VAM-Schalenkatalysator, Verfahren zu dessen Herstellung sowie dessen Verwendung
Die vorliegende Erfindung betrifft einen Schalenkatalysator zur Herstellung von Vinylacetat-Monomer (VAM) , umfassend einen mit Pd und Au beladenen, porösen, als Formkörper ausgebildeten Katalysatorträger auf der Basis eines natürlichen Schichtsilikates, insbesondere auf der Basis eines säurebehandelten kalzinierten Bentonits.
VAM ist ein wichtiger Monomerbaustein in der Synthese von Kunststoffpolymeren. Die Hauptanwendungsgebiete von VAM sind u.a. die Herstellung von Polyvinylacetat, Polyvinylalkohol und Polyvinylacetal sowie die Co- und Terpolymerisation mit anderen Monomeren wie zum Beispiel Ethylen, Vinylchlorid, Acrylat, Maleinat, Fumarat und Vinyllaurat.
VAM wird überwiegend in der Gasphase aus Essigsäure und Ethylen durch Umsetzung mit Sauerstoff hergestellt, wobei die für diese Synthese eingesetzten Katalysatoren vorzugsweise Pd und Au als Aktivmetalle enthalten sowie eine
Alkalimetallkomponente als Promotor, vorzugsweise Kalium in Form des Acetats. In dem Pd/Au-System dieser Katalysatoren liegen die Aktivmetalle Pd und Au vermutlich nicht in Form von Metallpartikeln des jeweiligen reinen Metalls vor, sondern vielmehr in Form von Pd/Au-Legierungspartikeln von möglicherweise unterschiedlicher Zusammensetzung, wenngleich das Vorliegen unlegierter Partikel nicht ausgeschlossen werden kann. Alternativ zu Au kann beispielsweise auch Cd oder Ba als zweite Aktivmetallkomponente eingesetzt sein.
Gegenwärtig wird VAM überwiegend mittels so genannter
Schalenkatalysatoren hergestellt, bei welchen die katalytisch wirkenden Aktivmetalle des Katalysators den als Formkörper ausgebildeten Katalysatorträger nicht vollständig durchdringen, sondern vielmehr nur in einem mehr oder weniger breiten, äußeren Bereich (Schale) des Katalysatorträger- Formkörpers enthalten sind (vgl. hierzu EP 565 952 Al, EP 634 214 Al, EP 634 209 Al und EP 634 208 Al), während die weiter innen liegenden Bereiche des Trägers nahezu edelmetallfrei sind. Mit Hilfe von Schalenkatalysatoren ist in vielen Fällen eine selektivere Reaktionsführung möglich als mit
Katalysatoren, bei denen die Träger bis in den Trägerkern mit den Aktivkomponenten imprägniert („durchimprägniert") sind.
Die im Stand der Technik bekannten Schalenkatalysatoren zur Herstellung von VAM können beispielsweise Katalysatorträger auf der Basis von Siliziumoxid, Aluminiumoxid, Alumosilikat,
Titanoxid oder Zirkoniumoxid sein (vgl. hierzu EP 839 793 Al,
WO 1998/018553 Al, WO 2000/058008 Al und WO 2005/061107 Al) .
Dabei gelangen Katalysatorträger auf der Basis von Titanoxid oder Zirkoniumoxid derzeit jedoch kaum zum Einsatz, da diese
Katalysatorträger gegenüber Essigsäure nicht langzeitstabil und verhältnismäßig teuer sind.
Der überwiegende Anteil der gegenwärtig eingesetzten Katalysatoren zur Herstellung von VAM sind Schalenkatalysatoren mit einer Pd/Au-Schale auf einem porösen, amorphen, als Kugel ausgebildeten Alumosilikatträger auf der Basis von natürlichen Schichtsilikaten, insbesondere auf der Basis von natürlichen säurebehandelten kalzinierten Bentoniten, die mit Kaliumacetat als Promotor durchimprägniert sind.
Derartige VAM-Schalenkatalysatoren werden üblicherweise auf so genanntem chemischen Wege hergestellt, bei welchem der Katalysatorträger mit Lösungen von entsprechenden Metall- Vorläuferverbindungen beispielsweise durch Eintauchen des Trägers in die Lösungen oder mittels des Incipient-Wetness- Verfahrens (Porenfüllverfahren) , bei welchem der Träger mit einem seinem Porenvolumen entsprechenden Lösungsvolumen beladen wird, getränkt wird. Die Pd/Au-Schale des Katalysators wird beispielsweise erzeugt, indem zunächst der Katalysatorträger-Formkörper in einem ersten Schritt mit einer Na2PdCl4-Lösung getränkt und anschließend in einem zweiten Schritt die Pd-Komponente mit NaOH-Lösung auf den Katalysatorträger in Form einer Pd-Hydroxidverbindung fixiert wird. In einem darauffolgenden, separaten dritten Schritt wird der Katalysatorträger dann mit einer NaAuClή-Lösung getränkt und danach die Au-Komponente ebenfalls mittels NaOH fixiert. Nach der Fixierung der Edelmetallkomponenten in einer äußeren Schale des Katalysatorträgers wird der beladene Katalysatorträger dann weitestgehend frei von Chlorid- und Na- Ionen gewaschen, anschließend getrocknet und abschließend bei 150 0C mit Ethylen reduziert. Die erzeugte Pd/Au-Schale weist üblicherweise eine Dicke von etwa 100 bis 500 μm auf.
Üblicherweise wird der mit den Edelmetallen beladene Katalysatorträger nach dem Fixierungs- oder Reduzierungsschritt mit Kaliumacetat beladen, wobei die Beladung mit Kaliumacetat nicht nur in der äußeren, mit Edelmetallen beladenen Schale erfolgt, sondern der Katalysatorträger vielmehr mit dem Promotor vollständig durchimprägniert wird. Als Katalysatorträger wird überwiegend ein kugelförmiger Träger mit der Bezeichnung „KA-160" der SÜD- Chemie AG auf der Basis von natürlichen säurebehandelten Bentoniten als natürlichem Schichtsilikat eingesetzt, der eine BET-Oberflache von etwa 160 m2/g aufweist.
Die mittels der im Stand der Technik bekannten VAM- Schalenkatalysatoren auf der Basis von Pd und Au als Aktivmetalle und KA-160-Trägern als Katalysatorträger erreichten Selektivitäten von VAM betragen circa 90 Mol.-% bezogen auf das zugeführte Ethylen, wobei die verbleibenden 10 Mol.-% der Reaktionsprodukte im Wesentlichen CO2 sind, das durch Totaloxidation der organischen Edukte/Produkte gebildet wird.
Eine Steigerung der VAM-Selektivität ist wünschenswert, um die Kosten für Rohmaterialverluste zu senken und die Aufarbeitung des Reaktionsproduktes VAM einfacher und damit kostengünstiger zu gestalten.
Aufgabe der vorliegenden Erfindung ist es daher, einen Schalenkatalysator für die Herstellung von VAM bereitzustellen, der sich durch eine verhältnismäßig hohe VAM- Selektivität sowie eine hohe Aktivität auszeichnet.
Diese Aufgabe wird ausgehend von einem Schalenkatalysator der gattungsgemäßen Art dadurch gelöst, dass der Katalysatorträger eine Oberfläche von kleiner als 130 m2/g aufweist.
Die Erfindung betrifft somit einen Schalenkatalysator mit einem natürlichen Schichtsilikat, insbesondere einen säurebehandelten kalzinierten Bentonit umfassenden Katalysatorträger-Formkörper, der eine äußere Schale aufweist, in der metallisches Pd und Au enthalten sind, wobei der Katalysatorträger-Formkörper eine BET-Oberflache von kleiner als 130 m2/g aufweist.
Schalenkatalysatoren mit einem Träger, in dessen äußere Schale die aktive Spezies eingedrungen ist, werden im Stand der Technik auch als „egg-shell"-Schalenkatalysatoren bezeichnet.
Überraschenderweise wurde festgestellt, dass sich der erfindungsgemäße Schalenkatalysator im Vergleich zu den entsprechenden, im Stand der Technik bekannten Katalysatoren zur Herstellung von VAM durch eine um zumindest 1 Mol.-% erhöhte VAM-Selektivität auszeichnet. Dabei ist die Selektivitätserhöhung im Wesentlichen auf eine Abnahme der unerwünschten Totaloxidation von Essigsäure, Ethen und VAM zu CO2 zurückzuführen.
Der erfindungsgemäße Katalysator weist im Vergleich zu den entsprechenden, im Stand der Technik bekannten Katalysatoren zur Herstellung von VAM eine zumindest gleich hohe Aktivität auf. Darüber hinaus konnte festgestellt werden, dass die Aktivität des erfindungsgemäßen Katalysators durch eine Erhöhung der Dicke der Pd/Au-Schale deutlich gesteigert werden kann, ohne nennenswerte Einbußen in der VAM-Selektivität hinnehmen zu müssen. Bei den im Stand der Technik bekannten entsprechenden Katalysatoren geht eine Erhöhung der Schalendicke mit einer deutlich verminderten VAM-Selektivität einher .
Ferner weist der erfindungsgemäße Katalysator trotz seiner verhältnismäßig geringen Oberfläche, d.h. trotz seines verhältnismäßig großen Porenvolumens, eine ausgezeichnete mechanische Stabilität auf und zeigt gegenüber den einzusetzenden Edukten und Produkten eine hohe chemische Beständigkeit sowie gegenüber den bei der VAM-Synthese herrschenden Temperaturen eine hohe thermische Beständigkeit.
