EP2133654B1 - Process for controlling the effect of a warhead - Google Patents

Process for controlling the effect of a warhead Download PDF

Info

Publication number
EP2133654B1
EP2133654B1 EP20090007372 EP09007372A EP2133654B1 EP 2133654 B1 EP2133654 B1 EP 2133654B1 EP 20090007372 EP20090007372 EP 20090007372 EP 09007372 A EP09007372 A EP 09007372A EP 2133654 B1 EP2133654 B1 EP 2133654B1
Authority
EP
European Patent Office
Prior art keywords
explosive charge
charge
detonation
phe
takes place
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20090007372
Other languages
German (de)
French (fr)
Other versions
EP2133654A2 (en
EP2133654A3 (en
Inventor
Werner Dr. Arnold
Norbert Dr. Eisenreich
Armin Kessler
Gesa Langer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Original Assignee
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH filed Critical TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Priority to EP14000584.4A priority Critical patent/EP2735837B1/en
Publication of EP2133654A2 publication Critical patent/EP2133654A2/en
Publication of EP2133654A3 publication Critical patent/EP2133654A3/en
Application granted granted Critical
Publication of EP2133654B1 publication Critical patent/EP2133654B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/207Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type characterised by the explosive material or the construction of the high explosive warhead, e.g. insensitive ammunition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/208Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type characterised by a plurality of charges within a single high explosive warhead
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/0838Primers or igniters for the initiation or the explosive charge in a warhead
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction

Definitions

  • the invention relates to a method for power control of a warhead, the cylindrical explosive charge having a defined porosity, wherein by deformation at least a portion of the explosive charge is compressed.
  • the DE 198 21 150 C1 which forms a starting point for the independent claim, describes a detonatively deformable explosive charge.
  • porous explosive having a porosity of 5 - 25% is used.
  • the typical volume reduction is about 5 - 10%.
  • It describes the application of the one-sided deformation of the explosive charge, which aims to concentrate the power of the explosive charge and the splinters produced in it in a desired direction in order to increase the effect in this direction.
  • the not yet deformed explosive charge is still detonationstransport depending on the porosity.
  • the DE 10 2005 031588 B3 describes a warhead having a porous explosive charge, which can be partially decomposed by means of deflagration and the other part of which can accommodate the increase in volume of the deflagration part by deformation (compression).
  • the porous explosive charge is already detonated before deformation. Thus, reducing the performance of the warhead also reduces collateral damage.
  • the present invention has the object to develop an advantageous alternative to the aforementioned examples, which behaves quasi like an inert charge prior to initiation, or emits a low deflagration power at maximum unintentional ignition to a high level of safety during storage and transport to achieve.
  • the porous explosive charge which has a low density below the detonation limit, is at least partially compressed by means of controlled axial compression to a higher density which is above the detonation limit.
  • This part of the explosive charge can then be implemented detonatively by means of another ignition device.
  • this explosive charge due to their density can only be initiated deflagrativ.
  • the further the axial compression progresses the more parts of the explosive charge are compressed beyond the detonation limit.
  • the ignition timing of the explosive charge this results in a control of the detonative effect of the explosive charge in the range of 0 to 100%. In the case of a fragment-forming warhead thus splinter production can be adjusted within wide limits.
  • the particular advantage of an explosive charge according to the invention is the high safety during storage and transport.
  • the porous explosive charge is very safe from compression because the explosive charge has a density well below the so-called critical density, which is the limit for detonation capability.
  • critical density which is the limit for detonation capability.
  • the compression takes place with the aid of an inert plate resting against the end face of the cylindrical charge, which is accelerated towards the explosive charge by means of another suitable explosive charge and the latter is thus compressed.
  • the inert plate may be designed as an insert of an EFP charge which, upon initiation by forward folding, produces a flat plate which in turn compresses the porous explosive charge.
  • a plurality of detonators can be arranged on the front side of the explosive charge, which together form an approximately flat pressure wave which is used to compress the porous explosive charge.
  • the compression of the explosive charge not only in the direction of the main axis, but at the same time also radially, if this is a separate arranged in the region of the main axis explosive charge is used. In their place can also occur a single powerful trained detonation cord.
  • the FIG. 1 shows a warhead GK with a porous explosive charge PHE and a fragment-forming metal shell MH.
  • the warhead is cylindrical in the embodiment, without this being a limitation for other designs.
  • the charge PHE is the FIG. 1 bounded by a stamp or a flying plate FP.
  • the first ignition chain ZK 1 acts on an entire area on the flying plate resting booster charge VL, which presses the flying plate FP in the direction of the main axis HA on the explosive charge PHE after initiation. As a result, a compression of the explosive charge PHE takes place.
  • a further ignition chain ZK 2 is provided for the explosive charge itself.
  • FIG. 2 After triggering the ignition system ZK 1 starts, as in FIG. 2 shown the compression process.
  • PHE runs a shock wave STW in the FIG. 2 ahead to the right moving flying plate FP.
  • the area behind the current shock wave is already compressed to a largely non-porous explosive charge HE.
  • the latter can be initiated detonatively in contrast to the pore-containing explosive charge PHE, since its density was compressed in the direction of the theoretical maximum density TMD.
  • the detonation velocity increases linearly with increasing density.
  • the performance of the explosive charge in turn grows in the square of the detonation speed. This allows a more flexible use of this explosive charge.
  • the ignition can be realized in different ways.
  • the further ignition chain ZK 2 located in the FIG. 1 . This is designed so that it can generate a maximum of one deflagration in the uncompressed explosive charge PHE, or at most a shockwave.
  • the shock-detonation transition known from explosives physics (SDT abbreviation) or the deflagration-detonation transition (abbreviation DDT) occurs.
  • FIG. 3 shows a further embodiment of the invention.
  • the compression shock wave is predominantly introduced radially into the PHE charge.
  • This can, for example, as in FIG. 3 represented by means of an axial, ie in the direction the central axis arranged central explosive charge HEZ take place, which extends over the entire length of the explosive charge and has a diameter in the range of 5 - 25% of the diameter of the explosive charge PHE.
  • the explosive charge HEZ is conventionally initiated by means of the first ignition chain ZK 1, which can be recognized on the left side.
  • the further ignition chain ZK 2 on the right side in the FIG. 3 excites a shock or deflagration wave STW in not yet compressed part PHE the explosive charge.
  • the plastic plate KS serves as damping for the incoming in the axial charge HEZ detonation wave.
  • the initiated axial charge HEZ generates a shock wave STW which preferably propagates in the radial direction and continuously compresses the porous part PHE of the explosive charge from left to right.
  • the proportion of detonatively and fragmentally convertible charge parts HE is determined by the delayed ignition of the further ignition chain ZK 2. The longer this ignition time is delayed, the greater the proportion of the compressed charge HE. If the shock wave STW reaches the metal shell MH, the full splitter performance is already achieved here.
  • the slope of the front of the shock wave STW can be controlled. Indirectly, this affects the ratio of the recompressed charge PHE to the compressed charge HE and hence the controllability of the charge.
  • the detonation velocity within the central explosive charge HE can be influenced by the incorporation of delay elements, such as damping disks. Examples of such elements would be plastics or metal foams.
  • the procedure according to FIGS. 3 and 4 is particularly suitable for long loads, as in a compression process after the Figures 1 and 2 the PHE column to be compressed would be too long and complete compression would no longer be guaranteed.
  • a variant of this is when, instead of the plastic plate KS from the FIGS. 3 and 4 a damping material together with one outside the plastic plate arranged, mechanical and / or electronic timer is installed.
  • the detonation wave DW reaches the damping material, it generates a damped shock wave.
  • the timer Upon reaching the timer, it is still strong enough to trigger a mechanical or electronic timer. But it is also weak enough to leave the further ignition chain ZK 2 intact. After the delay time, the further ignition chain ZK 2 is initiated.
  • the diameter of the axially arranged explosive charge HEZ from the FIGS. 3 and 4 depends on the design parameters such as density and size of the uncompressed PHE charge. In general, this diameter will be in the order of a few centimeters in a warhead.
  • FIG. 5 is in longitudinal and cross-section an alternative solution with multiple detonation cords DET instead of in FIG. 3 illustrated rod-shaped explosive charge HEZ shown.
  • Their design also depends on the density and the size of the charge PHE to be compressed. Depending on this, the necessary number and distribution of the detonation cords DET in the charge PHE results.
  • detonation cords are available in different configurations such as different explosives or different outer shells. This results in different detonation speeds, which in turn allow a wide range of design options. From this, the optimum meterability of each individual charge can then be determined.
  • a number of detonating cords DET are arranged radially around a central detonating cord so as to be approximately parallel to the skin axis HA of the charge. It is equally possible to lay the detonation cords in a spiral arrangement within the charge PHE. This allows a locally high compression of the charge to be compressed. Further advantageous variants are possible with the aid of such detonation cords.
  • FIG. 6 shows the progressive compression process after ignition of the first ignition chain ZK 1.
  • the detonation waves DW run along the detonation cords DET and pull, similar to in FIG. 4 shown and described, each a shock wave STW after. Like from the FIG. 6 can be seen, takes place after a short course of the detonation waves in the radial direction approximately complete compression of the porous charge part PHE. The ignition of the compressed charge part HE then takes place again in the conventional way with the aid of the further ignition chain ZK 2.
  • the condition applies that the complete compaction of the porous charge part PHE does not have to be awaited until initiation can take place via the further ignition charge ZK 2. Rather, a central detonation signal can also be brought to the already compressed part of the charge HE and ignited at the desired time from this detonating chain, for example via a further ignition or detonation cord. Thus, a further flexibility of the metering of the charge is achieved.

