1a by means of appropriate etching.
  • a plurality of air pockets 6 are formed by this arrangement.
  • a current I flowing through the printed conductors 2 is indicated.
  • a static magnetic field is indicated by the arrows B.
  • FIGS. 2 and 3 show with the solid lines the excited state of the membrane 2 and the air pockets 6 in the open and closed position.
  • Fig. 2 shows that the flanks 5 of the membrane assembly 1 move in the direction of the arrows C 1 .
  • the air pockets 6a, 6b, 6c and 6d increase in width, ie these air pockets 6a, 6b, 6c and 6d are opened, so that air is sucked into these air pockets 6a to 6d according to the arrows E.
  • Air pockets 6e, 6f, and 6g are arranged between the air pockets 6a to 6d, open to the other side. These air pockets 6e to 6g adjacent to the air pockets 6a to 6d are correspondingly reduced in width - or are closed - so that, according to the arrows A, the air is forced out of these air pockets 6e to 6g.
  • Arrows A air outlet
  • arrows E air intake
  • Fig. 3 now shows the membrane assembly 1 in the reverse deflection position of the flanks 5.
  • the flanks 5 move in the opposite direction, this being indicated by the arrows C2.
  • the flanks 5 of the air pockets 6a, 6b, 6c and 6d move towards each other, so that these air pockets 6a to 6d narrow and the air is forced out of these air pockets 6a to 6d (see arrows A).
  • the air pockets 6e, 6f and 6g are widened, so that air is sucked into these air pockets 6e, 6f and 6g (see arrows E).
  • Fig. 4 shows an AMT transducer 15 with in the Fig. 1 to 3
  • the membrane assembly 1 is arranged between two pole plates 7 and 8 in an air gap 9.
  • the membrane assembly 1 is clamped in a frame, wherein only the two frame parts 10a and 10b can be seen from the frame.
  • the frame with the frame parts 10a and 10b is connected to two side parts 11a and 11b.
  • the side parts 11 a and 11 b in turn carry the pole plates 7 and 8.
  • Fig. 5 shows that the pole plate 8 has a plurality of sound openings 12.
  • the sound holes 12 are formed in the form of slits 12a extending in the horizontal direction. Through the slots 12a, the sound generated by the membrane assembly 1 can escape from the sound transducer 15.
  • the membrane assembly 1 By periodically narrowing and widening the air pockets 6 are emitted from the membrane assembly 1 sound waves.
  • the sound waves are - like all waveforms - broken and bent.
  • the strength of the diffraction of the sound waves depends on their wavelength. Long waves, ie low notes, become less than short waves, high notes, bent and broken. This frequency-dependent behavior is summarized under the term radiation behavior. Loudspeakers and thus also air-motion transformers therefore have a different emission behavior at different frequencies.
  • the low frequencies are rather spherical radiated and tend to spread equally in all directions. With increasing frequency, the sound waves show an ever stronger concentration. High frequencies are almost only radiated in a certain direction.
  • Fig. 4 is the horizontal bundling and in Fig. 6
  • the vertical focusing of the sound waves 13 and 14 is shown once for low frequency sound waves 13 and once for high frequency sound waves 14.
  • the sound waves 13 having a low frequency are radiated in an emission cone with an aperture angle relative to the ideal emission axis S.
  • the emission axis S extends perpendicularly and centrally to the membrane arrangement 1.
  • the sound waves 14 having a high frequency are radiated essentially only in the direction of the emission axis S as plane and parallel wavefronts.
  • this bundling of the sound at high frequencies is undesirable.
  • a loudspeaker should play all frequencies identically loud in every direction.
  • a bundling of sound occurs but especially in the mid / high range and is dependent on the frequency. The all-round radiation capability can therefore be restricted, in particular in the case of membrane loudspeakers.
  • a bundling of the radiated sound occurs, for example, in the horizontal and vertical directions, as in Fig. 4 and 5 is shown.
  • the invention is therefore based on the object to design a membrane arrangement and further develop that the radiation behavior of the membrane assembly is improved and the sound bundling is at least reduced, in particular for the high frequencies.
  • the membrane segments are arranged or formed in such a way that the sound waves emitted by the membrane segments are superimposed in such a way that the overall sound-for the listener-appears to come from an acoustic center.
  • the acoustic center preferably lies on the emission axis or in the corresponding emission plane of the membrane arrangement.
  • the corresponding "membrane segments" may be formed as subregions of a single membrane, but on the other hand it is also possible that several individual vzw. Meander-shaped membranes are summarized to form a membrane assembly accordingly. It is crucial that the membrane segments thus formed are arranged and / or configured in this way - or which will also show the following statements - then be controlled so that the membrane arrangement itself has a common acoustic center.
  • the individual membrane segments are in turn preferably arranged symmetrically with respect to the emission axis or emission plane of the membrane arrangement.
