EP2139571A1 - Verfahren zum destillieren eines ausgangsmaterials und anlage zum durchführen eines solchen verfahrens - Google Patents

Verfahren zum destillieren eines ausgangsmaterials und anlage zum durchführen eines solchen verfahrens

Info

Publication number
EP2139571A1
EP2139571A1 EP08714793A EP08714793A EP2139571A1 EP 2139571 A1 EP2139571 A1 EP 2139571A1 EP 08714793 A EP08714793 A EP 08714793A EP 08714793 A EP08714793 A EP 08714793A EP 2139571 A1 EP2139571 A1 EP 2139571A1
Authority
EP
European Patent Office
Prior art keywords
pressure
container
condenser
temperature
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08714793A
Other languages
English (en)
French (fr)
Inventor
Markus Braendli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38330229&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2139571(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to EP11164665A priority Critical patent/EP2361659B1/de
Publication of EP2139571A1 publication Critical patent/EP2139571A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/2881Compression specifications (e.g. pressure, temperature, processes)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/2887The compressor is integrated in the evaporation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/2896Control, regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/001Processes specially adapted for distillation or rectification of fermented solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0027Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
    • B01D5/003Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium within column(s)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation

Definitions

  • the invention relates to a method for distilling a starting material comprising a liquid to be distilled, using a gas-tight, fixed to positive and / or negative pressure tank system, the evaporator with the starting material, which can be tempered, a condenser for condensing the Steamed, temperature-controlled liquid to the condensate, as well as a vapor space connecting the evaporator and the condenser comprises.
  • the invention relates to a system for carrying out such a method.
  • Distillation methods using such systems are suitable for separating liquid conductors which are mixed with other liquids and / or solids, for example to give dispersions or emulsions, or which are soluble in one another.
  • One known application is alcohol distillation.
  • the liquid to be distilled is in this case alcohol, in many other applications water.
  • the object of the present invention is to specify a low-energy distillation process which already achieves a high yield with a small temperature difference.
  • a cost-effective, transportable system should be specified, which is suitable to carry out the said method.
  • the idea underlying the invention is that the method is carried out in an ideal pressure-temperature range in which on the one hand the process of distillation proceeds optimally and on the other hand, no energy is wasted by sucking valuable steam from the vapor space.
  • the pressure in the steam must be constantly monitored spatially and compared with the determined from the current temperature in the vapor space saturation vapor pressure.
  • the pressure is in a narrow range just above the saturation vapor pressure.
  • gas must be sucked off, so that the pro- can work again in the optimal pressure range, on the other hand, the foreign gas must be specifically aspirated. This is achieved by sucking at the end of the condensation path, because there accumulates the foreign gas.
  • vacuuming the pressure must continue to be monitored. This must not fall below the saturation vapor pressure, otherwise the optimal conditions are again not met. Therefore, the suction must be stopped beforehand, as long as the pressure is just above the saturation vapor pressure.
  • a high requirement is therefore the high degree of tightness of the system.
  • all critical areas in particular areas of flanges, pumps, etc., can be flooded with the condensate for safety's sake.
  • some condensate enters the container in the event of a leak, which in no way affects the process.
  • the performance of the distillation plant is optimal with this inventive process with low energy consumption.
  • the temperature difference between the evaporator and condenser can be kept small, which for many applications in which waste heat from power plants can be used, can be another economic advantage.
  • distillation unit according to the invention is housed in a container, preferably in an ISO container.
  • a container preferably in an ISO container.
  • Such containers are inexpensive to purchase, are ideal for transport and are available in dense (leak-free) versions.
  • FIG. 1 is a schematic representation of a distillation apparatus according to the invention
  • FIG. 3 shows a schematic representation of an arrangement of a plurality of inventive distillation plants
  • Fig. 4 is a schematic representation of an inventive distillation plant in a container, viewed from above.
  • Fig. 1 shows a simple embodiment of an inventive distillation plant.
  • This comprises a container system 1, which is subdivided into the areas evaporator 2, condenser 3 and vapor space 6, wherein the container system 1 must be fixed to positive and / or negative pressure.
  • the evaporator 2 is the starting material 4, which comprises the liquid to be distilled Fd and is temperature controlled.
  • the condenser 3 receives the likewise temperature-controllable condensate 5, which is formed by the distillation after condensation.
  • the starting material 4 and the condensate 5 can also be tempered outside the container system 1.
  • the vapor space 6 connects the evaporator 2 with the condenser 3. It is filled with the vapor Dk to be condensed. This vapor Dk is formed by evaporating the liquid Fd to be distilled from the evaporator 2.
  • the steam chamber 6 is equipped with a pressure sensor 7 for measuring the mixing pressure pm set in the steam space 6, with a temperature sensor 8 for measuring sen set in the steam chamber 6 mixing temperature Tm, and with a pressure regulator 9 for setting, in particular for reducing the mixing pressure pm in the vapor space. 6
  • the evaporator 2 with the starting material 4 is brought to a first temperature T1 and the condenser 3 to a second, lower temperature T2. Subsequently, the mixing pressure pm and the mixing temperature Tm are measured. From the measured mixing temperature Tm, the saturation vapor pressure ps of the liquid Fd at the temperature Tm can be determined.
  • the saturation vapor pressure is a property of a liquid. It describes the maximum vapor pressure at a certain temperature and is often referred to as vapor pressure for short. For example, atoms / molecules escape from pure liquids into the gas phase until a pressure which depends on the type of substance and the equilibrium temperature has been established therein. This pressure is the saturation vapor pressure. It rules when the gas is in thermodynamic equilibrium with the liquid. In this state, the evaporation of the liquid is quantitatively equal to the condensation of the gas. None of the phases grows at the expense of the others, allowing both to coexist stably. One therefore speaks of a dynamic balance.
  • a saturation vapor pressure curve 10 of a substance as a function of a pressure over the temperature is indicated, wherein the liquid phase of the substance in the upper left, the gaseous phase is present in the lower right of the curve.
  • the phase change occurs in the region of the saturation vapor pressure curve 10.
  • Saturation vapor pressure curves of conventional substances are known and can be looked up in manuals or interpolated via formulas.
  • a desired pressure range 11 is determined.
  • the mixing pressure pm should preferably be in the vapor space 6, at the associated mixing point Tm, so that the distillation proceeds optimally, ie as low energy and efficiently as possible.
  • the target pressure range 11 is just above the saturation vapor pressure curve, since it includes the amount of pressure-increasing foreign gas. It is limited by a lower pressure limit p1 and an upper pressure limit p2, as shown in FIG.
  • the lower pressure limit p1 theoretically corresponds to the saturation vapor pressure ps, but is set to at least 0.1% above the saturation vapor pressure ps for practical reasons.
  • the upper pressure limit p2 is at most 6% above the saturation vapor pressure ps.
  • the mixing pressure pm is compared with the target pressure region 11. At the beginning of the process, the mixing pressure pm will be far above the target pressure range 11. In this case, the pressure in the vapor space 6 is reduced just as long until the mixing pressure pm has reached the lower pressure limit p1. This is preferably done with the pressure regulator 9, which may be a pump. As soon as the pressure limit p1 has been reached, the pressure regulator 9 is turned off.
  • the distillation runs independently, as long as the starting material 4 in the condenser has a temperature T1, which is higher than the mixing temperature Tm. Since the gas tends to be in thermodynamic equilibrium with the liquid, the evaporation of the liquid to be distilled Fd is promoted. Again, since a thermodynamic equilibrium is sought, the condensation is promoted, as long as the temperature T2 of the capacitor is lower than the mixing temperature Tm.
  • the desired, process-optimal mixing pressure automatically sets itself without the intervention of the pressure regulator 9, even if the temperature of the medium to be vaporized or of the medium to be condensed changes.
  • the mixing temperature Tm and the mixing pressure pm are constantly monitored until the mixing pressure pm has reached the upper pressure limit p2.
  • the pressure may increase because, for example, the container system 1 or another component of the system has a small leak, causing Foreign gas can penetrate into the vapor space 6, or because foreign gases have dissolved from other substances of the plant or from the starting material 4.
  • the pressure in the vapor space 6 is switched on by switching on the pressure regulator resp. the pump 9 lowered again.
  • the pressure regulator 9 can be switched off again. Now the distillation is back to optimal parameters. These operations can be continued as long as can be supplied to distillating mixture and condensate can be removed.
  • the quality of the condensation depends largely on the foreign gas content.
  • a foreign gas content in the vapor space of individual per mils can already reduce the condensation by 20 to 50%. Therefore, the mixing pressure is constantly monitored and compared with the target pressure range 11.