Description

Die Erfindung betrifft ein Verfahren zur Leistungssteuerung eines Gefechtskopfes, dessen zylindrische Sprengladung eine definierte Porosität aufweist, wobei mittels Deformation wenigstens ein Teil der Sprengladung komprimiert wird.The invention relates to a method for power control of a warhead, the cylindrical explosive charge having a defined porosity, wherein by deformation at least a portion of the explosive charge is compressed.

Die DE 198 21 150 C1 , welche einen Ausgangspunkt für den unabhängigen Patentanspruch bildet, beschreibt eine detonativ deformierbare Sprengladung. Zur Unterstützung der Deformation wird poröser Sprengstoff mit einer Porosität von 5 - 25 % verwendet. Die typische Volumenreduktion beträgt dabei etwa 5 - 10 %. Es wird die Anwendung der einseitigen Deformation der Sprengladung beschrieben, die das Ziel hat, die Leistung der Sprengladung und der damit erzeugten Splitter in eine gewünschte Richtung zu konzentrieren um damit in dieser Richtung die Wirkung zu steigern. Die noch nicht deformierte Sprengladung ist hierbei in Abhängigkeit von der Porosität immer noch detonationsfähig.The DE 198 21 150 C1 , which forms a starting point for the independent claim, describes a detonatively deformable explosive charge. In order to assist deformation, porous explosive having a porosity of 5 - 25% is used. The typical volume reduction is about 5 - 10%. It describes the application of the one-sided deformation of the explosive charge, which aims to concentrate the power of the explosive charge and the splinters produced in it in a desired direction in order to increase the effect in this direction. The not yet deformed explosive charge is still detonationsfähig depending on the porosity.

Die DE 10 2005 031588 B3 beschreibt einen Gefechtskopf, der eine poröse Sprengladung aufweist, die teilweise mittels Deflagration zerlegt werden kann und dessen anderer Teil die Volumensteigerung des deflagrierenden Teils durch Verformung (Komprimierung) aufnehmen kann. Die poröse Sprengladung ist jedoch auch vor der Verformung bereits detonationsfähig. Somit wird über die Reduzierung der Leistung des Gefechtskopfes auch eine Reduzierung kollateraler Schäden erreicht.The DE 10 2005 031588 B3 describes a warhead having a porous explosive charge, which can be partially decomposed by means of deflagration and the other part of which can accommodate the increase in volume of the deflagration part by deformation (compression). However, the porous explosive charge is already detonated before deformation. Thus, reducing the performance of the warhead also reduces collateral damage.

