EP2145913B2 - Selektives Sintern von strukturmodifizierten Polymeren - Google Patents

Selektives Sintern von strukturmodifizierten Polymeren Download PDF

Info

Publication number
EP2145913B2
EP2145913B2 EP09160642.6A EP09160642A EP2145913B2 EP 2145913 B2 EP2145913 B2 EP 2145913B2 EP 09160642 A EP09160642 A EP 09160642A EP 2145913 B2 EP2145913 B2 EP 2145913B2
Authority
EP
European Patent Office
Prior art keywords
polymer
copolymer
group
backbone chain
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09160642.6A
Other languages
English (en)
French (fr)
Other versions
EP2145913B1 (de
EP2145913A1 (de
Inventor
Andreas Pfister
Frank Müller
Martin Leuterer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOS GmbH
Original Assignee
EOS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41378812&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2145913(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE102008024288A external-priority patent/DE102008024288A1/de
Priority claimed from DE102008024281A external-priority patent/DE102008024281A1/de
Application filed by EOS GmbH filed Critical EOS GmbH
Priority to EP10175677.3A priority Critical patent/EP2272899B2/de
Publication of EP2145913A1 publication Critical patent/EP2145913A1/de
Publication of EP2145913B1 publication Critical patent/EP2145913B1/de
Application granted granted Critical
Publication of EP2145913B2 publication Critical patent/EP2145913B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a process for manufacturing a three-dimensional object from a powder by selective sintering by means of electromagnetic radiation, wherein the powder comprises a polymer or copolymer. Furthermore, the present invention relates to a three-dimensional object manufactured by said process, an apparatus for manufacturing a three-dimensional object by means of said process and the use of a preselected polymer powder in said process.
  • a process for manufacturing a three-dimensional object by selective sintering by means of electromagnetic radiation may be carried out layer-wise by means of a source for electromagnetic radiation.
  • a three-dimensional object is manufactured layer-wise by applying layers of powder and bonding these layers to each other by selective solidification of the powder at positions corresponding to cross-sections of the object.
  • Fig. 1 exemplary shows a laser sintering device by means of which a process for layer-wise manufacturing of a three-dimensional object may be performed.
  • the device comprises a container 1.
  • This container is open to the top and is limited at the bottom by a support 4 for supporting an object 3 to be formed.
  • a work plane 6 is defined.
  • the object is located on the top side of the support 4 and is formed from a plurality of layers of a building material in powder form which is solidifiable by means of electromagnetic radiation, wherein the layers are in parallel to the top side of the support 4.
  • the support is moveable in a vertical direction, i.e. in parallel to the sidewall of the container 1 via a height adjustment device. Therewith, the position of the support 4 can be adjusted relatively to the work plane 6.
  • an application device 10 is provided for applying the powder material 11 to be solidified onto the support surface 5 or a previously solidified layer.
  • an irradiation device in the form of a laser 7, which emits a directed light beam 8 is arranged above the work plane 6. This light beam 8 is directed as deflected beam 8' towards the work plane 6 by a deflection device 9 such as a rotating mirror.
  • a control unit 40 allows to control the support 4, the application device 10 and the deflection device 9.
  • the items 1 to 6, 10 and 11 are located within the machine frame 100.
  • the powder material 11 is applied layer-wise onto the support 4 or a previously solidified layer and is solidified at the positions of each powder layer corresponding to the object by means of the laser beam 8'. After each selective solidification of a layer, the support is lowered by the thickness of the powder layer to be subsequently applied.
  • the object of the present invention is to provide an improvement of a process for manufacturing a three-dimensional object by selective sintering by means of electromagnetic radiation of polymer powders, which results in improved mechanical properties of the manufactured objects.
  • Such composites comprise one or more fillers and/or additives besides of a matrix of the respective polymer, copolymer or polymer blend.
  • the final crystallinity in the obtained object is 80% or less, preferably 50% or less, more preferably 5-70%, even more preferably 15-50% and in particular 15-35%.
  • the final crystallinity in the obtained object is 5 to 45%, preferably 10 to 40%, more preferably 15 to 35%, even more preferably 15 to 30%, and in particular 20 to 25%.
  • PA polyamides
  • the final crystallinity in the obtained object is 10 to 50%, preferably 15 to 40%, more preferably 15 to 35% and in particular 20 to 30%.
  • the porosity for polymers in general is less than 10%, preferably 5%, more preferably 3% and in particular less than 2%.
  • the process according to the present invention can be carried out layer-wise in an additive process, wherein successive layers of the object to be formed from solidifiable powder material are subsequently solidified by the electromagnetic radiation at positions corresponding to the cross-section of the object.
  • Fig. 1 exemplary shows a laser sintering device for a layer-wise manufacturing of a three-dimensional object.
  • the polymer powder material comprises a polymer or copolymer having at least one, optionally a combination of conditions selected from the group consisting of (i) at least one branching group in the backbone chain, (ii) a modification of terminal groups, (iii) at least one bulky group, and (iv) at least one aromatic group non-linearly linking the backbone chain, wherein the polymer or copolymer is formed on the basis of polyamide (PA), polyaryletherketone (PAEK), polyarylethersulfone (PAES), polyether, polyolefines, polystyrene, polyphenylenesulfide, polyvinylidenefluoride, polyphenyleneoxide, polyimide or a block copolymer that comprises at least one of the aforementioned polymers, this can result in a marked improvement of certain, very advantageous mechanical properties including high stiffness, high compression strength, high impact strength, high maximum tensile- and
  • Objects manufactured by selective sintering by means of electromagnetic radiation of a powder comprising at least one polymer typically have a value of crystallinity substantially higher crystallinity than objects manufactured by classical polymer processing technologies like e.g. injection molding. That is, in a process for manufacturing a three-dimensional object from a powder by selective sintering by means of electromagnetic radiation of the powder comprising at least one polymer, for example of a type as it is illustrated in Fig. 1 , the crystallinity of the manufactured object tends to become high if no structurally modified polymer or copolymer according to the invention is used.
  • a high powder bed temperature lying at about 1-50°C, preferably 1-30°C, even more preferably 1-20°C and most preferably 1-10°C below the melting point T m of the polymer is generally used.
  • the object is typically exposed to relatively high processing temperatures for a substantial period of time and usually still undergoes very long cooling periods.
  • the processing temperature should be kept close to the melting point of the polymer contained in the powder in order to provide for a good connection between successive layers and to minimize the formation of pores due to an inadequately melting of the powder particles. Consequently, during the whole building process, the temperature of the powder bed is kept above the crystallization temperature T c of the polymer.
  • the formed object itself may be exposed for a long time to temperatures above T c .
  • the cooling through T c of the object starts due to natural heat loss to the environment. Because of the low heat conductivity of the polymer powder and the large powder bed, this may take hours to days, - depending on the polymer powder used and the processing conditions, i.e. without predefining a proper cooling rate - which would possibly further increase crystallization of the polymer object, eventually during the cooling process. Without proper control, even post-crystallization of the laser sintered polymer object may occur. As a consequence, relatively high and partly extremely high crystallinities are obtained in the manufactured object without the controlled cooling step according to the present invention. In turn, without properly limiting crystallinity, relevant mechanical properties of the object may be deteriorated.
  • the crystallinity in the manufactured object may be beneficially adjusted still high enough to also provide for positive influences on high chemical resistance, low post shrinkage at temperatures above T g or high stiffness of the manufactured object.
