EP2134883A1 - Cible de pulverisation cathodique d'oxynitrure - Google Patents

Cible de pulverisation cathodique d'oxynitrure

Info

Publication number
EP2134883A1
EP2134883A1 EP08788046A EP08788046A EP2134883A1 EP 2134883 A1 EP2134883 A1 EP 2134883A1 EP 08788046 A EP08788046 A EP 08788046A EP 08788046 A EP08788046 A EP 08788046A EP 2134883 A1 EP2134883 A1 EP 2134883A1
Authority
EP
European Patent Office
Prior art keywords
target
atomic
nitrogen
lithium
target according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08788046A
Other languages
German (de)
English (en)
Inventor
Michel Martin
Olivier Blandenet
Philippe Maurin-Perrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydromecanique et Frottement SAS
Original Assignee
HEF SAS
Hydromecanique et Frottement SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEF SAS, Hydromecanique et Frottement SAS filed Critical HEF SAS
Publication of EP2134883A1 publication Critical patent/EP2134883A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the subject of the invention is an ionic sputtering target of lithium oxynitride. It also relates to a method of manufacturing an electrolyte in the form of a thin layer of lithium oxynitride from said target. Finally, it relates to an electrochemical device comprising a substrate provided with said electrolyte.
  • the electrochemical devices of the all-solid microbattery type with an electrochromic system or else a micro or super capacitance system, comprise an electrolyte membrane in the form of a mineral thin film with a thickness of between 1 and 2 ⁇ , the layer being deposited under vacuum by sputtering from a target.
  • the targets currently used are of the oxide type such as, for example, lithium phosphate (Li 3 PO 4 ), lithium silicate (SiO 4 ) lithium borate (LiBO 2 ), lithium sulphate (Li 2 SO 4 ) and are generally sprayed. under pure nitrogen which improves the electrochemical performance.
  • oxide type such as, for example, lithium phosphate (Li 3 PO 4 ), lithium silicate (SiO 4 ) lithium borate (LiBO 2 ), lithium sulphate (Li 2 SO 4 ) and are generally sprayed. under pure nitrogen which improves the electrochemical performance.
  • the document Scripta materials 42 (2000) 43-49 describes the implementation of a molar composition target Li 3 PO 4 + Li 3 N to obtain a thin layer of lithium oxynitride.
  • the target is sprayed under nitrogen at high power densities of between 2 and 5 watts per cm 2 . Under these conditions, the deposition rate remains low, less than 5 nm per minute at 5 watts per cm 2 .
  • the HAMON thesis finally puts the accent on the lack of consistency of the mechanical properties of the thin layers obtained from one sample to another.
  • the problem to be solved by the invention is therefore to develop a target which makes it possible to industrialize the process for depositing metal oxynitride thin films by ion sputtering at a deposition rate greater than 30 nm / min while obtaining a maximum conductivity for a given material and improved mechanical properties of the thin layer.
  • the Applicant has developed a novel metal sputtering oxynitride target comprising: between 30% and 40% by weight of a metal, in particular lithium; - between 2% and 10% atomic nitrogen; between 35% and 50% atomic oxygen, the 100% complement consisting of at least one element selected from the group consisting of phosphorus (P), boron (B), silicon (Si), germanium (Ge), gallium (Ga), sulfur (S) and aluminum (Al).
  • the ionic conductivity of the thin layers is too low.
  • the thin layers obtained frequently have growth defects which renders them unsuitable for use as electrolytes, in particular at deposition rates higher than 1 ⁇ m / hour.
  • the total atomic concentration in the target of the element (s) chosen from the group comprising phosphorus (P), boron (B), silicon (Si), germanium (Ge), gallium ( Ga), the sulfur (S) and the aluminum (Al) is between 10% and 25%, advantageously between 12% and 20%.
  • the target further contains phosphorus and / or boron and / or silicon.
  • the atomic concentration of lithium is between 33% and 38%
  • the atomic concentration of nitrogen is between 4% and 8%
  • the atomic concentration of oxygen is between 40 and 45%.
  • the target may contain impurities that can come either from the starting components used in its manufacture, or be incorporated at the time of manufacture.
  • the impurities represent less than 2 mol% of the target. At this rate, no substantial change in the properties of the materials obtained is observed.
  • the target may be in the form of a homogeneous glass or be formed of homogeneous grains or grains of different types distributed regularly. in the target.
  • Preferred targets of the invention have the following crude formulas: Li 3 P 1 O 311 No 10 ; Li 2 , 5Po, 5Si, 5O 2, 6 No, 6; (Li 3 PO 4 ) o, 6 (B2 ⁇ 3 ) o, 2 (Li 3 N) o, 3
  • the invention also relates to a method of manufacturing a thin film based on metal oxynitride by magnetic field assisted sputtering in an oxidizing reactive atmosphere of a target, as previously described.
  • the reactive atmosphere may consist of a gas such as pure nitrogen or a mixture of gases, in particular a nitrogen / argon mixture.
  • the spraying is carried out at a power density of between 0.5 W / cm 2 and 5 W / cm 2 .
  • the invention also relates to an electrochemical device such as for example a microbattery, an electrochromic system or a micro super capacitor comprising an electrolyte in the form of a thin layer obtained according to the method described above.
  • an electrochemical device such as for example a microbattery, an electrochromic system or a micro super capacitor comprising an electrolyte in the form of a thin layer obtained according to the method described above.