Demgegenüber liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine vorteilhafte Alternative zu den vorgenannten Beispielen zu entwickeln, welche sich vor der Initiierung quasi wie eine inerte Ladung verhält, bzw. bei ungewollter Zündung maximal eine niedrige deflagrative Leistung abgibt um eine hohe Sicherheit bei Lagerung und Transport zu erzielen.In contrast, the present invention has the object to develop an advantageous alternative to the aforementioned examples, which behaves quasi like an inert charge prior to initiation, or emits a low deflagration power at maximum unintentional ignition to a high level of safety during storage and transport to achieve.

Diese Aufgabe wird erfindungsgemäß durch das beschriebene Verfahren gelöst. Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.This object is achieved by the method described. Further developments of the invention are specified in the subclaims.

Die in den Ansprüchen beschriebenen Verfahren können unter dem Thema axiale Verdichtungsstoßwelle zusammengefasst werden. Somit wird in vorteilhafter Weise die poröse Sprengladung, die eine niedrige Dichte unterhalb der Detonationsgrenze aufweist, mittels gesteuerter axialer Kompression wenigstens teilweise auf eine höhere Dichte verdichtet, die über der Detonationsgrenze liegt. Dieser Teil der Sprengladung lässt sich dann mittels einer weiteren Zündeinrichtung detonativ umsetzen. Im Ausgangszustand ist diese Sprengladung aufgrund ihrer Dichte nur deflagrativ initiierbar. Je weiter jedoch die axiale Kompression fortschreitet um so mehr Teile der Sprengladung werden über die Detonationsgrenze hinaus verdichtet. Durch geschickte Wahl des Zündzeitpunkts der Sprengladung ergibt sich daraus eine Steuerung der detonativen Wirkung der Sprengladung im Bereich von 0 bis 100 %. Im Fall eines splitterbildenden Gefechtskopfes kann somit die Splittererzeugung in weiten Grenzen eingestellt werden.The methods described in the claims can be summarized under the topic axial compression shock wave. Thus, advantageously, the porous explosive charge, which has a low density below the detonation limit, is at least partially compressed by means of controlled axial compression to a higher density which is above the detonation limit. This part of the explosive charge can then be implemented detonatively by means of another ignition device. In the initial state, this explosive charge due to their density can only be initiated deflagrativ. However, the further the axial compression progresses, the more parts of the explosive charge are compressed beyond the detonation limit. By skillful choice of the ignition timing of the explosive charge, this results in a control of the detonative effect of the explosive charge in the range of 0 to 100%. In the case of a fragment-forming warhead thus splinter production can be adjusted within wide limits.

Der besondere Vorteil einer erfindungsgemäßen Sprengladung ist die hohe Sicherheit bei Lagerung und Transport. Die poröse Sprengladung ist vor der Kompression sehr sicher, weil die Sprengladung eine Dichte aufweist, die deutlich unterhalb der so genannten kritischen Dichte liegt, die die Grenze für die Detonationsfähigkeit darstellt. Somit können die Bedingungen für die Safety Tests ohne Probleme erfüllt werde und die Klassifikation einer solchen Sprengladung ist wesentlich unkritischer.The particular advantage of an explosive charge according to the invention is the high safety during storage and transport. The porous explosive charge is very safe from compression because the explosive charge has a density well below the so-called critical density, which is the limit for detonation capability. Thus, the conditions for the safety tests can be fulfilled without any problems and the classification of such an explosive charge is much less critical.

In vorteilhafter Weise erfolgt die Kompression mit Hilfe einer an der Stirnseite der zylindrischen Ladung anliegenden inerten Platte, die mittels einer weiteren geeigneten Sprengladung in Richtung Sprengladung hin beschleunigt wird und letztere damit komprimiert. Die inerte Platte kann als Einlage einer EFP-Ladung konzipiert sein, welche nach erfolgter Initiierung mittels Vorwärtsfaltung eine ebene Platte erzeugt, die ihrerseits die poröse Sprengladung komprimiert.Advantageously, the compression takes place with the aid of an inert plate resting against the end face of the cylindrical charge, which is accelerated towards the explosive charge by means of another suitable explosive charge and the latter is thus compressed. The inert plate may be designed as an insert of an EFP charge which, upon initiation by forward folding, produces a flat plate which in turn compresses the porous explosive charge.

Alternativ zu einer inerten Platte kann stirnseitig zur Sprengladung eine Vielzahl von Detonatoren angeordnet sein, die bei gemeinsamer Zündung eine annähernd ebene Druckwelle ausbilden, die zur Kompression der porösen Sprengladung genutzt wird.As an alternative to an inert plate, a plurality of detonators can be arranged on the front side of the explosive charge, which together form an approximately flat pressure wave which is used to compress the porous explosive charge.

In vorteilhafter Weise kann die Kompression der Sprengladung nicht nur in Richtung der Hauptachse, sondern gleichzeitig auch radial erfolgen, wenn hierfür eine eigene im Bereich der Hauptachse angeordnete Sprengladung genutzt wird. An deren Stelle kann auch eine einzelne leistungsstark ausgebildete Detonationsschnur treten.Advantageously, the compression of the explosive charge not only in the direction of the main axis, but at the same time also radially, if this is a separate arranged in the region of the main axis explosive charge is used. In their place can also occur a single powerful trained detonation cord.

Weiterhin ist es vorteilhaft eine Vielzahl von Detonationsschnüren in einem Abstand rund um die Hauptachse der Sprengladung für deren Kompression einzusetzen.Furthermore, it is advantageous to use a plurality of detonation cords at a distance around the main axis of the explosive charge for their compression.