  • a middle membrane segment and at least one outer membrane segment can be arranged on both sides of the middle membrane segment.
  • the middle diaphragm segment for reproducing a high-frequency range and the outer diaphragm segments are then designed for reproducing a low-frequency range.
  • the subdivision of the membrane assembly into a plurality of membrane segments also has the advantage that the omnidirectional behavior is improved since the limit for an acceptable omnidirectional behavior is given if the extent of a membrane segment in one direction is less than half the wavelength of the frequency to be generated. As the frequency to be radiated increases, therefore, small membrane expansions are advantageous.
  • the subdivision of the membrane assembly in membrane segments can be carried out in vertical and / or horizontal extension of the membrane assembly (in a towering erected membrane assembly).
  • the membrane arrangement preferably has a correspondingly large area. The deeper the frequency to be transmitted is selected, the larger is preferably the total membrane area for reproducing the lowest frequency.
  • Fig. 7 is a sound transducer 15 with a membrane assembly 16, namely shown here with a single membrane 16a.
  • the sound transducer 15 is a so-called air-motion transformer (AMT), namely designed here as a speaker.
  • AMT air-motion transformer
  • the membrane 16a is meander-shaped and arranged between two pole plates 17 and 18 in an air gap 19.
  • the membrane 16 a is vzw. initially produced as a sheet-like element, wherein the conductor tracks, not shown here vzw. be formed by means of appropriate etching on the membrane 16a and the membrane 16a vzw. lying in a plane between the pole plates is arranged.
  • Fig. 7 clearly is, are formed by this arrangement, a plurality of air pockets 23 for generating sound.
  • a vzw. static not shown magnetic field or an electrostatic magnetic field generated.
  • the current may be an alternating current, which may in particular be proportional to an audio signal.
  • the air pockets 23 of the membrane arrangement 16 or of the membrane 16a shown here are compressed and widened by the lateral forces - depending on the direction of the current in the printed conductors - whereby sound waves 24 are generated by the membrane arrangement 16.
  • Adjacent flanks 22 of the membrane 16a move either towards or away from each other.
  • the membrane assembly 16 several membrane segments - here in Fig. 7 comprising three membrane segments - A, B and C, wherein the membrane segments A, B and C are arranged and / or configured such that the membrane assembly 16 has a substantially common acoustic center.
  • the division of the membrane assembly 16 in three membrane segments A, B and C is indicated by the two dashed lines in the FIGS. 7 and 8 indicated.
  • the design of the individual membrane segments A, B and C or their exact training / arrangement with the wave crests shown, wave troughs and flanks, but without illustrated traces and their "control" may be discussed in more detail below, in advance, the following may be performed :
  • the membrane segments A, B and C are arranged such that the emitted from the membrane segments A, B and C sound waves 24 are superimposed so that the total sound 24, as coming from an acoustic center appears.
  • the acoustic center corresponds to a - in Fig. 7 indicated, vzw. punctiform - sound source, being emitted from this sound source, indicated by circular arcs sound waves.
  • a common acoustic center here means that the respective circular arc centers of the sound waves lie on the emission axis S and not laterally offset from the emission axis. As long as the circular arc centers are close enough to each other on the emission axis S, the sound appears as coming from a common acoustic center. This makes it possible to achieve a precise image of the sound image.
  • the circular arcs 24a it is possible for the circular arcs 24a to associate a geometrical first point-shaped sound source and the circular arcs 24b with a second geometrical point-shaped sound source, which on the one hand lie on the emission axis S and on the other hand are so close to each other that a common acoustic center is realized for the listener ,
  • the membrane segments A, B and C are arranged symmetrically to the emission axis S or to the radiation plane of the membrane arrangement 16.
  • the membrane segment B is arranged in the middle between the preferably identically designed outer membrane segments A and B.
  • the middle diaphragm segment B is designed to reproduce in particular a high-frequency range and the two outer diaphragm segments A and C only to reproduce a low-frequency range.
  • the membrane segment B generates the wavefronts 24a of the high-frequency range and the two membrane segments A and C together generate the wavefronts 24b of the low-frequency range.
  • the low frequency range can also be represented by all membrane segments together and the high frequency range, for example, only by the middle membrane segment B.
  • the frequency spectrum to be represented by the membrane arrangement 16 can be, for example, from 700 Hz or from 1 kHz to, for example, 20 kHz, vzw. even up to 30KHz. If a membrane arrangement is used with a correspondingly large total membrane area, the frequency range to be transmitted can also extend to less than 1 kHz or less than 700 Hz.