  • the set pressure range 11 should not be too close to the saturation vapor pressure curve 10, since otherwise too much of the steam Dk to be condensed is sucked out by the pump 9 when the mixing pressure pm is reduced. It has proved to be advantageous to select the lower pressure limit p1 preferably at least 0.2% and the upper pressure limit p2 preferably at most 4% above the saturation vapor pressure ps. In contrast to conventional distillation processes, the method according to the invention always monitors the prevailing mixing pressure pm in the vapor space 6 and compares this with the nominal pressure range 11, in order to regulate the mixing pressure pm as required.
  • the temperature difference T1-T2 between the evaporator 2 and the condenser 3 can be selected to be particularly small with this inventive method and is preferably between 1K and 10K, ideally between 1K and 3K. This is a tremendous energetic benefit because it requires little energy to create the temperature difference.
  • the evaporation and / or the condensation can be promoted by the surfaces of the starting material 4 in the evaporator 2 and / or the surface of the condensate 5 in the condenser 3 are increased.
  • An increase in surface area can be achieved, for example, by a fine spraying of the starting material 4 resp. of the condensate 5 reach.
  • a dedicated nozzle of a Zersprühiki 15 in the evaporator 2 and / or in the condenser 3 can every second a surface of several square meters produce, at which steam arises resp. the vapor Dk to be condensed can condense.
  • the spraying is arranged in such a direction-oriented manner that optimum mixing of the vapor in the vapor space 6 is achieved.
  • a fan 16 in the steam chamber 6 are arranged to achieve the desired mixing of the vapor.
  • a heater 13 in the range of feed lines 12 to Zersprühiata 15 side evaporator 2 and a cooling 14 in the supply lines 12 of Zersprüh knew 15 side condenser 3 ensure reaching the set temperatures T1 and T2 in the evaporator 2 and the condenser 3.
  • the temperature regulating units 13 and 14 may also be arranged directly in the starting material 4 and in the condensate 5.
  • the surface enlargement can also be achieved by introducing a surface-enlarging, porous filling packing in the evaporator 2 and / or in the condenser 3. These allow a maximum temperature equalization in the condenser between the mixed steam and the condensate.
  • a further preferred embodiment comprises one or more apertures 17 or a drop-depositing filling, which prevent drops of the sprayed starting material 4 from entering the condenser 3 directly. Conversely, no drops of the condensate 5 should get into the evaporator 2.
  • mixers 18 can mix the starting material 4 and / or the condensate 5 in order to keep their surface temperatures constant.
  • a system is shown with a further improvement in efficiency.
  • the improvement is achieved by performing the process in stages in two or more such tank systems 1, V, 1 "Each tank system 1, V, 1" operates in a different temperature range (T1, T2), (T1 ⁇ T2 '), (T1 ", T2").
  • the energy for controlling the temperature of an evaporator 2 or condenser 3 is obtained at least partially directly or indirectly via heat exchangers from the energy of another evaporator 2 or condenser 3 whose temperature is to be changed.
  • the external gas release can be carried out by means of a vacuum jet pump, which is driven either with the condensate 5 to be sprayed the same or a cooler stage, with steam of another stage or with ambient air.
  • each heat exchanger 20 is disposed between a condensate 5 and a starting material 4 of a following container system 1 or a series of previous stages, if they are to have the same temperatures.
  • plate heat exchangers are used for this purpose.
  • the evaporators 2 and / or capacitors 3 of the various container systems 1, 1 ',... Can in particular be arranged one above the other. Particularly suitable is a horizontal arrangement of the capacitors and a vertical arrangement of the evaporator.
  • the necessary connections between the individual container components are each achieved with steam pipes.
  • the advantage lies particularly in the low-energy process of distillation, since the energy can be used optimally.
  • the heat exchangers used can be arranged inside or outside the container system 1. Reasons for the external arrangement are above all the better access for cleaning the heat exchanger. In particular, plate heat exchangers or tube bundles are suitable as heat exchangers.
  • container systems 1 and / or other components of the system are preferably made entirely or mainly from cost-effective plastic.
  • the container system 1 must preferably be stable only to overpressure or to negative pressure, not both. This allows a cost-effective design of the container system 1. It can for example consist of a technical plastic film, which is supported on a solid framework, which is arranged inside or outside the film. The underpressures do not have to be that strong. For water, the absolute vapor saturation pressure at 5O 0 C is still 123 mbar (relative -877 mbar). Therefore, the requirement of tear resistance to the film is still in an area where materials are available at reasonable prices.
  • the pressure regulator 9 in this case is a valve which can discharge gas from the vapor space into the environment when the pressure is to be lowered.
  • the overpressure can be caused by a pump or by heating.
  • the tank system need only be stable at the same time if work is to be carried out around the normal pressure, ie in the case of water in the range of 100 ° C.
  • inlet and outlet are indicated schematically to fill the system and to empty.
  • the pressure regulator 9 does not have to be turned on at all after the start of the process. Once set up, the distillation process works independently as long as the process parameters remain within the specified range, that is, as long as there is a temperature gradient between T1 and T2. If the plant comprises virtually no leaks, the pressure regulator 9 must operate at most about 1-5% of the total distillation time. For some small leaks, operating times of the pressure regulator 9 are expected to be between 3% and 50% of the operating time.
  • a serious problem of leaks is the intrusion of foreign gas. Tightness of the system is of great importance, since even a slight increase in the proportion of foreign gas is primarily responsible for the greatly reduced efficiency of the system. It has been found that commercial grades of pumps, pipe joints, flanges and other components are not sufficient to operate without leakage as required herein. Even high-quality components are usually not sufficient in this respect to meet the requirements. It can also be time consuming and costly to find a leak. To prevent leaks, all components containing pressure-sensitive connections and connections can be flooded. These components include the Parts of the walls of evaporator 2 and condenser 3, to which flanges are attached, as well as all components such as pumps, sensors, valves, inlets and outlets and other flanges. It can even be flooded the whole plant.
  • the flooding ensures that no foreign gas can enter at all leaks, but only condensate. This does not bother the process, it can not even be determined. This flooding eliminates the need to constantly inspect the system for leaks, which can be very costly.
  • the only energy that must be spent on the process is to create the different temperatures T1 and T2 and to maintain a temperature difference, and if the yield is to be increased, the energy to deliver the liquids to the atomizers for the purpose of enlarging the surfaces.
  • a decisive difference of the method according to the invention to the prior art consists in the controlled extraction of the foreign gas.
  • the described pressure reduction is done at the end of the condensation path to not only reduce the pressure but to remove the foreign gas.
  • In contrast to known methods is sucked only until the foreign gas content has fallen below a certain limit. This is monitored by comparing the prevailing mixing pressure pm with the saturation vapor pressure ps determined at the prevailing mixing temperature Tm. If the mixing pressure pm has reached a certain limit value, for example 0.1% above the saturation vapor pressure ps, the suction is adjusted in order to prevent the process from running worse.
  • the efficiency of the process with lower pressure does not get better
  • the suction unnecessarily needs energy, and also steam is removed from the system, whose energy can no longer be used in a later stage. Therefore, the process runs optimally only within a narrow pressure-temperature range, which must always be observed in order to be able to carry out the process in an energy-efficient manner.
  • the process described is preferably carried out in a container, preferably in an ISO container (20 or 40 foot standard container) in which the plant is located and which may be part of the plant.
  • the transport from the place of manufacture to the place of operation of the plant can be carried out so easily and inexpensively by container ship or by truck.
  • this facilitates the maintenance, since, if the distillation is carried out in a remote location to the civilian population, the container can again be conveniently transported to a service center on a truck.
  • the inventive distillation apparatus described in FIG. 4 comprises a container system 1 with at least one condenser 3, an evaporator 2 and a vapor space 6 connecting the evaporator 2 and the condenser 3 for distilling a starting material 4 according to a method described above.
  • This distillation unit is housed in a container 21, in particular in an ISO container 21.
  • the distillation unit is integrated in the container 21.
  • Such containers 21 are inexpensive to acquire and highly standardized.
  • Evaporator 2 and condenser 3 may be separately accommodated in various containers 21 connected by a vapor space 6 attached to them, or they may share a container 21, as shown in FIG.
  • a container 21 and a plurality of independent evaporator 2 and / or capacitors 3 can be accommodated for different pressure and temperature levels and process-related to each other.
  • the container 21 has a reactor area 22, in which the evaporator (2) and the condenser (3) are located, via a flooded area 23, in which pressure-relevant components such as pumps, valves , Sensors and flanges, as well as a service area 24, for electronic components 25 that are not flooded.
  • This service area 24 is accessible for operation and maintenance of the system.
  • the arrangements within the container 21 may also be arranged alternatively.
  • Evaporator 2 and capacitor 3 may be configured through openings or channels.
  • the flooded area 23 with the connections can also be in the upper area of the Containers 21 may be arranged.
  • evaporator 2 and condenser 3 can also be positioned one above the other.