Ausführungsbeispiel der Erfindung sind in den Figuren der Zeichnung schematisch vereinfacht dargestellt, wobei sich die Merkmale der Erfindung nicht auf die gezeigten Beispiele beschränken. Es zeigen:

  • Fig. 1: eine Sprengladung mit porösem Sprengstoff und axialer Kompression,
  • Fig 2: eine Sprengladung nach Figur 1 in der Kompressionsphase,
  • Fig. 3: eine Sprengladung mit porösem Sprengstoff und vorzugsweise radialer Kompression,
  • Fig. 4: eine Sprengladung nach Figur 3 in der Kompressionsphase,
  • Fig. 5: eine Sprengladung nach Figur 3 mit Detonationsschnüren als Kompressionsmittel,
  • Fig. 6: eine Sprengladung nach Figur 5 in der Kompressionsphase,
Embodiment of the invention are shown schematically simplified in the figures of the drawing, wherein the features of the invention are not limited to the examples shown. Show it:
  • Fig. 1 an explosive charge with porous explosive and axial compression,
  • Fig. 2 : an explosive charge after FIG. 1 in the compression phase,
  • Fig. 3 an explosive charge with porous explosive and preferably radial compression,
  • Fig. 4 : an explosive charge after FIG. 3 in the compression phase,
  • Fig. 5 : an explosive charge after FIG. 3 with detonation cords as compression means,
  • Fig. 6 : an explosive charge after FIG. 5 in the compression phase,

In den Figuren der Zeichnung sind verschiedene Vorrichtungen zur Durchführung des erfindungsgemäßen Verfahrens zur Leistungssteuerung eines Gefechtskopfes dargestellt und in der nachfolgenden Beschreibung erläutert. Aus der Darstellung in den Figuren ergibt sich jedoch keine Beschränkung auf genau diese Ausführungsformen.In the figures of the drawing, various devices for carrying out the method according to the invention for power control of a warhead are shown and explained in the following description. From the illustration in However, the figures are not limited to exactly these embodiments.

Die Figur 1 zeigt einen Gefechtskopf GK mit einer porösen Sprengladung PHE und einer splitterbildenden Metallhülle MH. Der Gefechtskopf ist im Ausführungsbeispiel zylindrisch ausgeführt, ohne dass dies eine Einschränkung für andere Bauformen darstellen würde. Auf der linken Seite wird die Sprengladung PHE der Figur 1 von einem Stempel beziehungsweise einer fliegenden Platte FP begrenzt. Die erste Zündkette ZK 1 wirkt auf eine ganzflächig auf der fliegenden Platte aufliegende Verstärkerladung VL, welche nach erfolgter Initiierung die fliegende Platte FP in Richtung der Hauptachse HA auf die Sprengladung PHE drückt. Dadurch findet eine Kompression der Sprengladung PHE statt. Für die Sprengladung selbst ist eine weitere Zündkette ZK 2 vorgesehen.The FIG. 1 shows a warhead GK with a porous explosive charge PHE and a fragment-forming metal shell MH. The warhead is cylindrical in the embodiment, without this being a limitation for other designs. On the left side, the charge PHE is the FIG. 1 bounded by a stamp or a flying plate FP. The first ignition chain ZK 1 acts on an entire area on the flying plate resting booster charge VL, which presses the flying plate FP in the direction of the main axis HA on the explosive charge PHE after initiation. As a result, a compression of the explosive charge PHE takes place. For the explosive charge itself, a further ignition chain ZK 2 is provided.

Nach Auslösung des Zündsystems ZK 1 beginnt, wie in Figur 2 gezeigt, der Kompressionsvorgang. In der Sprengladung PHE läuft eine Stosswelle STW der sich in der Figur 2 nach rechts bewegenden fliegenden Platte FP voraus. Der Bereich hinter der laufenden Stosswelle ist bereits zu einer weitgehend porenfreien Sprengladung HE verdichtet. Letztere lässt sich im Gegensatz zur porenhaltigen Sprengladung PHE detonativ initiieren, da ihre Dichte in Richtung auf die theoretisch maximale Dichte TMD hin komprimiert wurde. Je länger der Vorgang andauert umso weiter erhöht sich die Dichte dieser Sprengladung in Richtung TMD. Die Detonationsgeschwindigkeit nimmt linear mit der steigenden Dichte zu. Die Leistung der Sprengladung wächst ihrerseits im Quadrat der Detonationsgeschwindigkeit. Dies ermöglicht eine flexiblere Anwendung dieser Sprengladung.After triggering the ignition system ZK 1 starts, as in FIG. 2 shown the compression process. In the explosive charge PHE runs a shock wave STW in the FIG. 2 ahead to the right moving flying plate FP. The area behind the current shock wave is already compressed to a largely non-porous explosive charge HE. The latter can be initiated detonatively in contrast to the pore-containing explosive charge PHE, since its density was compressed in the direction of the theoretical maximum density TMD. The longer the process continues the further increases the density of this explosive charge in the direction of TMD. The detonation velocity increases linearly with increasing density. The performance of the explosive charge in turn grows in the square of the detonation speed. This allows a more flexible use of this explosive charge.

Die Zündung kann auf unterschiedliche Art realisiert werden. In der Figur 1 ist auf der rechten Seite der Sprengladung die weitere Zündkette ZK 2 eingezeichnet. Diese ist so ausgelegt, dass sie in der unkomprimierten Sprengladung PHE maximal eine Deflagration, minimal allenfalls eine Stoßwelle erzeugen kann. Trifft jedoch diese Stoßwelle bzw. Deflagrationsfront auf den bereits verdichteten Teil HE der Sprengladung tritt der aus der Sprengstoffphysik bekannte Schock-Detonations-Übergang (Abkürzung SDT) bzw. der Deflagrations-Detonations-Übergang (Abkürzung DDT) auf.The ignition can be realized in different ways. In the FIG. 1 is on the right side of the explosive charge the further ignition chain ZK 2 located. This is designed so that it can generate a maximum of one deflagration in the uncompressed explosive charge PHE, or at most a shockwave. However, if this shock wave or deflagration front strikes the already compressed part HE of the explosive charge, the shock-detonation transition known from explosives physics (SDT abbreviation) or the deflagration-detonation transition (abbreviation DDT) occurs.