  • the frequency spectrum can be in a high frequency range, vzw. from 3000 Hz to over 20,000 Hz, and a low-frequency range, vzw. from below 1000 Hz to 3000 Hz or above.
  • the frequency spectrum can also be divided into more than two frequency ranges, with at least one membrane segment being provided for each frequency range can.
  • each membrane segment of a membrane assembly or a membrane therefore forms a separate "oscillatory unit" with several of these membrane segments associated wave crests and wave troughs, each membrane segment vzw. a certain frequency range is assigned.
  • the membrane segments are then arranged and / or formed so that the acoustic center is common for different frequencies or for the different frequency ranges.
  • Vzw. Therefore, the directivity of the membrane assembly and the membrane is independent of the frequency.
  • Vzw But now every membrane segment for a particular frequency range is provided, for example. For a high-frequency range or even for a low frequency range.
  • the subdivision of the membrane assembly 16 in the three membrane segments A, B and C also has the advantage that the omnidirectional behavior of the membrane assembly 16 is improved.
  • the limit for an acceptable omnidirectional behavior is vzw. characterized in that the extension of the membrane segments A, B and C in one direction is less than half the wavelength of the frequency to be generated. This condition is for the low-frequency reproduction associated membrane segments A and C usually not critical. For the emission characteristics of the high frequencies, only the extent of the central membrane segment B is crucial. Since with increasing frequency to be radiated membrane expansion should be small, is vzw. the extent of the membrane segment B at least in the horizontal direction substantially less than half the wavelength of the upper limit frequency of the high frequency range.
  • the subdivision of the membrane assembly 16 in its membrane segments A, B and C is here in a horizontal extension of the membrane assembly 16 is carried out (seen from the perspective of the towering erected membrane assembly 16).
  • the membrane arrangement 16 preferably has a correspondingly large area, in particular the total area of the membrane segments A and C has been chosen to be sufficiently large.
  • Fig. 9 remains by the segmentation of the membrane assembly 16 only in the width (as horizontal) and not in height (vertical) bundling the high-frequency sound 24a, while the lower-frequency sound waves are radiated cone-shaped.
  • the membrane segments - as already in the Fig. 7 to 9 shown - may be formed as portions of a single membrane.
  • the subregions that is to say the corresponding membrane segments, for example the membrane segments A, B and C
  • the membrane segments can be fixed in their marginal / border areas according to the invention by separately arranged webs, so that the membrane segments are "decoupled” from one another in terms of vibration.
  • "buffer zones” are formed between the membrane segments, that is, for example, the corresponding air pocket 23, which forms exactly the border region between two membrane segments, just not provided with conductor tracks.
  • corresponding "buffer zones” be realized or fixed by adhesive bags filled with air pockets. This depends on the particular application.
  • the membrane assembly 16 and 26 consists of a single membrane, for example.
  • the membrane 16 a wherein the single membrane 16 a in corresponding membrane segments, vzw. the membrane segments A, B, C is divided.
  • a membrane segment A, B and C is essentially defined by a certain number of wave crests and troughs, and in particular from Fig. 7 shown clearly.
  • each membrane segment A, B, C forms a substantially separate "oscillatory unit", wherein the membrane segments A, B and C vzw. by elements not shown here in the figures, in particular webs, strips, etc. are limited to the membrane segments A, B, C vzw. to decouple vibration from each other.
  • each membrane segment a certain number of wave crests and troughs and flank sides are assigned, the troughs, wave crests and flanks of a first membrane segment, eg.
  • the membrane segment A swing in a different way than the wave crests and troughs of another
  • the membrane arrangement 16 or the membrane 16a is arranged substantially in one plane between two pole plates 17 and 18.
  • Diaphragm-shaped membranes are provided, which then form corresponding respective membrane segments and are combined, for example in one or more frames to form a unit as a "membrane order". This depends on the particular application.
  • FIG. 10 11a and 11b a second embodiment of an AMT transducer 25 is shown.
  • the structure of the sound transducer 25 - with the exception of the segmentation of the membrane assembly 26 - is on the above description of the Fig. 7 to 9 referred, since the basic structure with the pole plates 27 and 28 and with an air gap 29 corresponds to the above, first embodiment substantially.
  • the membrane assembly 26 has a central membrane segment B and laterally of this membrane segment B two outer membrane segments A and C.
  • two membrane segments E and D are arranged above and below the membrane segment B and preferably also above and below the lateral membrane segments A and C.
