EP2142296A1 - Rutheniumkatalysatoren für die katalyshe gasphasnoxidation von chlorwasserstoff mit sauerstoff (deacon verfahren) - Google Patents

Rutheniumkatalysatoren für die katalyshe gasphasnoxidation von chlorwasserstoff mit sauerstoff (deacon verfahren)

Info

Publication number
EP2142296A1
EP2142296A1 EP08735261A EP08735261A EP2142296A1 EP 2142296 A1 EP2142296 A1 EP 2142296A1 EP 08735261 A EP08735261 A EP 08735261A EP 08735261 A EP08735261 A EP 08735261A EP 2142296 A1 EP2142296 A1 EP 2142296A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
ruthenium
hydrogen chloride
oxygen
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08735261A
Other languages
English (en)
French (fr)
Inventor
Oliver Felix-Karl SCHLÜTER
Leslaw Mleczko
Aurel Wolf
Stephan Schubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP2142296A1 publication Critical patent/EP2142296A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support

Definitions

  • the invention is based on known processes for the catalyzed gas phase oxidation of hydrogen chloride with oxygen.
  • the object of the invention is to modify a ruthenium-based catalyst for the Deacon process so that the activity is maintained over the longest possible period of time, in particular for at least hours, while the activity of the catalyst remains unchanged.
  • a catalyst which is characterized in that it is supported and comprises as support material a material from the series silicon oxide, titanium oxide, aluminum oxide, tin oxide and zirconium oxide and optionally mixtures of these substances.
  • Another particularly preferred catalyst is characterized in that the activity of the catalyst for the reaction of hydrogen chloride with oxygen at different conversion and at a pressure of 5 bar and a temperature of 300 0 C is at least 5 mmol of chlorine per g of ruthenium and minute.
  • the invention also relates to the use of the catalyst for use in gas-phase oxidation processes, in particular in the reaction of hydrogen chloride with oxygen in the gas phase.
  • Another object of the invention is a process for the reaction of hydrogen chloride with oxygen in the gas phase in the presence of a catalyst, characterized in that a catalyst according to the invention is used.
  • the catalyst is preferably used in the abovementioned catalytic process known as the Deacon process.
  • This hydrogen chloride is oxygen in an exothermic
  • the Reaction temperature is usually 150 to 500 0 C, the usual reaction pressure is 1 to 25 bar. Since it is an equilibrium reaction, it is expedient to work at the lowest possible temperatures at which the catalyst still has sufficient activity. Furthermore, it is expedient to use oxygen in excess of stoichiometric amounts of hydrogen chloride. For example, a two- to four-fold excess of oxygen is customary. Since no loss of selectivity is to be feared, it may be economically advantageous to work at relatively high pressure and, accordingly, longer residence time than normal pressure.
  • suitable catalysts can be obtained, for example, by applying ruthenium chloride to the support and then drying or drying and calcining.
  • suitable catalysts may also contain compounds of other noble metals, for example gold, palladium, platinum, osmium, iridium, silver, copper or rhenium.
  • Suitable catalysts may additionally contain chromium oxide.
  • the catalytic hydrogen chloride oxidation may preferably be adiabatic or isothermal or approximately isothermal, batchwise, but preferably continuously or as a fixed bed process, preferably as a fixed bed process, particularly preferably in tube bundle reactors to heterogeneous catalysts at a reactor temperature of 180 to 500 0 C, preferably 200 to 400 0th C, more preferably 220 to 350 0 C and a pressure of 1 to 25 bar (1000 to 25000 hPa), preferably 1.2 to 20 bar, more preferably 1.5 to 17 bar and in particular 2.0 to 15 bar are performed ,
  • Typical reactors in which the catalytic hydrogen chloride oxidation is carried out are fixed bed or fluidized bed reactors.
  • the catalytic hydrogen chloride oxidation can preferably also be carried out in several stages.
  • a plurality of reactors with intermediate cooling that is to say 2 to 10, preferably 2 to 6, particularly preferably 2 to 5, in particular 2 to 3, connected in series.
  • the hydrogen chloride can be added either completely together with the oxygen before the first reactor or distributed over the various reactors.
  • This series connection of individual reactors can also be combined in one apparatus.
  • a further preferred embodiment of a device suitable for the method consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction. Such structuring of the catalyst bed can be done by different impregnation of the catalyst support with active material or by different dilution of the catalyst with an inert material.