Lässt man die Reaktionsbedingungen beim technischen Einsatz des erfindungsgemäßen Katalysators im Vergleich zu einem entsprechenden Schalenkatalysator des Standes der Technik unverändert, so lässt sich mehr VAM pro Reaktorvolumen und Zeit herstellen, was einer Kapazitätserweiterung und auch zusätzlichem Investitionsaufwand gleichkommt. Darüber hinaus wird auch die Aufarbeitung des erhaltenen Rohvinylacetats erleichtert, da der VAM-Gehalt im Produktgas höher ist, was zu einer Energieersparnis in der VAM-Aufarbeitung führt. Geeignete Aufarbeitungsverfahren sind z.B. in US 5,066,365 A und DE 29 45 913 Al offenbart.
Hält man hingegen die VAM-Produktionskapazität einer mit dem erfindungsgemäßen Katalysator beschickten Anlage auf dem Niveau eines entsprechenden bekannten Schalenkatalysators konstant, so kann unter Einsatz des erfindungsgemäßen
Katalysators die Reaktionstemperatur abgesenkt werden, wodurch eine weitere Erhöhung der VAM-Selektivität einhergehend mit den vorstehend genannten, vorteilhaften Auswirkungen erhalten werden kann. Dabei wird auch der Anteil an als Nebenprodukt anfallendem und daher auszuschleusendem CO2 und der mit dieser Ausschleusung verbundene Verlust an mitgeschlepptem Ethylen geringer. Darüber hinaus führt eine derartige Verfahrensführung einer entsprechenden Anlage aufgrund tieferer Temperaturen zu einer Verlängerung der Katalysatorstandzeit.
Unter dem Ausdruck „auf der Basis eines natürlichen Schichtsilikats" wird vorliegend verstanden, dass der Katalysatorträger-Formkörper ein natürliches Schichtsilikat umfasst, wobei das natürliche Schichtsilikat sowohl in unbehandelter als auch in behandelter Form in dem Katalysatorträger enthalten sein kann. Typische Behandlungen, denen ein natürliches Schichtsilikat vor dem Einsatz als
Trägermaterial unterzogen werden kann, beinhalten beispielsweise Behandeln mit Säuren und/oder ein Kalzinieren. Dabei wird unter dem Begriff „natürliches Schichtsilikat", wofür in der Literatur auch der Begriff „Phyllosilikat" verwendet wird, im Rahmen der vorliegenden Erfindung aus natürlichen Quellen stammendes Silikat-Mineral verstanden, in welchem SiO4-Tetraeder, welche die strukturelle Grundeinheit aller Silikate bilden, in Schichten der allgemeinen Formel [Si2Os]2" miteinander vernetzt sind. Diese Tetraederschichten wechsellagern mit so genannten Oktaederschichten, in denen ein Kation, vor allem Al und Mg, oktaedrisch von OH bzw. 0 umgeben ist. Dabei werden beispielsweise Zweischicht-Phyllosilikate und Dreischicht-Phyllosilikate unterschieden.
Im Rahmen der vorliegenden Erfindung bevorzugte Schichtsilikate sind Tonminerale, insbesondere Kaolinit,
Beidellit, Hectorit, Saponit, Nontronit, Glimmer, Vermiculit und Smektite, wobei Smektite und dabei insbesondere Montmorillonit besonders bevorzugt sind. Definitionen des Begriffes „Schichtsilikate" finden sich beispielsweise in „Lehrbuch der anorganischen Chemie", Hollemann Wiberg, de
Gruyter, 102. Auflage, 2007 (ISBN 978-3-11-017770-1) oder in „Römpp Lexikon Chemie", 10. Auflage, Georg Thieme Verlag unter dem Begriff „Phyllosilikat" . Ein im Rahmen der vorliegenden Erfindung besonders bevorzugtes natürliches Schichtsilikat ist ein Bentonit . Bentonite sind zwar im eigentlichen Sinne keine natürlichen Schichtsilikate, sondern vielmehr ein Gemisch von überwiegend Tonmineralien, in welchem Schichtsilikate enthalten sind. Vorliegend ist also für den Fall, dass das natürliche Schichtsilikat ein Bentonit ist, zu verstehen, dass das natürliche Schichtsilikat in dem Katalysatorträger in Form oder als Bestandteil eines Bentonits vorliegt.
Es wurde festgestellt, dass die VAM-Selektivität des erfindungsgemäßen Katalysators umso höher ist, je kleiner die Oberfläche des Katalysatorträgers ist. Darüber hinaus kann die Dicke der Pd/Au-Schale umso größer gewählt sein, je kleiner die Oberfläche des Katalysatorträgers ist, ohne dass nennenswerte Verluste an VAM-Selektivität entstehen. Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Katalysators weist die Oberfläche des Katalysatorträgers eine Größe von kleiner als 125 m2/g auf, vorzugsweise eine von kleiner als 120 m2/g, bevorzugt eine von kleiner als 100 m2/g, weiter bevorzugt eine von kleiner als 80 m2/g und besonders bevorzugt eine von kleiner als 65 m2/g. Unter dem Begriff „Oberfläche" des Katalysatorträgers wird dabei im Rahmen der vorliegenden Erfindung die BET-Oberflache des Trägers verstanden, die mittels Adsorption von Stickstoff nach DIN 66132 bestimmt wird.
Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Katalysators kann es vorgesehen sein, dass der Katalysatorträger eine Oberfläche von zwischen 130 und 40 m2/g aufweist, vorzugsweise eine von zwischen 128 und 50 m2/g, bevorzugt eine von zwischen 126 und 50 m2/g, weiter bevorzugt eine von zwischen 125 und 50 m2/g, mehr bevorzugt eine von zwischen 120 und 50 m2/g und am meisten bevorzugt eine von zwischen 100 und 60 m2/g.
Ein als Formkörper ausgebildeter Katalysatorträger auf der Basis von natürlichen Schichtsilikaten, insbesondere auf der Basis eines säurebehandelten kalzinierten Bentonits, wobei der Katalysatorträger eine Oberfläche von kleiner als 130 m2/g aufweist, vorzugsweise eine Oberfläche von zwischen 130 und 40 m2/g, kann beispielsweise hergestellt werden, indem eine einen säurebehandelten (unkalzinierten) Bentonit als Schichtsilikat und Wasser enthaltende Formenmischung unter Verdichtung zu
einem Formkörper mittels dem Fachmann geläufiger Vorrichtungen, wie beispielsweise Extrudern oder Tablettenpressen, geformt wird und anschließend der nicht ausgehärtete Formkörper zu einem stabilen Formkörper kalziniert wird. Dabei hängt die Größe der spezifischen Oberfläche des Katalysatorträgers insbesondere von der Qualität des eingesetzten (Roh-) Bentonits ab, dem Säurebehandlungsverfahren des eingesetzten Bentonits, d.h. beispielsweise der Natur und der zum Bentonit relativen Menge und der Konzentration der eingesetzten anorganischen Säure, der Säurebehandlungsdauer sowie der -temperatur, vom
Verpressungsdruck sowie von der Kalzinierdauer und -temperatur sowie der Kalzinieratmosphäre. Ein entsprechender Katalysatorträger mit einer Oberfläche von etwa 100 m2/g wird von der SÜD-Chemie AG unter der Bezeichnung „KA-0" angeboten.
Säurebehandelte Bentonite können durch Behandlung von Bentoniten mit starken Säuren erhalten werden, wie beispielsweise Schwefelsäure, Phosphorsäure oder Salzsäure. Eine auch im Rahmen der vorliegenden Erfindung geltende Definition des Begriffes Bentonit ist in Römpp, Lexikon
Chemie, 10. Aufl., Georg Thieme Verlag, angegeben. Im Rahmen der vorliegenden Erfindung besonders bevorzugte Bentonite sind natürliche aluminiumhaltige Schichtsilikate, die Montmorillonit (als Smektit) als Hauptmineral enthalten. Nach der Säurebehandlung wird der Bentonit in der Regel mit Wasser gewaschen, getrocknet und zu einem Pulver vermählen.
Die Azidität des Katalysatorträgers kann die Aktivität des erfindungsgemäßen Katalysators bei der Gasphasensynthese von VAM aus Essigsäure und Ethen vorteilhaft beeinflussen.
Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Katalysators weist der Katalysatorträger eine Azidität von zwischen 1 und 150 μval/g auf, vorzugsweise
eine von zwischen 5 und 130 μval/g, bevorzugt eine von zwischen 10 und 100 μval/g und besonders bevorzugt eine von zwischen 10 und 60 μval/g. Die Azidität des Katalysatorträgers wird dabei wie folgt bestimmt: 1 g des fein gemahlenen Katalysatorträgers wird mit 100 ml Wasser (mit einem pH-Blindwert) versetzt und unter Rühren 15 Minuten extrahiert. Anschließend wird mit 0,01 n NaOH-Lösung zumindest bis pH 7,0 titriert, wobei die Titration stufenweise erfolgt; und zwar wird zunächst 1 ml der NaOH-Lösung zu dem Extrakt getropft (1 Tropfen/Sekunde), dann 2 Minuten gewartet, der pH-Wert abgelesen, erneut 1 ml NaOH zugetropft, usw. Der Blindwert des eingesetzten Wassers wird bestimmt und die Aziditäts-Berechnung entsprechend korrigiert.
Die Titrationskurve (ml 0,01 NaOH gegen pH-Wert) wird dann aufgetragen und der Schnittpunkt der Titrationskurve bei pH 7 bestimmt. Berechnet werden die Moläquivalente in 10~6 äquiv/g Träger, die sich aus dem NaOH-Verbrauch für den Schnittpunkt bei pH 7 ergeben.
Gesamtsäure: (10*ml 0,01 n NaOH) /1 Träger = μval/g
Im Hinblick auf eine geringe Porendiffusionslimitierung kann gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Katalysators vorgesehen sein, dass der Katalysatorträger einen mittleren Porendurchmesser von 8 bis 50 nm aufweist, vorzugsweise einen von 10 bis 35 nm und bevorzugt einen von 11 bis 30 nm.