Abstract

Die Erfindung betrifft ein Verfahren zum Destillieren eines Ausgangsmaterials (4) umfassend eine zu destillierende Flüssigkeit Fd, unter Verwendung eines gasdichten, auf Über- und/oder Unterdruck festen Behältersystems (1), der einen Verdampfer (2) mit dem Ausgangsmaterial (4), das temperiert werden kann, einen Kondensator (3) zum Kondensieren der zu Dampf gewordenen, temperierbaren Flüssigkeit Fd zum Kondensat (5), sowie einen den Verdampfer (2) und den Kondensator (3) verbindenden Dampfraum (6) umfasst. Die der Erfindung zugrunde liegende Idee besteht darin, dass der Dampf im Dampfraum (6) bis auf eine tolerierte Restmenge frei von Fremdgas ist. Dies wird erreicht, indem der Druck im Dampfraum (6) überwacht und derart geregelt wird, dass die Destillation stets im Bereich nahe des Sättigungsdampfdrucks der zu destillierenden Flüssigkeit Fd durchgeführt wird. Dazu müssen der Druck und die Temperatur im Dampfraum (6) stets ermittelt werden. Bei zu hohem Druck wird dieser derart reduziert, dass dadurch vornehmlich Fremdgas entfernt wird. Ferner umfasst die Erfindung eine Anlage zum Destillieren nach dem genannten Verfahren, wobei diese Anlage in einem Container untergebracht ist.