  • an excellent balance of properties can be achieved by the present invention.
  • crystallinity of the material manufactured from polymer powder material is properly limited and preferably adjusted within a particular range, a marked improvement of certain, very advantageous mechanical properties like tensile strength, Young's modulus and elongation at break can be attained.
  • Particularly effective and preferred means in order to limit the crystallinity of the manufactured object are: 1) Preselecting a suitable type of polymer material, 2) paying attention to the structural characteristics and/or modifications of the polymer comprised by the preselected powder, and/or 3) paying attention to a predefined and/or controlled cooling step after completion of the sintering process of the object.
  • a predefined and/or controlled cooling step is preferably applied to the object after completion of the object after the sintering.
  • the predefined and/or controlled cooling step may be realized by predefined slow cooling, possibly slower than native (passive) cooling, or by active cooling in order to provide fast cooling.
  • useful settings for said cooling step can be experimentally tested with the proviso that the final crystallinity in the manufactured object is controlled such that the manufactured object has the desired mechanical characteristics.
  • the cooling rate after completion of the object may also affect the curling and thus the dimensional stability of the object. It has been surprisingly found that the cooling rate can be predefined such that the three-dimensional object has not only a decreased crystallinity providing the above mentioned advantageous mechanical properties, but also a high dimensional stability, that is, it does not curl.
  • the polymer material is as specified in respective claims 1, 2, 14, 15, 20 and 21 and can be selected from polyaryletherketone (PAEK), polyarylethersulfone (PAES), polyamides, polyethers, polyolefines, polystyrenes, polyphenylensulfides, polyvinylidenfluorides, polyphenylenoxides, polyimides and copolymers comprising at least one of the aforementioned polymers.
  • PAEK polyaryletherketone
  • PAES polyarylethersulfone
  • PAES polyamides
  • polyethers polyolefines
  • polystyrenes polyphenylensulfides
  • polyvinylidenfluorides polyvinylidenfluorides
  • polyphenylenoxides polyphenylenoxides
  • copolymers comprising at least one of the aforementioned polymers.
  • suitable PAEK polymers and copolymers are preferably selected from polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketone (PEK), polyetheretherketoneketone (PEEKK), polyetherketoneetherketoneketone (PEKEKK), polyaryletheretherketone (PEEEK) and copolymers comprising at least one of the aforementioned polymers.
  • Suitable polyamide polymers or copolymers can be selected from the group consisting of polyamide PA6T/61, poly-m-xylylenadipamide (PA MXD6), polamide 6/6T, polyamide elastomers like polyetherblockamide such as PEBAX TM -based materials, polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 612, polyamide 610, polyamide 1010, polyamide 1212, polyamide PA6T/66, PA4T/46 and copolymers comprising at least one of the aforementioned polymers.
  • Suitable polyolefine polymers or copolymers can be selected from the group consisting of polyethylene and polypropylene.
  • Suitable polystyrene polymers or copolymers can be selected from the group consisting of syndiotactic and isotactic polystyrenes. Respective structural characteristics defined in the enclosed claims can be considered by suitable methods and means, structural changes, selection of suitable components of the co(polymers) and so on.
  • a polymer or copolymer particularly preferable for the selective sintering process according to the invention has at least one of the following structural characteristics and/or modifications:
  • a group G is to be meant having, besides of the bonds linking the portions of the backbone chain of the polymer (portions A and B of the backbone chain), as shown below , at least one side chain and substituent S respectively.
  • G is an aliphatic hydrocarbon, an aromatic hydrocarbon or a heteroarene.
  • the side chains or the substituents "S” respectively affect the mobility of the polymer chain in the melt and thus enable to suitably influence the final crystallinity of the manufactured object.
  • the substituents are independently from each other selected from the group consisting of C1 to C6 unbranched or branched, chain- or ringshaped alkyl or alkoxy groups and aryl groups, wherein methyl, isopropyl, tert-butyl or phenyl are particularly preferred.
  • side chains or substituents S are preferred which respectively allow further derivatisations of the obtained polymers or copolymers - optionally after deprotection -, for example the synthesis of graft copolymers.
  • the above exemplary illustration of the branching group merely shows one branching group. However, more branching groups may exist in the polymer, in particular in case the branching group is a part of the repeating unit of the polymer.
  • the structural unit (G-S) also may be single or multiple component of the above shown portions A and/or B of the backbone chain.
  • the branching group is an aromatic structural unit in the backbone chain of the polymer or copolymer.
  • terminal groups X and Y of the polymer or copolymer can be derivatised in order to interfere with crystallisation and in this way limiting the crystallinity of the manufactured object.
  • the terminal groups R 1 and R 2 are independently selected from alkyl-, alkoxy-, ester- and/or aryl groups.
  • R 1 and R 2 are independently from each other selected from the group consisting of branched or non-branched C1-C6 alkyl groups, preferably methyl, isopropyl or tert-butyl; branched or non-branched C1-C6 alkoxy groups, preferably methoxy, isopropyloxy, t-butyloxy; substituted or unsubstituted C1-C6 aliphatic ester groups, preferably methyl ester, ethyl ester, isopropyl ester or tert-butyl ester; substituted or unsubstituted aromatic ester groups, preferably benzoic ester and substituted or unsubstituted aryl groups, preferably phenyl, naphthyl, anthracenyl.
  • the terminal groups may also be selected such that they result in a chain extension by a chemical reaction with each other at temperatures preferably above T m of the polymer, for example polycondensation, electrophilic or nucleophilic substitution, or coupling reaction. This in turn brings about that the final crystallinity within the object decreases by an increased molar mass.
  • bulky groups for example cycloalkyls like cyclohexyl or polycyclic cycloalkyls like decalines or norbornanes which may contain heteroatoms within their ring structure are meant.
  • Further examples for bulky groups are aromatics like phenylene or condensed polycyclic aromatics or heteroaromates, for example naphthalene or anthracene, fluorene and fluoerene derivatives, or polynuclear aromatic hydrocarbons like biphenylene or terphenylene.
  • the bulky groups represent rigid rod segments within the polymer chain, thus can interfere with crystallisation and contribute to a lower final crystallinity within the manufactured object.
  • the selection of the bulky group depends on the type of polymer or copolymer. While for example in case of an aliphatic polymer such as polyethylene already one phenylene unit may represent a bulky group, phenylene can not be regarded as a bulky group in case of a polyaryletherketone which by definition contains phenylene units. In case of the use of polyaryletherketones (PAEK), for the embodiment according to structural characteristic iii), the bulky group is not selected from the group consisting of phenylene, biphenylene, naphthalene and CH 2 - or isopropyliden-linking aromatics.
  • PAEK polyaryletherketones
  • non-linearly linking aromatic groups aromatic groups are meant which link portions of the backbone chain such that they are positioned non-linearly to each other, that is, the angle between the portions of the backbone chain is different from 180°.
  • the final crystallinity in the manufactured object can be decreased in a controlled way, whereby advantageous mechanical properties like Young's modulus, tensile strength and elongation at break are obtained.
  • the melting point of the polymer can be decreased by the incorporation of non-linear linking aromatic groups such that it is within a particularly advantageous temperature range, and the glass temperature can be set such that the manufactured object has a particularly advantageous heat distortion temperature.
  • Non-linearly linking aromatic groups are, for example, 1,3-phenylene and 1,2-phenylene, since they link together the portions A and B of the backbone chain of the polymer as shown below at an angle of 120° and 60°, respectively.
  • Further preferred non-linear aromatic groups are for example 1,3-xylylene, 2,4' and 3,4'-biphenylene as well as 2,3- and 2,7-naphthalene.
