EP2130261A1 - Pile à combustible et procédé de fabrication associé - Google Patents

Pile à combustible et procédé de fabrication associé

Info

Publication number
EP2130261A1
EP2130261A1 EP08734702A EP08734702A EP2130261A1 EP 2130261 A1 EP2130261 A1 EP 2130261A1 EP 08734702 A EP08734702 A EP 08734702A EP 08734702 A EP08734702 A EP 08734702A EP 2130261 A1 EP2130261 A1 EP 2130261A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
cell according
membrane
transport
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08734702A
Other languages
German (de)
English (en)
Inventor
Michael-Carsten Oszcipok
Steffen Eccarius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2130261A1 publication Critical patent/EP2130261A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8835Screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a fuel cell which has a membrane-electrode assembly of an ion-conducting membrane with arranged on opposite surfaces of the membrane catalyst layers serving as the anode and cathode, and optionally an anode-side and / or a cathode-side gas diffusion layer, wherein the membrane electrodes - Unit adjacent areas with different
  • Diffusion transport for starting materials and / or products.
  • the invention relates to a method for producing such fuel cells.
  • Fuel cells convert chemical energy directly into electrical energy.
  • fuel cell reactants are fed continuously in gaseous form or in liquid form.
  • the electrochemical conversion is made possible by means of a physical separation of the reducing or oxidizing species, for example, by an ion exchange membrane which is coated on both sides with catalyst, the so-called. Electrodes.
  • a fuel cell which comprises a membrane-electrode assembly of an ion-conducting membrane with at opposite
  • the fuel cell optionally contains an anode-side and / or a cathode-side gas diffusion layer.
  • the membrane-electrode unit has adjacent regions with different diffusion transport for educts and / or products. This is realized in that in the areas with low diffusion transport at least one of the catalyst layers has a higher
  • Diffusion barrier represents as the catalyst layer in the regions with higher diffusion transport.
  • the invention thus describes a passive decoupling of the transport phenomena by grading the electrodes. Within the electrodes, areas are created that allow exclusively or at least increased diffusive mass transfer. The fact that these areas are in the immediate vicinity of zones in which the electroosmotic exchange can take place, the operation of the fuel cell is passively optimized because reactants or products by a forming microcirculation within the membrane keeps them in optimal humidification. This microcirculation can be promoted by completely removing the catalyst layer at selected locations on the electrode. Even thinning out of the catalyst layer can be sufficient, since the catalyst layer represents a diffusion resistance for the water or the fuel. By reducing the catalyst layer thickness or a complete removal of this resistance can be reduced.
  • the invention is particularly suitable for passive, electrochemical cells in which little to no energy is available to operate peripheral components.
  • a preferred embodiment provides that in the regions with higher diffusion transport of the Fuel cell at least one of the catalyst layers has a relation to the layer thicknesses of the catalyst layers in areas with lower diffusion transport of the fuel cell at least reduced layer thickness.
  • a further preferred variant provides that at least one of the catalyst layers is completely removed in the regions with higher diffusion transport, so that here there is a reduced diffusion barrier compared to the other regions.
  • a further preferred variant provides that at least one gas diffusion layer has a higher hydrophobicity in the regions with a higher diffusion transport than in the regions with lower diffusion transport. In the areas of higher hydrophobicity, the water concentration increases, which increases the diffusion through the membrane in these areas.
  • a further preferred embodiment provides that the diffusion barrier is chosen so that in the regions with higher diffusion transport, the transport processes of the educts and / or products through the membrane are determined essentially by the diffusion transport and not by electroosmotic transport.
  • the diffusion barrier is preferably selected such that a microcirculation for the transport of educts and / or products arises between the regions with a higher diffusion transport and the regions with a lower diffusion transport.
  • the diffusion properties are tuned to water as a product in a fuel cell, eg a DMFC.
  • a fuel cell eg a DMFC.
  • the size of the regions with a lower diffusion transport or with a higher diffusion transport there are basically no restrictions.
  • the size of the regions with lower diffusion transport is in the range of 100 nm 2 to 10 mm 2. This applies to areas with higher diffusion transport.
  • the geometry of these areas there are no restrictions, preferred are rod-shaped, round or square shapes.
  • the fuel cell is a hydrogen polymer electrolyte membrane fuel cell (PEMFC).
  • PEMFC hydrogen polymer electrolyte membrane fuel cell