  • Both the outer, lateral membrane segments A and C and the outer membrane segments D and E are arranged symmetrically to the middle membrane segment B, so that the entire membrane assembly 26 has a common acoustic center on the emission axis S. This acoustic center is in this embodiment for the listener - as already above to the Fig. 7 to 9 explained - vzw. punctiform. While in Fig.
  • FIG. 7 the division of the membrane 16a in the horizontal direction in three membrane segments A, B, C is shown, which are formed in the vertical direction, ie over the entire height, so shows Fig. 10 another division of a single membrane 26, wherein here in the middle region, the three membrane segments A, B, C and in each case in the upper and lower region - seen in the vertical direction - further membrane segments D and E are formed.
  • the vibrational decoupling of the membrane segments A, B, C, D and E can be realized here again via corresponding elements, in particular webs / strips and / or separate frame, so the corresponding membrane segments A to D can be limited by means of such elements. This also depends on the particular application.
  • Fig. 12 shows a detail view of a portion 30 of a membrane segment once in the initial state 31 and once in the deflected state 32, wherein the direction of movement of the membrane segment 30 in the deflected state 32 is indicated by the outward-pointing arrows.
  • the air pocket 33 is widened by twice the distance a.
  • the unspecified wave crests and wave troughs with the radius R are curved.
  • the wave troughs with the radius r1 and the wave peaks with the radius r2 are curved.
  • the radius r1 is smaller than the radius r2.
  • vzw The maximum deflection of a, ie "a max " is vzw. now chosen so that the forces acting through the inherent stiffness of the membrane material spring forces in the radii r1 and r2 are approximately proportional to the deflection.
  • the lower limit frequency is vzw. selected by the proportionality condition of the spring forces occurring in relation to the deflection. The lower limit frequency is therefore also dependent on the specific material properties of the membrane segment 30.
  • FIGS. 13 and 14 show a detailed view of a membrane segment 34 in maximum compressed state 35 and the initial state 36.
  • the air in the air pocket 37 is in Fig. 13 compressed (compressed air "VK"), which is to be represented by the black bar graphically, and is therefore pushed out of the air pocket 37, which is indicated by the lower arrow in Fig. 13 is indicated.
  • the resulting pressure wave needs a certain time t to cover this distance s as a function of the distance s to be traversed in the air pocket. This time is due to the speed of sound and the Way determinable.
  • Fig. 15 shows a third embodiment of a sound transducer 38 with a membrane assembly 39.
  • the membrane assembly 39 has three membrane segments a, b and c.
  • the membrane segments a, b and c have substantially the same geometry, ie, size, convolution and expansion.
  • the geometry of the membrane segments a, b and c is chosen in accordance with the above considerations so that the membrane segments a, b and c can transmit the entire desired frequency range.
  • Fig. 16 shows an electrical circuit diagram (equivalent circuit diagram) for the sound transducer 38.
  • the resistors Ra, Rb and Rc represent the resistances of the conductor tracks on the respective membrane segments a, b and c.
  • the resistances Ra, Rb and Rc represent the possibly complex alternating current resistance of the membrane segments a, b and c.
  • the inductive component of the corresponding strip conductors can be small, which is why the complex alternating current resistance here can correspond essentially to ohmic resistances.
  • resistors Ra, Rb and Rc are connected in series.
  • an AC signal can be applied.
  • a capacitor Ca is connected in parallel
  • a capacitor Cc is connected in parallel. Due to the parallel connection of the capacitors Ca and Cc, the high-frequency component of the alternating current signal is conducted past the membrane segments a and c and is therefore reproduced only by the membrane segment b.
  • the phase angle between current and voltage at the diaphragm segments a, b and c in the transition frequency between the high and the low frequency range is the same. This constant phase angle guarantees that no phase jumps occur between high and low frequency segments at the crossover frequency, which could be clearly perceived by the ear.
  • the bass frequency is vzw from the capacitors. not transmitted and flows through the electrically connected in series segments a, b and c.
  • this low frequency range is therefore vzw.
  • the whole membrane arrangement is active and contributes to the impedance.
  • the overall impedance of the circuit is frequency dependent.
  • the total impedance is essentially Ra + Rb + Rc.
  • the resistors Ra and Rc do not contribute, since they are bridged by the capacitors Ca and Cc.
  • the total resistance in the high-frequency range therefore essentially corresponds only to Rb and thus amounts to only one third of the total impedance 3 * Rb in the low-frequency range.
  • the signal component which is reproduced only via the membrane segment b, or the resistor Rb, therefore generates at the same amplitude voltage a threefold higher current through Rb and thus exerts a threefold higher force on the membrane segment b.