  • Suitable shaped catalyst bodies are shaped bodies with any desired shapes, preference being given to tablets, rings, cylinders, stars, carriage wheels or spheres, particular preference being given to rings, cylinders or star strands as molds.
  • the dimensions (diameter in the case of spheres) of the shaped bodies are preferably in the range from 0.2 to 10 mm, particularly preferably 0.5 to 7 mm.
  • the support may also be a monolith of support material, e.g. not only a "classical" carrier body with parallel, radially non-interconnected channels, it also includes foams, sponges or the like with three-dimensional connections within the carrier body to the monoliths and carrier body with cross-flow channels.
  • a monolith according to the present invention is e.g. in "Monoliths in multiphase catalytic processes - aspects and prospects" by F. Kapteijn, J.J. Heiszwolf T.A. Nijhuis and J.A. Moulijn, Cattech 3, 1999, p24.
  • suitable carrier materials are tin dioxide, silicon dioxide, graphite, rutile or anatase titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, preferably tin dioxide, titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, particularly preferably ⁇ - or ⁇ -aluminum oxide or mixtures thereof ,
  • the conversion of hydrogen chloride in a single pass can preferably be limited to 15 to 90%, preferably 40 to 85%, particularly preferably 50 to 80%. After conversion, unreacted hydrogen chloride can be partly or completely recycled to the catalytic hydrogen chloride oxidation.
  • the volume ratio of hydrogen chloride to oxygen at the reactor inlet is preferably 1: 1 to 20: 1, preferably 2: 1 to 8: 1, particularly preferably 2: 1 to 5: 1.
  • the heat of reaction of the catalytic hydrogen chloride oxidation can be used advantageously for the production of high-pressure steam. This can be used to operate a phosgenation reactor and / or distillation columns, in particular of isocyanate distillation columns.
  • the chlorine formed is separated off.
  • the separation step usually comprises several stages, namely the separation and optionally recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the obtained, substantially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
  • the separation of unreacted hydrogen chloride and water vapor formed can be carried out by condensation of aqueous hydrochloric acid from the product gas stream of hydrogen chloride oxidation by cooling. Hydrogen chloride can also be absorbed in dilute hydrochloric acid or water. Examples
  • 0.2 g of the dried catalyst was diluted with 0.5 g of SiO 2 (Saint Gobain, 1.5 mm) and passed through at 540 ° C. with 80 ml / min (STP) of oxygen and 160 ml / min (STP) of hydrogen chloride.
  • the amount of chlorine formed was determined via introduction into a 16% potassium iodide solution and titration of the resulting iodine with thiosulphate. The result was the time profile of the space-time yield shown in FIG.
  • 0.2 g of the dried catalyst was diluted with 0.5 g of SiO 2 (Saint Gobain, 1.5 mm) and perfused at 540 ° C. with 80 ml / min (STP) of oxygen and 160 ml / min (STP) of hydrogen chloride.
  • the amount of chlorine formed was determined via introduction into a 16% potassium iodide solution and titration of the resulting iodine with thiosulphate. The result was the time profile of the space-time yield shown in FIG.
  • 0.2 g of the dried catalyst was diluted with 0.5 g of SiO 2 (Saint Gobain, 1.5 mm) and perfused at 540 ° C. with 80 ml / min (STP) of oxygen and 160 ml / min (STP) of hydrogen chloride.
  • the amount of chlorine formed was determined via introduction into a 16% potassium iodide solution and titration of the resulting iodine with thiosulphate. The result was the time profile of the space-time yield shown in FIG.
  • FIG. 1 clearly shows the prolongation of the long-term stability of the promoted catalysts (> 24 h) compared to the unpromoted catalyst (18 h).
  • Table 1 shows no significant influence of different promoters in a RuCl 3 / SnO 2 catalyst and 300 0 C reaction temperature. Only the promotion with CsNO 3 shows a significant deterioration, which does not occur when using CsCl.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Oxidationskatalysator auf Basis von Ruthenium, insbesondere auf Basis von Rutheniumchlorid, für die katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff (Deacon-Verfahren), dadurch gekennzeichnet, dass der Katalysator bezogen auf den Anteil an Ruthenium als Promotor bis zu einem Molverhältnis von 1:1 (Promotor : Ruthenium), bevorzugt von 1:20 bis 1:4 (Promotor : Ruthenium) Halogenidverbindungen ausgewählt aus der Reihe: Zirkon-, Alkali-, insbesondere Lithium-, Natrium-, Kalium- und Cäsium-, Erdalkali-, insbesondere Magnesium-, Mangan-, Cer-, Lanthanverbindungen, bevorzugt Zirkon- oder Cer- Verbindungen enthält.