Eine Alternative hierzu (in der Zeichnung nicht dargestellt) besteht darin, dass im Bereich der fliegenden Platte FP oder innerhalb des zuerst verdichteten Teils HE der Sprengladung eine robuste Zündkette angeordnet wird. Die erzielte Wirkung ist in beiden Fällen gleichartig. Der bereits verdichtete Teil HE der Sprengladung erzeugt die volle Splitterleistung, der noch nicht verdichtete Teil PHE gibt jedoch nur eine sehr geringfügige Splitterleistung ab. Somit lässt sich die Splitterleistung in sehr weiten Grenzen einstellen.An alternative to this (not shown in the drawing) is that in the area of the flying plate FP or within the first compressed part HE of the explosive charge a robust ignition chain is arranged. The effect achieved is similar in both cases. The already compacted part HE of the explosive charge generates the full splitter power, but the not yet compressed part PHE gives only a very small fragmentation performance. Thus, the splitter performance can be set within very wide limits.

Für die technische Auslegung dieser Lösung ist zu beachten, dass eine symmetrische Detonationsfront auf die fliegende Platte FP einwirken muss. Die wird beispielsweise durch Anwendung eines so genannten Plane-Wave-Generators; der eine planare Stoßwelle erzeugt, erreicht. Aber auch ein Zündkettensystem, das beispielsweise aus mehreren ringförmig angeordneten Detonatoren besteht, kann diese Anforderung erfüllen. Hinsichtlich der Dimensionierung der die fliegende Platte beschleunigenden scheibenförmigen Verstärkerladung VL ist anzumerken, dass diese abhängig von den Eigenschaften der PHE-Ladung und der daraus sich ergebenden Arbeit zur Schließung der Poren einzustellen ist.For the technical design of this solution, it should be noted that a symmetrical detonation front must act on the flying plate FP. This is achieved, for example, by using a so-called plane wave generator; which generates a planar shock wave reached. But even a Zündkettensystem, which consists for example of a plurality of annularly arranged detonators, can meet this requirement. With regard to the dimensioning of the disk-accelerating charge VL that accelerates the flying disk, it should be noted that this is to be set depending on the properties of the PHE charge and the work resulting therefrom for closing the pores.

Eine weitere, hier nicht dargestellte vorteilhafte Ausgestaltung zu den Figuren 1 und 2 macht sich die Technologie der explosiven Metallumformung bei so genannten EFP-Ladungen (Explosively Formed Projectiles) zunutze. Die Einlage wird gemäß Figur 1 an der Stelle der fliegenden Platte FP positioniert. Mit entsprechender Dimensionierung der Einlage und der diese umformenden Sprengladung (anstelle der Verstärkerladung VL) wird eine Vorwärtsfaltung der Einlage in Richtung der Hauptachse HA angestrebt. Dazu ist der zentrale Teil der Einlage dicker ausgelegt als die peripheren Teile. Letztere werden dann axial stärker beschleunigt als der mittlere Teil. Gleichzeitig wird die Umformenergie für die Schließung der Poren genutzt. Die Peripherie wird dabei in vorteilhafter Weise höher verdichtet als der mittlere Bereich der Sprengladung.Another, not shown here advantageous embodiment of the Figures 1 and 2 The technology of explosive metal forming takes advantage of so-called EFP charges (Explosively Formed Projectiles). The deposit will be made according to FIG. 1 positioned at the location of the flying plate FP. With appropriate dimensioning of the insert and the explosive charge transforming this (instead of the amplifier charge VL), a forward folding of the insert in the direction of the main axis HA is aimed at. For this purpose, the central part of the insert is made thicker than the peripheral parts. The latter are then accelerated more axially than the middle part. At the same time, the forming energy is used to close the pores. The periphery is advantageously compressed higher than the middle region of the explosive charge.

Die Figur 3 zeigt eine weitere Ausgestaltung der Erfindung. In diesem Fall wird die Verdichtungs-Stoßwelle überwiegend radial in die PHE-Ladung eingeleitet. Dies kann beispielsweise, wie in Figur 3 dargestellt, mittels einer axial, also in Richtung der Hauptachse angeordneten zentralen Sprengladung HEZ erfolgen, die sich über die ganze Länge der Sprengladung erstreckt und einen Durchmesser im Bereich von 5 - 25 % des Durchmessers der Sprengladung PHE aufweist. Die Sprengladung HEZ wird konventionell mittels der auf der linken Seite erkennbaren ersten Zündkette ZK 1 initiiert. Die weitere Zündkette ZK 2 auf der rechten Seite in der Figur 3 regt eine Stoß- bzw. Deflagrationswelle STW in noch nicht verdichteten Teil PHE der Sprengladung an. Die Kunststoffplatte KS dient als Dämpfung für die in der axialen Ladung HEZ anlaufenden Detonationswelle.The FIG. 3 shows a further embodiment of the invention. In this case, the compression shock wave is predominantly introduced radially into the PHE charge. This can, for example, as in FIG. 3 represented by means of an axial, ie in the direction the central axis arranged central explosive charge HEZ take place, which extends over the entire length of the explosive charge and has a diameter in the range of 5 - 25% of the diameter of the explosive charge PHE. The explosive charge HEZ is conventionally initiated by means of the first ignition chain ZK 1, which can be recognized on the left side. The further ignition chain ZK 2 on the right side in the FIG. 3 excites a shock or deflagration wave STW in not yet compressed part PHE the explosive charge. The plastic plate KS serves as damping for the incoming in the axial charge HEZ detonation wave.