  • the x, y and z values correspond to the atomic concentrations of Li, O and N.
  • the targets of Examples 1a, 2a and 3a are in accordance with the targets of the invention.
  • the targets of Examples Ib, 2b and 3b, and 6 are examples illustrating targets of the prior art and targets 4 and 5 of nonconforming targets. The formulas of the different targets tested are reproduced in the table below.
  • PiO 3 No 10 whose ionic conductivity of lithium at ambient temperature is 2.5 E-6 Scm -1 is obtained.
  • a layer of this electrolyte with a thickness of 1.5 ⁇ m is perfectly satisfactory for insertion into a lithium microbattery.
  • Example Ib A homogeneous Li 3 PO 4 spray and composition target not according to the invention is pulverized by high frequency magnetron sputtering under a pure nitrogen pressure of 0.8 Pa at a power density of 4 W / cm. 2 and at a target distance / substrates of 10 cm.
  • a deposition rate of 3 ⁇ m / h of a vitreous thin layer is obtained on a part of its surface and of dull appearance in places.
  • the thin layer has a composition Li 2 6 P 1 O 3> 6 No , 1 and its lithium ionic conductivity at ambient is 0.3 E-6 Scm -1 .
  • the conductivity obtained at this power density from such a target is about three to four times lower than expected from this material and secondly the growth of the thin layer formed under these conditions does not make reliable industrial production since significant areas of the thin layer show a columnar growth unsuitable for use as an electrolyte in a microbattery, an electrochromic system or super capacity.
  • the deposition rate obtained is 3 ⁇ m / h and a thin glassy film with a homogeneous appearance of composition Li 2 , 4Po, 5SiO, 5 ⁇ 2j 2 No, 8 and an ionic conductivity of lithium at room temperature of 12 E is obtained. 6 Scm "1.
  • a layer of this electrolyte with a thickness of 1.5 microns is perfectly satisfactory for insertion into a microbattery.
  • a composition of Li 2 S Po 1S sputtering target If O1S O 31S homogeneous non-compliant to the invention is sprayed by spraying high frequency magnetron under a pressure of 0.6 Pa with a 50/50 mixture of argon / nitrogen a power of 3.5 W / cm 2 at a target distance / substrates of 10 cm.
  • the deposition rate obtained is 2.5 ⁇ m / h and a thin vitreous matrix layer having small grains included in the layer is obtained.
  • the average composition of the thin layer is Li 24 Po 1S Si O1S O 313 No. 11 and its lithium ionic conductivity at room temperature is 2 E-7 Scm -1 .
  • This thin layer can be used as an electrolyte for microbatteries, but its conductivity is low for this type of material and the growth of the layer shows what could be a phase separation which risks compromising its industrialization.
  • the raw composition of the target is in accordance with the invention.
  • the target is sputtered by high frequency magnetron sputtering at 0.8Pa nitrogen at a power density of 2W / cm 2 and at a target distance / substrate of 10cm.
  • a deposition rate of 2 ⁇ m / h of a vitreous thin layer having the composition Li 21S Po 10 Bo 13 O 21S No 1S is obtained, the ionic conductivity of lithium at ambient temperature being 1.2 E-6 Scm -1 .
  • a layer of this electrolyte with a thickness of 1.5 ⁇ m is perfectly satisfactory for insertion into a microbattery.
  • Example 3b A molar composition target (Li 3 P ⁇ 4 ) o , 6 (LiB0 2 ) o , 4 not according to the invention obtained by homogeneous agglomeration of the two powders: Li 3 PO 4 ; LiBO 2 is pulverized by high frequency magnetron sputtering at 0.8Pa nitrogen at a power density of 2W / cm and at a target distance / substrate of 10cm. A deposition rate of 1.6 ⁇ m / h of a vitreous thin layer having the composition Li 2 2 Po 10 Bo 13 O 2 C No 11 having a lithium ion conductivity at ambient temperature of 4 E-7 is obtained. Scm "1. As seen in the examples and 3a, one can expect to obtain with this type of material, the thin film having an ionic conductivity at room temperature approximately four times better.
  • a target composition Li 2 2 P 1 O 214 No ⁇ not according to the invention is sprayed by high frequency magnetron sputtering at 0.8Pa nitrogen at a power density of 2W / cm 2 and a target distance / substrates of 10 cm.
  • the thin layer obtained has a high state of tensile stresses when it is deposited on a white soda-lime glass substrate and it can even be noted local delamination of the thin layer whose observation under a microscope confirms its voltage state.
  • the electrochemical stability of the thin layer indicates that it begins to deteriorate when applied to it with a polarization greater than 4 V.
  • a good material of the same family of composition Li 2 8 P 1 O 3 No 1O supports more than 5 V and does not have a high state of stress, a high deposition rate is obtained with this target, but the properties compatible with industrialization of the thin films produced are not obtained.
  • a sputtering target of a non-conforming homogeneous Li 1 P 1 O 214 No 14 composition is pulverized by high frequency magnetron sputtering at a pressure of 0.8 Pa of a 50/50 Argon / Nitrogen gas mixture at a power density of 2 W. / cm and at a target distance / substrates of 10 cm.
  • Li 1 P 1 O 23 No 14 the ionic conductivity of lithium at room temperature is 1E-8 Scm -1 .
  • a layer of this electrolyte with a thickness of 1.5 ⁇ m can be used for its insertion in a microbattery, for example, but its conductivity is too far from the current standards obtained in example la to claim its industrialization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)