Description

RUTHENIUMKATALYSATOREN FÜR DIE KATALYSHE GAS PHAS ENOX I DAT I ON VON CHLORWASSERSTOFF MIT SAUERSTOFF (DEACON VERFAHREN)
Die Erfindung geht aus von bekannten Verfahren zur katalysierten Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff.
Das Patent US 3 210 158 beschreibt den Einfluss von Metallen aus der Actinoidenreihe als Cokatalysatoren auf siliziumdioxidgeträgerte Kupferkatalysatoren für die Deacon-Reaktion. Alle untersuchten Metalle (Sc, Yb, Ce, Y, Dy, Gd, Pr, Didym, La, Nd, Eu, Sm) bewirken im Bereich 300-4000C eine deutliche Aktivitätssteigerung der Kupferkatalysatoren. Jedoch wurde keine Verlängerung der Langzeitstabilität dieser Katalysatoren beschrieben.
Slama et al. (Chem. Prum. 17 (4) (1967) 179.) beobachteten für promotierte Kupferkatalysatoren eine Aktivitätssteigerung für den Deacon-Prozess durch Na, K, Nd, Y und Th. Für Y konnte auch eine Verlängerung der Lebensdauer nachgewiesen werden. Keinen Effekt hatte jedoch die Promotierung mit Zr, Ce, Ag, Cr, Mn, Tl und V auf die Aktivität.
In DE 197 34 412 Al wird ein mit CSNO3 promotierter Rutheniumoxid-Katalysator eingesetzt. Dieser weist eine mehr als doppelt so hohe Aktivität wie der unpromotierte Rutheniumoxid- Katalysator auf. Jedoch wurde die Langzeitstabilität dieses Katalysators nicht untersucht.
Aus der DE 102 34 576 (BASF) ist grundsätzlich bekannt, im Deacon-Verfahren Katalysatoren auf Basis von Kupferchlorid oder Rutheniumchlorid einzusetzen, denen verschiedene Metalle als Promotoren beigefügt werden können. Über die Auswirkungen der Beifügung dieser Metalle auf die Aktivität des Kupfer- oder Rutheniumchloridkatalysators ist in der Schrift nichts ausgesagt. Weiter fehlt es an Angaben über die Langzeitstabilität der so behandelten Kupfer- oder Rutheniumkatalysatoren.
Aufgabe der Erfindung ist es, einen auf Ruthenium basierenden Katalysator für das Deacon- Verfahren so zu modifizieren, so dass bei möglichst ungeänderter Aktivität des Katalysators die Aktivität über einen möglichst langen Zeitraum, insbesondere über mindestens Stunden erhalten bleibt.
Die Aufgabe wird erfindungsgemäß gelöst durch einen Katalysator nach dem Oberbegriff des Anspruchs 1 mit den kennzeichnenden Merkmalen des Anspruchs 1. Gegenstand der Erfindung ist ein Oxidationskatalysator auf Basis von Ruthenium, insbesondere auf Basis von Rutheniumchlorid, für die katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff (Deacon- Verfahren), dadurch gekennzeichnet, dass der Katalysator bezogen auf den Anteil an Ruthenium als Promotor in einem Molverhältnis von 1:100 bis 1 :1 (Promotor : Ruthenium), bevorzugt von 1:20 bis 1:4 (Promotor : Ruthenium) Halogenidverbindungen ausgewählt aus der Reihe: Zirkon-, Alkali-, insbesondere Lithium-, Natrium-, Kalium- und Cäsium-, Erdalkali-, insbesondere Magnesium-, Mangan-, Cer- oder Lanthanverbindungen, bevorzugt Zirkon- oder Cer-Verbindungen enthält.
Bevorzugt ist ein Katalysator bei dem die Promotoren in Form von Chloriden oder Oxidchloriden vorliegen.
Besonders bevorzugt wird ein Katalysator, der dadurch gekennzeichnet ist, dass er geträgert ist und als Trägermaterial ein Material aus der Reihe Siliziumoxid, Titanoxid, Aluminiumoxid, Zinnoxid und Zirkonoxid und gegebenenfalls Mischungen dieser Stoffe umfasst.
Das Verhältnis von Katalysator einschließlich Promotorverbindungen zum Gesamtgewicht des Katalysators einschließlich Träger beträgt bevorzugt 0,5 bis 5 Gew.-%, besonders bevorzugt 1,0 bis 4 Gew.-%.
Ein weiterer besonders bevorzugter Katalysator zeichnet sich dadurch aus, dass die Aktivität des Katalysators für die Reaktion von Chlorwasserstoff mit Sauerstoff bei differentiellem Umsatz und bei einem Druck von 5 bar und einer Temperatur von 3000C wenigstens 5 mmol Chlor pro g Ruthenium und Minute beträgt.
Gegenstand der Erfindung ist auch die Verwendung des Katalysators zur Anwendung in Gasphasenoxidationsprozessen, insbesondere bei der Umsetzung von Chlorwasserstoff mit Sauerstoff in der Gasphase.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Umsetzung von Chlorwasserstoff mit Sauerstoff in der Gasphase in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass ein erfindungsgemäßer Katalysator verwendet wird.