  • a linearly linking aromatic group links the portions of the backbone chain at an angle of 180°.
  • 1,4-phenylene represents a linearly linking aromatic group, since the schematically depicted portions A and B of the backbone chain of the polymer are linked at an angle of 180°, as shown below.
  • a linearly linking group consisting of a condensed aromatic can linearly link the portions of the backbone chain in two different ways, which is exemplary elucidated by means of naphthalene, but which is also valid for other condensed aromatics such as e.g. anthracene or phenanthrene.
  • naphthalene in the form of 1,4-naphthalene can link the portions A and B of the backbone chain of the polymer together at an angle of 180°.
  • naphthalene can also linearly link in the form of 1,5-naphthalene or 2,6-naphthalene, wherein the schematically depicted portions A and B of the backbone chain are then arranged parallel to each other.
  • 1,5-naphthalene as linearly linking unit :
  • a suitably set molecular weight of the polymer contained in the powder can contribute to a significant decrease of the crystallinity in the manufactured object, which in turn results in a significant improvement of certain, very advantageous mechanical properties in the manufactured object.
  • the molecular weight M n (average number) is preferably set to at least 10.000, more preferably 15.000 to 200.000 and in particular 15.000 to 100.000, or M w (weight average) is preferably set to at least 20.000, and more preferably 30.000 to 500.000, and in particular 30.000 to 200.000.
  • the melting viscosity correlates with the molecular weight of the polymer or copolymer as follows: the higher the molecular weight of a polymer or copolymer, the higher is its melting viscosity. Therefore, the preferred melting viscosities e.g. of polyaryletherketones and their copolymers in general are in a range of 0.05 - 1.0 kN*s/m 2 , preferably 0.15 - 0.6 kN*s/m 2 and in particular 0.2-0.45 kN*s/m 2 .
  • the melting viscosity can be determined in a capillary viscosimeter at 400°C and at a shearing rate of 1000 s -1 according to an instruction of US-Patent 2006/0251878 A1 .
  • the polymers or copolymers can be admixed with an alloying component in a mixture (blend), wherein a blend of at least two different polymers or copolymers is used. In such blends, it is preferred that at least one component of the blend decreases the final crystallinity of the manufactured object.
  • polyamides PA
  • polyethers polyolefines
  • polystyrenes polyphenylensulfides
  • polyvinylidenfluorides polyphenylenoxides
  • polyimides polyimides or a copolymer comprising at least one of the aforementioned polymers
  • Ar 1 , Ar 2 and Ar 3 are linearly or non-linearly linking, unsubstituted or substituted, monocyclic or polycyclic aromatic hydrocarbons, wherein independent from Rf 1 , Rf 2 and/or Rf 3 being H, substituents can be optionally selected from:
  • the indices a, b and c denote the number of the respective units in the repeating unit of the polymer or the repeating units of the copolymer respectively, wherein one or more unit(s) of the same kind, e.g. the unit indexed with a, may be located between units of a different kind, e.g. the unit indexed with b and/or c.
  • the location of the respective units in the repeating unit may be derived from the abbreviation of the PAEK derivative.
  • PAEK- or PAES polymers or -copolymers shall be clarified by means of the following examples of a PAEK polymer according to the invention.
  • Ar 1 is unsubstituted 4,4"-p-terphenylene
  • Ar 2 is unsubstituted 1,4-phenylene
  • Ar 3 is unsubstituted 1,4-phenylene
  • PAEK polymers or copolymers besides the conventional 1,4 phenylene, groups being more bulky as those selected from the group consisting of biphenylenes, naphthalenes and CH 2 - or isopropylidene-linked aromatics shall be selected, like p-terphenylene.
  • PAEK polymers PEKK and PEKEKK are examples for PAEK polymers having linearly linking aromatic groups.
  • Ar 1 is an unsubstitued 1,4-phenylene
  • Ar 2 is an unsubstituted 1,4-phenylene
  • the following example shows a PAEK polymer applied according to the invention, namely a PEKK copolymer having non-linearly linking units.
  • This PEKK copolymer has 2 different repeating units (cf. repeating unit A and B in the below structural formula).
  • the repeating units A and B may be arranged strictly alternating, statistically or blockwise in the backbone chain of the copolymer. The degree of polymerisation n of this PEKK copolymer results from the sum of n 1 and n 2 .
  • the ratio of 1,4-phenylene units Ar 2 in the repeating unit A to 1,3 phenylene units Ar 2 in the repeating unit B is preferably 90/10 - 10/90, more preferably 70/30 - 10/90 and in particular 60/40 - 10/90.
  • Such PEKK copolymers can for example be obtained by electrophilic aromatic substitution of diphenylether as well as terephthalic-acid and -acid chloride, respectively, as the monomer having 1,4-phenylene units and isophthalic-acid and -acid chloride, respectively, as the monomer having 1,3-phenylene units.
  • the ratio between the number of ketone groups Y and the number of ether- or thioether groups is preferably 1:4 to 4:1. Within this range, the final crystallinity in the manufactured object can be significantly reduced.
  • the aromatic hydrocarbon groups Ar 1 , Ar 2 and Ar 3 are respectively and independently selected from the group consisting of 1,4-phenylene, 4,4'-biphenylene, 4,4'-isopropylidendiphenylene, 4,4'-diphenylsulfone, 1,4-, 1,5- and 2,6-naphthalene, 4,4"-p-terphenylene and 2,2-bis-(4-phenylen)-propane for linearly linking aromatic groups, and for non-linearly linking aromatic groups, they are respectively and independently selected from the group consisting of 1,2- and 1,3-phenylene, 1,3-xylylene, 2,4'- and 3,4'-biphenylene and 2,3- and 2,7-naphthalene.
  • branching groups can be provided by aromatic hydrocarbons Ar 1 , Ar 2 and Ar 3 having substituents Rf 1 , Rf 2 , Rf 3 , wherein in this case it is not relevant wether the linkage at the aromatic is linear or non-linear.
  • PAEK polyarylethersulfone
  • PAES polyarylethersulfone
  • the ratio of the number of sulfone groups Z to the number of keto groups Y is preferably between 50:50 and 10:90.
  • a glass transition temperature (T g ) and a melting point (T m ) of the polymer material can be adjusted which is suitable for processing the polymer in an apparatus for manufacturing a three-dimensional object by a selective sintering by means of electromagnetic radiation.
  • said PEK/PES copolymers preferably have a T g higher than 180°C and a melting temperature T m of 300 to 430°C.
  • the end groups of the backbone chain of the polymer or copolymer depend on the kinds of monomers used for synthesis and on the kind of polymerisation. In the following, two different kinds of PAEK synthesis schemes resulting in different kinds of PAEKs with different end groups are shown.
  • PAEKs can be normally synthesized in two ways, namely by electrophilic aromatic substitution (Friedel-Crafts-Acylation) or nucleophilic aromatic substitution.
  • electrophilic aromatic substitution Frriedel-Crafts-Acylation
  • nucleophilic aromatic substitution for example, in the nucleophilic synthesis of a PAEK, a 1,4-bishydroxy-benzene is polymerized with an 4,4' dihalogenated benzophenone component: x HO-Ph-OH + (y+1) Hal-Ph-CO-Ph-Hal ⁇ Hal-Ph-CO-Ph-[O-Ph-O] x [Ph-CO-Ph] y -Hal , wherein Hal is F, Cl, Br and x and y denote the number of monomers incorporated in the polymer.
  • the PAEK backbone chain in the above example PEEK may be terminated with a residual halogen group after the polymerization, most suitably with fluorine, optionally alternatively with chlorine or bromine, at none or one end (not shown) or at both ends (shown) of the backbone chain.
  • a residual halogen group after the polymerization, most suitably with fluorine, optionally alternatively with chlorine or bromine, at none or one end (not shown) or at both ends (shown) of the backbone chain.
  • PAES polyethersulfone
  • the aromatic bishydroxy-component may likewise be partly or fully substituted by a bisthiol component.
  • the halogen substituted ends of the polymer may be derivatized by a termination reaction with phenol: 2 Ph-OH + Hal Ph-CO-Ph-[O-Ph-O] x [Ph-CO-Ph] y -Hal ⁇ Ph-O-Ph-CO-Ph-[O-Ph-O] x [Ph-CO-Ph] y -O-Ph
  • Hal in the formulae above is F.
  • PAEK- or polyethersulfone(PAES) copolymers wherein the dihaloginated ketone unit is partly replaced by a dihaloginated aromatic sulfone unit.
  • the aromatic bishydroxy component can be replaced partly or totally by a bisthiol component, too.
  • diacylaromates e.g. aromatic diacids or preferably aromatic diacid chlorides or aromatic diacid anhydrides, are polymerized with a bisaromatic ether or thioether component.
  • PEKK polymers or copolymers with phenyl groups at none or one end (not shown) or both ends (shown) of the backbone chain: x R A OC-Ph-COR A + (y+1) Ph-O-Ph ⁇ Ph-O-Ph-[OC-Ph-CO] x [Ph-O-Ph] y -H , wherein R A is Cl or -OH and x and y denote the number of monomers incorporated in the polymer.