Abstract

Cible de pulvérisation cathodique comprenant : entre 30 et 40 % atomique d'un métal; entre 2 et 10 % atomique d'azote; entre 35 et 50 % atomique d'oxygène; le complément à 100 % étant constitué par au moins un élément choisi dans le groupe comprenant le phosphore (P), le bore (B), le silicium (Si), le germanium (Ge), le gallium (Ga), le soufre (S) et l'aluminium (Al). Procédé de fabrication d'une couche mince à partir de la cible et dispositif électrochimique comprenant la couche mince.

Description

CIBLE DE PULVERISATION CATHODIQUE D'OXYNITRURE
DOMAINE DE L'INVENTION
L'invention a pour objet une cible de pulvérisation ionique d'oxynitrure de lithium. Elle concerne également un procédé de fabrication d'un électrolyte sous forme d'une couche mince d'oxynitrure de lithium à partir de ladite cible. Elle se rapporte enfin à un dispositif électrochimique comportant un substrat muni dudit électrolyte.
ETATANTERIEURDE LA TECHNIQUE
Les dispositifs électrochimique du type microbatterie tout solide, à système électrochrome ou encore micro ou super capacité comportent une membrane électrolyte se présentant sous la forme d'une couche mince minérale d'épaisseur comprise entre 1 et 2 μ, la couche étant déposée sous vide par pulvérisation cathodique à partir d'une cible.
Les cibles actuellement utilisées sont de type oxyde tels que par exemple phosphate de lithium (Li3PO4), silicate de lithium (SiO4) borate de lithium (LiBO2), sulfate de lithium (Li2SO4) et sont généralement pulvérisées sous azote pur ce qui permet d'améliorer les performances électrochimiques.
Néanmoins, outre les bonnes performances électrochimiques obtenues, on se trouve confronté pour l'industrialisation de ces procédés à des problèmes de vitesse de dépôt, de conductivité et de propriétés mécaniques des couches minces.
S'agissant tout d'abord de la vitesse de dépôt, celle-ci est en général au mieux de l'ordre de 1 μm par heure. En particulier, le document US-A-5 338 625 décrit un procédé de fabrication de couches minces de LiPON par pulvérisation cathodique magnétron RF de cible de Li3PO4 sous azote. Les vitesses de dépôt obtenues sont comprises entre 0.8 et 1 nm par minute, ce qui reste incompatible avec une éventuelle industrialisation.
On connaît du document US 4 428 811 la possibilité d'obtenir des vitesses de dépôt élevées de plus de 100 μm par minute, mais de nitrure métallique tels que nitrure de titane, de zirconium et d'hafnium déposés par pulvérisation cathodique réactive respectivement de cibles de titane, zirconium et d'hafnium sous un mélange argon azote. Dans ce document les couches minces obtenues ne sont pas des oxynitrures mais des nitrures, toutefois il s'agit de dépôts réalisés en mode réactif sous azote par pulvérisation cathodique magnétron qui illustrent la possibilité d'obtention de vitesses de dépôt élevées par cette technique.
Le document Scripta materials 42 (2000) 43-49 décrit la mise en œuvre d'une cible de composition molaire Li3PO4 +Li3N pour l'obtention d'une couche mince d'oxynitrure de lithium. En pratique, la cible est pulvérisée sous azote à des densités de puissance élevées comprise entre 2 et 5 watts par cm2. Dans ces conditions, la vitesse de dépôt reste faible, inférieure à 5 nm par minute à 5 watts par cm2.
La thèse HAMON « Nitruration de verres conducteurs ioniques en couches minces » soutenue le 9 Juillet 2004 mentionne que la vitesse de dépôt d'une couche mince d'oxynitrure de Li à partir d'une cible de Li3PO4 est comprise en pratique entre 1 et 6 nm/mn alors que des vitesses pour rendre le procédé industrialisable seraient de l'ordre d'au moins 30 nm/mn soit au moins 5 fois plus.
Ce même document précise en outre que la conductivité ionique des couches minces diminue sensiblement lorsqu'on augmente les vitesses de dépôt