  • a threefold higher diaphragm deflection is brought about in the linear region of the reproduction. This compensates for the fact that only the membrane segment b is provided for the high-frequency range, ie only one third of the total diaphragm area is used for high-frequency reproduction.
  • these transducers are operated with amplifiers, the amplifiers vzw. at the occurring, different impedances depending on the frequency spectrum to be transmitted work stable.
  • Fig. 17 shows an alternative circuit for the in Fig. 15 shown transducer 38.
  • the represented by the resistors Ra and Rc membrane segments a and c are in this case connected in series with an unspecified woofer unit. At this woofer unit can be fed to the contact terminals 42 and 43, a low-frequency signal.
  • the membrane segment b, or the resistor Rb is formed separately from the woofer unit and can be contacted at separate terminals 44 and 45 with a further signal.
  • This signal can either contain only high-frequency components or, in addition to high-frequency components, also low-frequency components.
  • Fig. 18a shows a fourth embodiment of a transducer 46 with a membrane assembly 47, wherein the membrane assembly 47 is divided into three membrane segments a, b and c.
  • the membrane segments a and c are in turn vzw. constructed identical and in particular arranged symmetrically to the central membrane segment b.
  • the middle diaphragm segment b only reproduces the high-frequency range and is adapted accordingly.
  • the membrane segments a and c are adapted to reproduce only the low frequency range.
  • the membrane segment b has a convolution with a lower air pocket depth, so that this membrane segment b has a very high, upper limit frequency can have (cf. FIGS. 13 and 14 and the corresponding description).
  • the air pockets of the membrane segments a and c thus have a greater depth than the air pockets of the membrane segment b.
  • the height Hb of the air gap 48 in the region of the tweeter membrane segment b is smaller than the height Ha / c of the air gaps 49 in the region of the woofer membrane segments a and c.
  • the air gap 49 is bounded by two pole plates 50 and 51.
  • the air gap 48 is limited here, for example, on the one hand by the pole plate 51 and on the other hand by an additional pole plate element 52. Due to the smaller extent of the folding of the membrane segment b in the direction Hb, it is possible here to work with an air gap 48 reduced in relation to the height Ha / c.
  • the magnetic field Bb acting in the air gap 48 of the high-tone membrane segment b is stronger than the magnetic field Ba / c acting in the air gap 49 of the low-frequency membrane segments a and c. Due to the stronger magnetic field, higher edge deflections can be generated. As a result, a compact design of the central membrane segment b can be achieved while at the same time having sufficient sound pressure through the membrane segment b.
  • the perpendicular to the diaphragm assembly 47 oriented magnetic fields Bb and Ba / c are indicated by arrows in the Fig. 18a indicated.
  • Fig. 18b shows a circuit for the in Fig. 18a shown transducer 46.
  • the represented by the resistors Ra and Rc membrane segments a and c are in this case connected in series with an unspecified woofer unit. At this woofer unit can be fed to the contact terminals 53 and 54, a low-frequency signal.
  • the membrane segment b or the resistor Rb is formed separately from the woofer unit and can be supplied at separate terminals 55 and 56 with a high frequency signal.
  • the different activation of the woofer unit and of the membrane segment b or of the resistor Rb can take place, for example, via an active or a passive crossover.
  • Fig. 19 shows a fifth embodiment of a sound transducer 57 with a membrane assembly 58.
  • the membrane assembly 58 is again in accordance with the preceding embodiments in three membrane segments a, divided b and c.
  • the diaphragm segments a and c provided for low-frequency transmission are designed such that they have an upper cutoff frequency, this upper cutoff frequency simultaneously corresponding substantially to the lower cutoff frequency of the high tone range, wherein the high frequency range of the membrane segment b is transferable. Vzw.
  • the membrane segments a and c have a corresponding depth T of the air pockets 59 and a corresponding radius R of the curvature of the undefined peaks and troughs of the air pockets 59.
  • the tweeter membrane segment b has air pockets 60 with a smaller depth T 'and peaks and troughs with a smaller radius R'. Therefore, the air pockets of each membrane segment a, b, c depending on which frequency range is assigned to the respective membrane segment a, b, c different depths, vzw. have the depth T or T '. Vzw. In this case, the high-tone membrane segment b or the depth T "of the air pockets 60 is less than the depth T of the air pockets 59.
  • the respective membrane segments a, b and c are therefore in the preferred case with different depths v / T / T" of the air pockets 59 or 60 formed.
  • the membrane segments a, b, c are formed and / or arranged so that the acoustic center is common for different frequencies or for the different frequency ranges.