  • the phenyl groups at the ends of the polymer may be derivatized by a termination reaction with benzoic acid chloride: 2 Ph-COCl + Ph-O-Ph-[OC-Ph-CO] x [Ph-O-Ph] y -H ⁇ Ph-CO-Ph-O-Ph-[OC-Ph-CO] x [Ph-O-Ph] y -OC-Ph
  • the end groups may be preferably substituted, e.g. such that a PAEK polymer has the following formula: R T -U-[PAEK]-U-R T , wherein U is a linking moiety, for example NH, O, CO, CO-O-, SO, a single bond, -(CH 2 ) k wherein k is 1-6, or the like; and the left hand and right hand structural moieties R T may be the same or different structural groups, usually the structural moieties R T are the same.
  • R T is selected from the group of unsubstituted or substituted aliphatic or aromatic hydrocarbon residues.
  • U may be formed by direct reaction with the ends of the polymer or copolymer, for example a monofunctional hydroxy compound may form O as U, or it may be introduced as a substituent of the termination reagent, e.g. HO-Ph-COO-tert-butyl may form COO as U.
  • the polyaryletherketones with a halogenated end group can be terminated with ionic end groups like e.g. phenate salts like NaOPhSO 3 Na or NaOPhCOPhOPhSO 3 Na. Subsequent acidification of the phenate salts with e.g. HCl leads to -SO 3 H end groups that show a slightly reduced nucleation effect.
  • K, L C2-C20 linear chain or cyclic alkyl groups, unsubstituted or substituted
  • Ar 4 and Ar 5 are linearly or non-linearly linking, unsubstituted or substituted, monocyclic or polycyclic aromatic hydrocarbons, wherein, independent from Rf 4 , Rf 5 , Rf 6 and/or Rf 7 being H, substituents can be optionally chosen from: Rf 4 , Rf 5 , Rf 6 , Rf 7 are independently from each other selected from the group consisting of C1-C6 linear chain, branched or cyclic alkyl- and alkoxy groups, and aryl groups, preferably selected from Me, i-Pr, t-Bu, Ph, wherein each of K, L, Ar 4 and Ar 5 respectively has one or more
  • the indices d, e, f and g denote the number of the respective repeating units of the polymer and in the respective repeating units of the copolymer, respectively, wherein one or more unit(s) of the same kind, e.g. the unit indexed with d, may be located between the units of another kind, e.g. the unit indexed with e, f and/or g.
  • the following example for a polyamide polymer used according to the invention shall clarify the above general formula for polyamide polymers.
  • the PA6-3-T polyamide polymer used according to the invention has following repeating units:
  • Ar 4 is unsubstituted 1,4-phenylene
  • Ar 4 is unsubstituted 1,4-phenylene
  • PA 6T/6I and PA MXD6 applied according to the invention are examples for polyamide polymers having non-linearly linking aromatic groups.
  • the polyamide PA 6T/6I copolymer has 2 different repeating units (cf. repeating unit A and B in the below structural formula).
  • K is an unsubstituted n-hexane chain
  • Ar 4 is unsubstituted 1,3-phenylene
  • the degree of polymerisation n of this PA copolymer results from the sum of n 1 and n 2 .
  • polyamide MXD6 poly-m-xylylene adipamide
  • K is an unsubstituted n-butane chain
  • Ar 4 is unsubstituted 1,3-xylylen
  • branching groups can be provided by aliphatic residues K and L and/or aromatic hydrocarbons Ar 4 and Ar 5 substituted with one or more of the substituents Rf 4 , Rf 5 , Rf 6 and Rf 7 .
  • the bulky groups are selected from aromatic or non-aromatic groups.
  • structural units selected from the group consisting of phenylene, naphthalene, anthracene, biphenyle, fluorenes, terphenyl, decaline or norbornane have to be considered.
  • PAEK polymers and -copolymers as well as for PA-(co)polymers can also be applied to other, already exemplary mentioned polymer- or copolymer-materials.
  • PA-(co)polymers can also be applied to other, already exemplary mentioned polymer- or copolymer-materials.
  • the skilled person will appreciate that corresponding structure modifications can be made with the effect of reducing crystallinity in the produced three-dimensional object.
  • the powder may be a composite powder comprising one or more filler(s) and/or additive(s) besides a matrix of the respective polymer, copolymer or blend.
  • Fillers may be used to further improve the mechanical properties of the manufactured object.
  • carbon fibers, glass fibers, Kevlar fibers, carbon nanotubes, or fillers, the filler preferably having a low aspect ratio (glass beads, aluminum grit, etc.) or mineral fillers such as titan dioxide may be incorporated in the powder comprising at least one polymer or copolymer.
  • processing additives which improve the processability of the powder e.g. free flowing agents such as those from the Aerosil series (e.g. Aerosil R974, Aerosil R812, Aerosil 200), or other functional additives such as heat stabilizers, oxidation stabilizers, color pigments (carbon black, graphite, etc.) may be used.
  • the density of the manufactured three-dimensional object was measured according to ISO 1183 on a Kern 770-60 balance with a Satorius density determination set YDK 01.
  • the porosity of the object can be determined via the density in case the theoretical density of 100% crystalline polymer, the theoretical density of amorphous polymer and the crystallinity of the manufactured polymeric object are known.
  • the crystallinity in the manufactured object can be measured by means of dynamic differential calorimetry (DCC or DSC) according to DIN 53765.
  • the crystallinity can be determined via Wide Angle X-ray Scattering (WAXS) measurements.
  • WAXS Wide Angle X-ray Scattering
  • the procedure is known by the person skilled in the art. If the theoretical density values for the polymer are not known, the porosity can also be determined by micro-computerthomography measurements.
  • a suitable device is e.g. the ⁇ -CT40 supplied by SCANCO Medical AG, Brüttisellen, Switzerland. The procedure is known by the person skilled in the art.
  • the PEEK powder having a bulk density of 0.45 g/cm3 was processed on a laser sintering machine of the type P700, that was modified by EOS company for high temperature applications.
  • the temperature of the process chamber was 335°C.
  • the cooling rate was controlled by post-heating between 335°C and Tg of PEEK (145°C). The cooling rate showed a maximum average of 0.3°C/min.
  • a powder producible from a structurally modified PAEK having the structural formula which may have an average particle size distribution of ⁇ 100 ⁇ m, is thermally treated above the glass transition temperature in an oven.
  • the PAEK powder is processed on a laser sintering machine of the type P700, that was modified by EOS company for high temperature applications.
  • the temperature of the process chamber is for example 10°C below the melting point of the PAEK powder.
  • the cooling rate is controlled by post-heating between the temperature of the process chamber and Tg of the PAEK such that the cooling rate shows a maximum average of 0.3°C/min.
  • the PEEK powder is processed on a laser sintering machine of the type P700, that was modified by EOS company for high temperature applications.
  • the temperature of the process chamber is for example 335°C.
  • the cooling rate is controlled by post-heating between 335°C and Tg of the PEEK (about 145°C) such that the cooling rate shows a maximum average of 0.3°C/min.
  • the polyamide powder is processed on a laser sintering machine of the type P700, that was modified by EOS company for high temperature applications.
  • the temperature of the process chamber is for example 5°C below the melting point of the polyamide.
  • the cooling rate is controlled by post-heating between the temperature of the process chamber and Tg of the polyamide such that the cooling rate shows a maximum average of 0.3°C/min.
  • PE-LLD linear low density
  • the PE-LLD powder is processed on a laser sintering machine of the type P390 of the EOS company.
  • the temperature of the process chamber is for example 5°C below the melting point of the PE-LLD powder.
  • the cooling rate of the process chamber at 40°C is controlled such that the cooling rate shows a maximum average of 0.2°C/min.
  • the PE-HD powder is processed on a laser sintering machine of the type P390 of the EOS company.
  • the temperature of the process chamber is for example 5°C below the melting point of the PE-HD powder.
  • the cooling rate of the process chamber at 40°C is controlled such that the cooling rate shows a maximum average of 0.2°C/min.
  • the laser-sintered parts averagely had the following properties: density: 1.246 g/cm 3 tensile strength (ISO 527-2): Young's modulus: 4200 MPa tensile strength: 39 MPa elongation at break: 1.0%
  • the laser-sintered parts averagely had the following properties: density: 1.285 g/cm 3 tensile strength (ISO 527-2): Young's modulus: 3900 MPa tensile strength: 69 MPa elongation at break: 1.9%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Claims (22)