La thèse HAMON met enfin l'accent sur l'absence de constance des propriétés mécaniques des couches minces obtenues d'un échantillon à l'autre.
EXPOSE DE L'INVENTION
Le problème que se propose de résoudre l'invention est donc de développer une cible qui permette d'industrialiser le procédé de dépôt de couches minces d'oxynitrure métallique par pulvérisation ionique à une vitesse de dépôt supérieure à 30 nm/mn tout en obtenant une conductivité maximum pour un matériau donné et des propriétés mécaniques de la couche mince obtenues, améliorées.
Pour ce faire, le Demandeur a mis au point une nouvelle cible d'oxynitrure métallique de pulvérisation cathodique comprenant : entre 30% et 40% % atomique d'un métal, en particulier de lithium ; - entre 2% et 10 % atomique d'azote ; entre 35% et 50 % atomique d'oxygène, le complément à 100% étant constitué par au moins un élément choisi dans le groupe comprenant le phosphore (P), le bore (B), le silicium (Si), le germanium (Ge), le gallium (Ga), le soufre (S) et l'aluminium (Al).
Pour une concentration atomique en lithium [Li] < 30%, la conductivité ionique des couches minces est trop faible. Pour une concentration atomique en lithium [Li] >40%, les couches minces obtenues présentent fréquemment des défauts de croissance qui les rendent impropres à une utilisation comme électrolyte, en particulier à vitesse de dépôt supérieure à lμm/heure.
De même, pour une concentration atomique en azote [N] <2%, la conductivité ionique des couches minces obtenues est trop faible lorsqu'on travaille à vitesse de dépôt supérieure à lμm/heure. Pour une concentration atomique en azote [N] >10%, l'état de contraintes des couches minces obtenues est trop fort lorsqu'on travaille à vitesse de dépôt supérieure à lμm/heure.
Enfin, pour une concentration atomique en oxygène [O] <35%, soit la stabilité électrochimique, soit la conductivité ionique des couches minces obtenues, est trop faible. Pour une concentration atomique en oxygène [O] >50% les couches minces obtenues ont une conductivité ionique trop faible.
Dans un mode de réalisation avantageux, la concentration atomique totale dans la cible du ou des éléments choisis dans le groupe comprenant le phosphore (P), le bore (B), le silicium (Si), le germanium (Ge), le gallium (Ga), le soufre (S) et l'aluminium (Al) est comprise entre 10% et 25%., avantageusement entre 12% et 20%.
Avantageusement, la cible contient en outre du phosphore et/ou du bore et/ou du silicium.
Dans un mode de réalisation préféré, la concentration atomique du lithium est comprise entre 33% et 38 %, la concentration atomique en azote est comprise entre 4% et 8 % tandis que la concentration atomique en oxygène est comprise entre 40 et 45 %.
La cible peut contenir des impuretés pouvant provenir soit des composants de départ ayant servi à sa fabrication, ou bien être incorporés au moment de ladite fabrication. En pratique, les impuretés représentent moins de 2% molaire de la cible. A ce taux, on n'observe aucune modification substantielle des propriétés des matériaux obtenus.
En pratique, la cible peut se présenter sous la forme d'un verre homogène ou être formée de grains homogènes ou de grains de nature différente distribués régulièrement dans la cible.
Les cibles préférées de l'invention ont les formules brutes suivantes : Li3P1O311No1O ; Li2,5Po,5Sio,5θ2,6No,6 ; (Li3P04)o,6(B2θ3)o,2(Li3N)o,3
L'invention a également pour objet un procédé de fabrication d'une couche mince à base d'oxynitrure métallique par pulvérisation cathodique assistée par champ magnétique en atmosphère réactive oxydante d'une cible, telle que précédemment décrite.
Selon une autre caractéristique du procédé, l'atmosphère réactive peut être constituée d'un gaz tel que de l'azote pur ou d'un mélange de gaz, en particulier un mélange d'azote/argon.
Selon une autre caractéristique, la pulvérisation est effectuée à une densité de puissance comprise entre 0,5 W/cm2 et 5 W/cm2.