Description

VERFAHREN ZUM DESTILLIEREN EINES AUSGANGSIVIATERIALS1 UND ANLAGE ZUM DURCHFÜHREN EINES SOLCHEN VERFAHRENS
Technisches Gebiet
Die Erfindung betrifft ein Verfahren zum Destillieren eines Ausgangsmaterials um- fassend eine zu destillierende Flüssigkeit, unter Verwendung eines gasdichten, auf Über- und/oder Unterdruck festen Behältersystems, das einen Verdampfer mit dem Ausgangsmaterial, das temperiert werden kann, einen Kondensator zum Kondensieren der zu Dampf gewordenen, temperierbaren Flüssigkeit zum Kondensat, sowie einen den Verdampfer und den Kondensator verbindenden Dampf- räum umfasst. Zudem betrifft die Erfindung eine Anlage zum Durchführen eines solchen Verfahrens.
Stand der Technik
Destillationsverfahren unter Verwendung solcher Anlagen eignen sich zum Trennen von Flüssigleiten, die mit weiteren Flüssigkeiten und/oder Feststoffen bei- spielsweise zu Dispersionen oder Emulsionen vermischt sind oder die ineinander löslich sind. Eine bekannte Anwendung ist die Alkohol-Destillation. Die zu destillierende Flüssigkeit ist in diesem Fall Alkohol, in vielen anderen Anwendungen Wasser.
Bekannte Verfahren verwenden als Kondensatoren meistens aufwändige Geräte umfassend ineinander verlaufende Röhrensysteme, wie sie bei der Destillation von Alkohol bekannt sind. Nachteilig an solchen Systemen ist einerseits der komplizierte apparative Aufbau und andererseits das Erfordernis einer hohen Temperaturdifferenz zwischen dem Ausgangsmaterial und dem Kondensator, welche nötig ist, um eine befriedigende Ausbeute des Verfahrens zu erlangen. Das Errei- chen dieser hohen Temperaturdifferenz ist sehr teuer.
Es hat sich gezeigt, dass die Effizienz des Destillationsverfahrens verbessert werden kann, wenn der Dampfraum möglichst von Fremdgas befreit ist. In der WO
Bestätigungskopϊe _ . . _ . .
- 2 -
02/09837 wird eine Destillationsanlage beschrieben, bei der Fremdgas aus dem Dampfraum entfernt werden soll. Dies wird dadurch erreicht, indem eine Vakuumpumpe mit einer hohen Leistung und langen Betriebszeiten das Medium aus dem Bad absaugt. Leider wird mit dieser Methode auch sehr viel Dampf mit dem Kon- densat weggesaugt. Dies belastet einerseits unnötig die Pumpe, und andererseits wird durch dieses ständige Absaugen sehr viel Kondensat mit abgesaugt, das dann nicht mehr für die Energierückgewinnung zur Verfügung steht.
In der EP 0563628 wird eine weitere Destillationsanlage vorgestellt, welche im Kondensator mittels einer ständig laufenden Vakuumpumpe eine Saugwirkung erzeugt, um die Brüden vom Verdampfer zum Kondensator zu saugen. Auch dieses Verfahren braucht einerseits viel Betriebsenergie, andererseits wird auch hier Kondensat aus dem Dampfraum abgesaugt, wodurch zusätzlich Energie in Form von Wärme verloren geht.
Darstellung der Erfindung
Aufgabe der vorliegenden Erfindung ist es, ein energiearmes Destillationsverfahren anzugeben, welches bei einer kleinen Temperaturdifferenz bereits eine grosse Ausbeute erreicht. Zudem ist eine kostengünstige, transportfähige Anlage anzugeben, welches dazu geeignet ist, das genannte Verfahren durchzuführen.
Die Aufgabe wird gelöst durch ein Verfahren sowie durch eine Anlage, beschrie- ben in den unabhängigen Patentansprüchen.
Die der Erfindung zugrunde liegende Idee besteht darin, dass das Verfahren in einem idealen Druck-Temperaturbereich durchgeführt wird, bei dem einerseits der Prozess der Destillation optimal abläuft und bei dem andererseits keine Energie verschwendet wird durch Absaugen von wertvollem Dampf aus dem Dampfraum.
Dazu muss der Druck im Dampf räum ständig überwacht und mit dem aus der aktuellen Temperatur im Dampfraum bestimmten Sättigungsdampfdruck verglichen werden. Idealerweise liegt der Druck in einem engen Bereich knapp über dem Sättigungsdampfdruck. Sobald Fremdgas eindringt, steigt der Druck und der Prozess verläuft suboptimal. Dann muss einerseits Gas abgesaugt werden, damit der Pro- zess wieder im optimalen Druckbereich arbeiten kann, andererseits muss gezielt das Fremdgas abgesaugt werden. Dies wird dadurch erreicht, indem am Ende des Kondensationsweges abgesaugt wird, weil sich dort das Fremdgas ansammelt. Beim Absaugen muss der Druck weiterhin überwacht werden. Dieser darf nicht unter den Sättigungsdampfdruck fallen, da sonst die optimalen Bedingungen erneut nicht erfüllt sind. Daher muss das Absaugen vorher gestoppt werden, solange der Druck noch knapp über dem Sättigungsdampfdruck liegt. In diesem Zustand befindet sich eine kleine, tolerierbare Restmenge Fremdgas im Dampfraum, und der Prozess verläuft optimal. Solange kein Fremdgas in den Dampfraum ein- dringt und solange die Temperatur im Kondensator niedriger ist als im Verdampfer, läuft der Prozess sehr effizient weiter, ohne dass Korrekturen notwendig sind, insbesondere ohne Abpumpen.
Eine hohe Anforderung stellt sich somit an die hochgradige Dichtheit der Anlage. Um sich aufwändige Arbeit beim Suchen von kleinen Lecks zu sparen, können sicherheitshalber alle kritischen Stellen, insbesondere Bereiche von Flanschen, Pumpen etc, mit dem Kondensat geflutet werden. Dadurch dringt im Falle eines Lecks etwas Kondensat in den Behälter ein, was den Prozess in keiner Weise beeinträchtigt.
Die Leistung der Destillationsanlage ist mit diesem erfindungsgemässen Prozess bei geringem Energieaufwand optimal. Zudem kann die Temperaturdifferenz zwischen Verdampfer und Kondensator klein gehalten werden, was für viele Anwendungen, bei denen Abwärme von Kraftwerken genutzt werden kann, ein weiterer wirtschaftlicher Vorteil sein kann.
Weitere vorteilhafte Ausführungsformen gehen aus den Unteransprüchen hervor.
Eine weitere erfindungsgemässe Idee der Erfindung besteht darin, dass die Destillationsanlage erfindungsgemäss in einem Container, vorzugsweise in einem ISO Container untergebracht ist. Solche Container sind kostengünstig zu erwerben, eignen sich hervorragend für den Transport und sind in dichten (leckfreien) Ausführungen erhältlich. __
- 4 -
Kurze Beschreibung der Zeichnungen
Im Folgenden wird die Erfindung unter Beizug der Zeichnungen näher erklärt. Es zeigen
Fig. 1 eine schematische Darstellung einer erfindungsgemässen Destillati- onsanlage;
Fig. 2 ein Druck-Temperaturdiagramm mit dem Sättigungsdampfdruck der zu destillierenden Flüssigkeit;
Fig. 3 eine schematische Darstellung einer Anordnung mehrer erfindungs- gemässer Destillationsanlagen;
Fig. 4 eine schematische Darstellung einer erfindungsgemässer Destillationsanlage in einem Container, von oben betrachtet.
Wege zur Ausführung der Erfindung
Die Fig. 1 zeigt eine einfache Ausführung einer erfindungsgemässen Destillationsanlage. Diese umfasst ein Behältersystem 1 , das in die Bereiche Verdampfer 2, Kondensator 3 und Dampfraum 6 unterteilt ist, wobei das Behältersystem 1 auf Über- und/oder Unterdruck fest sein muss. Im Verdampfer 2 befindet sich das Ausgangsmaterial 4, das die zu destillierende Flüssigkeit Fd umfasst und temperierbar ist. Der Kondensator 3 nimmt das ebenfalls temperierbare Kondensat 5 auf, welches durch die Destillation nach der Kondensation entsteht. Das Aus- gangsmaterial 4 sowie das Kondensat 5 können auch ausserhalb des Behältersystems 1 temperiert werden.
Der Dampfraum 6 verbindet den Verdampfer 2 mit dem Kondensator 3. Er ist mit dem zu kondensierenden Dampf Dk gefüllt. Dieser Dampf Dk entsteht durch Verdampfen der zu destillierenden Flüssigkeit Fd aus dem Verdampfer 2. Der Dampf- räum 6 ist ausgestattet mit einem Drucksensor 7 zum Messen des sich im Dampfräum 6 eingestellten Mischdruckes pm, mit einem Temperaturfühler 8 zum Mes- sen der sich im Dampfraum 6 eingestellten Mischtemperatur Tm, sowie mit einem Druckregulator 9 zum Einstellen, insbesondere zum reduzieren des Mischdruckes pm im Dampfraum 6.
Zur Durchführung der Destillation wird zuerst der Verdampfer 2 mit dem Aus- gangsmaterial 4 auf eine erste Temperatur T1 und der Kondensator 3 auf eine zweite, niedrigere Temperatur T2 gebracht. Anschliessend wird der Mischdruck pm und die Mischtemperatur Tm gemessen. Aus der gemessenen Mischtemperatur Tm lässt sich der Sättigungsdampfdruck ps der Flüssigkeit Fd mit der Temperatur Tm bestimmen.
Der Sättigungsdampfdruck ist eine Eigenschaft einer Flüssigkeit. Er beschreibt den bei einer bestimmten Temperatur maximalen Dampfdruck und wird oft abgekürzt mit Dampfdruck bezeichnet. Beispielsweise entweichen aus reinen Flüssigkeiten solange Atome/Moleküle in die Gasphase, bis sich darin ein von der Stoffart und der Gleichgewichtstemperatur abhängiger Druck eingestellt hat. Dieser Druck ist der Sättigungsdampfdruck. Er herrscht, wenn das Gas im thermodynamischen Gleichgewicht mit der Flüssigkeit steht. In diesem Zustand ist die Verdampfung der Flüssigkeit mengenmässig gleich der Kondensation des Gases. Keine der Phasen wächst unter dem Strich auf Kosten der anderen, wodurch beide nebeneinander stabil existieren können. Man spricht daher auch von einem dynami- sehen Gleichgewicht.
In Fig. 2 ist ein Beispiel einer Sättigungsdampfdruckkurve 10 eines Stoffes als Funktion eines Druckes über der Temperatur angegeben, wobei die flüssige Phase des Stoffes im linken oberen, die gasförmige Phase im rechten unteren Bereich der Kurve vorliegt. Der Phasenwechsel geschieht im Bereich der Sättigungs- dampfdruckkurve 10. Sättigungsdampfdruckkurven gebräuchlicher Stoffe sind bekannt und können in Handbüchern nachgeschlagen oder über Formeln interpoliert werden.
Anschliessend an die Ermittlung des Sättigungsdampfdrucks ps wird ein Solldruckbereich 11 bestimmt. In diesem Solldruckbereich 11 sollte sich vorzugsweise der Mischdruck pm im Dampfraum 6 befinden, bei der dazugehörigen Mischtem- peratur Tm, damit die Destillation optimal, d.h. möglichst energiearm und effizient, abläuft.