  • the diffusion barrier is preferably chosen so that the diffusive return transport of water outweighs the electro-motive transport of water in the fuel cell.
  • the supply of water on the anode side can preferably be dispensed with.
  • a second preferred embodiment provides that the fuel cell is a direct oxidation fuel cell, in particular a direct alcohol fuel cell.
  • the diffusion barrier is preferably selected such that the diffusive transport of water from the oxidizing to the reducing electrode outweighs the electroosmotic transport of water from the cathode to the anode.
  • the membrane of the membrane-electrode assembly is preferably made of a polymer. This is preferably selected from the group consisting of perfluorinated polymers containing sulfone groups (SPE), for example Nafion, polybenzimidazole (PBI), polyether ether ketone (PEEK), sulfonated polyetheretherketone (sPEEK) and their blends and copolymers.
  • SPE perfluorinated polymers containing sulfone groups
  • PBI polybenzimidazole
  • PEEK polyether ether ketone
  • sPEEK sulfonated polyetheretherketone
  • the membrane is proto- nen suedd. This concerns the common variants of known fuel cells.
  • the membrane can be constructed both homogeneous and inhomogeneous.
  • the membrane may additionally have functionally coated particles for controlling the diffusion and / or electroosmotic transport.
  • the catalyst layers contained in the fuel cell preferably contain platinum, ruthenium,
  • the degassing device may be in the form of a microstructuring of the fluid distribution structure, which promotes the removal of gaseous media from the fluid distribution structure.
  • the fluid distribution structure it is possible, for example, for the fluid distribution structure to have at least one channel with a T-shaped cross section.
  • degassing envisages that the fuel cell on the anode side has at least one permeable to gases and for liquids impermeable barrier layer, whereby the liquids held in the fluid distribution structure and the gases can be removed from the fluid distribution structure to the reaction zone.
  • the barrier layer is preferably an oleophobic membrane, a nanofiltration membrane, e.g. a porous membrane, a pervaporation membrane, e.g. a PDMS membrane, or a ceramic.
  • the invention also provides a process for producing a fuel cell as described above, wherein the membrane is coated on at least one surface with a catalyst layer and the regions with higher diffusion transport by reducing or completely removing the layer thickness of the catalyst layer in these areas Laser irradiation takes place.
  • Another variant for the production of a fuel cell is based on the fact that the membrane of the fuel cell is provided on at least one surface area by means of screen printing, spraying, doctoring, pad printing or decal process area with a catalyst layer.
  • FIG. 1 shows a schematic representation of the transport processes in a conventional fuel cell known from the prior art.
  • the smaller case represents ion transport and electroosmotic water transport, while the larger arrow represents the diffusion-driven water transport.
  • Fig. 2 the transport processes for a fuel cell according to the invention are shown schematically.
  • the membrane may be too dry or too humid in the outlet area.
  • the membrane becomes too dry, because water is transported electroosmotically with the protons from the hydrogen side to the air side and the diffusive return transport of the product water is outweighed (see Fig. 1).
  • Concentration of the methanol storage can be increased to up to 100%, whereby the energy density increases many times over typically used low-percentage mixtures.
  • only the cathode side is graded. Additional benefit is provided by the water repatriation in the disposal of the resulting product water on the cathode in self-breathing cells with open to the environment cathode structures.
  • the anode of the direct methanol fuel cell is operated with a 100% solution of the fuel.
  • the water required for the oxidation of the fuel is added to conventional concepts on the cathode side and diffused by utilizing the Grading, on the anode side and is there as starting material available.
  • a hydrophilic gas diffusion layer can assist wetting the electrode with water and transporting water across the cathode side to the anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une pile à combustible comprenant un assemblage électrode-membrane-électrode constitué d'une membrane de transport d'ions pourvue de couches catalytiques, placées sur des surfaces opposées de la membrane et faisant fonction d'anode et de cathode, et éventuellement une couche de diffusion gazeuse côté anode et/ou côté cathode, ledit assemblage électrode-membrane-électrode présentant des zones adjacentes à différente propriété de transport par diffusion d'éduits et/ou de produits. L'invention concerne également un procédé de fabrication de telles piles à combustible.
EP08734702A 2007-03-23 2008-03-20 Pile à combustible et procédé de fabrication associé Withdrawn EP2130261A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007014046A DE102007014046B4 (de) 2007-03-23 2007-03-23 Brennstoffzelle sowie Verfahren zu deren Herstellung
PCT/EP2008/002269 WO2008116604A1 (fr) 2007-03-23 2008-03-20 Pile à combustible et procédé de fabrication associé