L'invention a également pour objet un dispositif électrochimique tel que par exemple une microbatterie, un système électrochrome ou une micro super capacité comportant un électrolyte sous forme d'une couche mince obtenue selon le procédé précédemment décrit.
L'invention et les avantages qui en découlent ressortiront bien des exemples de réalisation ci après.
DESCRIPTION DETAILLEE DE L'INVENTION
Tous les exemples portent sur des cibles répondant à la formule brute LixAOyNz, A étant composé d'au moins un des éléments P, Si, B avec [A] = [P] + [Si] + [B]. Les valeurs x, y et z correspondent aux concentrations atomiques de Li, O et N.
Les cibles des exemples la, 2a et 3a sont conformes aux cibles de l'invention. Les cibles des exemples Ib, 2b et 3b, et 6 sont des exemples illustrant des cibles de l'art antérieur et les cibles 4 et 5 des cibles non-conformes. Les formules des différentes cibles testées sont reproduites dans le tableau ci-après
Exemple la : Une cible de pulvérisation de composition Li3P1O311No1O homogène conforme à l'invention est pulvérisée par pulvérisation cathodique magnétron haute fréquence sous une pression de 0,8Pa d'un mélange gazeux 50/50 Argon/ Azote à une densité de puissance de 4W/cm et à une distance cible/substrats de 10 cm. On obtient une vitesse de dépôt de 4 μm/h d'une couche mince vitreuse d'aspect homogène ayant la composition Li2^PiO3No1O dont la conductivité ionique du lithium à l'ambiante est de 2.5 E-6 Scm"1 . Une couche de cet électrolyte d'une épaisseur 1,5 μm est parfaitement satisfaisante pour son insertion dans une microbatterie au lithium.
Exemple Ib : Une cible de pulvérisation et de composition Li3PO4 homogène non conforme à l'invention, est pulvérisée par pulvérisation cathodique magnétron haute fréquence sous une pression d'azote pur de 0,8Pa à une densité de puissance de 4W/cm2 et à une distance cible/substrats de 10 cm. On obtient une vitesse de dépôt de 3 μm/h d'une couche mince vitreuse sur une partie de sa surface et d'aspect mat par endroits. La couche mince a une composition Li2 6P 1O3 >6No, 1 et sa conductivité ionique du lithium à l'ambiante est de 0,3 E-6 Scm"1. Les zones où la couche mince présente un aspect mat apparaissent granuleuses au microscope, totalement inutilisables comme électrolyte. La conductivité obtenue à cette densité de puissance en partant d'une telle cible est environ trois à quatre fois plus faible que ce qu'on peut espérer de ce matériau et d'autre part la croissance de la couche mince formée dans ces conditions ne permet pas de fiabiliser une production industrielle puisque des zones importantes de la couche mince montrent une croissance colonnaire impropre à son utilisation comme électrolyte dans une microbatterie, un système électrochrôme ou une super capacité.
Exemple 2a :
Une cible de pulvérisation de composition Li2 SPo1SSiO1SO2JNo1S homogène conforme à l'invention est pulvérisée par pulvérisation magnétron haute fréquence sous une pression de 0,6 Pa d'un mélange 50/50 d'argon/azote à une puissance de 3,5 W/cm2 à une distance cible/substrats de 10 cm. La vitesse de dépôt obtenue est de 3 μm/h et on obtient une couche mince vitreuse d'aspect homogène de composition Li2,4Po,5Sio,5θ2j2No,8 et de conductivité ionique du lithium à l'ambiante de 12 E-6 Scm"1. Une couche de cet électrolyte d'une épaisseur 1,5 μm est parfaitement satisfaisante pour son insertion dans une microbatterie.
Exemple 2b :
Une cible de pulvérisation de composition Li2 SPo1SSiO1SO31S homogène non conforme à l'invention est pulvérisée par pulvérisation magnétron haute fréquence sous une pression de 0,6 Pa d'un mélange 50/50 d'argon/azote à une puissance de 3,5 W/cm2 à une distance cible/substrats de 10 cm. La vitesse de dépôt obtenue est de 2,5 μm/h et on obtient une couche mince à matrice vitreuse comportant de petits grains inclus dans la couche. La composition moyenne de la couche mince est Li24Po1SSiO1SO313No11 et sa conductivité ionique du lithium à l'ambiante est de 2 E-7 Scm"1.