Der Solldruckbereich 11 liegt knapp oberhalb der Sättigungsdampfdruckkurve, da er das Mass an druckerhöhendem Fremdgas einschliesst. Er ist durch eine untere Druckgrenze p1 und eine obere Druckgrenze p2 begrenzt, wie in Fig. 2 dargestellt. Die untere Druckgrenze p1 entspricht theoretisch dem Sättigungsdampfdruck ps, wird aber aus praktischen Gründen für die Steuerung auf mindestens 0.1% über den Sättigungsdampfdruck ps gesetzt. Die obere Druckgrenze p2 ist höchstens 6% über dem Sättigungsdampfdruck ps.
Zunächst wird der Mischdruck pm mit dem Solldruckbereich 11 verglichen. Bei Prozessbeginn wird der Mischdruck pm weit über dem Solldruckbereich 11 liegen. In diesem Fall wird der Druck im Dampfraum 6 genau so lange reduziert, bis der Mischdruck pm die untere Druckgrenze p1 erreicht hat. Dies geschieht vorzugsweise mit dem Druckregulator 9, der eine Pumpe sein kann. Sobald die Druck- grenze p1 erreicht ist, wird der Druckregulator 9 abgestellt.
Nun läuft die Destillation selbständig, solange das Ausgangsmaterial 4 im Kondensator eine Temperatur T1 hat, die höher ist als die Mischtemperatur Tm. Da das Gas anstrebt, im thermodynamischen Gleichgewicht mit der Flüssigkeit zu stehen, wird die Verdampfung der zu destillierenden Flüssigkeit Fd gefördert. Da wiederum ein thermodynamisches Gleichgewicht angestrebt wird, wird die Kondensation gefördert, solange die Temperatur T2 des Kondensators tiefer ist als die Mischtemperatur Tm.
Solange der Mischdruck pm nicht über die Druckgrenze p2 steigt, stellt sich ohne Eingreifen des Druckregulators 9 auch bei Veränderungen der Temperatur des zu verdampfenden oder des zu kondensierenden Mediums automatisch der angestrebte, prozessoptimale Mischdruck ein.
Während die Destillation läuft, werden ständig die Mischtemperatur Tm und der Mischdruck pm überwacht, bis der Mischdruck pm die obere Druckgrenze p2 erreicht hat. Der Druck kann sich erhöhen, weil beispielsweise das Behältersystem 1 oder eine andere Komponente der Anlage ein kleines Leck aufweisen, wodurch Fremdgas in den Dampfraum 6 eindringen kann, oder weil sich Fremdgase aus anderen Stoffen der Anlage oder aus dem Ausgangsmaterial 4 gelöst haben. Sobald der Mischdruck pm die obere Druckgrenze p2 erreicht oder überschritten hat, wird der Druck im Dampfraum 6 durch Einschalten des Druckregulators resp. der Pumpe 9 wieder gesenkt. Sobald der Mischdruck pm die untere Druckgrenze p1 erreicht hat, kann der Druckregulator 9 wieder abgeschaltet werden. Nun läuft die Destillation wieder mit optimalen Parametern. Diese Vorgänge können so lange fortgesetzt werden, wie zu destillierendes Gemisch zugeführt und Kondensat abgeführt werden können.
Die Güte der Kondensation hängt massgeblich vom Fremdgasanteil ab. Ein Fremdgasanteil im Dampfraum von einzelnen Promillen kann die Kondensation bereits um 20 bis 50 % reduzieren. Daher wird der Mischdruck ständig überwacht und mit dem Solldruckbereich 11 verglichen.
Es hat sich erwiesen, dass sich das Fremdgas sich am Ende des Kondensations- weges ansammelt, da es durch den Gasstrom, der vom Ausgangsmaterial 4 durch den Dampfraum 6 zum Kondensat 5 strömt, mitgespült wird, aber letztlich nicht kondensieren kann. Daher ist es vorteilhaft, den Dampf am Ende des Kondensationsweges im Kondensator 3 abzusaugen, direkt beim Kondensat 5. Auf diese Weise kann beim Reduzieren des Mischdruckes pm die höchste Konzentration von Fremdgas aus dem Behältersystem 1 entfernt werden. Andererseits soll darauf geachtet werden, dass das in Tropfen abfallende Kondensat nicht direkt in den Saugstrom des Druckregulators resp. der Pumpe 9 gerät. Dies kann durch eine Schutzblende 19 erreicht werden.
Der Solldruckbereich 11 soll dabei nicht zu nahe an der Sättigungsdampfdruck- kurve 10 liegen, da sonst bei der Reduktion des Mischdruckes pm zu viel des zu kondensierenden Dampfes Dk durch die Pumpe 9 abgesaugt wird. Es hat sich als vorteilhaft erwiesen, die untere Druckgrenze p1 vorzugsweise mindestens 0.2% und die obere Druckgrenze p2 vorzugsweise höchstens 4% über dem Sättigungsdampfdruck ps zu wählen. Im Gegensatz zu herkömmlichen Destillationsverfahren überwacht das erfindungsgemässe Verfahren stets den vorherrschenden Mischdruck pm im Dampfraum 6 und vergleicht diesen mit dem Solldruckbereich 11 , um bei Bedarf den Mischdruck pm entsprechend zu regeln. Herkömmliche Verfahren saugen meist unentwegt Gas aus dem Dampfraum ab und arbeiten somit in einem Druckbereich, der unterhalb des Sättigungsdampfdruckes ps liegt, wodurch einerseits viel Energie aufgewendet werden muss und andererseits viel des energetisch wertvollen Kondensates unnötigerweise aus dem Dampf räum entfernt wird. Das vorliegende Verfahren aber arbeitet die meiste Zeit ohne Vakuumpumpe, da diese nur zeitweise und nur kurz eingeschalten werden muss.
Die Temperaturdifferenz T1-T2 zwischen dem Verdampfer 2 und dem Kondensator 3 kann mit diesem erfindungsgemässen Verfahren besonders klein gewählt werden und beträgt vorzugsweise zwischen 1K und 10K, im Idealfall zwischen 1K und 3K. Dies ist ein enormer energetischer Vorteil, weil dadurch wenig Energie zum Schaffen der Temperaturdifferenz aufgewandt werden muss.
Die Verdampfung und/oder die Kondensation können gefördert werden, indem die Oberflächen des Ausgangsmaterials 4 im Verdampfer 2 und/oder die Oberfläche des Kondensats 5 im Kondensator 3 vergrössert werden. Eine Oberflächenver- grösserung lässt sich beispielsweise durch ein feines Zersprühen des Ausgangsmaterials 4 resp. des Kondensats 5 erreichen. Eine dafür eingerichtete feine Düse einer Zersprüheinheit 15 im Verdampfer 2 und/oder im Kondensator 3 kann jede Sekunde eine Oberfläche von mehreren Quadratmetern erzeugen, an welcher Dampf entsteht resp. der zu kondensierende Dampf Dk kondensieren kann. Vor- teilhafter weise wird das Zersprühen derart richtungsorientiert angeordnet, dass eine optimale Durchmischung des Dampfes im Dampfraum 6 zustande kommt. Dies ist wichtig, um einen möglichst grossen Wärmeübergang zwischen dem Ausgangsmaterial 4 und dem Dampf im Dampfraum 6 zu erreichen. Dadurch wird die Effizienz gefördert und die Mischtemperatur Tm lässt sich zuverlässig bestimmen. Andernfalls oder zusätzlich kann ein Ventilator 16 im Dampf räum 6 angeordnet werden, um die gewünschte Durchmischung des Dampfes zu erreichen. Eine Heizung 13 im Bereich von Zuführleitungen 12 zur Zersprüheinheit 15 seitens Verdampfer 2 und eine Kühlung 14 im Bereich der Zuführleitungen 12 von Zersprüheinheit 15 seitens Kondensator 3 sorgen für das Erreichen der Solltemperaturen T1 und T2 im Verdampfer 2 und im Kondensator 3. Natürlich können die Temperatur regulierenden Einheiten 13 und 14 auch direkt im Ausgangsmaterial 4 und im Kondensat 5 angeordnet sein. Die Oberflächenvergrösserung kann auch dadurch erreicht werden, indem eine flächenvergrössemde, poröse Füllpackung im Verdampfer 2 und/oder im Kondensator 3 eingebracht wird. Diese ermöglichen im Kondensator eine maximale Tem- peraturangleichung zwischen dem Mischdampf und dem Kondensat.
Eine weitere bevorzugte Ausführungsform umfasst eine oder mehrere Blenden 17 oder eine Tropfen abscheidende Füllung, welche verhindern, dass Tropfen des gesprühten Ausgangsmaterials 4 direkt in den Kondensator 3 gelangen können. Umgekehrt sollen auch keine Tropfen des Kondensats 5 in den Verdampfer 2 gelangen. Zudem können Mischer 18 das Ausgangsmaterial 4 und/oder das Kon- densat 5 mischen, um deren Oberflächentemperaturen konstant zu halten.
In Fig. 3 ist eine Anlage dargestellt mit einer weiteren Verbesserung der Effizienz. Die Verbesserung wird erreicht, indem das Verfahren in zwei oder mehreren solchen Behältersystemen 1, V, 1" stufenweise durchgeführt wird. Jedes Behältersystem 1, V, 1" arbeitet in einem anderen Temperaturbereich (T1, T2), (T1\ T2'), (T1", T2"). Die Temperaturbereiche der einzelnen Behältersysteme 1, V, 1" unterscheiden sich, sie grenzen vorzugsweise aneinander an. In einem ersten Behältersystem 1 wird das Verfahren beispielsweise mit den Temperaturen T1 = 9O0C und T2 = 800C durchgeführt, wobei sich eine Mischtemperatur im Dampfraum von beispielsweise 850C einstellt. Im zweiten Behältersystem V werden dann die Temperaturen T1' = 80°C und T2' = 70°C eingestellt, im dritten Behältersystem 1" die Temperaturen T1" = 70°C und T2" = 600C etc., und im letzten Behältersystem 1'" beispielsweise die Temperaturen JV" = 40°C und T2'" = 300C.
Vorzugsweise wird die Energie zum Temperieren eines Verdampfers 2 oder Kondensators 3 mindestens teilweise direkt oder indirekt über Wärmetauscher aus der Energie eines anderen Verdampfers 2 oder Kondensators 3 gewonnen wird, dessen Temperatur verändert werden soll.
Um Energie zu sparen kann die Fremdgasbefreiung mittels einer Vakuumstrahlpumpe durchgeführt werden, welche entweder mit dem zu versprühenden Kondensat 5 der selben oder einer kühleren Stufe, mit Dampf einer anderen Stufe oder mit Umgebungsluft angetrieben wird. ^
- 10 -
Bei einer solchen Anordnung lässt sich dies einfach erreichen, indem beispielsweise jeweils ein Wärmetauscher 20 zwischen einem Kondensat 5 und einem Ausgangsmaterial 4 eines folgenden Behältersystems 1 oder einer Serie vorangehender Stufen angeordnet ist, wenn sie dieselbe Temperaturen haben sollen. Vor- zugsweise werden dazu Plattenwärmetauscher verwendet.