Gemäß Figur 4 erzeugt die initiierte axiale Ladung HEZ neben der axial innerhalb der Ladung HEZ laufenden Detonationsfront DW eine sich vorzugsweise in radialer Richtung ausbreitende Stoßwelle STW, die den porösen Teil PHE der Sprengladung fortlaufend von links nach rechts komprimiert. Der Anteil der detonativ und splitterbildend umsetzbaren Ladungsteile HE wird durch die verzögerte Zündung der weiteren Zündkette ZK 2 bestimmt. Je länger dieser Zündzeitpunkt verzögert wird, um so größer ist der Anteil der komprimierten Ladung HE. Erreicht die Stoßwelle STW die Metallhülle MH wird hier bereits die volle Splitterleistung erreicht. Über die unterschiedlichen Geschwindigkeiten der Detonationswelle DW in der zentralen Sprengladung HEZ einerseits und der Stoßwelle STW in der diese umgebenden zu komprimierenden Sprengladung PHE andererseits lässt sich die Steigung der Front der Stoßwelle STW steuern. Indirekt beeinflusst dies das Verhältnis von umkomprimierter Ladung PHE zu komprimierter Ladung HE und damit die Dosierbarkeit der Ladung. Die Detonationsgeschwindigkeit innerhalb der zentralen Sprengladung HE lässt sich durch den Einbau von Verzögerungselementen, wie beispielsweise von Dämpfungsscheiben, beeinflussen. Beispiele für derartige Elemente wären Kunststoffe oder Metallschäume.According to FIG. 4 In addition to the detonation front DW running axially inside the charge HEZ, the initiated axial charge HEZ generates a shock wave STW which preferably propagates in the radial direction and continuously compresses the porous part PHE of the explosive charge from left to right. The proportion of detonatively and fragmentally convertible charge parts HE is determined by the delayed ignition of the further ignition chain ZK 2. The longer this ignition time is delayed, the greater the proportion of the compressed charge HE. If the shock wave STW reaches the metal shell MH, the full splitter performance is already achieved here. On the different speeds of the detonation wave DW in the central explosive charge HEZ on the one hand and the shock wave STW in the surrounding these to be compressed explosive charge PHE the other hand, the slope of the front of the shock wave STW can be controlled. Indirectly, this affects the ratio of the recompressed charge PHE to the compressed charge HE and hence the controllability of the charge. The detonation velocity within the central explosive charge HE can be influenced by the incorporation of delay elements, such as damping disks. Examples of such elements would be plastics or metal foams.

Das Verfahren nach den Figuren 3 und 4 ist besonders gut für lange Ladungen geeignet, da bei einem Verdichtungsprozess nach den Figuren 1 und 2 die zu komprimierende PHE-Säule zu lang wäre und eine vollständige Kompression nicht mehr gewährleistet wäre.The procedure according to FIGS. 3 and 4 is particularly suitable for long loads, as in a compression process after the Figures 1 and 2 the PHE column to be compressed would be too long and complete compression would no longer be guaranteed.

Eine Variante hierzu liegt vor, wenn anstelle der Kunststoffplatte KS aus den Figuren 3 und 4 ein Dämpfungsmaterial zusammen mit einem außerhalb der Kunststoffplatte angeordneten, mechanischen und/oder elektronischen Zeitglied eingebaut wird. Wenn die Detonationswelle DW das Dämpfungsmaterial erreicht wird in diesem eine gedämpfte Stoßwelle erzeugt. Beim Erreichen des Zeitgliedes ist sie noch stark genug, um ein mechanisches oder elektronisches Zeitglied zu triggern. Sie ist aber auch schwach genug, um die weitere Zündkette ZK 2 unversehrt zu lassen. Nach Ablauf der Verzögerungszeit wird die weitere Zündkette ZK 2 initiiert. Mittels Variation der Verzögerungszeiten erreicht man die einstellbare Dosierbarkeit der Ladung.A variant of this is when, instead of the plastic plate KS from the FIGS. 3 and 4 a damping material together with one outside the plastic plate arranged, mechanical and / or electronic timer is installed. When the detonation wave DW reaches the damping material, it generates a damped shock wave. Upon reaching the timer, it is still strong enough to trigger a mechanical or electronic timer. But it is also weak enough to leave the further ignition chain ZK 2 intact. After the delay time, the further ignition chain ZK 2 is initiated. By means of variation of the delay times, one achieves the adjustable meterability of the charge.

Der Durchmesser der axial angeordneten Sprengladung HEZ aus den Figuren 3 und 4 hängt natürlich von den Designparametern wie beispielsweise Dichte und Größe der noch nicht komprimierten PHE-Ladung ab. In der Regel wird dieser Durchmesser bei einem Gefechtskopf in der Größenordnung von einigen wenigen Zentimetern liegen.The diameter of the axially arranged explosive charge HEZ from the FIGS. 3 and 4 Of course, it depends on the design parameters such as density and size of the uncompressed PHE charge. In general, this diameter will be in the order of a few centimeters in a warhead.

In der Figur 5 ist in Längs- und Querschnitt eine alternative Lösung mit mehreren Detonationsschnüren DET anstelle der in Figur 3 dargestellten stangenförmigen Sprengladung HEZ dargestellt. Auch deren Auslegung hängt wiederum von der Dichte und der Größe der zu komprimierenden Ladung PHE ab. Davon abhängig ergibt sich die notwendige Anzahl und die Verteilung der Detonationsschnüre DET in der Ladung PHE.In the FIG. 5 is in longitudinal and cross-section an alternative solution with multiple detonation cords DET instead of in FIG. 3 illustrated rod-shaped explosive charge HEZ shown. Their design also depends on the density and the size of the charge PHE to be compressed. Depending on this, the necessary number and distribution of the detonation cords DET in the charge PHE results.