Cette couche mince est utilisable comme électrolyte pour des microbatteries, mais sa conductivité est faible pour ce type de matériau et la croissance de la couche montre ce qui pourrait être une séparation de phase qui risque de compromettre son industrialisation.
Exemple 3a :
Une cible de composition molaire (Li3P04)o,6(B203)o,2(Li3N)o,3 obtenue par agglomération homogène, à l'aide d'un liant, de trois poudres : Li3PO4 ; B2O3 ; Li3N. La composition brute de la cible est conforme à l'invention. La cible est pulvérisée par pulvérisation cathodique magnétron haute fréquence sous 0,8Pa d'azote à une densité de puissance de 2W/cm2 et à une distance cible/substrats de 10 cm. On obtient une vitesse de dépôt de 2 μm/h d'une couche mince vitreuse ayant la composition Li21SPo1OBo13O21SNo1S dont la conductivité ionique du lithium à l'ambiante est de 1.2 E-6 Scm"1. Une couche de cet électrolyte d'une épaisseur 1,5 μm est parfaitement satisfaisante pour son insertion dans une microbatterie.
Exemple 3b : Une cible de composition molaire (Li34)o,6(LiB02)o,4 non conforme à l'invention obtenue par agglomération homogène des deux poudres : Li3PO4 ; LiBO2 est pulvérisée par pulvérisation cathodique magnétron haute fréquence sous 0,8Pa d'azote à une densité de puissance de 2W/cm et à une distance cible/substrats de 10 cm. On obtient une vitesse de dépôt de 1,6 μm/h d'une couche mince vitreuse ayant la composition Li2 2Po1OBo13O2 CNo11 dont la conductivité ionique du lithium à l'ambiante est de 4 E-7 Scm"1. Comme on l'a vu dans les exemples la et 3a, on peut espérer obtenir, avec ce type de matériau, des couches minces ayant une conductivité ionique à température ambiante environ quatre fois meilleures.
Exemple 4 :
Une cible de composition Li2 2P1O214No^ non conforme à l'invention est pulvérisée par pulvérisation cathodique magnétron haute fréquence sous 0,8Pa d'azote à une densité de puissance de 2W/cm2 et à une distance cible/substrats de 10 cm. On obtient une vitesse de dépôt de 2,6 μm/h d'une couche mince vitreuse ayant la composition Li22P1O2 3No^ dont la conductivité ionique du lithium à l'ambiante est de 1 E-7 Scm"1. La couche mince obtenue présente un fort état de contraintes en tension quand elle est déposée sur un substrat de verre blanc sodocalcique et on peut même noter des délaminations locales de la couche mince dont l'observation au microscope confirme son état de tension. Un test de stabilité électrochimique de la couche mince nous indique un début de dégradation de celle-ci quand on lui applique une polarisation supérieure à 4 Volts. Par comparaison, un bon matériau de la même famille de composition Li2 8P1O3No1O supporte plus de 5 V et ne présente pas de fort état de contrainte. On obtient bien une forte vitesse de dépôt avec cette cible, mais on n'obtient pas les propriétés compatibles avec une industrialisation des couches minces réalisées. Exemple 5
Une cible de pulvérisation de composition Li1P1O214No14 homogène non conforme est pulvérisée par pulvérisation cathodique magnétron haute fréquence sous une pression de 0,8Pa d'un mélange gazeux 50/50 Argon/Azote à une densité de puissance de 2W/cm et à une distance cible/substrats de 10 cm. On obtient une vitesse de dépôt de
2μm/h d'une couche mince vitreuse d'aspect homogène ayant la composition
Li1P1O23No14 dont la conductivité ionique du lithium à l'ambiante est de 1E-8 Scm"1 .
Une couche de cet électrolyte d'une épaisseur 1,5 μm est utilisable pour son insertion dans une microbatterie par exemple, mais sa conductivité est trop loin des standards actuels obtenus dans l'exemple la pour prétendre à son industrialisation.