  1. Verfahren zur Herstellung eines dreidimensionalen Objekts aus einem Pulver durch selektives Sintern mittels elektromagnetischer Strahlung, wobei das Pulver ein Polymer oder Copolymer umfasst, das mindestens eines der folgenden Strukturmerkmale aufweist:
    (i) mindestens eine verzweigende Gruppe in der Hauptkette des Polymers oder Copolymers, mit der Maßgabe, dass im Fall der Verwendung von Polyaryletherketonen (PAEK) die verzweigende Gruppe eine aromatische Struktureinheit in der Hauptkette des Polymers oder Copolymers ist;
    (ii) Modifizierung mindestens einer Endgruppe der Hauptkette des Polymers oder Copolymers;
    (iii) mindestens eine raumbeanspruchende Gruppe in der Hauptkette des Polymers oder Copolymers, mit der Maßgabe, dass im Fall der Verwendung von Polyaryletherketonen (PAEK) die raumbeanspruchende Gruppe nicht aus der aus Phenylen, Biphenylen, Naphthalen und CH2- oder Isopropylidenverknüpften Aromaten bestehenden Gruppe ausgewählt ist;
    (iv) mindestens eine, die Hauptkette nichtlinear verknüpfende aromatische Gruppe,
    wobei das Polymer oder Copolymer auf der Basis von Polyaryletherketon (PAEK), Polyarylestersulfon
    (PAES), Polyether, Polyolefinen, Polystyrol, Polyphenylensulfid, Polyvinylidenfluorid, Polyphenylenoxid, Polyimid oder einem Block-Copolymer, das mindestens eines der vorgenannten Polymere umfasst, gebildet ist,
    wobei solche Polymere oder Copolymere von Polyolefinen, Polyetherketonen (PEK), lonomeren, Acrylnitril-Butadien-Styrol (ABS)- Copolymeren, Polyimiden oder Kombinationen davon ausgeschlossen sind, die Verzweigungsgruppen mit einer Valenz von 3 oder mehr enthalten.
  2. Verfahren zur Herstellung eines dreidimensionalen Objekts aus einem Pulver durch selektives Sintern mittels elektromagnetischer Strahlung, wobei das Pulver ein Polyamid-Polymer oder -Copolymer mit der allgemeinen Formel
    Figure imgb0031
    umfasst, worin K, L = C2 - C20 geradkettige oder cyclische Alkylgruppen, unsubstituiert oder substituiert,
    Ar4, Ar5 = linear oder nichtlinear verknüpfende, unsubstituierte oder substituierte, monocyclische oder polycyclische aromatische Kohlenwasserstoffe,
    wobei jedes von K, L, Ar4 und Ar5 jeweils einen oder mehr Substituenten Rf4, Rf5, Rf6, Rf7 aufweist, der/die jeweils unabhängig voneinander ausgewählt ist/sind aus der Gruppe, die aus Wasserstoff (H), C1 - C6 geradkettigen, verzweigten oder cyklischen Alkyl- und Alkoxygruppen und Arylgruppen besteht,
    T, U, V, W = -NH-CO- oder -CO-NH-,
    d ist eine niedrige ganze Zahl von mehr als 0,
    e, f und g sind 0 oder eine niedrige ganze Zahl,
    n = 10 bis 10 000,
    wobei das Polyamid-Polymer oder -Copolymer mindestens eines der folgenden Strukturmerkmale aufweist:
    (i') mindestens eine verzweigende Gruppe in der Hauptkette des Polymers oder Copolymers;
    (iii') mindestens eine raumbeanspruchende Gruppe in der Hauptkette des Polymers oder Copolymers;
    (iv') mindestens eine, die Hauptkette nichtlinear verknüpfende aromatische Gruppe, wobei solche Polyamid-Polymere und -Copolymere ausgeschlossen sind, die Verzweigungsgruppen mit einer Valenz von 3 oder mehr enthalten.
  3. Verfahren gemäß Anspruch 1 oder 2, wobei aufeinanderfolgende Schichten des zu bildenden Objektes aus verfestigbarem Pulvermaterial nacheinander an den dem Querschnitt des Objektes entsprechenden Stellen verfestigt werden; und/oder
    wobei in dem Verfahren die elektromagnetische Strahlung durch einen Laser bereitgestellt wird.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, das nach dem Sinterschritt einen festgelegten und/oder gesteuerten Kühlungsschritt umfasst; bevorzugt wird an dem Objekt nach Fertigstellung des Objekts der Schritt zur Kühlung von einer Temperatur, die 1-50°C geringer als TS des im Pulver enthaltenen Polymers oder Copolymers ist, auf TG des im Pulver enthaltenen Polymers oder Copolymers, bei einer Abkühlgeschwindigkeit von 0,01-10°C/min angewandt, wobei TS der Schmelzpunkt und TG die Glasübergangstemperatur des im Pulver enthaltenen Polymers oder Copolymers ist.
  5. Verfahren gemäß einem der vorgenannten Ansprüche, wobei das Pulver ein Polymer oder Copolymer umfasst, das mindestens eine der Eigenschaften aufweist, die aus der Gruppe:
    ein Schmelzpunkt TS in einem Bereich von 100 bis 450°C;
    eine Glasübergangstemperatur TG in einem Bereich von 50 bis 300°C;
    ein Zahlenmittel Mn von mindestens 10.000 oder ein Gewichtsmittel Mw von mindestens 20.000; und
    ein Polymerisationsgrad n von 10 bis 10 000
    ausgewählt sind.
  6. Verfahren gemäß einem der vorgenannten Ansprüche, wobei das Polymer oder Copolymer mindestens eine aromatische Gruppe enthält, die mindestens eine der Eigenschaften aufweist, die aus der Gruppe ausgewählt sind:
    die aromatische Gruppe befindet sich in der Wiederholungseinheit der Hauptkette; und
    die aromatische Gruppe wird unabhängig aus unsubstituierten oder substituierten, monocyclischen oder polycyclischen aromatischen Kohlenwasserstoffen ausgewählt, bevorzugt wird die aromatische Gruppe unabhängig aus der aus 1,4-Phenylen, 4,4'-Biphenylen, 4,4'-Isopropyliden-diphenylen, 4,4'-Diphenylsulfon, 1,4-, 1,5-, 2,6-Naphthalen und 4,4"-p-Terphenylen bestehenden Gruppe ausgewählt.
  7. Verfahren gemäß einem der vorgenannten Ansprüche, wobei gemäß Modifikation (iv) bzw. (vi') die nichtlinear verknüpfende aromatische Gruppe mindestens eine der Eigenschaften aufweist, die aus der Gruppe ausgewählt sind:
    mindestens eine nichtlinear verknüpfende aromatische Gruppe ist in der Wiederholungseinheit der Hauptkette enthalten, bevorzugt wird die nichtlineare Gruppe aus der aus 1,2- und 1,3-Phenylen, 1,3-Xylylen, 2,4'- und 3,4'-Biphenylen und 2,3- und 2,7-Naphthalen bestehenden Gruppe ausgewählt; und
    das Polymer oder Copolymer enthält mindestens eine zusätzliche, linear verknüpfende aromatische Gruppe, die sich von der nichtlinear verknüpfenden aromatischen Gruppe und/oder mindestens einen verzweigenden Gruppe unterscheidet, in der Hauptkette, bevorzugt in der Wiederholungseinheit der Hauptkette; bevorzugt werden die aromatischen Gruppen unabhängig voneinander aus der aus 1,4-Phenylen, 4,4'-Biphenylen, 4,4'-Isopropylidendiphenylen, 4,4'-Diphenylsulfon, 1,4-, 1,5-, 2,6-Naphthalen, 4,4"-Terphenylen und 2,2-Bis-(4-phenylen)-propan bestehenden Gruppe ausgewählt.
  8. Verfahren gemäß einem der vorgenannten Ansprüche, wobei gemäß Modifikation (i) bzw. (i') die verzweigende Gruppe ein aliphatischer Kohlenwasserstoff, ein aromatischer Kohlenwasserstoff oder ein Heteroaromat ist, der mindestens einen Substituent oder eine Seitenkette aufweist, wobei im Fall der Verwendung von Polyaryletherketonen (PAEK) die verzweigende Gruppe eine aromatische Struktureinheit in der Hauptkette des Polymers oder Copolymers ist; bevorzugt werden die Seitenketten unabhängig voneinander aus der aus C1 bis C6 unverzweigten oder verzweigten, ketten- oder ringförmigen Alkyl- oder Alkoxygruppen, und Arylgruppen bestehenden Gruppe ausgewählt; weiter bevorzugt werden die Seitenketten unabhängig voneinander aus der aus Methyl, Isopropyl, tert-Butyl oder Phenyl bestehenden Gruppe ausgewählt.
  9. Verfahren gemäß einem der vorgenannten Ansprüche, wobei gemäß Modifikation (ii) die Endgruppen der Hauptkette durch endständige Alkyl-, Alkoxy, Ester und/oder Arylgruppen modifiziert sind.
  10. Verfahren gemäß einem der vorgenannten Ansprüche, wobei gemäß Modifikation (iii) bzw. (iii') die raumbeanspruchende Gruppe eine aromatische oder nicht aromatische Gruppe ist, wobei im Fall der Verwendung von Polyaryletherketonen (PAEK) die raumbeanspruchende Gruppe nicht aus der aus Phenylen, Biphenylen, Naphthalen und CH2- oder Isopropyliden-verknüpften Aromaten bestehenden Gruppe ausgewählt ist; bevorzugt ist die raumbeanspruchende Gruppe eine polycyclische aromatische oder nichtaromatische Gruppe; weiter bevorzugt wird die raumbeanspruchende Gruppe aus der aus Phenylen, Naphthalen, Anthracen, Biphenyl, Fluorenen, Terphenyl, Decalin oder Norbornan bestehenden Gruppe ausgewählt.
  11. Verfahren gemäß einem der vorgenannten Ansprüche, wobei das Polymer oder Copolymer auf der Basis von Polyamid (PA), Polyaryletherketon (PAEK), Polyarylestersulfon (PAES) oder einem Block-Copolymer, das mindestens eines der vorgenannten Polymere umfasst, gebildet ist, wobei das Blockcopolymer bevorzugt ein Polyaryletherketon(PAEK)/Polyarylether-sulfon(PAES)-Diblock-Copolymer oder ein PAEK/PAES/PAEK-Triblock-Copolymer ist.
  12. Verfahren gemäß einem der vorgenannten Ansprüche, wobei das Polymer ein Polyaryletherketon (PAEK) ist, das auf der Basis von Polyetheretherketon (PEEK), Polyetherketonketon (PEKK), Polyetherketon (PEK), Polyetheretherketonketon (PEEKK), Polyetherketonetherketonketon (PEKEKK), Polyaryletheretheretherketon (PEEEK) oder von einem mindestens eines der vorgenannten Polymere umfassenden Copolymer gebildet ist; bevorzugt weist das Polymer oder Copolymer auf der Basis von Polyaryletherketon (PAEK) eine Schmelzviskosität von 0,05 - 1,0 kN*s/m2 und/oder einen Polymerisationsgrad n von 10 bis 1 000 auf.