  • the geometry of the membrane segments a, b and c, in particular the respective air pockets 59 and 60, is selected so that on the one hand the desired cutoff frequency is transferable and on the other hand, the frequency range of the membrane segments a and c is trimmed so that no further filtering measures are required ,
  • the membrane geometry is selected by the membrane arrangement 58 so that the membrane segment b can only reproduce the high-frequency range which lies beyond the upper limit frequency of the membrane segments a and c.
  • a circuit for the membrane assembly 58 is shown, wherein the membrane segments a and c, and the corresponding resistors Ra and Rc are connected in series to a woofer unit and the high-tone membrane segment separately, for example, by an active cross-over, not shown can be controlled (see. example Fig. 18b ).
  • Fig. 21 shows a further circuit for the membrane assembly 58.
  • the membrane segments a, b and c are connected in series, wherein an inductive resistor L, the high-tone membrane segment b and the resistor Rb bridges.
  • the inductive resistor L is small for low frequencies and large for high frequencies. Since the resistor Rb is in parallel with the inductive resistor Rb, the same voltage drops at both. For low frequencies, therefore, only a small amount of the signal on the membrane segment Rb drops off. For high frequencies, preferably the voltage drops substantially at the high-tone membrane segment b.
  • Fig. 22a shows a further sound transducer 61 with a membrane assembly 62.
  • the height of the air gap in the region of the tweeter membrane segment b is smaller than the height of the air gaps in the region of the woofer membrane segments a and c.
  • the air gap is partially bounded by two pole plates 50 and 51.
  • the air gap is additionally narrowed by an unspecified pole plate in the region of the high-tone membrane segment.
  • the magnetic field acting in the air gap of the high-tone membrane segment b is preferably stronger than the magnetic field acting in the air gap of the low-frequency membrane segments a and c. Due to the stronger magnetic field, higher edge deflections can be generated.
  • the geometry of the membrane segment b is selected so that the membrane segment b can also reproduce the lower limit frequency of the membrane segments a and c.
  • the radius R of the wave crests and wave troughs in the membrane segment b is adjusted accordingly.
  • the membrane segments a, b and c have a convolution with the same radius R, even if the depth of the unspecified air pockets in the membrane segments a and c deviates from the depth of the air pockets of the membrane segment.
  • the lower limit frequency is determined by the radius of the wave crests and wave troughs. This makes it possible to dispense with a crossover completely.
  • the membrane segments a, b and c are, as in Fig.
  • the high-frequency signal component is amplified compared to the low-frequency signal component. This can happen, for example, by electronic means, in particular with an equalizer, in particular before the overall signal is amplified.
  • This amplification of the high-frequency signal component can be boosted / amplified, in particular, without a significant or audible phase shift occurring between the high-frequency signal component and the low-frequency signal component.
  • acoustic transducers which are in particular designed as AMT speakers, have corresponding membrane assemblies 16, 26, 47 and 58 and 62, which are formed in accordance with the above-described explanations, vzw. each having a single membrane.
  • the corresponding subregions ie the corresponding membrane segments A, B, C, D, E or a, b and c vzw. according demarcated or divided by that at the edge areas or in the transition areas vzw. web elements not shown here can be arranged to separate the respective membrane segments from each vibration technology.
  • vzw a tweeter segment and vzw. a plurality of low tone segments arranged corresponding to one another to form a common acoustic center, particularly for the listener.
  • the individual membrane segments can be correspondingly controlled differently with the aid of an electrical / electronic control unit, vzw. because the respective interconnects of a membrane segment are electrically driven differently than the respective interconnects of another membrane segment. Also by the different air pocket depth of the respective membrane segments associated air pockets, the assignment of the frequency ranges can be carried out or so controlled.
  • the individual membrane segments are formed by a plurality, that is, by a plurality of individual membranes, which are arranged correspondingly in different frames.
  • the corresponding membrane arrangement does not have to consist of a single membrane, as in the preferred embodiments shown here in the figures, but the membrane arrangement can also be formed by a plurality of individual membranes, each individual membrane then forming a corresponding individual membrane segment, and these membrane segments are in turn designed and / or arranged such that - corresponding to the above statements - the entire membrane arrangement has a substantially common acoustic center. This also depends on the particular application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Reciprocating Pumps (AREA)