Der erfindungsgemäße Katalysator wird üblicherweise hergestellt, indem eine Vielzahl von Katalysatorträger- Formkörpern einem „Batch"-Verfahren unterworfen werden, bei dessen einzelnen Verfahrensschritten die Formkörper beispielsweise durch Rühr- und Mischwerkzeugen vermittelten, verhältnismäßig hohen mechanischen Belastungen unterliegen.
Darüber hinaus kann der erfindungsgemäße Katalysator bei der Befüllung eines Reaktors mechanisch stark beansprucht werden, wodurch es zu einer unerwünschten Staubentwicklung sowie einer Beschädigung des Katalysatorträgers, insbesondere seiner in einem äußeren Bereich gelegenen, katalytisch aktiven Schale kommen kann. Insbesondere um den Abrieb des erfindungsgemäßen Katalysators in vertretbaren Grenzen zu halten, weist der Katalysator eine Härte von größer/gleich 20 N auf, vorzugsweise eine von größer/gleich 25 N, weiter bevorzugt eine von größer/gleich 35 N und am meisten bevorzugt eine von größer/gleich 40 N. Die Ermittlung der Härte ist dabei mittels eines Tablettenhärtetesters 8M der Fa. Dr. Schleuniger Pharmatron AG an 99 Stück Schalenkatalysatoren als Durchschnitt bestimmt nach Trocknung des Katalysators bei 130°C für 2h, wobei die Geräteeinstellungen wie folgt sind:
Härte: N
Distanz zum Formkörper: 5,00 mm
Zeitverzögerung: 0,80 s
Vorschub-Typ: 6 D
Geschwindigkeit: 0,60 mm/s
Die Härte des Katalysators bzw. Katalysatorträgers kann beispielsweise mittels Variation gewisser Parameter des Verfahrens zu seiner Herstellung beeinflusst werden, beispielsweise durch die Auswahl des Schichtsilikates, die Kalzinierdauer und/oder die Kalziniertemperatur eines aus einer entsprechenden Trägermischung geformten, unausgehärteten Formkörpers, oder durch bestimmte Zuschlagsstoffe wie beispielsweise Methylcellulose oder Magnesiumstearat .
Der erfindungsgemäße Katalysator umfasst einen als Formkörper ausgebildeten Katalysatorträger auf der Basis eines natürlichen Schichtsilikates, insbesondere auf der Basis eines säurebehandelten kalzinierten Bentonits. Der Ausdruck „auf der Basis" bedeutet dabei im Rahmen der vorliegenden Erfindung, dass der Katalysator ein natürliches Schichtsilikat umfasst.
Es kann bevorzugt sein, wenn der Anteil des Katalysatorträgers an Schichtsilikat, insbesondere an säurebehandeltem kalziniertem Bentonit, größer/gleich 50 Mass.-% ist, vorzugsweise größer/gleich 60 Mass.-%, bevorzugt größer/gleich 70 Mass.-%, weiter bevorzugt größer/gleich 80 Mass.-%, mehr bevorzugt größer/gleich 90 Mass.-% und am meisten bevorzugt größer/gleich 95 Mass.-% bezogen auf die Masse des Katalysatorträgers .
Es konnte festgestellt werden, dass die VAM-Selektivität des erfindungsgemäßen Katalysators vom integralen Porenvolumen des Katalysatorträgers abhängig ist. Bevorzugt ist es, wenn der Katalysatorträger ein integrales Porenvolumen nach BJH von zwischen 0,25 und 0,7 ml/g aufweist, vorzugsweise eines von zwischen 0,3 und 0,6 ml/g und bevorzugt eines von 0,35 bis 0,5 ml/g. Dabei ist das integrale Porenvolumen des Katalysatorträgers nach der Methode von BJH mittels Stickstoffadsorption bestimmt. Die Oberfläche des Katalysatorträgers sowie sein integrales Porenvolumen werden nach der BET- bzw. nach der BJH-Methode bestimmt. Die
Bestimmung der BET-Oberflache erfolgt nach der BET-Methode gemäß DIN 66131; eine Veröffentlichung der BET-Methode findet sich auch in J. Am. Chem. Soc. 60, 309 (1938) . Zur Bestimmung der Oberfläche und des integralen Porenvolumens des Katalysatorträgers oder des Katalysators kann die Probe beispielsweise mit einem vollautomatischen Stickstoffporosimeter der Firma Micromeritics, Typ ASAP 2010
vermessen werden, mittels dessen eine Adsorptions- sowie Desorptionsisotherme aufgenommen wird.
Zur Ermittlung der Oberfläche und der Porosität des Katalysatorträgers oder des Katalysators nach der BET-Theorie werden die Daten gemäß DIN 66131 ausgewertet. Das Porenvolumen wird aus den Messdaten unter Anwendung der BJH-Methode ermittelt (E. P. Barret, L. G. Joiner, P.P. Haienda, J. Am. Chem. Soc. 73 (1951, 373)). Bei diesem Verfahren werden auch Effekte der Kapillarkondensation berücksichtigt. Porenvolumina bestimmter Porengrößenbereiche werden durch Aufsummieren inkrementeller Porenvolumina bestimmt, die aus der Auswertung der Adsorptionsisotherme nach BJH erhalten werden. Das integrale Porenvolumen nach der BJH-Methode bezieht sich auf Poren mit einem Durchmesser von 1,7 bis 300 nm.
Gemäß einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Katalysators kann es vorgesehen sein, wenn die Wassersaugfähigkeit des Katalysatorträgers 40 bis 75 % beträgt, bevorzugt 50 bis 70 % berechnet als Gewichtszunahme durch Wasseraufnahme. Die Saugfähigkeit wird bestimmt, indem 10 g der Trägerprobe mit entionisiertem Wasser 30 min lang getränkt werden, bis von der Trägerprobe keine Gasblasen mehr entweichen. Dann wird das überschüssige Wasser dekantiert und die getränkte Probe mit einem Baumwolltuch abgetupft zur Befreiung der Probe von anhaftender Feuchtigkeit. Anschließend wird der wasserbeladene Träger ausgewogen und die Saugfähigkeit berechnet gemäß:
(Auswaage (g) - Einwaage (g) ) x 10 = Wassersaugfähigkeit (%)
Gemäß einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Katalysators kann es bevorzugt sein, wenn zumindest 80 % des integralen Porenvolumens des
Katalysatorträgers nach BJH von Mesoporen und Makroporen gebildet sind, vorzugsweise zumindest 85 % und bevorzugt zumindest 90 %. Dadurch wird einer durch Diffusionslimitierung bewirkten, verminderten Aktivität des erfindungsgemäßen Katalysators entgegengewirkt, insbesondere bei Pd/Au-Schalen mit verhältnismäßig großen Dicken. Dabei sollen diesbezüglich unter den Begriffen Mikroporen, Mesoporen und Makroporen Poren verstanden werden, die einen Durchmesser von kleiner als 2 nm, einen Durchmesser von 2 bis 50 nm bzw. einen Durchmesser von größer als 50 nm aufweisen.
Der Katalysatorträger des erfindungsgemäßen Katalysators kann eine Schüttdichte von mehr als 0,3 g/ml aufweisen, vorzugsweise eine von mehr als 0,35 g/ml und besonders bevorzugt eine Schüttdichte von zwischen 0,35 und 0,6 g/ml.
Um eine ausreichende chemische Beständigkeit des erfindungsgemäßen Katalysators zu gewährleisten, weist das im Träger enthaltene natürliche Schichtsilikat einen SiO2-Gehalt von zumindest 65 Mass.-% auf, vorzugsweise einen von zumindest 80 Mass.-% und bevorzugt einen von 95 bis 99,5 Mass.-% bezogen auf die Masse des Schichtsilikates.
Bei der Gasphasensynthese von VAM aus Essigsäure und Ethen wirkt sich ein verhältnismäßig niedriger Al2θ3-Gehalt in dem Schichtsilikat kaum nachteilig aus, während bei hohen AI2O3-
Gehalten mit einer merklichen Abnahme der Druckhärte gerechnet werden muss. Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Katalysators enthält das Schichtsilikat daher weniger als 10 Mass.-% AI2O3, vorzugsweise 0,1 bis 3 Mass.-% und bevorzugt 0,3 bis 1,0 Mass.-% bezogen auf die Masse des Schichtsilikates.
Der Katalysatorträger des erfindungsgemäßen Katalysators ist als Formkörper ausgebildet. Dabei kann der Katalysatorträger grundsätzlich die Form eines jeglichen geometrischen Körpers annehmen, auf dem sich eine entsprechende Edelmetallschale aufbringen lässt. Bevorzugt ist es jedoch, wenn der Katalysatorträger als Kugel, Zylinder (auch mit abgerundeten Stirnflächen) , Lochzylinder (auch mit abgerundeten Stirnflächen), Trilobus, „capped tablet", Tetralobus, Ring, Donut, Stern, Wagenrad, „inverses" Wagenrad, oder als Strang, vorzugsweise als Rippstrang oder Sternstrang, ausgebildet ist, vorzugsweise als Kugel.
Der Durchmesser bzw. die Länge und Dicke des
Katalysatorträgers des erfindungsgemäßen Katalysators beträgt vorzugsweise 2 bis 9 mm, je nach Reaktorrohrgeometrie, in dem der Katalysator Einsatz finden soll. Ist der Katalysatorträger als Kugel ausgebildet, so weist der Katalysatorträger bevorzugt einen Durchmesser von größer als 2 mm auf, bevorzugt einen Durchmesser von größer als 3 mm und bevorzugt einen Durchmesser von 4 mm bis 9 mm.
Zur Erhöhung der Aktivität des erfindungsgemäßen Katalysators kann es vorgesehen sein, dass der Katalysatorträger mit zumindest einem Oxid eines Metalls dotiert ist, ausgewählt aus der Gruppe bestehend aus Zr, Hf, Ti, Nb, Ta, W, Mg, Re, Y und Fe, vorzugsweise mit ZrO2, HfO2 oder Fe2Os. Dabei kann es bevorzugt sein, wenn der Anteil des Katalysatorträgers an Dotierungsoxid zwischen 0,01 und 20 Mass.-% beträgt, vorzugsweise 1,0 bis 10 Mass.-% und bevorzugt 3 bis 8 Mass.-% bezogen auf die Masse des Katalysatorträgers. Die Menge an Dotierungsoxid hängt dabei in erster Linie von der Natur des einzusetzenden Dotierungsoxids ab.