  13. Verfahren gemäß Anspruch 12, wobei das Polyetherketonketon (PEKK)-Polymer oder-Copolymer 1,4-Phenylen als linear verknüpfende aromatische Gruppe und 1,3-Phenylen als nichtlinear verknüpfende aromatische Gruppe in der Hauptkette des Polymers, bevorzugt in der Wiederholungseinheit der Hauptkette, umfasst; bevorzugt beträgt das Verhältnis von Wiederholungseinheiten, die jeweils mindestens eine 1,4-Phenyleneinheit enthalten, zu Wiederholungseinheiten, die jeweils eine 1,3-Phenyleneinheit enthalten, 90/10 - 10/90, bevorzugt 70/30 - 10/90, weiter bevorzugt 60/40 bis 10/90.
  14. Dreidimensionales Objekt, das durch selektives Sintern eines Polymers, eines Copolymers oder einer Polymermischung in Pulverform mittels elektromagnetischer Strahlung erhalten wurde, wobei das für das Pulver eingesetzte Polymer oder Copolymer mindestens eines der folgenden Strukturmerkmale hat:
    (i) mindestens eine verzweigende Gruppe in der Hauptkette des Polymers oder Copolymers , mit der Maßgabe, dass im Fall der Verwendung von Polyaryletherketonen (PAEK) die verzweigende Gruppe eine aromatische Struktureinheit in der Hauptkette des Polymers oder Copolymers ist;
    (ii) Modifizierung mindestens einer Endgruppe der Hauptkette des Polymers oder Copolymers;
    (iii) mindestens eine raumbeanspruchende Gruppe in der Hauptkette des Polymers oder Copolymers, mit der Maßgabe, dass im Fall der Verwendung von Polyaryletherketonen (PAEK) die raumbeanspruchende Gruppe nicht aus der aus Phenylen, Biphenylen, Naphthalen und CH2- oder Isopropylidenverknüpften Aromaten bestehenden Gruppe ausgewählt ist;
    (iv) mindestens eine, die Hauptkette nichtlinear verknüpfende aromatische Gruppe,
    wobei das Polymer oder Copolymer auf der Basis von Polyaryletherketon (PAEK), Polyarylestersulfon (PAES), Polyether, Polyolefinen, Polystyrol, Polyphenylen-sulfid, Polyvinylidenfluorid, Polyphenylenoxid, Polyimid oder einem Block-Copolymer, das mindestens eines der vorgenannten Polymere umfasst, gebildet ist,
    wobei solche Polymere oder Copolymere von Polyolefinen, Polyetherketonen (PEK), lonomeren, Acrylnitril-Butadien-Styrol (ABS)- Copolymeren, Polyimiden oder Kombinationen davon ausgeschlossen sind, die Verzweigungsgruppen mit einer Valenz von 3 oder mehr enthalten.
  15. Dreidimensionalen Objekt, das durch selektives Sintern eines Polymers, eines Copolymers oder einer Polymermischung in Pulverform mittels elektromagnetischer Strahlung erhalten wurde, wobei das für das Pulver eingesetzte Polymer oder Copolymer ein Polyamid-Polymer oder -Copolymer mit der allgemeinen Formel
    Figure imgb0032
    ist, worin K, L = C2 - C20 geradkettige oder cyclische Alkylgruppen, unsubstituiert oder substituiert,
    Ar4, Ar5 = linear oder nichtlinear verknüpfende, unsubstituierte oder substituierte, monocyclische oder polycyclische aromatische Kohlenwasserstoffe,
    wobei jedes von K, L, Ar4 und Ar5 jeweils einen oder mehr Substituenten Rf4, Rf5, Rf6, Rf7 aufweist, der/die jeweils unabhängig voneinander ausgewählt ist/sind aus der Gruppe, die aus Wasserstoff (H), C1 - C6 geradkettigen, verzweigten oder cyklischen Alkyl- und Alkoxygruppen und Arylgruppen besteht,
    T, U, V, W = -NH-CO- oder -CO-NH-,
    d ist eine niedrige ganze Zahl von mehr als 0,
    e, f und g sind 0 oder eine niedrige ganze Zahl,
    n = 10 bis 10 000,
    wobei das Polyamid-Polymer oder -Copolymer mindestens eines der folgenden Strukturmerkmale aufweist:
    (i') mindestens eine verzweigende Gruppe in der Hauptkette des Polymers oder Copolymers;
    (iii') mindestens eine raumbeanspruchende Gruppe in der Hauptkette des Polymers oder Copolymers;
    (iv') mindestens eine, die Hauptkette nichtlinear verknüpfende aromatische Gruppe, wobei solche Polyamid-Polymere und -Copolymere ausgeschlossen sind, die Verzweigungsgruppen mit einer Valenz von 3 oder mehr enthalten.
  16. Dreidimensionales Objekt gemäß Anspruch 14 oder 15, wobei das Polymer oder Copolymer wie in den Ansprüchen 5 bis 13 angegeben definiert ist.
  17. Vorrichtung zur Herstellung eines dreidimensionalen Objekts aus einem Pulver durch selektives Sintern mittels elektromagnetischer Bestrahlung des Pulvers, wobei die Vorrichtung eine Temperatur-Steuereinheit umfasst, die zur Einstellung einer festgelegten Kühlung des Objekts nach Beendigung der Herstellung des Objekts eingerichtet ist.
  18. Vorrichtung gemäß Anspruch 17, wobei die durch die Temperatur-Steuereinheit eingestellte Abkühlgeschwindigkeit von der Art des im Pulver enthaltenen Polymers, Copolymers oder der Art der Polymermischung abhängt; und/oder
    wobei die Temperatur-Steuereinheit abhängig von der festgelegten Art des Polymers, des Copolymers oder der Polymermischung eingestellt ist.
  19. Herstellungssystem mit einer Vorrichtung gemäß Anspruch 17 oder 18 und einem Pulver, das mindestens ein wie in den Ansprüchen 5 bis 13 definiertes Polymer oder Copolymer umfasst.
  20. Verwendung eines Polymerpulvers bei der Herstellung eines dreidimensionalen Objekts durch Sinterung mittels selektiver elektromagnetischer Strahlung, wobei das Polymer vorausgewählt ist aus einem Polymer oder Copolymer, das mindestens eines der folgenden Strukturmerkmale aufweist:
    (i) mindestens eine verzweigende Gruppe in der Hauptkette des Polymers oder Copolymers , mit der Maßgabe, dass im Fall der Verwendung von Polyaryletherketonen (PAEK) die verzweigende Gruppe eine aromatische Struktureinheit in der Hauptkette des Polymers oder Copolymers ist;
    (ii) Modifizierung mindestens einer Endgruppe der Hauptkette des Polymers oder Copolymers;
    (iii) mindestens eine raumbeanspruchende Gruppe in der Hauptkette des Polymers oder Copolymers, mit der Maßgabe, dass im Fall der Verwendung von Polyaryletherketonen (PAEK) die raumbeanspruchende Gruppe nicht aus der aus Phenylen, Biphenylen, Naphthalen und CH2- oder Isopropylidenverknüpften Aromaten bestehenden Gruppe ausgewählt ist;
    (iv) mindestens eine, die Hauptkette nichtlinear verknüpfende aromatische Gruppe,
    wobei das Polymer oder Copolymer auf der Basis von Polyaryletherketon (PAEK), Polyarylestersulfon (PAES), Polyether, Polyolefinen, Polystyrol, Polyphenylensulfid, Polyvinylidenfluorid, Polyphenylenoxid, Polyimid oder einem Block-Copolymer, das mindestens eines der vorgenannten Polymere umfasst, gebildet ist,
    wobei solche Polymere oder Copolymere von Polyolefinen, Polyetherketonen (PEK), lonomeren, Acrylnitril-Butadien-Styrol (ABS)- Copolymeren, Polyimiden oder Kombinationen davon ausgeschlossen sind, die Verzweigungsgruppen mit einer Valenz von 3 oder mehr enthalten.
  21. Verwendung eines Polymerpulvers bei der Herstellung eines dreidimensionalen Objekts durch Sinterung mittels selektiver elektromagnetischer Strahlung, wobei das Polymer vorausgewählt ist aus einem Polyamid-Polymer oder -Copolymer mit der allgemeinen Formel
    Figure imgb0033
    worin K, L = C2 - C20 geradkettige oder cyclische Alkylgruppen, unsubstituiert oder substituiert,
    Ar4, Ar5 = linear oder nichtlinear verknüpfende, unsubstituierte oder substituierte, monocyclische oder polycyclische aromatische Kohlenwasserstoffe, wobei jedes von K, L, Ar4 und Ar5 jeweils einen oder mehr Substituenten Rf4, Rf5, Rf6, Rf7 aufweisen, der/die jeweils unabhängig voneinander ausgewählt ist/sind aus der Gruppe, die aus Wasserstoff (H), C1 - C6 geradkettigen, verzweigten oder cyklischen Alkyl- und Alkoxygruppen und Arylgruppen besteht,
    T, U, V, W = -NH-CO- oder -CO-NH-,
    d ist eine niedrige ganze Zahl von mehr als 0,
    e, f und g sind 0 oder eine niedrige ganze Zahl,
    n = 10 bis 10 000,
    wobei das Polyamid-Polymer oder -Copolymer mindestens eines der folgenden Strukturmerkmale aufweist:
    (i') mindestens eine verzweigende Gruppe in der Hauptkette des Polymers oder Copolymers;
    (iii') mindestens eine raumbeanspruchende Gruppe in der Hauptkette des Polymers oder Copolymers;
    (iv') mindestens eine, die Hauptkette nichtlinear verknüpfende aromatische Gruppe, wobei solche Polyamid-Polymere und -Copolymere ausgeschlossen sind, die Verzweigungsgruppen mit einer Valenz von 3 oder mehr enthalten.
  22. Verwendung gemäß Anspruch 20 oder 21, wobei das Polymer oder Copolymer wie in den Ansprüchen 5 bis 13 definiert ist.
EP09160642.6A 2008-05-20 2009-05-19 Selektives Sintern von strukturmodifizierten Polymeren Active EP2145913B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10175677.3A EP2272899B2 (de) 2008-05-20 2009-05-19 Selektives Sintern von strukturmodifizierten Polymeren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102008024288A DE102008024288A1 (de) 2008-05-20 2008-05-20 Selektives Sintern von strukturell modifizierten Polymeren
DE102008024281A DE102008024281A1 (de) 2008-05-20 2008-05-20 Selektives Sintern von strukturell modifizierten Polymeren
US18896208P 2008-08-14 2008-08-14
US18898708P 2008-08-14 2008-08-14