Claims (12)

  1. Haut-parleur AMT avec un arrangement de membrane (16, 26, 39, 47, 62), l'arrangement de membrane (16, 26, 39, 47, 62) présentant une membrane (16a) unique configurée essentiellement en forme de méandre, la membrane (16a) présentant, du fait de l'exécution en forme de méandre de la membrane (16a), des poches d'air (32, 59, 60) pour produire du bruit, une pluralité de sommets d'onde (20) et de creux d'onde (21) ainsi que des pistes conductrices disposées sur des flancs (22), le spectre de fréquences à restituer par la membrane (16a) étant divisé en une plage de tonalités aiguës et une plage de tonalités graves ou en plus de deux plages de fréquences et la membrane (16a) présentant à cet effet plusieurs segments de membrane (A, B, C ; a, b, c), au moins un segment de membrane (A, B, C ; a, b, c) étant prévu pour chaque plage de fréquences et les segments de membrane (A, B, C ; a, b, c) étant disposés et/ou configurés de telle sorte que la membrane (16a) présente un centre acoustique pour l'essentiel commun, à savoir un segment de membrane central (B ; b) est configuré pour restituer une plage de tonalités aiguës et une plage de tonalités graves et deux segments de membrane externes (A, C ; a, c) sont configurés pour restituer une plage de tonalités graves, un circuit électrique étant prévu et les segments de membrane (A, B, C ; a, b, c) étant au moins partiellement branchés en série ou les pistes conductrices des segments de membrane (A, B, C ; a, b, c) respectifs pouvant être excitées électriquement différemment, caractérisé en ce qu'une part de tonalité aiguë peut être acheminée au moyen d'un élément de pontage aux segments de membrane (A, C) prévus pour la transmission de la tonalité grave, les segments de membrane (A, B, C ; a, b, c) individuels étant découplés les uns des autres du point de vue oscillatoire, à savoir que dans les zones limites entre les segments de membrane (A, B, C ; a, b, c) sont disposés des éléments en forme de nervure sur le fond des poches d'air respectives, de sorte que chaque segment de membrane (A, B, C ; a, b, c) forme une unité oscillante séparée.
  2. Haut-parleur AMT selon la revendication 1, caractérisé en ce que l'arrangement de membrane (16, 26, 39, 47, 62) présente un axe de rayonnement (S) et les segments de membrane (A, B, C ; a, b, c) sont disposés symétriquement par rapport à l'axe de rayonnement (S).
  3. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que l'expansion des segments de membrane (A, B, C) est pour l'essentiel inférieure à la moitié de la longueur d'onde de la fréquence limite supérieure des plages de fréquences.
  4. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que la surface des segments de membrane (A, B, C) est adaptée à la fréquence limite inférieure à transmettre de l'arrangement de membrane (16, 26, 39, 47, 62).
  5. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que la profondeur des poches d'air est notamment accordée sur le rayon du sommet d'onde ou du creux d'onde de la poche d'air.
  6. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que la profondeur (T') des poches d'air du segment de membrane (B) prévu pour la transmission des tonalités aiguës est inférieure à la profondeur (T) des poches d'air des segments de membrane (A, C) prévus pour la transmission des tonalités graves.
  7. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que des segments de membrane externes (D, E) sont disposés au-dessus et au-dessous du segment de membrane central (B).
  8. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que les segments de membrane (A, B, C, D, E) sont de configuration pour l'essentiel rectangulaire ou carrée.
  9. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que le rapport entre la surface de membrane d'un segment de membrane individuel et la surface totale de la membrane est inversement proportionnel au rapport entre l'impédance du segment de membrane individuel et l'impédance totale de tous les segments de membrane.
  10. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que pour réaliser le découplage oscillatoire des segments de membrane (A, B, C), des « zones tampon » dans les zones de transition sont réalisées de telle sorte que les poches d'air ne présentent ici pas de pistes conductrices.
  11. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que les segments de membrane (A, B, C) sont disposés dans un entrefer entre des plaques polaires (50, 51).
  12. Haut-parleur AMT selon l'une des revendications précédentes, caractérisé en ce que le segment de membrane (B) destiné à la restitution des tonalités aiguës est disposé dans un entrefer de hauteur plus faible que celle des segments de membrane (A, C) destinés à la restitution des tonalités graves.
EP08773654A 2007-06-26 2008-06-25 Dispositif à membrane pour transformateur de mouvement d'air, et transducteur acoustique présentant un tel dispositif à membrane Not-in-force EP2158789B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007029560A DE102007029560B4 (de) 2007-06-26 2007-06-26 Membrananordnung für einen Air-Motion-Transformer (AMT) und Schallwandler mit einer solchen Membrananordnung
PCT/EP2008/005149 WO2009000519A1 (fr) 2007-06-26 2008-06-25 Dispositif à membrane pour transformateur de mouvement d'air, et transducteur acoustique présentant un tel dispositif à membrane