Bevorzugt wird der Katalysator im oben genannten als Deacon-Prozess bekannten katalytischen Verfahren eingesetzt. Hierbei wird Chlorwasserstoff mit Sauerstoff in einer exothermen
Gleichgewichtsreaktion zu Chlor oxidiert, wobei zusätzlich Wasser entsteht. Die Reaktionstemperatur beträgt üblicherweise 150 bis 5000C, der übliche Reaktionsdruck beträgt 1 bis 25 bar. Da es sich um eine Gleichgewichtsreaktion handelt, ist es zweckmäßig, bei möglichst niedrigen Temperaturen zu arbeiten, bei denen der Katalysator noch eine ausreichende Aktivität aufweist. Ferner ist es zweckmäßig, Sauerstoff in überstöchiometrischen Mengen zum Chlorwasserstoff einzusetzen. Üblich ist beispielsweise ein zwei- bis vierfacher Sauerstoff- Überschuss. Da keine Selektivitätsverluste zu befürchten sind, kann es wirtschaftlich vorteilhaft sein, bei relativ hohem Druck und dementsprechend bei gegenüber Normaldruck längerer Verweilzeit zu arbeiten.
Grundsätzlich geeignete Katalysatoren können beispielsweise durch Aufbringen von Rutheniumchlorid auf den Träger und anschließendes Trocknen oder Trocknen und Kalzinieren erhalten werden. Geeignete Katalysatoren können ergänzend zu einer Rutheniumverbindung auch Verbindungen anderer Edelmetalle, beispielsweise Gold, Palladium, Platin, Osmium, Iridium, Silber, Kupfer oder Rhenium enthalten. Geeignete Katalysatoren können ferner zusätzlich Chromoxid enthalten.
Die katalytische Chlorwasserstoff- Oxidation kann bevorzugt adiabatisch oder isotherm oder annähernd isotherm, diskontinuierlich, bevorzugt aber kontinuierlich als Fließ- oder Festbettverfahren, bevorzugt als Festbettverfahren, besonders bevorzugt in Rohrbündelreaktoren an Heterogenkatalysatoren bei einer Reaktortemperatur von 180 bis 5000C, bevorzugt 200 bis 4000C, besonders bevorzugt 220 bis 3500C und einem Druck von 1 bis 25 bar (1000 bis 25000 hPa), bevorzugt 1,2 bis 20 bar, besonders bevorzugt 1,5 bis 17 bar und insbesondere 2,0 bis 15 bar durchgeführt werden.
Übliche Reaktionsapparate, in denen die katalytische Chlorwasserstoff-Oxidation durchgeführt wird, sind Festbett- oder Wirbelbettreaktoren. Die katalytische Chlorwasserstoff- Oxidation kann bevorzugt auch mehrstufig durchgeführt werden.
Bei der adiabatischen, der isothermen oder annähernd isothermen Fahrweise können auch mehrere, also 2 bis 10, bevorzugt 2 bis 6, besonders bevorzugt 2 bis 5, insbesondere 2 bis 3, in Reihe geschaltete Reaktoren mit Zwischenkühlung eingesetzt werden. Der Chlorwasserstoff kann entweder vollständig zusammen mit dem Sauerstoff vor dem ersten Reaktor oder über die verschiedenen Reaktoren verteilt zugegeben werden. Diese Reihenschaltung einzelner Reaktoren kann auch in einem Apparat zusammengeführt werden. Eine weitere bevorzugte Ausführungsform einer für das Verfahren geeigneten Vorrichtung besteht darin, dass man eine strukturierte Katalysatorschüttung einsetzt, bei der die Katalysatoraktivität in Strömungsrichtung ansteigt. Eine solche Strukturierung der Katalysatorschüttung kann durch unterschiedliche Tränkung der Katalysatorträger mit Aktivmasse oder durch unterschiedliche Verdünnung des Katalysators mit einem Inertmaterial erfolgen. Als Inertmaterial können beispielsweise Ringe, Zylinder oder Kugeln aus Titandioxid, Zirkondioxid oder deren Gemischen, Aluminiumoxid, Steatit, Keramik, Glas, Graphit oder Edelstahl eingesetzt werden. Beim bevorzugten Einsatz von Katalysatorformkörpern sollte das Inertmaterial bevorzugt ähnliche äußeren Abmessungen haben.
Als Katalysatorformkörper eignen sich Formkörper mit beliebigen Formen, bevorzugt sind Tabletten, Ringe, Zylinder, Sterne, Wagenräder oder Kugeln, besonders bevorzugt sind Ringe, Zylinder oder Sternstränge als Form. Die Abmessungen (Durchmesser bei Kugeln) der Formkörper liegen bevorzugt im Bereich von 0,2 bis 10 mm, besonders bevorzugt 0,5 bis 7 mm.
Alternativ zu den zuvor beschriebenen feinteiligen Katalysator(form)körpern kann der Träger auch ein Monolith aus Trägermaterial sein, z.B. nicht nur ein „klassischer" Trägerkörper mit parallelen, radial nicht untereinander verbundenen Kanälen; es zählen auch Schäume, Schwämme o.dgl. mit dreidimensionalen Verbindungen innerhalb des Trägerkörpers zu den Monolithen sowie Trägerkörper mit Kreuzstromkanälen.