Publications (1)

Publication Number Publication Date
EP2130261A1 true EP2130261A1 (fr) 2009-12-09

Family

ID=39434233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08734702A Withdrawn EP2130261A1 (fr) 2007-03-23 2008-03-20 Pile à combustible et procédé de fabrication associé

Country Status (5)

Country Link
US (1) US20100221636A1 (fr)
EP (1) EP2130261A1 (fr)
JP (1) JP2010521788A (fr)
DE (1) DE102007014046B4 (fr)
WO (1) WO2008116604A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442481B2 (ja) * 2009-03-30 2014-03-12 三洋電機株式会社 複合膜、燃料電池および複合膜の作製方法
DE102013207900A1 (de) 2013-04-30 2014-10-30 Volkswagen Ag Membran-Elektroden-Einheit und Brennstoffzelle mit einer solchen
WO2020115000A1 (fr) * 2018-12-06 2020-06-11 Widex A/S Pile à combustible à alcool direct
DE102020106082A1 (de) 2020-03-06 2021-09-09 Audi Aktiengesellschaft Verfahren zur Herstellung einer Brennstoffzelle, Vorrichtung zur Herstellung einer Membranelektrodenanordnung für eine Brennstoffzelle, Brennstoffzelle sowie Brennstoffzellenstapel
KR20230040842A (ko) 2021-09-16 2023-03-23 한국전력공사 고내구성 연료전지용 전극 및 막-전극 접합체, 이의 제조방법 및 이를 포함하는 연료전지

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3576248D1 (de) * 1984-10-17 1990-04-05 Hitachi Ltd Verfahren zur herstellung einer flexiblen brennstoffzellenelektrode, ausgehend von kohlepapier.
JP3555196B2 (ja) * 1994-09-19 2004-08-18 トヨタ自動車株式会社 燃料電池とその製造方法
DE19519847C1 (de) * 1995-05-31 1997-01-23 Forschungszentrum Juelich Gmbh Anodensubstrat für eine Hochtemperatur-Brennstoffzelle
JPH1131520A (ja) * 1997-05-13 1999-02-02 Mazda Motor Corp 固体高分子型燃料電池
US5961796A (en) * 1997-06-03 1999-10-05 Lynntech, Inc. Bipolar membranes with fluid distribution passages
US6124060A (en) * 1998-05-20 2000-09-26 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolytes
US7098163B2 (en) * 1998-08-27 2006-08-29 Cabot Corporation Method of producing membrane electrode assemblies for use in proton exchange membrane and direct methanol fuel cells
DE19908591B4 (de) * 1999-02-27 2004-09-16 Forschungszentrum Jülich GmbH Brennstoffzellen-Elektrode
WO2001017047A1 (fr) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Cellule electrochimique de type a electrolyte polymerique
US6682844B2 (en) * 2001-04-27 2004-01-27 Plug Power Inc. Release valve and method for venting a system
JP3843838B2 (ja) * 2001-12-28 2006-11-08 日産自動車株式会社 燃料電池
JP3970704B2 (ja) * 2002-07-04 2007-09-05 三菱電機株式会社 膜・電極接合体の製造方法
US20040058227A1 (en) * 2002-07-09 2004-03-25 Matsushita Electric Industrial Co., Ltd. Electrolyte membrane-electrode assembly for a fuel cell, fuel cell using the same and method of making the same
EP1570537A2 (fr) * 2002-12-02 2005-09-07 Donaldson Company, Inc. Divers elements de filtre pour pile a hydrogene
JP2005038780A (ja) * 2003-07-18 2005-02-10 Nissan Motor Co Ltd 固体高分子型燃料電池
DE102004013173B4 (de) * 2004-03-17 2006-04-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oleophobe anorganische Membranen und Verfahren zu deren Herstellung
US7153802B2 (en) * 2004-04-07 2006-12-26 Proton Energy Systems, Inc. Method of making an electrode for a membrane electrode assembly and method of making the membrane electrode assembly
JP5194336B2 (ja) * 2004-06-08 2013-05-08 大日本印刷株式会社 触媒層付き電極基材、触媒層付き電極基材の製造方法、電極−電解質膜接合体の製造方法、及び燃料電池の製造方法
US20080145732A1 (en) * 2004-12-17 2008-06-19 Lopes Correia Tavares Ana Bert Proton Exchange Fuel Cell
GB2422716B (en) * 2005-01-26 2007-08-22 Intelligent Energy Ltd Multi-layer fuel cell diffuser
EP1883128A4 (fr) * 2005-03-31 2011-06-29 Toshiba Kk Pile à combustible
DE102005056672B4 (de) * 2005-11-28 2014-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Betreiben einer Direktoxidationsbrennstoffzelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008116604A1 *