Die VAM-Selektivität des erfindungsgemäßen Katalysators ist im Allgemeinen umso höher, je kleiner die Dicke der Pd/Au-Schale des Katalysators ist. Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Katalysators weist daher die Schale des Katalysators eine Dicke von kleiner als 300 μm auf, vorzugsweise eine von kleiner als 200 μm, bevorzugt eine von kleiner als 150 μm, weiter bevorzugt eine von kleiner als 100 μm und mehr bevorzugt eine von kleiner als 80 μm. Die Dicke der Schale kann mittels eines Mikroskops optisch ausgemessen werden. Und zwar erscheint der Bereich, in dem die Edelmetalle abgeschieden sind, schwarz, während die edelmetallfreien Bereiche weiß erscheinen. Die Grenzlinie zwischen edelmetallhaltigen und -freien Bereichen ist in der Regel sehr scharf und optisch deutlich zu erkennen. Sollte die vorgenannte Grenzlinie nicht scharf ausgebildet und entsprechend optisch nicht deutlich zu erkennen sein, so entspricht die Dicke der Schale der Dicke einer Schale, gemessen ausgehend von der äußeren Oberfläche des Katalysatorträgers, in welcher 95 % des auf dem Träger abgeschiedenen Edelmetalls enthalten sind.
Es konnte jedoch ebenfalls festgestellt werden, dass bei dem erfindungsgemäßen Katalysator die Pd/Au-Schale (als Funktion der BET-Oberflache des Trägers) mit einer, eine hohe Aktivität des Katalysators bewirkenden, verhältnismäßig großen Dicke ausgebildet werden kann, ohne eine nennenswerte Verminderung der VAM-Selektivität des erfindungsgemäßen Katalysators zu bewirken. Hierbei kann die Dicke der Edelmetallschale annähernd umgekehrt proportional zur BET-Oberflache des Katalysatorträgers an Dicke zunehmen. Entsprechend einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Katalysators weist die Schale des Katalysators daher eine Dicke von zwischen 200 und 2000 μm auf, vorzugsweise eine von
zwischen 250 und 1800 μm, bevorzugt eine von zwischen 300 und 1500 μm und weiter bevorzugt eine von zwischen 400 und 1200 μm.
Um eine ausreichende Aktivität des erfindungsgemäßen Katalysators zu gewährleisten, beträgt der Anteil des Katalysators an Pd 0,6 bis 2,5 Mass.-%, vorzugsweise 0,7 bis 2,3 Mass.-% und bevorzugt 0,8 bis 2 Mass.-% bezogen auf die Masse des mit Edelmetall beladenen Katalysatorträgers.
Ferner kann es bevorzugt sein, wenn der erfindungsgemäße Katalysator einen Pd-Gehalt von 1 bis 20 g/l aufweist, vorzugsweise einen von 2 bis 15 g/l und bevorzugt einen von 3 bis 10 g/l.
Ebenfalls um eine ausreichende Aktivität und Selektivität des erfindungsgemäßen Katalysators zu gewährleisten, liegt das
Au/Pd-Atomverhältnis des Katalysators vorzugsweise zwischen 0 und 1,2, vorzugsweise zwischen 0,1 und 1, bevorzugt zwischen 0,3 und 0,9 und besonders bevorzugt zwischen 0,4 und 0,8.
Darüber hinaus kann es bevorzugt sein, wenn der Au-Gehalt des erfindungsgemäßen Katalysators von 1 bis 20 g/l beträgt, vorzugsweise 1,5 bis 15 g/l und bevorzugt 2 bis 10 g/l.
Um eine weitgehend einheitliche Aktivität des erfindungsgemäßen Katalysators über die Dicke der Pd/Au-Schale hinweg zu gewährleisten, sollte die Edelmetallkonzentration über die Schalendicke hinweg nur verhältnismäßig wenig variieren. D.h., dass das Profil der Edelmetallkonzentration des Katalysators über einen Bereich von 90 % der Schalendicke hinweg, wobei der Bereich zur äußeren und inneren
Schalengrenze jeweils um 5 % der Schalendicke beabstandet ist, von der mittleren Edelmetallkonzentration dieses Bereichs um
maximal +/- 20 % ab, vorzugsweise um maximal +/- 15 % und bevorzugt um maximal +/- 10 % abweicht.
Chlorid vergiftet den erfindungsgemäßen Katalysator und führt zu einer Deaktivierung desselben. Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Katalysators ist daher sein Gehalt an Chlorid kleiner als 250 ppm, vorzugsweise kleiner als 150 ppm.
Der erfindungsgemäße Katalysator kann neben oder alternativ zu den vorstehend genannten Dotierungsoxiden als weiteren
Promotor zumindest eine Alkalimetallverbindung enthalten, vorzugsweise eine Kalium-, eine Natrium-, eine Cäsium- oder eine Rubidiumverbindung, bevorzugt eine Kaliumverbindung. Zu den geeigneten und besonders bevorzugten Kaliumverbindungen gehören Kaliumacetat KOAc, Kaliumcarbonat K2CO3, Kaliumformiat KFA, Kaliumhydrogencarbonat KHCO3 und Kaliumhydroxid KOH sowie sämtliche Kaliumverbindungen, die sich unter den jeweiligen Reaktionsbedingungen der VAM-Synthese in K-Acetat KOAc umwandeln. Die Kaliumverbindung kann sowohl vor als auch nach der Reduktion der Metall-Komponenten zu den Metallen Pd und Au auf den Katalysatorträger aufgetragen werden. Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Katalysators umfasst der Katalysator ein Alkalimetallacetat , vorzugsweise Kaliumacetat. Dabei ist es zur Gewährleistung einer ausreichenden Promotoraktivität besonders bevorzugt, wenn der Gehalt des Katalysators an Alkalimetallacetat 0,1 bis 0,7 mol/1 beträgt, vorzugsweise 0,3 bis 0,5 mol/1.
Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Katalysators beträgt das Alkalimetall/Pd- Atomverhältnis einen Wert von zwischen 1 und 12, vorzugsweise zwischen 2 und 10 und besonders bevorzugt zwischen 4 und 9. Dabei ist vorzugsweise das Alkalimetall/Pd-Atomverhältnis umso
geringer, je kleiner die Oberfläche des Katalysatorträgers ist.
Die vorliegende Erfindung betrifft ferner ein erstes Verfahren zur Herstellung eines Schalenkatalysators, insbesondere des erfindungsgemäßen Schalenkatalysators, umfassend die Schritte:
a) Bereitstellen eines porösen, als Formkörper ausgebildeten Katalysatorträgers auf der Basis eines natürlichen Schichtsilikates, insbesondere auf der Basis eines säurebehandelten kalzinierten Bentonits, wobei der
Katalysatorträger eine Oberfläche von kleiner als 130 m2/g aufweist;
b) Auftragen einer Lösung einer Pd-Vorläuferverbindung auf den Katalysatorträger;
c) Auftragen einer Lösung einer Au-Vorläuferverbindung auf den Katalysatorträger;
d) Überführen der Pd-Komponente der Pd-Vorläuferverbindung in die metallische Form;
e) Überführen der Au-Komponente der Au-Vorläuferverbindung in die metallische Form.
Grundsätzlich kann als Pd- und Au-Vorläuferverbindung jede Pd- bzw. Au-Verbindung eingesetzt werden, mittels derer ein hoher Dispersionsgrad der Metalle erzielt werden kann. Dabei wird unter dem Begriff „Dispersionsgrad" das Verhältnis der Anzahl aller Oberflächenmetallatome aller Metall-/Legierungspartikel eines geträgerten Metallkatalysators zu der Gesamtzahl aller Metallatome der Metall-/Legierungspartikel verstanden. Im Allgemeinen ist es bevorzugt, wenn der Dispersionsgrad einem
verhältnismäßig hohen Zahlenwert entspricht, da in diesem Fall möglichst viele Metallatome für eine katalytische Reaktion frei zugänglich sind. Das heißt, dass bei einem verhältnismäßig hohen Dispersionsgrad eines geträgerten Metallkatalysators eine bestimmte katalytische Aktivität desselben mit einer verhältnismäßig geringen Menge an eingesetztem Metall erreicht werden kann. Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Katalysators beträgt der Dispersionsgrad des Paladiums 1 bis 30 %.
Es kann bevorzugt sein, dass die Pd- und Au- Vorläuferverbindungen ausgewählt sind aus den Halogeniden, insbesondere Chloriden, Oxiden, Nitraten, Nitriten, Formiaten, Propionaten, Oxalaten, Acetaten, Hydroxiden, Hydrogencarbonaten, Aminkomplexen oder organischen Komplexen, beispielsweise Triphenylphosphinkomplexen oder Acetylacetonatkomplexen, dieser Metalle.
Beispiele für bevorzugte Pd-Vorläuferverbindungen sind wasserlösliche Pd-Salze. Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Pd- Vorläuferverbindung ausgewählt aus der Gruppe bestehend aus Pd(NH3J4(OH)2, Pd(NH3J4(OAc)2, H2PdCl4, Pd (NH3) 4 (HCO3) 2, Pd(NH3)4 (HPO4) , Pd(NH3J4Cl2, Pd (NH3) 4-0xalat, Pd-Oxalat, Pd(NO3J2, Pd (NH3) 4 (NO3) 2, K2Pd(OAc)2(OH)2, Na2Pd(OAc)2(OH)2, Pd(NH3J2(NOz)2, K2Pd(NO2J4, Na2Pd(NO2J4, Pd(OAc)2, K2PdCl4, (NH4J2PdCl4, PdCl2 und Na2PdCl4, wobei auch Mischungen von zwei oder mehr der vorgenannten Salze eingesetzt werden können. Anstelle von NH3 als Ligand können auch Ethylenamin oder Ethanolamin als Ligand verwendet werden. Neben Pd(OAc)2 können auch andere Carboxylate des Palladiums eingesetzt werden, vorzugsweise die Salze der aliphatischen Monocarbonsäuren mit 3 bis 5 Kohlenstoffatomen, beispielsweise das Propionat- oder das Butyratsalz.
Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens können auch Pd-Nitrit- Vorläuferverbindungen bevorzugt sein. Bevorzugte Pd-Nitrit- Vorläuferverbindungen sind beispielsweise solche, die mittels Lösen von Pd (OAc) 2 in einer NaNO2-Lösung erhalten werden.
Beispiele für bevorzugte Au-Vorläuferverbindungen sind wasserlösliche Au-Salze. Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Au- Vorläuferverbindung ausgewählt aus der Gruppe bestehend aus KAuO2, HAuCl4, KAu (NO2) 4, NaAu(NO2J4, AuCl3, NaAuCl4, KAuCl4, KAu(OAc)3(OH), HAu(NO3J4, NaAuO2, NMe4AuO2, RbAuO2, CsAuO2, NaAu(OAc)3(OH), RbAu(OAc)3OH, CsAu(OAc)3OH, NMe4Au (OAc) 30H und Au(OAc)3. Dabei ist es gegebenenfalls empfehlenswert, das Au(OAc)3 oder das KAuO2 mittels Fällung des Oxids/Hydroxids aus einer Goldsäure-Lösung, Waschung und Isolierung des Niederschlags sowie Aufnahme desselben in Essigsäure bzw. KOH jeweils frisch anzusetzen.
Als Lösungsmittel für die Vorläuferverbindungen sind alle reinen Lösungsmittel oder Lösungsmittelgemische geeignet, in denen die ausgewählten Vorläuferverbindungen löslich sind und die nach dem Auftrag auf den Katalysatorträger von demselben leicht mittels Trocknung wieder entfernt werden können. Bevorzugte Lösungsmittel-Beispiele für die Metallacetate als Vorläuferverbindungen sind vor allem unsubstituierte Carbonsäuren, insbesondere Essigsäure, oder Aceton, und für die Metallchloride vor allem Wasser oder verdünnte Salzsäure.
Falls die Vorläuferverbindungen in Essigsäure, Wasser bzw. verdünnter Salzsäure oder Mischungen davon nicht ausreichend löslich sind, können alternativ oder zusätzlich zu den genannten Lösungsmitteln auch andere Lösungsmittel Anwendung
finden. Als andere Lösungsmittel kommen hierbei vorzugsweise diejenigen Lösungsmittel in Betracht, die inert sind und mit Essigsäure oder Wasser mischbar sind. Als bevorzugte Lösungsmittel, die sich als Zusatz zur Essigsäure eignen, seien Ketone, beispielsweise Aceton oder Acetylaceton, ferner Ether, beispielsweise Tetrahydrofuran oder Dioxan,
Acetonitril, Dimethylformamid und Lösungsmittel auf der Basis von Kohlenwasserstoffen wie beispielsweise Benzol genannt.
Als bevorzugte Lösungsmittel oder Additive, die sich als Zusatz zu Wasser eignen, seien Ketone, beispielsweise Aceton, oder Alkohole, beispielsweise Ethanol oder Isopropanol oder Methoxyethanol, Laugen, wie wässrige KOH oder NaOH, oder organische Säuren, wie Essigsäure, Ameisensäure, Zitronensäure, Weinsäure, Äpfelsäure, Glyoxylsäure, Glycolsäure, Oxalsäure, Benztraubensäure, Oxamsäure, Milchsäure oder Aminosäuren wie Glycin genannt.
Werden als Vorläuferverbindungen Chloridverbindungen eingesetzt, so muss sichergestellt werden, dass die Chloridionen vor dem Einsatz des nach dem erfindungsgemäßen Verfahren hergestellten Katalysators auf eine tolerable Restmenge reduziert werden, da Chlorid ein Katalysatorgift ist. Dazu wird der Katalysatorträger im Regelfall nach der Fixierung der Pd- und Au-Komponente der Pd- bzw. Au- Vorläuferverbindung auf den Katalysatorträger ausgiebig mit Wasser gewaschen. Dies geschieht im Allgemeinen entweder unmittelbar nach der Fixierung durch Hydroxid-Fällung der Pd- und Au-Komponente mittels Lauge oder nach der Reduktion der Edelmetall-Komponenten zu dem/der jeweiligen Metall/Legierung.
Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden jedoch chloridfreie Pd- und Au- Vorläuferverbindungen verwendet sowie chloridfreie
Lösungsmittel, um den Gehalt des Katalysators an Chlorid möglichst gering zu halten und ein aufwendiges Chloridfrei- Waschen zu vermeiden. Dabei werden vorzugsweise als Vorläuferverbindungen die entsprechenden Acetat-, Hydroxid-, Nitritverbindungen oder Hydrogencarbonatverbindungen eingesetzt, da diese den Katalysatorträger nur in einem sehr geringen Umfang mit Chlorid kontaminieren.
Die Abscheidung der Pd- und Au-Vorläuferverbindungen auf den Katalysatorträger im Bereich einer äußeren Schale des Katalysatorträgers lässt sich nach an sich bekannten Verfahren erzielen. So kann der Auftrag der Vorläufer-Lösungen durch Tränkung erfolgen, indem der Träger in die Vorläufer-Lösungen eingetaucht wird oder gemäß dem Incipient-Wetness-Verfahren getränkt wird. Anschließend wird auf den Katalysatorträger eine Base, beispielsweise Natronlauge oder Kalilauge, aufgetragen, wodurch die Edelmetall-Komponenten in Form von Hydroxiden auf den Träger ausgefällt werden. Es ist beispielsweise auch möglich, den Träger zunächst mit Lauge zu tränken und dann die Vorläuferverbindungen auf den so vorbehandelten Träger aufzubringen.
Gemäß einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist es daher vorgesehen, dass die Pd- und die Au-Vorläuferverbindung auf den Katalysatorträger aufgetragen wird, indem der Katalysatorträger mit der Lösung der Pd-Vorläuferverbindung und mit der Lösung der Au- Vorläuferverbindung oder mit einer Lösung, die sowohl die Pd- als auch die Au-Vorläuferverbindung enthält, getränkt wird.
Nach dem Stand der Technik werden die Aktivmetalle Pd und Au ausgehend von Chloridverbindungen im Bereich einer Schale des Trägers auf demselben mittels Tränken aufgebracht . Diese Technik ist jedoch an die Grenzen angelangt, was minimale
Schalendicken und maximale Au-Beladung angeht. Die kleinsten Schalendicken der entsprechenden bekannten VAM-Katalysatoren liegen bei bestenfalls ca. 100 μm und es ist nicht absehbar, dass mittels Tränkung noch dünnere Schalen erhalten werden können. Darüber hinaus lassen sich höhere Au-Beladungen innerhalb der gewünschten Schale mittels Tränkung nur schwerlich realisieren, da die Au-Vorläuferverbindungen dazu neigen, von der Schale in innere Zonen des Katalysatorträger- Formkörpers zu diffundieren, was zu breiten Au-Schalen führt, die bereichsweise kaum mit Pd durchmischt sind.
Die Aktivmetalle oder deren Vorläuferverbindungen, können beispielsweise auch mittels so genannter physikalischer Verfahren auf den Träger aufgetragen werden. Dazu kann der Träger erfindungsgemäß bevorzugt beispielsweise mit einer Lösung der Vorläuferverbindungen besprüht werden, wobei der Katalysatorträger in einer Dragiertrommel bewegt wird, in welche warme Luft eingeblasen wird, so dass das Lösungsmittel rasch verdampft.
Entsprechend einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist es aber vorgesehen, dass die Lösung der Pd-Vorläuferverbindung und die Lösung der Au- Vorläuferverbindung auf den Katalysatorträger aufgetragen wird, indem die Lösungen auf eine Wirbelschicht oder ein Fließbett des Katalysatorträgers aufgesprüht werden, vorzugsweise mittels eines Aerosols der Lösungen. In dem Fließbett laufen die Formkörper vorzugsweise elliptisch oder toroidal um. Um eine Vorstellung davon zu geben, wie sich die Formkörper in derartigen Fließbetten bewegen, sei ausgeführt, dass sich bei einem "elliptischem Umlaufen" die
Katalysatorträger-Formkörper in dem Fließbett in vertikaler Ebene auf einer elliptischen Bahn mit wechselnder Größe der Haupt- und Nebenachse bewegen. Bei "toroidalem Umlaufen"
bewegen sich die Katalysatorträger-Formkörper in dem Fließbett in vertikaler Ebene auf einer elliptischen Bahn mit wechselnder Größer der Haupt- und Nebenachse und in horizontaler Ebene auf einer Kreisbahn mit wechselnder Größe des Radius. Im Mittel bewegen sich die Formkörper bei "elliptischem Umlaufen" in vertikaler Ebene auf einer elliptischen Bahn, bei "toroidalem Umlaufen" auf einer toroidalen Bahn, d.h., dass ein Formkörper die Oberfläche eines Torus mit vertikal elliptischem Schnitt helikal abfährt. Dadurch kann die Schalendicke stufenlos eingestellt und optimiert werden, beispielsweise bis zu einer Dicke von 2 mm. Aber auch sehr dünne Schalen mit einer Dicke von kleiner als 100 μm sind so möglich.
Die vorstehend genannte Ausführungsform des erfindungsgemäßen Verfahrens kann mittels einer Wirbelschichtanlage bzw.