Die Verdampfer 2 und/oder Kondensatoren 3 der verschiedenen Behältersysteme 1, 1', ... können insbesondere übereinander angeordnet sein. Besonders geeignet ist eine horizontale Anordnung der Kondensatoren und eine vertikale Anordnung der Verdampfer. Die notwendigen Verbindungen zwischen den einzelnen Behäl- terkomponenten werden jeweils mit Dampfleitungen erreicht. Der Vorteil liegt besonders im energiearmen Verfahren der Destillation, da die Energie optimal genutzt werden kann. Die verwendeten Wärmetauscher können innerhalb oder aus- serhalb des Behältersystems 1 angeordnet sein. Gründe für die externe Anordnung sind vor allem der bessere Zugang für eine Reinigung der Wärmetauscher. Als Wärmetauscher eignen sich insbesondere Plattenwärmetauscher oder Rohrbündel.
Um abgesehen von den Betriebskosten auch die Anschaffungskosten niedrig zu halten, werden Behältersysteme 1 und/oder andere Komponenten der Anlage, beispielsweise die Verrohrung, vorzugsweise ganz oder hauptsächlich aus kos- tengünstigem Kunststoff hergestellt.
Das Behältersystem 1 muss vorzugsweise nur auf Überdruck oder auf Unterdruck stabil sein, nicht beides. Dies ermöglicht einen kostengünstigen Aufbau des Behältersystems 1. Er kann beispielsweise aus einer technischen Kunststofffolie bestehen, die sich an einem festen Gerüst, das innerhalb oder ausserhalb der Folie an- geordnet ist, abstützt. Die Unterdrucke müssen nicht so stark sein. Für Wasser ist der absolute Dampfsättigungsdruck bei 5O0C noch 123 mbar (relativ -877 mbar). Daher ist die Anforderung der Reissfestigkeit an die Folie noch in einem Bereich, in dem Materialien zu vernünftigen Preisen erhältlich sind.
Wenn mit Temperaturen über 1000C gearbeitet wird, so muss ein Überdruck im Behältersystem 1 erzeugt werden, um die Destillation nach dem erfindungsge- mässen Verfahren ins Laufen zu bringen. In diesem Fall müsste das Gerüst aus- 8 000143
- 11 -
serhalb der Folie angeordnet sein. Der Druckregulator 9 ist in diesem Fall ein Ven- til, das Gas aus dem Dampfraum in die Umgebung ablassen kann, wenn der Druck gesenkt werden soll. Der Überdruck kann durch eine Pumpe oder durch Heizen zustande kommen.
Auf Über- und Unterdruck muss das Behältersystem nur dann gleichzeitig stabil sein, wenn im Bereich um den Normaldruck herum gearbeitet werden soll, also im Fall von Wasser im Bereich von 1000C.
Das Verfahren kann Batch-weise durchgeführt werden oder kontinuierlich. In der Fig. 1 sind schematisch Ein- und Ausfluss angegeben um die Anlage zu füllen und zu entleeren.
Wichtig am beschriebenen Verfahren ist die genaue Einhaltung der geforderten Temperatur-Druckverhältnisse. Im Idealzustand, wenn die Anlage überhaupt keine Lecks aufweist und sich nur die geringe, zugelassene Menge Fremdgas im Dampfraum beinhaltet, muss der Druckregulator 9 nach Prozessbeginn überhaupt nicht eingeschalten werden. Der Destillationsprozess arbeitet, einmal eingerichtet, selbständig weiter, solange die Prozessparameter im vorgegebenen Bereich bleiben, das heisst, solange ein Temperaturgefälle zwischen T1 und T2 besteht. Wenn die Anlage praktisch keine Lecks umfasst, muss der Druckregulator 9 höchstens etwa 1-5% der gesamten Destillationsdauer arbeiten. Bei einigen klei- nen Lecks sind bereits mit Einsatzzeiten des Druckregulators 9 zwischen 3% und 50 % der Betriebszeit zu rechnen.
Ein gravierendes Problem von Lecks ist das Eindringen von Fremdgas. Dichtheit der Anlage ist von hoher Wichtigkeit, da bereits ein geringfügig erhöhter Fremdgasanteil in erster Linie für eine stark verminderte Effizient der Anlage verantwort- lieh ist. Es hat sich erwiesen, dass handelsübliche Qualitäten von Pumpen, Rohrverbindungen, Flanschen und anderen Komponenten nicht ausreichen, um leckfrei, wie hier gefordert, zu arbeiten. Selbst hochwertige Komponenten reichen diesbezüglich in der Regel noch nicht aus, um den Anforderungen zu entsprechen. Zudem kann es zeitraubend und kostspielig sein, ein Leck zu finden. Um Lecks zu verhindern, können alle Komponenten, die druckrelevante Verbindungen und Anschlüsse enthalten, geflutet werden. Diese Komponenten umfassen die Teile der Wände von Verdampfer 2 und Kondensator 3, an denen Flansche angebracht sind, sowie alle Komponenten wie Pumpen, Fühler, Ventile, Ein- und Auslässe und andere Flansche. Es kann sogar die ganze Anlage geflutet werden.
Geflutet wird vorzugsweise mit dem Medium, das dem Kondensat 5 entspricht. Durch die Flutung wird gewährleistet, dass bei allen undichten Stellen keinesfalls Fremdgas eintreten kann, sondern nur Kondensat. Dieses stört in keinem Masse den Prozess, es ist nicht einmal feststellbar. Durch diese Flutung erübrigt sich eine ständige Kontrolle der Anlage auf Dichtigkeit, was sehr aufwändig sein kann.
Die einzige Energie, die zwingend für den Prozess aufgewendet werden muss, ist die für die Schaffung der unterschiedlichen Temperaturen T1 und T2 sowie für die Erhaltung einer Temperaturdifferenz, und, wenn die Ausbeute erhöht werden soll, die Energie für die Förderung der Flüssigkeiten zu den Zersprüheinheiten zwecks Vergrösserung der Oberflächen.
Ein entscheidender Unterschied des erfindungsgemässen Verfahrens zum Stand der Technik besteht im kontrollierten Absaugen des Fremdgases. Das beschriebenen Druckreduzieren wird am Ende des Kondensationsweges gemacht, um nicht nur den Druck zu reduzieren, sondern um das Fremdgas zu entfernen. Im Unterscheid zu bekannten Verfahren wird nur so lange abgesaugt, bis der Fremdgasanteil unter einen bestimmten Grenzwert gefallen ist. Dies wird durch den Ver- gleich des vorherrschenden Mischdrucks pm zum bei der vorherrschenden Mischtemperatur Tm ermittelten Sättigungsdampfdruck ps überwacht. Hat der Mischdruck pm einen bestimmten Grenzwert, beispielsweise 0.1% über dem Sättigungsdampfdruck ps erreicht, wird das Absaugen eingestellt, um zu verhindern, dass der Prozess schlechter läuft. Zum einen wird die Effizient des Prozesses mit niedrigerem Druck nicht besser, zum anderen braucht das Absaugen unnötig Energie, und zudem wird Dampf aus dem System entfernt, dessen Energie nun nicht mehr in einer späteren Stufe verwendet werden kann. Daher läuft der Prozess nur in einem schmalen Druck-Temperaturbereich optimal, der stets einzuhalten ist, um das Verfahren energieeffizient durchführen zu können.
Bevorzugt wird der beschriebene Prozess in einem Container, vorzugsweise in einem ISO Container (20 oder 40 Fuss Normcontainer) durchgeführt, in dem sich die Anlage befindet und welcher ein Teil der Anlage sein kann. Der Transport vom Herstellungsort zum Betriebsort der Anlage kann so einfach und kostengünstig per Containerschiff oder per Lastwagen erfolgen. Zudem erleichtert dies die Wartung, da, wenn die Destillation an einem der Zivilbevölkerung fernen Ort durchgeführt wird, der Container wiederum bequem auf einem Lastwagen in eine Wartungsstelle gebracht werden kann.
Die in Fig. 4 beschriebene erfindungsgemässe Destillationsanlage umfasst ein Behältersystems 1 mit je mindestens einem Kondensator 3, einem Verdampfer 2 sowie einen den Verdampfer 2 und den Kondensator 3 verbindenden Dampfraum 6 zum Destillieren eines Ausgangsmaterials 4 nach einem oben beschriebenen Verfahren. Diese Destillationsanlage ist in einem Container 21 , insbesondere in einem ISO Container 21 untergebracht. Vorzugsweise wirken Teile des Containers 21, beispielsweise Wände, gleichzeitig als Teile des Behältersystems 1. Somit ist die Destillationsanlage im Container 21 integriert. Solche Container 21 sind güns- tig zu erwerben und hoch standardisiert. Zudem gibt es leckfreie Container 21 , welche den hier beschriebenen Ansprüchen genügen. Verdampfer 2 und Kondensator 3 können separat in verschiedenen Containern 21 untergebracht sein, verbunden durch einen an diesen verbindend angebrachten Dampfraum 6, oder sie können sich einen Container 21 teilen, wie dies in Fig. 4 dargestellt ist. In einem Container 21 können auch mehrere unabhängige Verdampfer 2 und/oder Kondensatoren 3 für verschiedene Druck- und Temperaturstufen untergebracht und prozessdienlich miteinander verbunden sein.
In der dargestellten Anordnung der Fig. 4 verfügt der Container 21 über einen Reaktorbereich 22, in dem sich der Verdampfer (2) und der Kondensator (3) befin- den, über einen gefluteten Bereich 23, in dem sich druckrelevante Komponenten wie Pumpen, Ventile, Fühler und Flansche befinden, sowie über einen Servicebereich 24, für elektronische Komponenten 25, die nicht geflutet sind. Dieser Servicebereich 24 ist zugänglich zur Bedienung und Wartung der Anlage.
Die Anordnungen innerhalb des Containers 21 können auch alternativ eingerichtet sein. Insbesondere kann der Dampfraum 6 direkt in einer Trennwand zwischen
Verdampfer 2 und Kondensator 3 durch Öffnungen oder Kanäle ausgestaltet sein.
Der geflutete Bereich 23 mit den Anschlüssen kann auch in oberen Bereich des Containers 21 angeordnet sein. Als weitere Alternative können Verdampfer 2 und Kondensator 3 auch übereinander positioniert sein.
Für Destillationsanlagen mit höheren Kapazitäten lassen sich erfindungsgemäss auch mehrere Container übereinander oder nebeneinander anordnen, die mitein- ander verbunden sind.
Bezugszeichenliste
1 Behältersystem
2 Verdampfer
3 Kondensator 4 Ausgangsmaterial
5 Kondensat
6 Dampfraum
7 Drucksensor
8 Temperatursensor 9 Regulator (Pumpe und/oder Ventil)
10 Dampfdruckkurve
11 Solldruckbereich
12 Leitungen
13 Heizung 14 Kühlung
15 Zersprüheinheit
16 Ventilator
17 Blenden
18 Mischer 19 Schutzblende
20 Wärmetauscher
21 Container
22 Reaktorbereich
23 gefluteter Bereich 24 Servicebereich
25 Elektronische Komponenten
pm Mischdruck im Dampfraum ps Sättigungsdampfdruck Tm Mischtemperatur im Dampfraum
T1 Temperatur im Verdampfer
T2 Temperatur im Kondensator
Fd die zu destillierende Flüssigkeit
Dk der zu kondensierende Dampf V Pumpe und/oder Ventil zum Regulieren des Drucks