Also Published As

Publication number Publication date
JP2010521788A (ja) 2010-06-24
WO2008116604A9 (fr) 2008-12-04
WO2008116604A1 (fr) 2008-10-02
US20100221636A1 (en) 2010-09-02
DE102007014046B4 (de) 2011-07-28
DE102007014046A1 (de) 2009-01-08

Similar Documents

Publication Publication Date Title
DE69433591T2 (de) Elektrochemische brennstoffzelle mit integral selektivem oxidierer
DE102010009004A1 (de) Anodenwasserabscheider für ein Brennststoffzellensystem
DE102008009114A1 (de) Fluorbehandlung von Polyelektrolytmembranen
DE102007014046B4 (de) Brennstoffzelle sowie Verfahren zu deren Herstellung
DE102012205643B4 (de) Brennstoffzellensystem und Verfahren zum Stoppen der Stromerzeugung in einem Brennstoffzellensystem
DE112020001053T5 (de) Kathodenkatalysatorschicht für eine Brennstoffzelle, und Brennstoffzelle
DE602004000218T2 (de) Brennstoffzelle und Verfahren zum Betreiben derselben
DE112010002798T5 (de) Verringern des verlusts von flüssigem elektrolyt aus einerhochtemperatur-polymerelektrolytmembran-brennstoffzelle
EP2036155A1 (fr) Cellule a combustible a oxidation directe pour le transport sans convection du combustible et procede d'utilisation de la cellule a combustible
DE102020101292A1 (de) Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems und Kraftfahrzeug
DE102016119587A1 (de) Methoden und verfahren zum ausgleich des spannungsabfalls infolge anodenverunreinigung
EP4008035A1 (fr) Humidificateur, dispositif de pile à combustible comprenant un humidificateur et véhicule à moteur
EP1198858B1 (fr) Pile a combustible a membrane electrochimique polymere
WO2020109435A1 (fr) Procédé de fabrication d'un agencement membrane-électrodes
EP1974413A1 (fr) Cellule a combustible a oxydation directe dotee d'un apport passif de combustible et procede pour son utilisation
DE102005025914A1 (de) Feuchtetauscher in Brennstoffzellenanordnungen
DE112012001206T5 (de) Brennstoffzellen-System
EP2913877B1 (fr) Pile à combustible à méthanol direct et empilement de piles à combustible à méthanol direct avec élimination efficace du CO2 et procédé d'utilisation d'une telle pile à combustible à méthanol direct
DE102018204816A1 (de) Brennstoffzellenaufbau
DE10260501A1 (de) Gasdiffusionselektrode mit einer Schicht zur Steuerung der Querdiffusion von Wasser
WO2017072000A1 (fr) Alimentation de cathode pour une pile à combustibles multiples ainsi que procédé d'alimentation de sous-piles à combustible avec un combustible de cathode
DE102013009555B4 (de) Verfahren zum Betreiben einer Niedertemperatur- Brennstoffzelle sowie Vorrichtung zur Durchführung des Verfahrens
DE102015222552A1 (de) Brennstoffzellenstapel Bipolarplatten aufweisend sowie Brennstoffzellensystem
DE102021205989A1 (de) Verfahren zur Herstellung einer elektrochemischen Zelleneinheit
DE102021208847A1 (de) Verfahren zum Betreiben einer elektrochemische Zelleneinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ECCARIUS, STEFFEN

Inventor name: OSZCIPOK, MICHAEL-CARSTEN

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120711