WO2020109435A1 - Procédé de fabrication d'un agencement membrane-électrodes - Google Patents
Procédé de fabrication d'un agencement membrane-électrodes Download PDFInfo
- Publication number
- WO2020109435A1 WO2020109435A1 PCT/EP2019/082828 EP2019082828W WO2020109435A1 WO 2020109435 A1 WO2020109435 A1 WO 2020109435A1 EP 2019082828 W EP2019082828 W EP 2019082828W WO 2020109435 A1 WO2020109435 A1 WO 2020109435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- sealing layer
- exchange membrane
- passage
- catalyst layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/881—Electrolytic membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
- H01M4/8835—Screen printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/886—Powder spraying, e.g. wet or dry powder spraying, plasma spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8896—Pressing, rolling, calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0284—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0286—Processes for forming seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to an improved method for building a membrane electrode assembly for use in a
- PEMBZ polymer electrolyte membrane fuel cells
- a fuel cell is an electrochemical cell that comprises two electrodes that are separated by an electrolyte.
- Electrochemical reactions occur on both electrodes and the chemical energy of the fuel and the oxidant is converted into electrical energy and heat.
- the anode or cathode typically comprises finely divided catalytic particles, which are often carried on carbon particles and mixed with a proton-conducting resin.
- the catalytic particles are typically expensive precious metal particles.
- This membrane electrode arrangement is relatively expensive to manufacture and its structure is decisive for the effectiveness of a fuel cell. A method for constructing such a membrane-electrode arrangement must therefore be optimized, both in terms of the economy of manufacture and in terms of advantageous mode of operation.
- Apparatus comprising the steps of: A) producing a first semi-finished product by applying a first ionomer layer to a first support, applying an anode catalyst layer to the first ionomer layer using a first catalyst ink, drying the anode catalyst layer; B) producing a second semi-finished product by applying a second ionomer layer on a second support, applying a cathode catalyst layer on the second ionomer layer using a second
- Catalyst ink drying the cathode catalyst layer; C) Removing the first and second carrier from the first and second ionomer layer and connecting the first semi-finished product to the second semi-finished product by one
- a method for producing a membrane electrode arrangement according to the features of independent claim 1, a membrane electrode unit according to the features of independent claim 8, and a fuel cell according to the features of independent claim 9 are specified.
- the effects mentioned are achieved, at least in part.
- Advantageous embodiments are the subject of the dependent claims and the following description. The invention is based on the knowledge that the installation of two layers of the membrane electrode arrangement by means of carrier layers, on which at least one of the layers to be mounted is initially applied, results in unavoidable adjustment errors.
- the method according to the invention for producing a membrane electrode arrangement with at least one proton exchange membrane comprises the method steps described below, which are carried out sequentially.
- a first sealing layer is laminated to a first side of the proton exchange membrane.
- the first sealing layer has a first passage in a central area of its surface, which enables a further coating of the first side in the area of this first passage.
- a second sealing layer is laminated on a second side of the proton exchange membrane.
- the second sealing layer has a second passage in a central area of its surface, which accordingly enables a further coating of the second side in the area of this second passage.
- Direct coating means that the layer does not have to be applied to a separate support surface first and then the two surfaces have to be aligned with one another before the layers can be joined together. In contrast, it means direct
- a material for the proton exchange membrane z. B. a perfluorinated copolymer containing a sulfone group as an ionic group, such as. B. Nafion can be used.
- An example of the material of the sealing layer is
- the material of the catalyst layer has both a catalyst material, such as. B. plantin particles, as well as carbon particles and a solvent, such as. B. water.
- an acrylic adhesive can be used to seal the proton exchange membrane.
- Sealing layers are completely decayed with the catalyst material and the actual layer formation takes place in the area provided for the catalyst layer. It is thereby achieved in a self-centering process step that the area of the catalyst layer is both the size of the
- the entire structure of a fuel cell which uses such a membrane electrode arrangement results in a thinner overall layer thickness because of the non-existing overlap, which cannot be avoided in practice when using prefabricated catalyst layers on carrier layers.
- the lower thickness, for a fuel cell manufactured in this way results in an overall higher power density per volume, since the performance of a layer structure constructed in this way remains the same.
- the method have the further method steps described below.
- the first sealing layer and the first catalyst layer are covered with a first gas diffusion layer, and the first sealing layer is connected to the first gas diffusion layer. Then the second
- Gas diffusion layer covers, and the second sealing layer is connected to the second gas diffusion layer.
- the gas diffusion layers can be porous layers which essentially have carbon fibers.
- connection of the sealing layers with the gas diffusion layers ensures that a compact combination of layers is created, so that the reaction gases supplied to the fuel cell through the permeable
- Gas diffusion layer can be distributed evenly over the catalyst layer. This is because, in the construction of a fuel cell, the reaction gases are supplied from the free side of the gas diffusion layer and are distributed in the gas diffusion layer before they reach the catalyst layer.