Claims

Patentansprüche
1. Verfahren zum Destillieren eines Ausgangsmaterials (4) umfassend eine zu destillierende Flüssigkeit Fd, unter Verwendung eines gasdichten, auf Über- und/oder Unterdruck festen Behältersystems (1), das einen Verdampfer (2) mit dem Ausgangsmaterial (4), das temperiert werden kann, einen Kondensator (3) zum Kondensieren der zu Dampf gewordenen, temperierbaren Flüssigkeit Fd zum Kondensat (5), sowie einen den Verdampfer (2) und den Kondensator (3) verbindenden Dampfraum (6) umfasst, wobei der Dampf- räum (6) mit einem Drucksensor (7) zum Messen des sich darin einstellenden Mischdruckes pm, einem Temperaturfühler (8) zum Messen der sich darin einstellenden Mischtemperatur Tm, sowie mit einem Druckregulator (9) versehen ist, gekennzeichnet durch die Verfahrensschritte, dass a) der Verdampfer (2) mit dem Ausgangsmaterial (4) auf eine erste Tempe- ratur T1 und der Kondensator (3) auf eine zweite, niedrigere Temperatur
T2 gebracht werden; b) der Mischdruck pm und die Mischtemperatur Tm gemessen werden; c) der Sättigungsdampfdruck ps der Flüssigkeit Fd zu der gemessenen Mischtemperatur Tm bestimmt wird; d) ein Solldruckbereich (11) bestimmt wird, der durch eine untere Druckgrenze p1 , die mindestens 0.1% über dem Sättigungsdampfdruck ps und eine obere Druckgrenze p2, die höchstens 6% über dem Sättigungsdampfdruck ps liegt, begrenzt ist; e) der Mischdruck pm mit dem Solldruckbereich (11) verglichen wird; f) der Mischdruck pm genau so lange durch den Druckregulator (9) reduziert wird, bis er die untere Druckgrenze p1 erreicht hat; g) die Schritte a) bis e) wiederholt werden, bis der Mischdruck pm die obere
Druckgrenze p2 erreicht hat; h) die Schritte f) und g) wiederholt werden, bis die Destillation gestoppt wer- den soll; wobei bei der Druckreduktion im Schritt f) Gase am Ende des Kondensationsweges im Kondensator (3) abgesaugt werden, um möglichst viel Fremdgas aus dem Behältersystem (1) zu entfernen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die untere Druckgrenze p1 mindestens 0.2% über dem Sättigungsdampfdruck ps und die obere Druckgrenze p2 höchstens 4% über dem Sättigungsdampfdruck ps liegen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Tem- peraturdifferenz T1-T2 zwischen dem Verdampfer (2) und dem Kondensator (3) zwischen 1 und 10K, vorzugsweise zwischen 1 und 3K beträgt.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oberflächen des Ausgangsmaterials (4) im Verdampfer (2) und/oder die Oberfläche des Kondensats (5) im Kondensator (3) vergrössert wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Oberflächen- vergrösserung dadurch erreicht wird, dass das Ausgangsmaterial (4) und/oder das Kondensat (5) zersprüht werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Zersprühen richtungsorientiert ist, um einen möglichst grossen Wärmeübergang zwi- sehen dem Ausgangsmaterial (4) und dem Dampf im Dampfraum (6) zu er- reichen.
7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Oberflä- chenvergrösserung dadurch erreicht wird, dass eine flächenvergrössernde, poröse Füllpackung eingebracht wird.
8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass Blenden (17) verhindern, dass Tropfen des gesprühten Ausgangsmaterials (4) direkt in den Kondensator (3) gelangen können. _ H2008/000143
- 18 -
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dampfverteilung im Dampfraum (6) durchmischt wird, vorzugsweise durch einen Ventilator (16).
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Antrieb des Ventilators durch den eingesprühten Massenstrom des zu verdampfenden
Mediums oder das eingesprühten Kondensats erfolgt.
11. Verfahren nach einem der vorhergehenden Ansprüche mit Rückbezug auf Anspruch 5, dadurch gekennzeichnet, dass die Fremdgasbefreiung im Schritt f) durch eine Vakuumstrahlpumpe geschieht, welche entweder mit dem zu versprühenden Kondensat (5) der selben oder einer kühleren Stufe, mit
Dampf einer anderen Stufe oder mit Umgebungsluft angetrieben wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Mischer (18) das Ausgangsmaterial (4) und/oder das Kondensat (5) mischen, um die Oberflächentemperatur konstant zu erhalten.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren in zwei oder mehreren solcher Behältersysteme (1 , 1', ...) durchgeführt wird, wobei die Temperaturbereiche T1, T2 der einzelnen Behältersysteme (1, 1', ...) aneinander angrenzen.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Energie zum Heizen eines Verdampfers (2) oder Kondensators (3) mindestens teilweise direkt oder indirekt über Wärmetauscher aus der Energie eines anderen Verdampfers (2) oder Kondensators (3) gewonnen wird, dessen Temperatur verändert werden soll.
15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass ein Wärmetauscher, insbesondere ein Plattenwärmetauscher oder ein Rohrbündel, zwischen dem Kondensat (5) eines ersten Behältersystems (1) und dem Ausgangsmaterial (4) eines weiteren Behältersystems (1) deren Temperaturen angleicht.
16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Verdampfer (2) und/oder Kondensatoren (3) der verschiedenen Behältersysteme (1 , 1', ...) übereinander angeordnet sind.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass das Behältersystem (1) und/oder die Verrohrung ganz oder hauptsächlich aus Kunststoff bestehen.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gesamte Anlage oder Teile davon, insbesondere Wände des Behältersystems (1), an denen Verbindungsstücke angebracht sind, und/oder Pumpen, Ventile, Fühler, Flansche und/oder andere druckrelevante
Komponenten, geflutet angeordnet sind.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Druckregulator (9) in Schritt f) höchstens 50%, vorzugsweise höchstens 3% der Destillationsdauer arbeitet.
20. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Destillation in einem Container, insbesondere in einem ISO Container durchgeführt wird.
21. Destillationsanlage umfassend ein Behältersystems (1) mit einem Kondensator (3), einem Verdampfer (2) sowie einen den Verdampfer (2) und den Kon- densator (3) verbindenden Dampfraum (6) zum Destillieren eines Ausgangsmaterials (4) nach einem Verfahren gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anlage in einem Container (21), insbesondere in einem ISO Container untergebracht ist.
22. Destillationsanlage gemäss Anspruch 21, dadurch gekennzeichnet, dass die Destillationsanlage derart im Container (21) integriert ist, dass Teile des Containers, insbesondere Wände, als Teile des Behältersystems (1) wirken.
23. Destillationsanlage gemäss Anspruch 21 oder 22, dadurch gekennzeichnet, dass der Container (21) über einen Reaktorbereich (22) verfügt, in dem sich der Verdampfer (2) und der Kondensator (3) befinden, über einen gefluteten Bereich (23), in dem sich druckrelevante Komponenten wie Pumpen (9), Ventile, Fühler (7, 8) und Flansche befinden, sowie über einen Servicebereich (24), für elektronische Komponenten 25, der zur Bedienung und Wartung der Anlage zugänglich ist.
24. Destillationsanlage gemäss einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, dass mehrere Container (21) übereinander oder nebeneinander angeordnet und miteinander verbunden sind.
25. Destillationsanlage gemäss einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, dass in einem Container (21) mehrere Verdampfer (2) und Kondensatoren (3) verschiedener Druck- und Temperaturstufen untergebracht und prozessdienlich miteinander verbunden sind.
EP08714793A 2007-04-04 2008-04-01 Verfahren zum destillieren eines ausgangsmaterials und anlage zum durchführen eines solchen verfahrens Withdrawn EP2139571A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11164665A EP2361659B1 (de) 2007-04-04 2008-04-01 Verfahren zum Destillieren eines Ausgangsmaterials und Anlage zum Durchführen eines solchen Verfahrens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5472007 2007-04-04
PCT/CH2008/000143 WO2008122136A1 (de) 2007-04-04 2008-04-01 Verfahren zum destillieren eines ausgangsmaterials und anlage zum durchführen eines solchen verfahrens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP11164665A Division EP2361659B1 (de) 2007-04-04 2008-04-01 Verfahren zum Destillieren eines Ausgangsmaterials und Anlage zum Durchführen eines solchen Verfahrens

Publications (1)

Publication Number Publication Date
EP2139571A1 true EP2139571A1 (de) 2010-01-06

Family

ID=38330229

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11164665A Active EP2361659B1 (de) 2007-04-04 2008-04-01 Verfahren zum Destillieren eines Ausgangsmaterials und Anlage zum Durchführen eines solchen Verfahrens
EP08714793A Withdrawn EP2139571A1 (de) 2007-04-04 2008-04-01 Verfahren zum destillieren eines ausgangsmaterials und anlage zum durchführen eines solchen verfahrens

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11164665A Active EP2361659B1 (de) 2007-04-04 2008-04-01 Verfahren zum Destillieren eines Ausgangsmaterials und Anlage zum Durchführen eines solchen Verfahrens

Country Status (17)