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP10175677.3A Division EP2272899B2 (de) 2008-05-20 2009-05-19 Selektives Sintern von strukturmodifizierten Polymeren
EP10175677.3A Division-Into EP2272899B2 (de) 2008-05-20 2009-05-19 Selektives Sintern von strukturmodifizierten Polymeren
EP10175677.3 Division-Into 2010-09-07

Publications (3)

Publication Number Publication Date
EP2145913A1 EP2145913A1 (de) 2010-01-20
EP2145913B1 EP2145913B1 (de) 2010-12-01
EP2145913B2 true EP2145913B2 (de) 2015-06-10

Family

ID=41378812

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10175677.3A Active EP2272899B2 (de) 2008-05-20 2009-05-19 Selektives Sintern von strukturmodifizierten Polymeren
EP09160642.6A Active EP2145913B2 (de) 2008-05-20 2009-05-19 Selektives Sintern von strukturmodifizierten Polymeren

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10175677.3A Active EP2272899B2 (de) 2008-05-20 2009-05-19 Selektives Sintern von strukturmodifizierten Polymeren

Country Status (9)

Country Link
US (2) US9895842B2 (de)
EP (2) EP2272899B2 (de)
JP (2) JP5775249B2 (de)
CN (1) CN104647764B (de)
AT (1) ATE490284T1 (de)
BR (1) BRPI0901530A2 (de)
DE (1) DE602009000411D1 (de)
HK (2) HK1135066A1 (de)
RU (1) RU2498901C2 (de)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895842B2 (en) * 2008-05-20 2018-02-20 Eos Gmbh Electro Optical Systems Selective sintering of structurally modified polymers
EP3323601B1 (de) * 2008-05-20 2022-04-27 EOS GmbH Electro Optical Systems Beeinflussung spezifischer mechanischer merkmale von dreidimensionalen objekten, hergestellt durch selektives sintern mit elektromagnetischer strahlung aus einem pulver mit mindestens einem polymer oder copolymer
ES2899663T3 (es) * 2010-09-27 2022-03-14 Arkema Inc Polvos de polímero tratados térmicamente
GB201108455D0 (en) 2011-05-20 2011-07-06 Eads Uk Ltd Polymer additive layer muanfacturing
US10011089B2 (en) 2011-12-31 2018-07-03 The Boeing Company Method of reinforcement for additive manufacturing
DE102012207609A1 (de) * 2012-05-08 2013-11-14 Evonik Industries Ag Verfahren zur schichtweisen herstelluing von dreidimensionalen objekten
DE102012212587A1 (de) 2012-07-18 2014-01-23 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
US10144828B2 (en) 2012-11-21 2018-12-04 Stratasys, Inc. Semi-crystalline build materials
US10023739B2 (en) 2012-11-21 2018-07-17 Stratasys, Inc. Semi-crystalline build materials
US9527242B2 (en) 2012-11-21 2016-12-27 Stratasys, Inc. Method for printing three-dimensional parts wtih crystallization kinetics control
US9925714B2 (en) 2012-11-21 2018-03-27 Stratasys, Inc. Method for printing three-dimensional items wtih semi-crystalline build materials
EP2746319B1 (de) 2012-12-21 2015-09-09 Materialise N.V. Verfahren zur Herstellung von Gegenständen durch selektives Sintern
US20140271326A1 (en) 2013-03-15 2014-09-18 3D Systems, Inc. Powder Distribution for Laser Sintering Systems
FR3015506B1 (fr) * 2013-12-20 2017-04-21 Arkema France Composition de poudres de poly-arylene-ether-cetone-cetones autorisant un excellent compromis coulabilite et coalescence adaptees au frittage laser
CN111777735B (zh) 2014-01-17 2022-06-14 路博润先进材料公司 选择性激光烧结和系统中使用热塑性聚氨酯的方法以及其制品
GB2526243B (en) 2014-02-24 2021-07-14 Victrex Mfg Ltd Polymeric materials
DE112014006447T5 (de) * 2014-04-30 2016-11-24 Hewlett-Packard Development Company, L.P. Berechnungsmodell und Dreidimensional(3D)-Druckverfahren
US9534086B2 (en) * 2014-05-07 2017-01-03 International Business Machines Corporation Methods of forming poly(aryl ether sulfone)s and articles therefrom
KR20170046759A (ko) * 2014-09-30 2017-05-02 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3 차원 물체의 냉각 시간
FR3027603B1 (fr) * 2014-10-22 2016-11-18 Arkema France Composition a base de polyarylene-ether-cetone a proprietes ameliorees
FR3027834B1 (fr) * 2014-11-03 2017-11-10 Arkema France Procede de densification de poudres de polyarylene-ether-cetone
US10028841B2 (en) 2015-01-27 2018-07-24 K2M, Inc. Interbody spacer
US10660763B2 (en) 2015-01-27 2020-05-26 K2M, Inc. Spinal implant
WO2016121013A1 (ja) * 2015-01-28 2016-08-04 株式会社日立製作所 樹脂粉末材料、レーザ粉末造形方法及びその装置
DE102015202964A1 (de) * 2015-02-18 2016-08-18 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
US9695280B2 (en) * 2015-03-03 2017-07-04 Ricoh Co., Ltd. Methods for solid freeform fabrication
WO2016200384A1 (en) * 2015-06-10 2016-12-15 Hewlett-Packard Development Company, L.P. Build temperature modulation
WO2017027784A1 (en) * 2015-08-13 2017-02-16 Corning Incorporated Method and system for printing 3d objects
US10317349B2 (en) * 2015-11-30 2019-06-11 The Boeing Company X-ray scatter systems and methods for detecting structural variations
WO2017098003A2 (de) * 2015-12-11 2017-06-15 Eos Gmbh Electro Optical Systems Verfahren und vorrichtung zur prüfung eines eingangsdatensatzes einer generativen schichtbauvorrichtung
EP3397441B1 (de) * 2015-12-28 2022-09-14 Arkema, Inc. Verfahren zur herstellung von polymerpulvern
US20200023577A1 (en) * 2016-02-19 2020-01-23 Basf Se Anti-nucleating agent for laser sintering powder
US10370530B2 (en) * 2016-02-26 2019-08-06 Ricoh Company, Ltd. Methods for solid freeform fabrication
US10766197B2 (en) * 2016-03-31 2020-09-08 Hexcel Corporation Apparatus and method for selective laser sintering an object with a void
FR3050993B1 (fr) * 2016-05-09 2020-01-31 Arkema France Composition de poly-(aryl-ether-cetone) (paek) a faible taux de composes volatils et son utilisation dans un procede de frittage
US10427353B2 (en) * 2016-05-13 2019-10-01 Ricoh Company, Ltd. Additive manufacturing using stimuli-responsive high-performance polymers
DE102016209719A1 (de) 2016-06-02 2017-12-07 Siemens Aktiengesellschaft Materialien auf Kunststoffbasis zur Verarbeitung mittels generativer Fertigungsverfahren
JP6812682B2 (ja) * 2016-07-04 2021-01-13 株式会社リコー 立体造形用樹脂組成物および立体造形物の製造方法
JP6402810B1 (ja) 2016-07-22 2018-10-10 株式会社リコー 立体造形用樹脂粉末、立体造形物の製造装置、及び立体造形物の製造方法
TW201821534A (zh) * 2016-07-29 2018-06-16 巴斯夫歐洲公司 用於雷射燒結粉末之包含聚芳醚的聚醯胺摻合物
CN106334792A (zh) * 2016-11-02 2017-01-18 青岛科技大学 一种用于金属低温3d打印材料的制备及其打印成型方法
EP3321002A1 (de) * 2016-11-15 2018-05-16 Höganäs AB Ausgangsmaterial für generatives fertigungsverfahren, generatives fertigungsverfahren damit und daraus erhaltener artikel
CN106853687B (zh) * 2017-01-09 2019-06-11 北京彩韵数码科技有限公司 一种自动修平的彩色喷墨3d打印方法
EP3615588B1 (de) * 2017-04-25 2024-06-12 Solvay Specialty Polymers USA, LLC Verfahren zur herstellung dreidimensionaler objekte mithilfe einer polymeren poly(etheretherketon)-komponente
US10959855B2 (en) 2017-05-25 2021-03-30 Stryker European Holdings I, Llc Fusion cage with integrated fixation and insertion features
JP2019001154A (ja) * 2017-06-13 2019-01-10 株式会社リコー 立体造形用樹脂粉末、立体造形装置、立体造形物の製造方法、及び樹脂粉末
CN110809595B (zh) * 2017-06-30 2024-03-08 索尔维特殊聚合物美国有限责任公司 具有低挥发物含量的聚(醚酮酮)聚合物粉末
US11006981B2 (en) 2017-07-07 2021-05-18 K2M, Inc. Surgical implant and methods of additive manufacturing
WO2019055737A1 (en) * 2017-09-15 2019-03-21 Arkema Inc. METHODS AND PRODUCTS FOR ADDITIVE MANUFACTURING BY EXTRUSION OF POLYETHERCÉTONECÉTONES
JP2020534178A (ja) * 2017-09-18 2020-11-26 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー 選択的レーザー焼結を用いる三次元物体を製造するための付加製造方法
US11485072B2 (en) 2017-10-27 2022-11-01 DePuy Synthes Products, Inc. Selective laser sintering of asymmetric particles
WO2019096805A1 (de) 2017-11-14 2019-05-23 Eos Gmbh Electro Optical Systems Schmelzdispergierte zusammensetzung
EP3744751B1 (de) * 2018-01-22 2022-08-17 DIC Corporation Polyarylenetherketonharz und herstellungsverfahren dafür sowie formkörper
CN113015611A (zh) * 2018-11-13 2021-06-22 索尔维特殊聚合物美国有限责任公司 使用选择性激光烧结制造三维物体的增材制造方法
EP3906144A1 (de) 2019-01-04 2021-11-10 Victrex Manufacturing Limited Polymermaterial, herstellung und verwendung
US11661521B2 (en) 2019-12-17 2023-05-30 Ticona Llc Three-dimensional printing system employing a thermotropic liquid crystalline polymer
EP3909748A1 (de) 2020-05-12 2021-11-17 TIGER Coatings GmbH & Co. KG Wärmehärtbares material zur verwendung in der generativen fertigung
GB2600905A (en) * 2020-06-18 2022-05-18 Victrex Mfg Ltd Polymeric material and use thereof
US11925981B2 (en) 2020-06-29 2024-03-12 Arcam Ab Method, apparatus and control unit for selectively sintering a powder layer in additive manufacturing processes to achieve a future, desired heat conductivity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1942452A1 (de) 1968-08-20 1970-04-23 Du Pont Polyamidformmasse
US3516966A (en) 1968-02-05 1970-06-23 Du Pont Polyketone copolymers
DE10129305A1 (de) 2001-06-18 2002-12-19 Bayer Ag Verfahren zur Herstellung von dreidimensionalen Mustern
EP1413594A2 (de) 2002-10-17 2004-04-28 Degussa AG Laser-Sinter-Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Laser-Sinter-Pulvers
WO2005097475A1 (en) 2004-03-30 2005-10-20 Valspar Sourcing, Inc. Selective laser sintering process and polymers used therein
EP1674497A1 (de) 2004-12-21 2006-06-28 Degussa AG Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile
EP1925435A1 (de) 2006-11-22 2008-05-28 EOS GmbH Electro Optical Systems Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts
WO2009114715A2 (en) 2008-03-14 2009-09-17 Valspar Sourcing, Inc. Powder compositions and methods of manufacturing articles therefrom