Derartige Detonationsschnüre sind in unterschiedlichen Konfigurationen wie beispielsweise unterschiedlichen Sprengstoffen oder unterschiedlichen Außenhüllen erhältlich. Daraus ergeben sich mithin unterschiedliche Detonationsgeschwindigkeiten, die ihrerseits eine breite Auswahl an Gestaltungsmöglichkeiten zulassen. Hieraus lässt sich dann die optimale Dosierbarkeit jeder einzelnen Ladung bestimmen.Such detonation cords are available in different configurations such as different explosives or different outer shells. This results in different detonation speeds, which in turn allow a wide range of design options. From this, the optimum meterability of each individual charge can then be determined.

In Figur 5 ist eine Anzahl von Detonationsschnüren DET radial um eine zentrale Detonationsschnur herum so angeordnet, dass sie etwa parallel zur Hautachse HA der Ladung verlaufen. Ebenso gut ist es denkbar, die Detonationsschnüre in einer spiraligen Anordnung innerhalb der Ladung PHE zu verlegen. Damit lässt sich eine lokal hohe Verdichtung der zu komprimierenden Ladung erzielen. Weitere vorteilhafte Varianten sind unter Zuhilfenahme derartiger Detonationsschnüre möglich.In FIG. 5 For example, a number of detonating cords DET are arranged radially around a central detonating cord so as to be approximately parallel to the skin axis HA of the charge. It is equally possible to lay the detonation cords in a spiral arrangement within the charge PHE. This allows a locally high compression of the charge to be compressed. Further advantageous variants are possible with the aid of such detonation cords.

Figur 6 zeigt den fortschreitenden Kompressionsvorgang nach Zündung der ersten Zündkette ZK 1. Die Detonationswellen DW laufen entlang der Detonationsschnüre DET und ziehen, ähnlich wie in Figur 4 dargestellt und beschrieben, jeweils eine Stoßwelle STW nach sich. Wie aus der Figur 6 ersichtlich, findet bereits nach einer kurzen Laufstrecke der Detonationswellen eine in radialer Richtung annähernd vollständige Kompression des porösen Ladungsteils PHE statt. Die Zündung des verdichteten Ladungsteils HE findet dann wieder auf konventionellem Weg mit Hilfe der weiteren Zündkette ZK 2 statt. FIG. 6 shows the progressive compression process after ignition of the first ignition chain ZK 1. The detonation waves DW run along the detonation cords DET and pull, similar to in FIG. 4 shown and described, each a shock wave STW after. Like from the FIG. 6 can be seen, takes place after a short course of the detonation waves in the radial direction approximately complete compression of the porous charge part PHE. The ignition of the compressed charge part HE then takes place again in the conventional way with the aid of the further ignition chain ZK 2.

Für alle hier beschriebenen Beispiele beziehungsweise die gleichartig wirkenden Ausführungsformen gilt die Bedingung, dass nicht die vollständige Verdichtung des porösen Ladungsteils PHE abgewartet werden muss, bis über die weitere Zündkette ZK 2 die Initiierung erfolgen kann. Vielmehr kann auch von dieser Zündkette beispielsweise über eine weitere Zünd- oder Detonationsschnur ein zentrales Detonationssignal an den bereits verdichteten Teil der Ladung HE herangeführt und zum gewünschten Zeitpunkt gezündet werden. Damit wird eine weitere Flexibilität der Dosierbarkeit der Ladung erreicht.For all examples described here or the embodiments having the same effect, the condition applies that the complete compaction of the porous charge part PHE does not have to be awaited until initiation can take place via the further ignition charge ZK 2. Rather, a central detonation signal can also be brought to the already compressed part of the charge HE and ignited at the desired time from this detonating chain, for example via a further ignition or detonation cord. Thus, a further flexibility of the metering of the charge is achieved.

Claims (7)

  1. Process for controlling the effect of a warhead, the cylindrical explosive charge of which has a defined porosity, wherein at least part of the explosive charge is compressed by means of application of pressure, wherein the explosive charge (PHE), which has a low density below the detonation limit, is at least partially compacted to a higher density by means of controlled compression, beginning from one side of the explosive charge (PHE), characterized by a compaction in the direction of the principal axis (HA) from a lower density below the detonation limit to a higher density above the detonation limit.
  2. Process according to Claim 1, characterized in that the compression takes place by means of a detonatively accelerated inert plate (ZK 1, VL, FP).
  3. Process according to Claim 1 or 2, characterized in that the compression takes place with the aid of an EFP charge with forward folding.
  4. Process according to Claim 1 or 2, characterized in that the compression takes place by means of detonators arranged concentrically on the end face of the explosive charge.
  5. Process according to Claim 1, characterized in that the compression takes place not only in the direction of the principal axis (HA) but also at the same time radially in relation to the principal axis (HA) of the explosive charge (PHE) by means of an explosive charge (HEZ) arranged in the region of the principal axis (HA).
  6. Process according to Claim 5, characterized in that the compression takes place by means of an axially extending detonation cord (DET).
  7. Process according to Claim 6, characterized in that the compression takes place with the aid of a multiple arrangement of detonation cords (DET) extending approximately parallel to, in the direction of and at a distance from the principal axis (HA).
EP20090007372 2008-06-11 2009-06-04 Process for controlling the effect of a warhead Active EP2133654B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14000584.4A EP2735837B1 (en) 2008-06-11 2009-06-04 Process for controlling the effect of a warhead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810027900 DE102008027900B4 (en) 2008-06-11 2008-06-11 Method and device for power control of a warhead

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP14000584.4A Division EP2735837B1 (en) 2008-06-11 2009-06-04 Process for controlling the effect of a warhead
EP14000584.4A Division-Into EP2735837B1 (en) 2008-06-11 2009-06-04 Process for controlling the effect of a warhead

Publications (3)

Publication Number Publication Date
EP2133654A2 EP2133654A2 (en) 2009-12-16
EP2133654A3 EP2133654A3 (en) 2013-08-21
EP2133654B1 true EP2133654B1 (en) 2015-03-18