Der monolithische Träger kann eine Wabenstruktur, aber auch eine offene oder geschlossene Kreuzkanalstruktur aufweisen. Der monolithische Träger besitzt eine bevorzugte Zelldichte von 100 bis 900 cpsi (cells per Square inch), besonders bevorzugt von 200 bis 600 cpsi.
Ein Monolith im Sinne der vorliegenden Erfindung wird z.B. in "Monoliths in multiphase catalytic processes - aspects and prospects" von F. Kapteijn, J. J. Heiszwolf T. A. Nijhuis und J. A. Moulijn, Cattech 3, 1999, S. 24 offenbart.
Als Trägermaterialen eignen sich beispielsweise Zinndioxid, Siliziumdioxid, Graphit, Titandioxid mit Rutil- oder Anatas-Struktur, Zirkondioxid, Aluminiumoxid oder deren Gemische, bevorzugt Zinndioxid, Titandioxid, Zirkondioxid, Aluminiumoxid oder deren Gemische, besonders bevorzugt γ- oder δ-Aluminiumoxid oder deren Gemische.
Die Rutheniumträgerkatalysatoren können beispielsweise durch Tränkung des Trägermaterials mit wässrigen Lösungen von RuCU und des Promotors zur Dotierung, bevorzugt in Form ihrer Chloride, erhalten werden. Die Formgebung des Katalysators kann nach oder bevorzugt vor der Tränkung des Trägermaterials erfolgen. Die Formkörper können anschließend bei einer Temperatur von 100 bis 5000C, bevorzugt 100 bis 3000C beispielsweise unter einer Stickstoff-, Argon-, Sauerstoff- oder Luftatmosphäre getrocknet und gegebenenfalls kalziniert werden. Bevorzugt werden die Formkörper zunächst bei 100 bis 1500C getrocknet und anschließend bei 200 bis 5000C kalziniert.
Der Umsatz an Chlorwasserstoff im einfachen Durchgang kann bevorzugt auf 15 bis 90 %, bevorzugt 40 bis 85%, besonders bevorzugt 50 bis 80% begrenzt werden. Nicht umgesetzter Chlorwasserstoff kann nach Abtrennung teilweise oder vollständig in die katalytische Chlorwasserstoff-Oxidation zurückgeführt werden. Das Volumenverhältnis von Chlorwasserstoff zu Sauerstoff am Reaktoreintritt beträgt bevorzugt 1: 1 bis 20: 1, bevorzugt 2:1 bis 8:1, besonders bevorzugt 2:1 bis 5:1.
Die Reaktionswärme der katalytischen Chlorwasserstoff-Oxidation kann in vorteilhafter Weise zur Erzeugung von Hochdruck-Wasserdampf genutzt werden. Dieser kann zum Betrieb eines Phosgenierungsreaktors und oder von Destillationskolonnen, insbesondere von Isocyanat- Destillationskolonnen genutzt werden.
In einem letzten Schritt des Deaconverfahrens wird das gebildete Chlor abgetrennt. Der Abtrennschritt umfasst üblicherweise mehrere Stufen, nämlich die Abtrennung und gegebenenfalls Rückführung von nicht umgesetztem Chlorwasserstoff aus dem Produktgasstrom der katalytischen Chlorwasserstoff-Oxidation, die Trocknung des erhaltenen, im wesentlichen Chlor und Sauerstoff enthaltenden Stroms sowie die Abtrennung von Chlor aus dem getrockneten Strom.
Die Abtrennung von nicht umgesetztem Chlorwasserstoff und von gebildetem Wasserdampf kann durch Auskondensieren von wässriger Salzsäure aus dem Produktgasstrom der Chlorwasserstoffoxidation durch Abkühlung erfolgen. Chlorwasserstoff kann auch in verdünnter Salzsäure oder Wasser absorbiert werden. Beispiele
Beispiel 1: Unpromotierter Katalysator (Vergleich)
10 g Rutheniumchlorid-n-Hydrat wurden in 34 ml Wasser gelöst und 200 g Träger (SnO2/ Al2O3 (85:15 m/m); 1,5 mm) dazugegeben und solange durchmischt bis die Lösung vom Träger aufgenommen worden ist. Der so imprägnierte Träger wurde 1 h stehen gelassen. Der feuchte Feststoff wurde abschließend ungewaschen im Muffelofen für 4 h bei 600C und 16 h bei 2500C getrocknet.
0,2 g des getrockneten Katalysators wurde mit 0,5 g SiO2 (Saint Gobain; SS62138; 1,5 mm) verdünnt und bei 5400C von 80 ml/min (STP) Sauerstoff und 160 ml/min (STP) Chlorwasserstoff durchströmt. Die Menge an gebildetem Chlor wurde über Einleiten in eine 16%-ige Kaliumiodidlösung und Titration des entstandenen Iods mit Thiosulfat bestimmt. Es ergab sich der in Figur 1 gezeigte zeitliche Verlauf der Raumzeitausbeute.
Beispiel 2: Zr-promotierter Katalysator