Fließbettanlage durchgeführt werden. Besonders bevorzugt ist dabei eine Fließbettanlage, in der eine so genannte kontrollierte Luftgleitschicht besteht. Zum Einen werden die Katalysatorträger-Formkörper durch die kontrollierte Luftgleitschicht gut durchmischt, wobei sie gleichzeitig um ihre eigene Achse rotieren, wodurch sie gleichmäßig von der Prozessluft getrocknet werden. Zum Anderen passieren die Katalysatorträger-Formkörper aufgrund der durch die kontrollierte Luftgleitschicht bewirkten konsequenten Orbitalbewegung der Formkörper den Sprühvorgang (Applikation der Vorlauferverbindungen) in nahezu konstanter Häufigkeit. Dadurch wird eine weitgehend einheitliche Schalendicke einer behandelten Charge von Formkörpern erreicht. Ferner wird dadurch erzielt, dass die Edelmetallkonzentration über einen verhältnismäßig großen Bereich der Schalendicke hinweg nur verhältnismäßig gering variiert, d.h., dass die Edelmetallkonzentration über einen großen Bereich der Schalendicke hinweg in etwa eine verzerrte Rechteckfunktion
mit hoher Metallanreicherung außen und etwas geringerer
Metallanreicherung innen beschreibt, wodurch eine weitgehend einheitliche Aktivität des resultierenden Katalysators über die Dicke der Pd/Au-Schale hinweg gewährleistet ist.
Geeignete Dragiertrommeln, Wirbelschichtanlagen bzw.
Fließbettanlagen zur Durchführung des erfindungsgemäßen Verfahrens entsprechend bevorzugter Ausführungsformen sind im Stand der Technik bekannt und werden z.B. von den Unternehmen Heinrich Brucks GmbH (Alfeld, Deutschland) , ERWEK GmbH (Heusenstamm, Deutschland) , Stechel (Deutschland) , DRIAM
Anlagenbau GmbH (Eriskirch, Deutschland) , Glatt GmbH (Binzen, Deutschland), G. S. Divisione Verniciatura (Osteria, Italien), HOFER-Pharma Maschinen GmbH (Weil am Rhein, Deutschland), L. B. Bohle Maschinen + Verfahren GmbH (Enningerloh, Deutschland) , Lödige Maschinenbau GmbH (Paderborn,
Deutschland) , Manesty (Merseyside, Großbritannien) , Vector Corporation (Marion, IA, USA) , Aeromatic-Fielder AG (Bubendorf, Schweiz) , GEA Process Engineering (Hampshire, Großbritannien), Fluid Air Inc. (Aurora, Illinois, USA), Heinen Systems GmbH (Varel, Deutschland) , Hüttlin GmbH (Steinen, Deutschland), Umang Pharmatech Pvt . Ltd. (Marharashtra, Indien) und Innojet Technologies (Lörrach, Deutschland) vertrieben. Dabei sind Fließbettvorrichtungen der Firma Innojet mit der Bezeichnung Innojet® Aircoater und Innojet® Ventilus besonders bevorzugt.
Gemäß einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird der Katalysatorträger während des Auftragens der Lösungen erwärmt, beispielsweise mittels erwärmter Prozessluft. Über den Grad der Erwärmung der Katalysatorträger kann die Abtrocknungsgeschwindigkeit der aufgetragenen Lösungen der Edelmetall-Vorläuferverbindungen bestimmt werden. Bei relativ niedrigen Temperaturen
beispielsweise ist die Abtrocknungsgeschwindigkeit verhältnismäßig klein, so dass es bei entsprechendem quantitativem Auftrag aufgrund der durch das Vorhandensein von Lösungsmittel bedingten hohen Diffusion der Vorläuferverbindungen zur Ausbildung größerer Schalendicken kommen kann. Bei relativ hohen Temperaturen beispielsweise ist die Abtrocknungsgeschwindigkeit verhältnismäßig hoch, so dass mit dem Formkörper in Kontakt kommende Lösung der Vorläuferverbindungen nahezu unverzüglich abtrocknet, weshalb auf dem Katalysatorträger aufgetragene Lösung nicht tief in denselben eindringen kann. Bei verhältnismäßig hohen
Temperaturen können so relativ kleine Schalendicken mit hoher Edelmetallbeladung erhalten werden.
In den im Stand der Technik beschriebenen Verfahren zur Herstellung von VAM-Schalenkatalysatoren auf der Basis von Pd und Au werden üblicherweise kommerziell erhältliche Lösungen der Vorläuferverbindungen wie Na2PdCl4-, NaAuCl4- oder HAuCl4- Lösungen eingesetzt. In der jüngeren Literatur werden, wie bereits vorstehend ausgeführt, auch chloridfreie Pd- oder Au- Vorläuferverbindungen wie beispielsweise Pd(NH3J4(OH)2,
Pd(NH3) 2 (NO2) 2 und KAuO2 eingesetzt. Diese Vorläuferverbindungen reagieren in Lösung basisch, während die klassischen Chlorid-, Nitrat- und Acetat-Vorläuferverbindungen in Lösung allesamt sauer reagieren.
Für den Auftrag der Vorläuferverbindungen auf den Katalysatorträger werden üblicherweise bevorzugt wässrige Na2PdCl4- und NaAuCl3-Lösungen verwendet. Diese Metallsalzlösungen werden normalerweise bei Raumtemperatur auf den Träger aufgebracht und anschließend die Metall-Komponenten mit NaOH als unlösliche Pd- bzw. Au-Hydroxide fixiert. Danach wird der beladene Träger üblicherweise mit Wasser chloridfrei gewaschen. Insbesondere die Au-Fixierung ist dabei mit
Nachteilen behaftet, wie lange Einwirkzeiten der Base, um die Fällung des stabilen Au-Tetrachlorokomplexes zu induzieren, unvollständiger Fällung und damit verbundener mangelhafter Au- Retention.
Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens umfasst das Verfahren die Schritte:
a) Bereitstellen einer ersten Lösung einer Pd- und/oder einer Au-Vorläufer-verbindung; b) Bereitstellen einer zweiten Lösung einer Pd- und/oder einer Au-Vorläufer-verbindung, wobei die erste Lösung eine Ausfällung der Edelmetall-Komponente/n der Vorläuferverbindung/en der zweiten Lösung bewirkt und umgekehrt; c) Auftragen der ersten Lösung und der zweiten Lösung auf den Katalysatorträger.
Diese Ausführungsform des erfindungsgemäßen Verfahrens nutzt zwei voneinander verschiedene Vorläuferlösungen, von denen beispielsweise die eine eine Pd- und die andere eine Au- Vorläuferverbindung enthält. Dabei weist vorzugsweise in der Regel die eine der Lösungen einen basischen und die andere einen sauren pH-Wert auf. Der Auftrag der Lösungen auf den Katalysatorträger erfolgt in der Regel, indem zunächst der Träger mit der ersten und anschließend, in einem darauffolgenden Schritt, mit der zweiten Lösung wie vorstehend beschrieben durch Tränken imprägniert wird. Beim Auftrag der zweiten Lösung werden dann die beiden Lösungen auf dem Träger vereinigt, wodurch sich der pH-Wert der Lösungen ändert und die Pd- bzw. Au-Komponente der jeweiligen Vorläuferverbindung auf den Träger ausgefällt wird, ohne dass dazu eine wie im
Stand der Technik übliche Hilfsbase wie NaOH oder KOH auf den Träger aufgebracht werden muss.
Die genannte Ausführungsform des erfindungsgemäßen Verfahrens basiert also auf einer Imprägnierung des Katalysatorträgers mit der ersten Lösung einer Pd- und/oder Au-
Vorläuferverbindung und der zweiten Lösung einer Pd- und/oder Au-Vorläuferverbindung, wobei die beiden Lösungen zueinander inkompatibel sind, d.h., dass die erste Lösung eine Ausfällung der Edelmetall-Komponente/n der Vorlauferverbindung/en der zweiten Lösung bewirkt und umgekehrt, so dass in der
Kontaktzone beider Lösungen sowohl die vorimprägnierte/n Pd- /Au-Komponente/n als auch die nachimprägnierte/n Pd-/Au- Komponente/n nahezu gleichzeitig ausfallen und somit zu einer innigen Pd/Au-Durchmischung führen. Zwischen den beiden Imprägnierschritten kann optional getrocknet werden.
Geeignete wässrige Lösungen von Pd-Vorläuferverbindungen für die Imprägnierung mit inkompatiblen Lösungen sind beispielhaft in der Tabelle 1 aufgeführt.
Tabelle 1:
Falls NH3 hinsichtlich einer vorzeitigen Au-Reduktion zu stark reduzierend wirken sollte, können anstelle der
Palladiumaminkomplexe auch die entsprechenden Diaminkomplexe mit Ethylendiamin als Ligand oder auch die entsprechenden Ethanolaminkomplexe verwendet werden.
Geeignete wässrige Lösungen von Au-Vorläuferverbindungen für die Imprägnierung mit inkompatiblen Lösungen sind beispielhaft in der Tabelle 2 aufgeführt.
Tabelle 2:
Geeignete Kombinationen von inkompatiblen Lösungen zur basenfreien Fällung der Edelmetallkomponenten sind beispielsweise eine PdCl2- und eine KAuθ2-Lösung; eine Pd(NO3J2- und eine KAuO2-Lösung; eine Pd(NH3J4(OH)2- und eine AuCl3- oder HAuCl4-Lösung.
Gemäß einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens kann auch Pd mit inkompatiblen Pd-Lösungen gefällt werden und analog Au mit inkompatiblen Au- Lösungen, z.B. durch Inkontaktbringen einer PdCl2-Lösung mit einer Pd (NH3) 4 (OH) 2-Lösung bzw. einer HAuCl4- mit einer KAuO2- Lösung. Auf diese Weise lassen sich hohe Pd- und/oder Au-
Gehalte in der Schale abscheiden, ohne hochkonzentrierte Lösungen einsetzen zu müssen.
Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens können auch miteinander kompatible Mischlösungen eingesetzt werden, die zur Edelmetall-Fällung mit einer zu der Mischlösung inkompatiblen Lösung in Kontakt gebracht werden. Ein Beispiel für eine Mischlösung ist eine PdCl2 und AuCl3 enthaltende Lösung, deren Edelmetall-Komponenten mit einer KAuθ2~Lösung gefällt werden können, oder eine Pd(NHa)4(OH)2 und KAuO2 enthaltende Lösung, deren Edelmetall-Komponenten mit einer PdCl2 und HAuCl4 enthaltenden Lösung gefällt werden können. Ein weiteres Beispiel für eine Mischlösung ist das Paar HAuCl4 und KAuO2.
Die Imprägnierung mit den inkompatiblen Lösungen wird vorzugsweise mittels Tränken oder mittels Sprühimprägnierungen erfolgen, wobei die inkompatiblen Lösungen beispielsweise simultan durch eine (Zweistoffdüse) oder mehrere Doppeldüse (n) oder simultan mittels zweier Düsen oder Düsengruppen oder seguentiell mittels einer oder mehreren Düse (n) versprüht werden.
Die Imprägnierung mit den inkompatiblen Lösungen kann aufgrund der schnellen Immobilisierung (Fixierung) der Metall- Komponenten der Vorläuferverbindungen in der Schale und der damit einhergehenden verkürzten Pd- und Au-Diffusion zu dünneren Schalen führen als die herkömmliche Verwendung von miteinander kompatiblen Lösungen. Mittels der inkompatiblen Lösungen können hohe Edelmetall-Gehalte in dünnen Schalen, verbesserte Metallretention, schnellere und vollständigere Fällung der Edelmetalle, die Verminderung des störenden Na- Restgehalts des Trägers, die gleichzeitige Fixierung von Pd und Au in nur einem Fixierschritt sowie der Wegfall der NaOH-
Kosten und der NaOH-Handhabung und eine Vermeidung einer mechanischen Schwächung des Trägers durch den Kontakt mit überschüssiger NaOH erreicht werden.
Mittels der Imprägnierung mit inkompatiblen Lösungen können durch einen einzigen Fixierschritt, der lediglich den Auftrag zweier inkompatibler Lösungen beinhaltet, größere Edelmetall- Gehalte auf dem Katalysatorträger abgeschieden werden als dies mit der klassischen Basen (NaOH) -Fixierung möglich ist.
Insbesondere lassen sich mittels des Prinzips der inkompatiblen Lösungen hohe Au-Gehalte mit einem Au/Pd- Atomverhältnis von 0,5 und mehr leicht erreichen, was hinsichtlich der Erhöhung der VAM-Selektivität sehr erwünscht ist.
Entsprechend einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass der Katalysatorträger, nachdem die Pd- und/oder die Au- Vorläuferverbindung auf den Katalysatorträger aufgetragen worden ist/sind, einem Fixierungsschritt unterworfen wird zur Fixierung der Edelmetall-Komponente/n der Vorlauferverbindung/en auf dem Katalysatorträger. Der Fixierungsschritt kann dabei die Behandlung des Trägers mit Lauge oder Säure beinhalten, je nachdem, ob die Vorläuferverbindung sauer bzw. basisch ist, oder eine
Kalzinierung des Trägers zur Überführung der Edelmetall- Komponente/n in eine Hydroxid-Verbindung/en bzw. in ein Oxid beinhalten. Der Fixierschritt kann auch ausgelassen werden und die Edelmetall-Komponenten direkt reduziert werden, z.B. durch die Behandlung mit einer reduzierend wirkenden Gasphase, z.B. Ethylen, etc. bei erhöhten Temperaturen von 20 0C bis 200 0C. Durch einen zwischengeschalteten Kalzinierschritt können die
Pd- und/oder Au-Vorläuferverbindungen in die Oxide überführt und dadurch fixiert werden.
Ebenso ist es möglich, ein auf einem Schichtsilikat basierendes Trägermaterial als Pulver vorzulegen und dieses mit den Vorläuferverbindungen der Aktivmetalle durchzuimprägnieren. Das vorbehandelte Pulver kann dann in Form eines „Washcoates" auf eine geeignete Trägerstruktur, beispielsweise eine Kugel aus Steatit oder ein KA-160-Träger, vorzugsweise mittels einer Dragiertrommel, aufgezogen werden und dann durch Kalzinierung und Reduktion zum Katalysator weiterverarbeitet werden.
Entsprechend betrifft die Erfindung ein zweites Verfahren zur Herstellung eines Schalenkatalysators, insbesondere eines erfindungsgemäßen Schalenkatalysators, umfassend die Schritte:
a) Bereitstellen eines pulverförmigen porösen Trägermaterials auf der Basis eines natürlichen Schichtsilikates, insbesondere auf der Basis eines säurebehandelten kalzinierten Bentonits, wobei das Trägermaterial mit einer Pd- und einer Au-
Vorläuferverbindung oder mit Pd- und Au-Partikeln beladen ist und eine Oberfläche von kleiner als 130 m2/g aufweist;
b) Auftragen des beladenen Katalysatorträgers auf eine Trägerstruktur in Form einer Schale;
c) Kalzinieren der beladenen Trägerstruktur aus Schritt b) ;
d) , gegebenenfalls, Überführen der Pd- und der Au-Komponente der Pd- bzw. Au- Vorläuferverbindung in die metallische Form.
Alternativ kann das genannte Verfahren auch durchgeführt werden, indem zunächst das nicht mit Edelmetall beladene, pulverförmige Trägermaterial auf eine Trägerstruktur aufgetragen wird und erst danach die Edelmetalle aufgebracht werden.
Direkt nach dem Beladen mit den Vorläuferverbindungen oder nach der Fixierung der Edelmetall-Komponenten kann der Träger zur Überführung der Edelmetall-Komponenten in die entsprechenden Oxide kalziniert werden. Die Kalzinierung erfolgt bevorzugt bei Temperaturen von weniger als 700 0C. Besonders bevorzugt zwischen 300-450 0C unter Luftzutritt. Die Kalzinierdauer ist abhängig von der Kalziniertemperatur und wird bevorzugt im Bereich von 0,5-6 Stunden gewählt. Bei einer Kalziniertemperatur von etwa 400 0C beträgt die Kalzinierdauer bevorzugt 1-2 Stunden. Bei einer Kalziniertemperatur von 300 0C beträgt die Kalzinierdauer bevorzugt bis zu 6 Stunden. Es kann auf die Fällungs-Fixierung auch verzichtet werden und die imprägnierten Salze können direkt kalziniert werden zur Überführung der Metallkomponente in ein Oxid. Eine bevorzugte Ausführungsform besteht in der (Zwischen-) Kalzinierung des Pd- beladenen Trägers (mit oder ohne vorherige Fällungs-Fixierung) bei ca. 400 0C zur PdO-Ausbildung gefolgt von einer Au- Auftragung und Reduktion, wodurch eine Au-Sinterung vermieden werden kann.
Die Edelmetall-Komponenten werden vor dem Einsatz des Katalysators noch reduziert, wobei die Reduktion in situ, d.h. im Prozessreaktor, oder auch ex situ, d.h. in einem speziellen Reduktionsreaktor, durchgeführt werden kann. Die Reduktion in situ wird vorzugsweise mit Ethylen (5 Vol.-%) in Stickstoff bei einer Temperatur von etwa 150 0C über einen Zeitraum von beispielsweise 5 Stunden durchgeführt. Die Reduktion ex situ
kann beispielsweise mit 5 Vol.-% Wasserstoff in Stickstoff, beispielsweise mittels Formiergas, bei Temperaturen im Bereich von vorzugsweise 150-500 °C über einen Zeitraum von 5 Stunden durchgeführt werden.
Gasförmige oder verdampfbare Reduktionsmittel wie beispielsweise CO, NH3, Formaldehyd, Methanol und Kohlenwasserstoffe können ebenfalls eingesetzt werden, wobei die gasförmigen Reduktionsmittel auch mit Inertgas, wie beispielsweise Kohlendioxid, Stickstoff oder Argon, verdünnt sein können. Vorzugsweise wird ein Inertgas verdünntes
Reduktionsmittel eingesetzt. Bevorzugt sind Mischungen von Wasserstoff mit Stickstoff oder Argon, vorzugsweise mit einem Wasserstoffgehalt zwischen 1 Vol.-% und 15 Vol.-%.
Die Reduktion der Edelmetalle kann auch in flüssiger Phase vorgenommen werden, vorzugsweise mittels der Reduktionsmittel Hydrazin, K-Formiat, Na-Formiat, Ammonium-Formiat, Ameisensäure, K-Hypophosphit, hypophosphorige Säure, H2O2 oder Na-Hypophosphit .
Die Menge an Reduktionsmittel wird vorzugsweise so gewählt, dass während der Behandlungsdauer zumindest das zur vollständigen Reduktion der Edelmetall-Komponenten nötige Äquivalent über den Katalysator geleitet wird. Bevorzugt wird jedoch ein Überschuss an Reduktionsmittel über den Katalysator geleitet, um eine schnelle und vollständige Reduktion zu gewährleisten .
Vorzugsweise wird drucklos, d.h. bei einem Absolutdruck von ca. 1 bar, reduziert. Für die Herstellung technischer Mengen an erfindungsgemäßem Katalysator wird bevorzugt ein Drehrohrofen oder ein Wirbelschicht- oder ein Fließbettreaktor
verwendet, um eine gleichmäßige Reduktion des Katalysators zu gewährleisten .