Family

ID=40810296

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20090007372 Active EP2133654B1 (en) 2008-06-11 2009-06-04 Process for controlling the effect of a warhead
EP14000584.4A Active EP2735837B1 (en) 2008-06-11 2009-06-04 Process for controlling the effect of a warhead

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14000584.4A Active EP2735837B1 (en) 2008-06-11 2009-06-04 Process for controlling the effect of a warhead

Country Status (3)

Country Link
EP (2) EP2133654B1 (en)
DE (1) DE102008027900B4 (en)
ES (2) ES2537637T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0904929D0 (en) * 2009-03-23 2009-05-06 Qinetiq Ltd Novel munition
EP2442065B1 (en) * 2010-10-18 2017-03-29 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Switchable explosive charge
DE102014011702B3 (en) * 2014-08-07 2016-02-11 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Ignition device for a splinter charge
DE102014014332B3 (en) * 2014-10-01 2016-03-17 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Apparatus and method for the controlled fragmentation by means of temperature-activated Kerbladungen
DE102014018218B4 (en) * 2014-12-06 2023-05-17 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Device for the controlled initiation of the deflagration of an explosive charge
DE102021002470B4 (en) 2021-05-10 2023-09-21 TDW Gesellschaft für verteidigungstechnische Wirksysteme mit beschränkter Haftung Scalable active system and warhead
BE1029150B1 (en) * 2021-07-26 2022-09-26 Univ Anhui Sci & Technology Cooperative explosive charge structure and method of loading the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR406850A (en) * 1909-09-08 1910-02-12 Gabriel Louis Dubosc Improvements to explosive shells to increase burst strength and safety in transport
DE3016861C2 (en) * 1980-05-02 1984-07-12 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Warhead with a shell for fragmentation
US4955939A (en) * 1983-03-02 1990-09-11 The United States Of America As Represented By The Secretary Of The Navy Shaped charge with explosively driven liquid follow through
US5067995A (en) * 1989-06-15 1991-11-26 The United States Of America As Represented By The United States Department Of Energy Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives
DE4109071C1 (en) * 1991-03-20 1996-08-22 Daimler Benz Aerospace Ag Squash head ammunition
DE19821150C1 (en) * 1998-05-12 1999-10-28 Daimler Chrysler Ag Detonative deformable bursting charge useful in guided war heads
DE10008914C2 (en) * 2000-02-25 2003-06-26 Tdw Verteidigungstech Wirksys Explosive charge for a warhead
SE522865C2 (en) * 2000-07-03 2004-03-16 Bofors Defence Ab Charging arrangement for ammunition carrying unit
DE10227002B4 (en) * 2002-06-18 2005-06-16 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Decomposition charge for a warhead
US7191709B2 (en) * 2004-02-10 2007-03-20 The United States Of America As Represented By The Secretary Of The Navy Enhanced performance reactive composite projectiles
DE102005031588B3 (en) * 2005-07-06 2007-01-11 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Controllable charge of a warhead

Also Published As

Publication number Publication date
EP2735837A1 (en) 2014-05-28
DE102008027900A1 (en) 2009-12-17
DE102008027900B4 (en) 2013-07-04
ES2537637T3 (en) 2015-06-10
EP2133654A2 (en) 2009-12-16
EP2735837B1 (en) 2016-11-30
EP2133654A3 (en) 2013-08-21
ES2616132T3 (en) 2017-06-09

Similar Documents

Publication Publication Date Title
EP2133654B1 (en) Process for controlling the effect of a warhead
EP0806623B1 (en) Spin stabilised carrier projectile
EP1912037B1 (en) Cylindrical explosive charge
DE60021398T2 (en) ZÜNDER
EP2239536B1 (en) Selectable initiation system for a warhead
DE2107102A1 (en) Warhead with detonation-dependent control of the direction of the explosive effect
DE3130418A1 (en) CHARGE
EP2824414B1 (en) Method and device for controlling the performance of an active system
EP2325596B1 (en) Penetrator with explosive charge and ignition device
EP1108973A2 (en) Ignition device
EP2020586B1 (en) Support device for an explosive charge of a penetrator
DE19518472C1 (en) Method for removal of steel tractive components of press anchor
DE3821276C1 (en)
DE10222184B4 (en) warhead
DE4126793C1 (en) Tandem hollow charge weapon head with gas shield - forming unit with main charge for acceleration along shell when initial charge detonates
DE102021002470B4 (en) Scalable active system and warhead
DE102005044320B4 (en) Charge with a substantially cylindrical explosive device
EP1936319B1 (en) Penetrating projectile and method for creating such a projectile
EP2442065B1 (en) Switchable explosive charge
DE102005057254A1 (en) Penetration projectile and method for producing such a projectile
DE102009013931B4 (en) Name: Method for a directional warhead and warhead for the same
DE102014011702B3 (en) Ignition device for a splinter charge
DE3401736C1 (en) Warhead for attacking aircraft
EP1267140A2 (en) Device for neutralising explosive objects without explosion and use of such a device
DE3201734A1 (en) Shaped-charge projectile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F42B 12/20 20060101AFI20130429BHEP

Ipc: F42C 19/08 20060101ALI20130429BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F42C 19/08 20060101ALI20130718BHEP

Ipc: F42B 12/20 20060101AFI20130718BHEP

17P Request for examination filed

Effective date: 20140219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F42B 12/20 20060101AFI20140919BHEP

Ipc: F42C 19/08 20060101ALI20140919BHEP

Ipc: F42B 12/22 20060101ALN20140919BHEP

INTG Intention to grant announced

Effective date: 20141009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 716851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010773

Country of ref document: DE

Effective date: 20150430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2537637

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150610

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150318

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150619

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150718

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010773

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20151221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150604

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150604

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160614

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 716851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160620

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160628

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090604

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170604

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170605

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502009010773

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200619

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200625

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230630

Year of fee payment: 15