0,53 g Rutheniumchlorid-n-Hydrat und 0,048 g Zirkon(TV)-chlorid wurden in 1,8 ml Wasser gelöst und 10 g Träger (SnO2IAl2O3 (85:15 m/m); 1,5 mm) dazugegeben und solange durchmischt bis die Lösung vom Träger aufgenommen worden ist. Der so imprägnierte Träger wurde 1 h stehen gelassen. Der feuchte Feststoff wurde abschließend ungewaschen im Muffelofen für 4 h bei 600C und 16 h bei 2500C getrocknet.
0,2 g des getrockneten Katalysators wurde mit 0,5 g SiO2 (Saint Gobain; 1 ,5 mm) verdünnt und bei 5400C von 80 ml/min (STP) Sauerstoff und 160 ml/min (STP) Chlorwasserstoff durchströmt. Die Menge an gebildetem Chlor wurde über Einleiten in eine 16%-ige Kaliumiodidlösung und Titration des entstandenen Iods mit Thiosulfat bestimmt. Es ergab sich der in Figur 1 gezeigte zeitliche Verlauf der Raumzeitausbeute.
Beispiel 3: Ce-promotierter Katalysator
0,53 g Rutheniumchlorid-n-Hydrat und 0,052 g Ce(m)-chlorid wurden in 1,8 ml Wasser gelöst und 10 g Träger (SnO2IAl2O3 (85:15 m/m); 1,5 mm) dazugegeben und solange durchmischt bis die Lösung vom Träger aufgenommen worden ist. Der so imprägnierte Träger wurde 1 h stehen gelassen. Der feuchte Feststoff wurde abschließend ungewaschen im Muffelofen für 4 h bei 60°C und 16 h bei 2500C getrocknet.
0,2 g des getrockneten Katalysators wurde mit 0,5 g SiO2 (Saint Gobain; 1,5 mm) verdünnt und bei 5400C von 80 ml/min (STP) Sauerstoff und 160 ml/min (STP) Chlorwasserstoff durchströmt. Die Menge an gebildetem Chlor wurde über Einleiten in eine 16%-ige Kaliumiodidlösung und Titration des entstandenen Iods mit Thiosulfat bestimmt. Es ergab sich der in Figur 1 gezeigte zeitliche Verlauf der Raumzeitausbeute.
Beispiel 4: La-promotierter Katalysator
0,53 g Rutheniumchlorid-n-Hydrat und 0,079 g Lanthan(IH)-chlorid-Heptahydrat wurden in 1,8 ml Wasser gelöst und 10 g Träger (SnO2: Al2O3 (85: 15 m/m); 1,5 mm) dazugegeben und solange durchmischt bis die Lösung vom Träger aufgenommen worden ist. Der so imprägnierte Träger wurde 1 h stehen gelassen. Der feuchte Feststoff wurde abschließend ungewaschen im Muffelofen für 4 h bei 600C und 16 h bei 2500C getrocknet.
0,2 g des getrockneten Katalysators wurde mit 0,5 g SiO2 (Saint Gobain; 1,5 mm) verdünnt und bei 5400C von 80 ml/min (STP) Sauerstoff und 160 ml/min (STP) Chlorwasserstoff durchströmt. Die Menge an gebildetem Chlor wurde über Einleiten in eine 16%-ige Kaliumiodidlösung und Titration des entstandenen Iods mit Thiosulfat bestimmt. Es ergab sich der in Figur 1 gezeigte zeitliche Verlauf der Raumzeitausbeute.
Figur 1 zeigt deutlich die Verlängerung der Langzeitstabilität der promotierten Katalysatoren (> 24 h) gegenüber dem unpromotierten Katalysator (18 h).
Beispiel 5-8: Alkali-promotierte Katalysatoren
0,53 g Rutheniumchlorid-n-Hydrat und 0,2 mmol Alkalichlorid bzw. -nitrat wurden in 1,8 ml Wasser gelöst und 10 g Träger (SnO2:Al2O3 (85:15 m/m); 1,5 mm) dazugegeben und solange durchmischt bis die Lösung vom Träger aufgenommen worden ist. Der so imprägnierte Träger wurde 1 h stehen gelassen. Der feuchte Feststoff wurde abschließend ungewaschen im Muffelofen für 4 h bei 600C und 16 h bei 2500C getrocknet. 0,2 g des getrockneten Katalysators wurde mit 0,5 g SiO2 (Saint Gobain; 1,5 mm) verdünnt und bei 5400C von 80 ml/min (STP) Sauerstoff und 160 ml/min (STP) Chlorwasserstoff durchströmt. Die Menge an gebildetem Chlor wurde über Einleiten in eine 16%-ige Kaliumiodidlösung und Titration des entstandenen Iods mit Thiosulfat bestimmt. Es ergaben sich die in Tabelle 1 gezeigten Raumzeitausbeuten.
- -
Tabelle 1: Aktivität promotierter Katalysatoren bei 300 °C (10 mol-% Promotor bezogen auf Ru- Menge, eingesetzte Menge Katalysator rn^t = 0,2 g, eingesetzte Menge Verdünnungsmaterial mSiθ2 = 1,0 g, Volumenstrom HCl bei Standardbedingungen (STP) VHci =80 mL/min, Volumenstrom Sauerstoff bei Standardbedingungen 80 mL/min, STY = Raum-Zeit- Ausbeute).
STY(Cl2)
Promotor kg/h.kg(Kat) unpromotiert 1,76
Li 1,98
Mg 1,86
CsCl 1,69
CsNO3 1,21
Tabelle 1 zeigt keinen signifikanten Einfluss verschiedener Promotoren bei einem RuCl3/SnO2- Katalysator und 3000C Reaktionstemperatur. Allein die Promotierung mit CsNO3 zeigt eine signifikante Verschlechterung, die bei Verwendung von CsCl nicht auftritt.