Claims

REVENDICATIONS
1/ Cible de pulvérisation cathodique comprenant : entre 30 et 40 % atomique d'un métal, - entre 2 et 10 % atomique d'azote, entre 35 et 50 % atomique d'oxygène, le complément à 100% étant constitué par au moins un élément choisi dans le groupe comprenant le phosphore (P), le bore (B), le silicium (Si), le germanium (Ge), le gallium (Ga), le soufre (S) et l'aluminium (Al).
2/ Cible selon la revendication 1, caractérisée en ce qu'elle contient : entre 33 et 38 % atomique d'un métal, entre 4 et 8 % atomique d'azote ; entre 40 et 45 % atomique d'oxygène.
3/ Cible selon l'une des revendications précédentes, caractérisée en ce que le métal est le lithium.
4/ Cible selon l'une des revendications précédentes, caractérisée en ce que la concentration atomique totale dans la cible du ou des éléments choisis dans le groupe comprenant le phosphore (P), le bore (B), le silicium (Si), le germanium (Ge), le gallium (Ga), le soufre (S) et l'aluminium (Al) est comprise entre 10% et 25%.
5/ Cible selon la revendication 4, caractérisée en ce que la concentration atomique totale est comprise entre 12% et 20%.
6/ Cible selon l'une des revendications précédentes, caractérisée en ce qu'elle à l'une des formules suivantes :
. Li3PiO34No16 ; - Li2j5Po,5Sio,502,6No,6 ;
- (Li3P04)o,6(B2θ3)o,2(Li3N)o,3
11 Procédé de fabrication d'une couche mince à base d'oxynitrure métallique par pulvérisation cathodique assistée par champ magnétique en atmosphère réactive oxydante d'une cible selon l'une des revendications 1 à 6.
8/ Procédé selon la revendication 7, caractérisé en ce que l'atmosphère réactive est constituée d'un gaz tel que de l'azote pur, éventuellement en mélange avec de l'argon. 9/ Dispositif électrochimique tel que microbatterie, système électrochrôme ou micro super capacité comportant un électrolyte sous forme d'une couche mince obtenue selon le procédé objet de l'une des revendications 7 ou 8.
EP08788046A 2007-04-06 2008-03-26 Cible de pulverisation cathodique d'oxynitrure Withdrawn EP2134883A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754340A FR2914653B1 (fr) 2007-04-06 2007-04-06 Cible de pulverisation cathodique d'oxynitrure
PCT/FR2008/050520 WO2008132409A1 (fr) 2007-04-06 2008-03-26 Cible de pulverisation cathodique d'oxynitrure

Publications (1)

Publication Number Publication Date
EP2134883A1 true EP2134883A1 (fr) 2009-12-23

Family

ID=38461713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08788046A Withdrawn EP2134883A1 (fr) 2007-04-06 2008-03-26 Cible de pulverisation cathodique d'oxynitrure

Country Status (7)

Country Link
US (1) US8728287B2 (fr)
EP (1) EP2134883A1 (fr)
JP (1) JP5599703B2 (fr)
KR (3) KR20160087396A (fr)
CN (1) CN101652496B (fr)
FR (1) FR2914653B1 (fr)
WO (1) WO2008132409A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872855B (zh) * 2010-06-17 2012-10-17 复旦大学 一种用于锂离子电池的负极材料v2on及其制备方法
FR2964963A1 (fr) * 2010-09-21 2012-03-23 St Microelectronics Tours Sas Electrolyte solide vitreux pour cellule electrochimique
US8894825B2 (en) * 2010-12-17 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, manufacturing semiconductor device
WO2013070679A1 (fr) 2011-11-08 2013-05-16 Tosoh Smd, Inc. Cible de pulvérisation cathodique de silicium avec un traitement de surface spécial et une bonne performance de particule et leurs procédés de fabrication
EP2738815B1 (fr) 2012-11-30 2016-02-10 Samsung Electronics Co., Ltd Matériaux semi-conducteurs, transistors comprenant ceux-ci et dispositifs électroniques comprenant des transistors
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
CN116253570A (zh) * 2023-03-20 2023-06-13 超威电源集团有限公司 一种LiPON靶材及薄膜的制备方法与应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359055B1 (ko) * 2000-04-25 2002-11-07 한국과학기술연구원 박막형 슈퍼 캐패시터 및 그 제조방법
JP3608507B2 (ja) * 2000-07-19 2005-01-12 住友電気工業株式会社 アルカリ金属薄膜部材の製造方法
JP2003277915A (ja) * 2002-03-26 2003-10-02 Matsushita Electric Ind Co Ltd 薄膜の製造方法及び製造装置
US6818356B1 (en) * 2002-07-09 2004-11-16 Oak Ridge Micro-Energy, Inc. Thin film battery and electrolyte therefor
US6770176B2 (en) * 2002-08-02 2004-08-03 Itn Energy Systems. Inc. Apparatus and method for fracture absorption layer
CN1191654C (zh) * 2003-03-06 2005-03-02 复旦大学 一种能够大面积制备锂离子固体电解质薄膜的方法
JP3677509B2 (ja) * 2003-06-27 2005-08-03 松下電器産業株式会社 固体電解質およびそれを用いた全固体電池
JP2005108638A (ja) * 2003-09-30 2005-04-21 Matsushita Electric Ind Co Ltd リチウムイオン導電体
FR2862432B1 (fr) 2003-11-14 2006-02-10 Stephanois Rech Mec Electrolyte solide, notamment pour cellule electrochimique en couches minces, et un procede de fabrication
US20070076286A1 (en) * 2005-09-23 2007-04-05 Yungeun Sung Electrochromic device comprising protective inorganic solid electrolyte film and manufacturing method thereof
CN1821093A (zh) * 2006-03-16 2006-08-23 复旦大学 掺氮磷酸铁正极薄膜材料及其制备方法
US8197781B2 (en) * 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008132409A1 *