Die Erfindung betrifft ferner die Verwendung des erfindungsgemäßen Katalysators als Oxidationskatalysator, als Hydrierungs-/Dehydrierungskatalysator, als Katalysator in der hydrierenden Entschwefelung, als Hydrodenitrifizierungs- katalysator, als Hydrodesoxigenierungskatalysator oder als Katalysator in der Synthese von Alkenylalkanoaten, insbesondere in der Synthese von Vinylacetat-Monomer, insbesondere in der Gasphasenoxidation von Ethylen und Essigsäure zu Vinylacetat-Monomer.
Bevorzugt wird der erfindungsgemäße Katalysator zur Herstellung von VAM verwendet. Diese erfolgt im Allgemeinen durch Leiten von Essigsäure, Ethylen und Sauerstoff oder
Sauerstoff enthaltenden Gasen bei Temperaturen von 100-200 0C, vorzugsweise 120-200 0C, und bei Drücken von 1-25 bar, vorzugsweise 1-20 bar, über den erfindungsgemäßen Katalysator, wobei nicht umgesetzte Edukte im Kreis geführt werden können. Zweckmäßig hält man die Sauerstoffkonzentration unter 10 VoI.- %. Unter Umständen ist jedoch auch eine Verdünnung mit inerten Gasen wie Stickstoff oder Kohlendioxid vorteilhaft. Besonders Kohlendioxid eignet sich zur Verdünnung, da es im Zuge der VAM-Synthese in geringen Mengen gebildet wird. Das entstandene Vinylacetat wird mit Hilfe geeigneter Methoden isoliert, die beispielsweise in der US 5,066,365 A beschrieben sind.
Die nachfolgenden Ausführungsbeispiele dienen im Zusammenhang mit dem Vergleichsbeispiel der Erläuterung der Erfindung:
Beispiel 1:
225 g kugelförmige, aus einem säurebehandelten kalzinierten Bentonit als natürliches Schichtsilikat gebildete Katalysatorträger-Formkörper der Firma SÜD-Chemie AG (München, Deutschland) mit der Handelsbezeichnung „KA-0" und den in der Tabelle 3 aufgeführten Charakteristika:
Tabelle 3:
wurden in einer Fließbettvorrichtung des Unternehmens Innojet Technologies (Lörrach, Deutschland) mit der Handelsbezeichnung Innojet® Aircoater gefüllt und mittels auf 80 0C temperierter Druckluft (6 bar) in einen Fließbettzustand versetzt, in welchem die Formkörper toroidal umliefen, d.h. sich auf einer
vertikal ausgerichteten ellipsoiden und einer dazu senkrecht ausgerichteten horizontalen Kreisbahn bewegten.
Nachdem die Formkörper auf eine Temperatur von ca. 75 0C temperiert waren, wurden auf das Fließbett der Formkörper 300 ml einer wässrigen Edelmetallmischlösung enthaltend 7,5 g handelsübliches Na2PdCl4 (Natriumtetrachloropalladat ) und 4,6 g handelsübliches NaAuCl4 (Natriumtetrachloroaurat) über einen Zeitraum von 40 min aufgesprüht.
Nach der Imprägnierung der Katalysatorträger mit der
Edelmetallmischlösung wurde auf das Fließbett der Formkörper eine 0,05 molare NaOH-Lösung bei einer Temperatur von 80 °C über einen Zeitraum von 30 min aufgesprüht. Dabei scheidet sich das NaOH überwiegend innerhalb der Schale ab und fixiert die Pd- und Au-Metallkomponenten, ohne dass der Träger allzu starken NaOH-Konzentrationen ausgesetzt wird.
Nach der NaOH-Einwirkung wurden die Träger ausgiebig in der Fließbettvorrichtung mit Wasser gewaschen, um den Träger weitestgehend von über die Edelmetallverbindungen und NaOH in den Träger eingebrachten Alkalimetall und Chlorid zu befreien.
Nach dem Waschen wurden die Formkörper durch Bewegen in heißer Prozessluft (100 0C) in der Fließbettvorrichtung getrocknet.
Nach dem Trocknen der Formkörper wurden diese mit einem Gasgemisch von Ethylen (5 Vol.-%) in Stickstoff bei einer Temperatur von etwa 150 0C in der Fließbettvorrichtung zu einem Pd/Au-Schalenkatalysator reduziert.
Der resultierende Schalenkatalysator enthielt ca. 1,2 Mass.-% Pd und wies ein Au/Pd-Atomverhältnis von ca. 0,5, eine Schalendicke von ca. 160 μm sowie eine Härte von 38 N auf.
Die Edelmetallkonzentration des so hergestellten Pd/Au- Schalenkatalysators wich über einen Bereich von 90 % der Schalendicke hinweg, wobei der Bereich zur äußeren und inneren Schalengrenze jeweils um 5 % der Schalendicke beabstandet ist, von der mittleren Edelmetallkonzentration dieses Bereichs um maximal +/- 10 % ab. Die Bestimmung der Edelmetallverteilung erfolgte an einem Rasterelektronenmikroskop LEO 430VP, ausgerüstet mit einem energiedispersiven Spektrometer der Fa. Bruker AXS. Zur Messung der Edelmetallkonzentration über die Schalendicke hinweg wurde eine Katalysatorkugel durchschnitten, auf einen Aluminiumprobenhalter geklebt und anschließend mit Kohlenstoff bedampft. Als Detektor kam ein stickstofffreier Siliziumdriftkammerdetektor (XFlash® 410) mit einer Energieauflösung von 125 eV für die Mangan KaiPha~Linie zum Einsatz.
Beispiel 2
65,02 g Katalysatorträger-Formkörpern „KA-0" wie in Beispiel 1 definiert werden gemäß dem Porenfüllverfahren (incipient- wetness-Methode) , bei welchem ein Träger mit einem seinem Porenvolumen entsprechenden Lösungsvolumen imprägniert wird, mit 43,8 ml einer wässrigen Lösung beinhaltend 1,568 g Na2PdCl4 und 0,367 g HAuClή imprägniert. Nach der Imprägnierung werden 89,17 g einer 0,35 molaren NaOH-Lösung auf die
Katalysatorträger-Formkörper gegeben und über Nacht bei RT für 22 Stunden stehen gelassen. Nach Dekantieren der Fixierlösung wird der so hergestellte Katalysatorvorläufer mit 73,68 g einer 10 %-igen NaH2PO2-Lösung (Fluka) 2 Stunden lang reduziert. Nach Ablassen der Reduktionslösung werden die Katalysatoren mit dest. Wasser 8 Stunden bei RT unter ständigem Austausch des Wassers (Durchfluss = 140 rpm) zur
Entfernung von Cl-Resten gewaschen. Der Endwert der Leitfähigkeit der Waschlösung beträgt 1,2 μS.
Im Anschluss wird der Katalysator in der Wirbelschicht bei 90 0C für 50 min getrocknet. Die getrockneten Kugeln werden mit einer Mischung aus 27,29 g 2 molarer KOAc-Lösung und 18,55 g
H2O beladen und eine Stunde bei Raumtemperatur stehen gelassen. Zum Abschluss erfolgt die Trocknung für 40 min bei 90 0C in der Wirbelschicht.
Die theoretische Metallbeladung beträgt 0,8 Gew.-% Pd und 0,3 Gew.-% Au; die durch Elementaranalyse mittels ICP (Inductively Couples Plasma) experimentell bestimmten Werte betrugen 0,77 Gew.-% Pd und 0,27 Gew.-% Au.
Die Schalendicke betrug 312 μm.
Vergleichsbeispiel 1
Es wurde ein Katalysator analog Beispiel 2 hergestellt, wobei als Katalysatorträger-Formkörper ein Träger der Firma St)D-
Chemie AG mit der Handelsbezeichnung „KA-160" mit den in der Tabelle 4 aufgeführten Charakteristika eingesetzt wurde:
Tabelle 4
Im Unterschied zu Beispiel 2 wurde mit 39,1 ml einer wässrigen Lösung beinhaltend 1,568 g Na2PdCl4 und 0,367 g HAuCl4 imprägniert .
Die theoretische Metallbeladung beträgt 0,8 Gew.-% Pd und 0,3 Gew.-% Au; die durch Elementaranalyse mittels ICP experimentell bestimmten Werte betrugen 0,78 Gew.-% Pd und 0,27 Gew.-% Au.
Die Schalendicke betrug 280 μm.
Beispiel 3
Reaktortest
6 ml einer Schüttung von Katalysatorkugeln des Beispiels 2 und des Vergleichsbeispiels 1 wurden jeweils in einem
Festbettröhrenreaktor bei einer Temperatur von 150 0C bei 10 bar mit einem Feedgasstrom von 550 Nml/min zusammengesetzt aus 15 % HOAc, 6 % O2, 39 % C2H4 in N2 beaufschlagt und der Reaktoraustrag mittels Gaschromatographie analysiert.
Die Selektivität (von Ethylen zu VAM) wird nach der Formel S(C2H4) = mole VAM / (mole VAM + mole CO2/2) berechnet. Die Raum-Zeit-Ausbeute ergibt sich als g VAM/1 Katalysator/h. Der Sauerstoff-Umsatz wird berechnet nach (mole O2 in - mole O2 out) /mole O2 in.
Der erfindungsgemäße Katalysator gemäß Beispiel 2 zeigt eine Selektivität S(C2H4) von 92,3 % sowie eine Raum-Zeit-Ausbeute (gaschromatographisch bestimmt) von 615 g VAM / 1 Katalysator / h bei einem Sauerstoffumsatz von 36,5 %.
Der Katalysator gemäß Vergleichsbeispiel 1 zeigte eine Selektivität S (C2H4) von 91,0 % sowie eine Raum-Zeit-Ausbeute (gaschromatographisch bestimmt) von 576 g VAM / 1 Katalysator / h bei einem Sauerstoffumsatz von 36,1 %.
Der erfindungsgemäße Katalysator gemäß Beispiel 2 zeigt sowohl eine höhere Selektivität als auch Aktivität in der VAM- Synthese im Vergleich zu einem Katalysator des Standes der Technik gemäß Vergleichsbeispiel 1.