Claims

Patentansprüche
1. Oxidationskatalysator auf Basis von Ruthenium, insbesondere auf Basis von Rutheniumchlorid, für die katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff (Deacon- Verfahren), dadurch gekennzeichnet, dass der Katalysator bezogen auf den Anteil an Ruthenium als Promotor in einem Molverhältnis von 1:100 bis 1: 1 (Promotor : Ruthenium), bevorzugt von 1:20 bis 1:4 (Promotor : Ruthenium) Halogenidverbindungen ausgewählt aus der Reihe: Zirkon-, Alkali-, insbesondere Lithium-, Natrium-, Kalium- und Cäsium-, Erdalkali-, insbesondere Magnesium-, Mangan-, Cer-, Lanthanverbindungen, bevorzugt Zirkon- oder Cer- Verbindungen enthält.
2. Katalysator nach Anspruch 1, dadurch gekennzeichnet, dass die Promotoren in Form von Chloriden oder Oxidchloriden vorliegen.
3. Katalysator nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Katalysator geträgert ist und als Trägermaterial ein Material aus der Reihe Siliziumoxid, Titanoxid, Aluminiumoxid, Zinnoxid und Zirkonoxid oder gegebenenfalls Mischungen dieser Stoffe umfasst.
4. Katalysator nach Anspruch 3, dadurch gekennzeichnet, dass das Verhältnis von Katalysator einschließlich Promotorverbindungen zum Gesamtgewicht des Katalysators einschließlich Träger 0,5 bis 5 Gew.-%, bevorzugt 1,0 bis 4 Gew.-%, beträgt.
5. Katalysator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Aktivität des Katalysators für die Reaktion von Chlorwasserstoff mit Sauerstoff bei differentiellem Umsatz und bei einem Druck von 5 bar und einer Temperatur von 3000C wenigstens 5 mmol Chlor pro g Ruthenium und Minute beträgt.
6. Verfahren zur Umsetzung von Chlorwasserstoff mit Sauerstoff in der Gasphase in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass ein Katalysator nach einem der
Ansprüche 1 bis 5 verwendet wird.
7. Verwendung des Katalysators nach einem der Ansprüche 1 bis 5 zur Anwendung in Gasphasenoxidationsprozessen, insbesondere bei der Umsetzung von Chlorwasserstoff mit Sauerstoff in der Gasphase.
8. Verfahren zur Umsetzung von Chlorwasserstoff mit Sauerstoff in der Gasphase in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass ein Katalysator nach einem der Ansprüche 1 bis 5 verwendet wird.
EP08735261A 2007-04-26 2008-04-16 Rutheniumkatalysatoren für die katalyshe gasphasnoxidation von chlorwasserstoff mit sauerstoff (deacon verfahren) Ceased EP2142296A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007020143A DE102007020143A1 (de) 2007-04-26 2007-04-26 Verfahren zur Erhöhung der Langzeitstabilität und Aktivität von Ruthenium-Katalysatoren
PCT/EP2008/003006 WO2008131857A1 (de) 2007-04-26 2008-04-16 Rutheniumkatalysatoren für die katalyshe gasphasnoxidation von chlorwasserstoff mit sauerstoff (deacon verfahren)

Publications (1)

Publication Number Publication Date
EP2142296A1 true EP2142296A1 (de) 2010-01-13

Family

ID=39591797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08735261A Ceased EP2142296A1 (de) 2007-04-26 2008-04-16 Rutheniumkatalysatoren für die katalyshe gasphasnoxidation von chlorwasserstoff mit sauerstoff (deacon verfahren)

Country Status (8)