Also Published As

Publication number Publication date
KR20090127906A (ko) 2009-12-14
JP2010523815A (ja) 2010-07-15
JP5599703B2 (ja) 2014-10-01
WO2008132409A1 (fr) 2008-11-06
KR20150023850A (ko) 2015-03-05
FR2914653B1 (fr) 2009-05-22
CN101652496B (zh) 2012-10-03
US8728287B2 (en) 2014-05-20
KR20160087396A (ko) 2016-07-21
CN101652496A (zh) 2010-02-17
FR2914653A1 (fr) 2008-10-10
US20100129722A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
WO2008132409A1 (fr) Cible de pulverisation cathodique d&#39;oxynitrure
EP1771899B1 (fr) Procede de fabrication d&#39;une electrode lithiee
EP2326607B1 (fr) Materiau a architecture multicouche, dedie a une mise en contact avec du silicium liquide
US20120045360A1 (en) Cu-ga alloy sputtering target and manufacturing method thereof
US20100269907A1 (en) Thin-film solar cell having a molybdenum-containing back electrode layer
EP1995815B1 (fr) Verre organique électrolytique, son procédé de fabrication et dispositif le comprenant
US6841013B2 (en) Metallic nanowire and method of making the same
Molina et al. Chemically deposited La2Zr2O7 buffer layers for YBCO-coated conductors: film growth and microstructure
Nirupama et al. Structural and electrical characterization of magnetron sputtered MoO3 thin films
Klenov et al. Composition control of radio-frequency magnetron sputter-deposited La0. 5Sr0. 5CoO3−∂ thin films
Stamate et al. Optical and surface properties TiO2 thin films deposited by DC magnetron sputtering method
Wang et al. Controllable fabrication of self-organized nano-multilayers in copper–carbon films
JP4524577B2 (ja) 透明導電膜およびスパッタリングターゲット
CN113862497A (zh) 一种AgZn靶材及其制备方法
EP2406200A1 (fr) Produit de cermet fondu
CN108193178B (zh) 一种晶态wc硬质合金薄膜及其缓冲层技术室温生长方法
EP3528320B1 (fr) Procede de fabrication d&#39;une electrode positive pour microbatterie tout solide au lithium
FR2873856A1 (fr) Procede pour augmenter la conductivite ionique d&#39;un electrolyte solide lithie, electrolyte susceptible d&#39;etre obtenu par ce procede et ses utilisations
Crandall et al. Oxidation-Induced Growth of Sn Whiskers in a Pure Oxygen Gas Environment
Wang et al. Influence of Hysteretic Behaviour in Reactive Magnetron Sputtering on the Crystal Structure and Characteristics of Aluminium Oxide Films
EP1680829B1 (fr) Electrolyte solide, notamment pour cellule electrochimique en couches minces, et un procede de fabrication
Liu et al. Influences of residual argon gas and thermal annealing on Ta2O5 thin films
CN101008077B (zh) 单阴极等离子沉积非晶、纳米晶层的方法
Hong et al. Fabrication of single phase transparent conductive cuprous oxide thin films by direct current reactive magnetron sputtering
CN113121224A (zh) 一种环型高密度五氧化二钽镀膜材料的制备方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100119

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171003