Country Link
US (1) US8617359B2 (de)
EP (2) EP2361659B1 (de)
JP (1) JP5589834B2 (de)
KR (1) KR101346401B1 (de)
CN (1) CN101663075B (de)
AU (1) AU2008235231B2 (de)
BR (1) BRPI0809444B1 (de)
CY (1) CY1113952T1 (de)
ES (1) ES2393286T3 (de)
HK (1) HK1141751A1 (de)
HR (1) HRP20120927T1 (de)
IL (1) IL200843A (de)
MA (1) MA31357B1 (de)
MY (1) MY148581A (de)
PT (1) PT2361659E (de)
RU (1) RU2459651C2 (de)
WO (1) WO2008122136A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2446045A4 (de) * 2009-06-26 2017-04-19 GEVO, Inc. Wiedergewinnung von höheren alkoholen aus gelösten wässrigen lösungen
CN104192925A (zh) * 2014-07-30 2014-12-10 江苏河海新能源有限公司 蒸发冷凝系统及其应用
CH710735A1 (de) * 2015-02-13 2016-08-15 Thermal Purification Tech Ltd Mehrstufige Destillationsanlage, Verfahren zum Betreiben einer solchen und Steuerung dafür.
CH712029A1 (de) 2016-01-12 2017-07-14 Thermal Purification Tech Ltd Nieder-Temperatur-Destillationsanlage.
CN108046362B (zh) * 2017-12-15 2021-03-26 鲁西化工集团股份有限公司煤化工分公司 一种高效耐蚀闪蒸分离设备
CN110873622B (zh) * 2018-09-03 2021-09-24 中国石油化工股份有限公司 测定固体物质饱和蒸气压的方法
CN110170177A (zh) * 2019-06-17 2019-08-27 江阴市欧姆机械设备有限公司 蒸发冷凝器
US20220410029A1 (en) * 2019-11-25 2022-12-29 King Abdullah University Of Science And Technology Tubeless, multi-effect distillation system and method
CN112337123A (zh) * 2021-01-04 2021-02-09 郑州长城科工贸有限公司 基于溶液饱和温度-压强关系自动蒸馏的方法及系统
CN114890603A (zh) * 2022-06-06 2022-08-12 嘉兴市中新医疗仪器有限公司 一种化工生产用高效蒸馏水装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218241A (en) * 1960-01-26 1965-11-16 Singmaster & Breyer Inc Inhibiting scale formation in fresh water recovery
US4053368A (en) * 1973-11-07 1977-10-11 Battelle Memorial Institute Process for the purification of water
US4302297A (en) * 1977-05-24 1981-11-24 Humiston Gerald F Desalination apparatus with power generation
SU990247A1 (ru) * 1980-11-26 1983-01-23 Предприятие П/Я А-7815 Устройство дл очистки жидкостей дистилл цией
SU1337108A1 (ru) * 1985-09-12 1987-09-15 Предприятие П/Я Г-4937 Циркул ционный аппарат дл молекул рной дистилл ции
DE59303701D1 (de) 1992-03-30 1996-10-17 Rene Meier Verfahren und Einrichtung zum Aufbereiten von Prozessabwasser mittels Vakuumdestillation mit indirekter Wärmerückgewinnung
DE4226487C1 (de) * 1992-08-11 1994-01-27 Noell Dbi Energie Entsorgung Verfahren und Vorrichtung zur Zuführung von Klärschlamm in einen Reaktor zur thermischen Entsorgung
RU2082787C1 (ru) * 1994-06-10 1997-06-27 Государственный научный центр вирусологии и биотехнологии "Вектор" Аппарат для разделения металлов дистилляцией в вакууме
US6004433A (en) * 1997-02-03 1999-12-21 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes George Claude Purification of electronic specialty gases by vapor phase transfilling
AT409421B (de) * 1999-02-23 2002-08-26 Wolf Systembau Gmbh & Co Kg Verfahren und vorrichtung zum trocknen von feuchtigkeit enthaltenden produkten
DE19940992A1 (de) * 1999-08-28 2001-03-01 Joerg Korb Frischwassererzeugungsanlage
JP2001276808A (ja) * 2000-03-31 2001-10-09 Onodera Kozaburo 水の分離方法および水の分離装置
JP2002023388A (ja) * 2000-07-04 2002-01-23 Casio Comput Co Ltd 有機溶剤回収装置およびその装置を用いたパターン形成方法
WO2002009837A1 (de) 2000-07-27 2002-02-07 Ips Gmbh Einrichtung zum destillieren eines mediums
DE10100666A1 (de) 2001-01-09 2002-07-11 Alexander Von Poswik Einrichtung zur dezentralen Gewinnung von Trinkwasser oder Brauchwasser
US7431806B2 (en) * 2002-09-20 2008-10-07 Lev Group, Llc Low energy vacuum distillation method and apparatus
WO2004069370A1 (ja) 2003-02-10 2004-08-19 Sato, Chisato 液体封止装置、液体封止減圧装置、この液体封止減圧装置を用いた蒸発装置、凝縮装置、不凝縮ガス除去装置、蒸発凝縮装置、熱エネルギ源分離装置、冷水製造装置、淡水化装置、および発電装置
WO2005056150A2 (en) 2003-12-03 2005-06-23 Arizona Board Of Regents Method and apparatus for simultaneous heat and mass transfer utilizing a carrier-gas at various absolute pressures
RU55766U1 (ru) * 2006-04-20 2006-08-27 Юрий Леопольдович Яковлев Дистиллятор
HUE035231T2 (hu) * 2007-04-04 2018-05-02 Markus Lehmann Eljárás nedves anyag kiszárítására

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008122136A1 *

Also Published As

Publication number Publication date
AU2008235231A1 (en) 2008-10-16
JP2010523303A (ja) 2010-07-15
BRPI0809444B1 (pt) 2019-04-24
WO2008122136A8 (de) 2008-12-04
RU2459651C2 (ru) 2012-08-27
BRPI0809444A2 (pt) 2014-09-09
CN101663075A (zh) 2010-03-03
HK1141751A1 (en) 2010-11-19
CY1113952T1 (el) 2016-07-27
ES2393286T3 (es) 2012-12-20
RU2009140746A (ru) 2011-05-10
JP5589834B2 (ja) 2014-09-17
EP2361659A1 (de) 2011-08-31
IL200843A (en) 2014-01-30
WO2008122136A1 (de) 2008-10-16
MA31357B1 (fr) 2010-05-03
EP2361659B1 (de) 2012-08-22
IL200843A0 (en) 2010-05-17
US20100163398A1 (en) 2010-07-01
MY148581A (en) 2013-04-30
HRP20120927T1 (hr) 2012-12-31
PT2361659E (pt) 2012-12-03
KR101346401B1 (ko) 2014-01-02
US8617359B2 (en) 2013-12-31
CN101663075B (zh) 2013-03-20
KR20100014636A (ko) 2010-02-10
AU2008235231B2 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
EP2361659B1 (de) Verfahren zum Destillieren eines Ausgangsmaterials und Anlage zum Durchführen eines solchen Verfahrens
EP1572313B1 (de) Verfahren und vorrichtung zur erzeugung einer reinflüssigkeit aus einer rohflüssigkeit
EP0094543B1 (de) Verfahren und Vorrichtung zur Transmembrandestillation
DE10347695A1 (de) Mehrstufiges Vakuumdestillations-, Vakuumkühl- und Vakuumgefrierverfahren und Apparate für die Lösungsabscheidung und Meerwasser-Entsalzung
DE2202260A1 (de) Verfahren zum Destillieren von Fluessigkeiten
DE2407686A1 (de) Destillierverfahren
DE60316893T2 (de) Verfahren und Vorrichtung zur Gewinnung einer gereinigten Flüssigkeit
EP3256229B1 (de) Mehrstufige destillationsanlage, verfahren zum betreiben einer solchen
DE69922547T2 (de) Verfahren und vorrichtung zum aufkonzentrieren von feststoffhaltigem schlamm
EP2140217B1 (de) Verfahren zum trocknen eines nassmaterials
EP2832241B1 (de) Vorrichtung und verfahren zur kondensation eines dampfes in einer vakuumkammer
DE19737717C2 (de) Verfahren zum Steuern des Siededrucks in einem Rotationsverdampfer sowie Rotationsverdampfer zur Durchführung dieses Verfahrens
DE102020132580A1 (de) Austreibung entzündlicher Gase aus einem Heiz/Solekreislauf
EP3374317B1 (de) Verfahren zum entgasen von wasser sowie entgasungseinrichtung
EP3165859A1 (de) Vakuumkühlvorrichtung und verfahren zur vakuumkühlung von lebensmitteln
DE102016107984A1 (de) Meerwasserentsalzungsvorrichtung zum Entsalzen von Meerwasser
DE2900342A1 (de) Verfahren zur kondensation eines dampfstromes einer leicht fluechtigen fluessigkeit und einrichtung zur durchfuehrung des verfahrens
EP1336805A1 (de) Tieftemperatur-Luftzerlegungsverfahren
DE2928392A1 (de) Vorrichtung zur meerwasserentsalzung durch bruedenkompression
DE2223955A1 (de) Verfahren und Vorrichtung zur Steuerung einer Gefriervorrichtung
EP3029403B1 (de) Verfahren und Vorrichtung zum Trocknen der Feststoffisolation des Aktivteils eines elektrischen Gerätes nach der Vapour-Phase Methode
DE2708568C2 (de) Dampfstrahl-Kälteanlage
DE3014831A1 (de) Kaskadenverdampfer fuer kondensations-trocknungsvorrichtungen
CH626712A5 (en) Device for drying material, which is to be dried, in a vacuum, especially for drying electrical apparatuses
DE102006046051B4 (de) Regelbarer Wärmeübertrager mit verdampfendem Kühlmedium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101117

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121101