Country Link
US (1) US20080267857A1 (de)
EP (1) EP2142296A1 (de)
JP (1) JP2010524673A (de)
KR (1) KR20100015864A (de)
CN (1) CN101663092A (de)
DE (1) DE102007020143A1 (de)
TW (1) TW200909050A (de)
WO (1) WO2008131857A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039735A1 (de) * 2010-08-25 2012-03-01 Bayer Materialscience Aktiengesellschaft Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
DE102010039734A1 (de) 2010-08-25 2012-03-01 Bayer Materialscience Aktiengesellschaft Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
JP2012135722A (ja) * 2010-12-27 2012-07-19 Sumitomo Chemical Co Ltd 担持酸化ルテニウムの製造方法及び塩素の製造方法
KR20140048956A (ko) * 2011-07-05 2014-04-24 바이엘 인텔렉쳐 프로퍼티 게엠베하 단열 반응 캐스케이드에서 산화세륨 촉매를 사용한 염소의 제조 방법
JP2014522797A (ja) * 2011-07-05 2014-09-08 バイエル インテレクチュアル プロパティー ゲゼルシャフト ミット ベシュレンクテル ハフツング 等温反応器における酸化セリウム触媒を使用する塩素の製造方法
CN105879866A (zh) * 2016-05-03 2016-08-24 中国科学院大学 一种高效的Deacon反应催化剂
JP6886290B2 (ja) * 2016-12-26 2021-06-16 太陽化学株式会社 低温酸化触媒の製造方法
JP6837828B2 (ja) * 2016-12-26 2021-03-03 太陽化学株式会社 低温酸化触媒
KR102287846B1 (ko) * 2018-12-21 2021-08-06 한화솔루션 주식회사 염소 제조를 위한 염화수소 산화반응용 촉매 및 이의 제조방법
KR20210086140A (ko) * 2019-12-31 2021-07-08 한화솔루션 주식회사 염화수소 산화반응용 성형촉매 및 이의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL112095C (de) 1960-01-20
DE4440645A1 (de) * 1994-11-14 1996-05-15 Bayer Ag Verfahren zur Oxidation von Chlorwasserstoff
NO961970L (no) * 1995-05-18 1996-11-19 Sumitomo Chemical Co Fremgangsmåte for fremstilling av klor
DE19533660A1 (de) * 1995-09-12 1997-03-13 Basf Ag Verfahren zur Herstellung von Chlor
CN1475434A (zh) * 1996-08-08 2004-02-18 ס�ѻ�ѧ��ҵ��ʽ���� 氯的生产方法
DE10234576B4 (de) 2002-07-30 2005-09-01 Gestra Ag Geschmiedetes Ventilgehäuse
DE10235476A1 (de) * 2002-08-02 2004-02-12 Basf Ag Integriertes Verfahren zur Herstellung von Isocyanaten
DE10242400A1 (de) * 2002-09-12 2004-03-18 Basf Ag Festbettverfahren zur Herstellung von Chlor durch katalytische Gasphasen-Oxidation von Chlorwasserstoff
DE10244996A1 (de) * 2002-09-26 2004-04-01 Basf Ag Katalysator für die katalytische Chlorwasserstoff-Oxidation
US7332454B2 (en) * 2005-03-16 2008-02-19 Sud-Chemie Inc. Oxidation catalyst on a substrate utilized for the purification of exhaust gases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008131857A1 *

Also Published As

Publication number Publication date
DE102007020143A1 (de) 2008-10-30
KR20100015864A (ko) 2010-02-12
CN101663092A (zh) 2010-03-03
JP2010524673A (ja) 2010-07-22
TW200909050A (en) 2009-03-01
US20080267857A1 (en) 2008-10-30
WO2008131857A1 (de) 2008-11-06

Similar Documents

Publication Publication Date Title
EP2142296A1 (de) Rutheniumkatalysatoren für die katalyshe gasphasnoxidation von chlorwasserstoff mit sauerstoff (deacon verfahren)
EP2257372B1 (de) Verfahren zur regeneration eines mit schwefel in form von schwefelverbindungen vergifteten, ruthenium oder rutheniumverbindungen enthaltenden katalysators
EP2608879B1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
EP2384239B1 (de) Verfahren zur regenerierung eines rutheniumoxid enthaltenden katalysators für die chlorwasserstoff-oxidation
WO2009010182A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
WO2010076262A1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und nickel
EP2391740B1 (de) Verfahren zur wiedergewinnung von ruthenium aus gebrauchten rutheniumoxidhaltigen katalysatoren
WO2007023162A1 (de) Mechanisch stabiler katalysator auf basis von alpha-aluminiumoxid
WO2013060628A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
EP1399255A2 (de) Ruthenium-katalysatoren auf einem träger auf sio2-basis für die katalytische hydrierung von sacchariden
EP0208180B1 (de) Verfahren zur Herstellung von 1,2-Dichlorethan durch Oxichlorierung von Ethylen an Kupfer enthaltenden Trägerkatalysatoren
EP2401072B1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und silber und/oder calcium
EP1546032A1 (de) Katalysator für die katalytische chlorwasserstoff-oxidation
WO2010040469A1 (de) Mehrstufiges verfahren zur herstellung von chlor
EP2177268A1 (de) Ru/MgF2 Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
EP2608880B1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP2440490A1 (de) Verfahren zur chlorwasserstoffoxidation an einem katalysator mit geringer oberflächenrauhigkeit
WO2017134230A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
WO2007125004A1 (de) Verfahren zur herstellung von katalysatoren für die katalytische chlorwasserstoff-oxidation
EP2408555B1 (de) Urankatalysator auf träger besonderer porengrössenverteilung und verfahren zu dessen herstellung, sowie dessen verwendung
DE102007033114A1 (de) Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
DE102011005897A1 (de) Verfahren zur Bereitstellung von Chlor für chemische Umsetzungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100608

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20110222