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863538A (en) 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
JPH06104722B2 (ja) 1992-03-04 1994-12-21 旭化成工業株式会社 末端封止型芳香族ポリエーテルケトン及びその製造法
US5648450A (en) 1992-11-23 1997-07-15 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therein
DE4300478C2 (de) 1993-01-11 1998-05-20 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
US5429908A (en) 1993-04-12 1995-07-04 E. I. Du Pont De Nemours And Company Exposure method for reducing distortion in models produced through solid imaging by forming a non-continuous image of a pattern which is then imaged to form a continuous hardened image of the pattern
DE4410046C2 (de) 1994-03-23 2000-11-30 Eos Electro Optical Syst Verfahren und Material zum Herstellen eines dreidimensionalen Objekts durch Sintern
DE4433118A1 (de) 1994-09-16 1996-03-21 Eos Electro Optical Syst Verfahren zur Herstellung eines dreidimensionalen Objektes
RU2145269C1 (ru) 1995-06-16 2000-02-10 Самарский филиал Физического института им.П.Н.Лебедева РАН Способ изготовления объемных изделий из порошковой композиции
DE19937260B4 (de) 1999-08-06 2006-07-27 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
JP2003335816A (ja) 2002-05-22 2003-11-28 Kyowa Yuka Co Ltd 末端にカルボキシル基を有するビニルエーテルポリマーの製造方法
CN100336655C (zh) * 2002-12-20 2007-09-12 南加利福尼亚大学 在选择性抑制烧结(sis)工艺中减少粉末废料的方法
DE10342882A1 (de) 2003-09-15 2005-05-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Formkörpers
GB0322598D0 (en) 2003-09-26 2003-10-29 Victrex Mfg Ltd Polymeric material
WO2005048897A1 (en) 2003-11-18 2005-06-02 Quantum Orthopedics Osteoconductive integrated spinal cage and method of making same
DE102004010162A1 (de) 2004-02-27 2005-09-15 Degussa Ag Polymerpulver mit Copolymer, Verwendung in einem formgebenden Verfahren mit nicht fokussiertem Energieeintrag und Formkörper, hergestellt aus diesem Polymerpulver
US20050207931A1 (en) 2004-03-21 2005-09-22 Toyota Motorsport Gmbh unknown
WO2005090448A1 (de) 2004-03-21 2005-09-29 Toyota Motorsport Gmbh Pulver für das rapid prototyping und verfahren zu dessen herstellung
US20080228498A1 (en) 2004-07-15 2008-09-18 Gasque Samuel N Enhanced coordinated signal generation apparatus
DE102004047876A1 (de) 2004-10-01 2006-04-06 Degussa Ag Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Pulvers in einem Verfahren zur Herstellung dreidimensionaler Objekte
DE102005008044A1 (de) 2005-02-19 2006-08-31 Degussa Ag Polymerpulver mit Blockpolyetheramid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102005054723A1 (de) 2005-11-17 2007-05-24 Degussa Gmbh Verwendung von Polyesterpulver in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polyesterpulver
JP2007217651A (ja) 2006-02-20 2007-08-30 Daicel Chem Ind Ltd 環状ポリオレフィン系樹脂の球状粒子およびその製造方法
DE102006015791A1 (de) 2006-04-01 2007-10-04 Degussa Gmbh Polymerpulver, Verfahren zur Herstellung und Verwendung eines solchen Pulvers und Formkörper daraus
DE102006019964C5 (de) 2006-04-28 2021-08-26 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts mittels Maskenbelichtung
JP2007303601A (ja) 2006-05-12 2007-11-22 Nsk Ltd ハイブリッド自動車用転がり軸受
WO2008057844A1 (en) 2006-11-09 2008-05-15 Valspar Sourcing, Inc. Powder compositions and methods of manufacturing articles therefrom
DE102007016656B4 (de) 2007-04-05 2018-10-11 Eos Gmbh Electro Optical Systems PAEK-Pulver, insbesondere zur Verwendung in einem Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objektes, sowie Verfahren zu dessen Herstellung
DE102007024469B4 (de) 2007-05-25 2009-04-23 Eos Gmbh Electro Optical Systems Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
US9895842B2 (en) * 2008-05-20 2018-02-20 Eos Gmbh Electro Optical Systems Selective sintering of structurally modified polymers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516966A (en) 1968-02-05 1970-06-23 Du Pont Polyketone copolymers
DE1942452A1 (de) 1968-08-20 1970-04-23 Du Pont Polyamidformmasse
DE10129305A1 (de) 2001-06-18 2002-12-19 Bayer Ag Verfahren zur Herstellung von dreidimensionalen Mustern
EP1413594A2 (de) 2002-10-17 2004-04-28 Degussa AG Laser-Sinter-Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Laser-Sinter-Pulvers
WO2005097475A1 (en) 2004-03-30 2005-10-20 Valspar Sourcing, Inc. Selective laser sintering process and polymers used therein
EP1674497A1 (de) 2004-12-21 2006-06-28 Degussa AG Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile
EP1925435A1 (de) 2006-11-22 2008-05-28 EOS GmbH Electro Optical Systems Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts
WO2009114715A2 (en) 2008-03-14 2009-09-17 Valspar Sourcing, Inc. Powder compositions and methods of manufacturing articles therefrom

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Polymer", vol. 31, 1990, article R. LEGRAS ET AL.: "Extension of the concept of chemical nucleation to poly(ether ketones)", pages: 1429 - 1434
"Polymers - 2nd Edition", article J.M.G COWIE: "Chemistry & Physics of modern materials", pages: 236
"Römpp Online, Version 3.10", article "Molmassenverteilung"

Also Published As

Publication number Publication date
US20180117840A1 (en) 2018-05-03
US10556378B2 (en) 2020-02-11
EP2145913B1 (de) 2010-12-01
RU2498901C2 (ru) 2013-11-20
US20090295042A1 (en) 2009-12-03
EP2272899B2 (de) 2022-06-15
HK1135066A1 (en) 2010-05-28
EP2145913A1 (de) 2010-01-20
JP2015205513A (ja) 2015-11-19
EP2272899A1 (de) 2011-01-12
JP6291459B2 (ja) 2018-03-14
ATE490284T1 (de) 2010-12-15
CN104647764A (zh) 2015-05-27
RU2009118968A (ru) 2010-11-27
JP5775249B2 (ja) 2015-09-09
CN104647764B (zh) 2018-04-24
EP2272899B1 (de) 2017-02-22
JP2010006057A (ja) 2010-01-14
HK1209695A1 (en) 2016-04-08
DE602009000411D1 (de) 2011-01-13
BRPI0901530A2 (pt) 2010-04-06
US9895842B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
EP2145913B2 (de) Selektives Sintern von strukturmodifizierten Polymeren
EP2123430B1 (de) Beeinflussung spezifischer mechanischer Merkmale von dreidimensionalen Objekten, hergestellt durch selektives Sintern mit elektromagnetischer Strahlung aus einem Pulver mit mindestens einem Polymer oder Kopolymer
CN101623929B (zh) 结构改性聚合物的选择性烧结
CN109251286B (zh) 聚合材料
JP2022500522A (ja) 付加製造プロセスにおける使用のための架橋性芳香族ポリマー組成物、およびこれを形成するための方法
JP7062675B2 (ja) Paek及びpaesを使用して3次元物体を製造する方法
WO2008075010A1 (en) Composite material
WO2008075009A1 (en) Composite material
WO2018141973A1 (en) Method for manufacturing a three-dimensional object using paek and paes
US20220064374A1 (en) Polymeric material, manufacture and use
KR20220081370A (ko) 충전된 폴리아릴 에테르 케톤 분말, 이의 제조 방법 및 이의 용도
JP7097906B2 (ja) Ppsuを使用する3次元物体の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20100219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C08J 3/12 20060101AFI20100324BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PFISTER, ANDREAS

Inventor name: MUELLER, FRANK

Inventor name: LEUTERER, MARTIN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602009000411

Country of ref document: DE

Date of ref document: 20110113

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110301

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110301

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110401

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110312

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: EVONIK DEGUSSA GMBH

Effective date: 20110831

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602009000411

Country of ref document: DE

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20150610

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602009000411

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 15

Ref country code: FR

Payment date: 20230525

Year of fee payment: 15

Ref country code: DE

Payment date: 20230519

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 15