Publications (2)

Publication Number Publication Date
EP2158789A1 EP2158789A1 (fr) 2010-03-03
EP2158789B1 true EP2158789B1 (fr) 2010-10-13

Family

ID=40010707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08773654A Not-in-force EP2158789B1 (fr) 2007-06-26 2008-06-25 Dispositif à membrane pour transformateur de mouvement d'air, et transducteur acoustique présentant un tel dispositif à membrane

Country Status (4)

Country Link
EP (1) EP2158789B1 (fr)
AT (1) ATE484923T1 (fr)
DE (2) DE102007029560B4 (fr)
WO (1) WO2009000519A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000499A1 (de) 2011-06-03 2012-12-06 Mundorf Eb Gmbh Schallwandler, nämlich Air-Motion-Transformer
US10595108B2 (en) 2015-07-24 2020-03-17 Samsung Electronics Co., Ltd. Speaker apparatus and electronic apparatus including same
EP3734997A1 (fr) 2019-05-03 2020-11-04 Hedd Audio GmbH Membrane pour transducteurs acoustiques

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524550A (en) * 2014-03-27 2015-09-30 Nokia Technologies Oy An apparatus and method of providing an acoustic signal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636278A (en) * 1969-02-19 1972-01-18 Heil Scient Lab Inc Acoustic transducer with a diaphragm forming a plurality of adjacent narrow air spaces open only at one side with the open sides of adjacent air spaces alternatingly facing in opposite directions
US3832499A (en) * 1973-01-08 1974-08-27 O Heil Electro-acoustic transducer
AUPO832797A0 (en) * 1997-07-30 1997-08-28 Alsop, Glen Electro-acoustic transducer
US6535612B1 (en) * 1998-12-07 2003-03-18 American Technology Corporation Electroacoustic transducer with diaphragm securing structure and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000499A1 (de) 2011-06-03 2012-12-06 Mundorf Eb Gmbh Schallwandler, nämlich Air-Motion-Transformer
DE102012000499B4 (de) * 2011-06-03 2013-01-31 Mundorf Eb Gmbh Schallwandler, nämlich Air-Motion-Transformer
US10595108B2 (en) 2015-07-24 2020-03-17 Samsung Electronics Co., Ltd. Speaker apparatus and electronic apparatus including same
EP3734997A1 (fr) 2019-05-03 2020-11-04 Hedd Audio GmbH Membrane pour transducteurs acoustiques

Also Published As

Publication number Publication date
EP2158789A1 (fr) 2010-03-03
WO2009000519A1 (fr) 2008-12-31
DE102007029560B4 (de) 2010-02-18
DE502008001544D1 (de) 2010-11-25
DE102007029560A1 (de) 2009-01-02
ATE484923T1 (de) 2010-10-15

Similar Documents

Publication Publication Date Title
DE10042185B4 (de) Piezoelektrischer elektroakustischer Wandler
DE2164083C3 (de) Elektrodynamischer Wandler, insbesondere Lautsprecher
EP2143299B1 (fr) Membrane ou ensemble membrane pour un transducteur acoustique électrodynamique et haut-parleur comprenant une telle membrane ou un tel ensemble membrane
DE69535049T2 (de) Ausgedehnter Lautsprecher
DE3525724C2 (fr)
DE3404655A1 (de) Vorrichtung zur uebertragung von druckwellen
DE102009010278A1 (de) Lautsprecher
DE3024815A1 (de) Akustischer elektromagnetischer wandler, insbes. flaechiger lautsprecher
DE2922216A1 (de) Akustischer wandler
DE2502424A1 (de) Dynamischer elektroakustischer wandler
EP2158789B1 (fr) Dispositif à membrane pour transformateur de mouvement d'air, et transducteur acoustique présentant un tel dispositif à membrane
DE3224614A1 (de) Elektrisches hoergeraet
DE60102158T2 (de) Elektroakustischer wandler mit austauschbarer membran
DE2806895A1 (de) Elektromagnetischer wandler
DE69736941T2 (de) Lautsprechervorrichtung
DE3143027C2 (de) Piezoelektrischer Wandler
DE60208245T2 (de) Lautsprechersystem
DE1921347C3 (de) Elektrostatische Lautsprecheranordnung
DE4431481A1 (de) Schaltungsanordnung mit steuerbarem Übertragungsverhalten
DE2938938C2 (de) Tonwiedergabevorrichtung
EP1142445B1 (fr) Haut-parleur a membrane de graves
DE3506139C1 (de) Lautsprechersystem für eine qualitativ hochwertige Tonwiedergabe
DE3918654C2 (fr)
DE2431554C3 (de) Schaltungsanordnung für Lautsprecherkombinationen
EP0692922A2 (fr) Enceinte acoustique pour haut-parleur basse-fréquence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008001544

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101013

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110124

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

26N No opposition filed

Effective date: 20110714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001544

Country of ref document: DE

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

BERE Be: lapsed

Owner name: MUNDORF EB G.M.B.H.

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110625

Ref country code: CY

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140620

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 484923

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140520

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140617

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008001544

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150625

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150625

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630