- Connection material is connected. This leads to an improvement in the durability of the connection and thus an easier handling of the entire membrane electrode arrangement.
- An epoxy adhesive can be used as the connecting material for connecting the gas diffusion layer and the sealing layer.
- the catalyst layer be treated thermally after the coating. Any volatile substances contained in the catalyst material can escape and the interstices thus freed up then form channels for the reaction gas supply and help to remove the water of reaction.
- Such a thermal treatment also improves the mechanical stability of the catalyst layer.
- the catalyst layer be pressed after the coating. Such pressurization can improve the mechanical stability of the catalyst layer.
- the direct coating be carried out by means of a wet process.
- the proton exchange membrane is coated with a viscous emulsion.
- a method similar to the screen printing method can be used for this coating.
- the emulsion contains the catalyst layer portions in dissolved or
- Solvents and water can be used as dispersing agents, carbon-supported platinum nanoparticles being dispersed. Hydrophobic and hydrophilic polymers can be added in solution to adjust the water balance of the electrode.
- the direct coating be carried out by means of a drying process.
- powder particles are typically applied using electrostatic forces.
- other drying methods can also be used. It is particularly favorable in the dry process that no solvents are produced in the process and the proton exchange membrane does not swell.
- a membrane electrode arrangement according to the invention can thus be produced with the method described in this way.
- Such a membrane-electrode arrangement can also be used to construct a fuel cell.
- Figure la shows a first arrangement of a proton exchange membrane laminated with a first and a second sealing layer in cross section;
- Figure lb the first arrangement additionally coated with a first
- Figure lc the first arrangement further coated with a first and a second catalyst layer in cross section;
- Figure ld the first arrangement coated with a first
- Figure la shows a proton exchange membrane 1 laminated with a first sealing layer 2 and a second sealing layer 3, corresponding to a cross section through the corresponding structure of the membrane electrode assembly 10 after a first and second process step.
- the first passage 8 and the second passage 9 of the first sealing layer 2 and the second sealing layer 9 are shown in cross section.
- the proton exchange membrane 1 is exposed in this area through the first and second passages 8, 9 and can be coated in a subsequent process step.
- FIG. 1b shows the structure of the membrane electrode assembly 10 after a third process step, in which the proton exchange membrane 1 was coated with the first catalyst layer 4 in the first passage 8 of the sealing layer 2, in cross section.
- Figure lc shows the structure of the membrane electrode assembly 10 after a fourth process step, in which the coating with the second
- Catalyst layer 4 was carried out on the second surface of the proton exchange membrane 1, in cross section.
- FIG. 1d shows the structure of the membrane electrode arrangement 10 after a fifth and sixth process step, in which a first and a second
- Gas diffusion layer 4, 5 was connected to the first or second sealing layer 2, 3.
- the figure le shows the structure of the membrane electrode assembly 10 after the third process step in supervision.
- the sealing layer 2 completely surrounds the catalyst layer 4.
- the cross-sectional line 11, in which the cross-sections of FIGS. 1a to 1d are drawn, is also identified.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
La présente invention concerne un procédé de fabrication d'un agencement membrane-électrodes (10) muni d'au moins une membrane d'échange de protons (1). Le procédé comprend les étapes séquentielles suivantes consistant à : laminer une première couche d'étanchéité (2) sur une première face de la membrane d'échange de protons (1), la première couche d'étanchéité (2) comprenant un premier passage (8) dans une zone centrale de sa surface ; laminer une seconde couche d'étanchéité (3) sur une seconde face de la membrane d'échange de protons (1), la seconde couche d'étanchéité (3) comprenant un second passage (9) dans une zone centrale de sa surface ; recouvrir directement la surface, non laminée au niveau du premier passage (8), de la première face de la membrane d'échange de protons (1) avec une première couche catalytique (4) ; et recouvrir directement la surface, non laminée au niveau du second passage (9), de la seconde face de la membrane d'échange de protons (1) avec une seconde couche catalytique (5).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018220418.7 | 2018-11-28 | ||
DE102018220418.7A DE102018220418A1 (de) | 2018-11-28 | 2018-11-28 | Verfahren zur Herstellung einer Membran-Elektroden-Anordnung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020109435A1 true WO2020109435A1 (fr) | 2020-06-04 |
Family
ID=68733057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/082828 WO2020109435A1 (fr) | 2018-11-28 | 2019-11-28 | Procédé de fabrication d'un agencement membrane-électrodes |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102018220418A1 (fr) |
WO (1) | WO2020109435A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112701338A (zh) * | 2020-12-31 | 2021-04-23 | 上谷氢科(深圳)科技有限公司 | 一种健康环保无毒害残留膜电极生产设备及其生产工艺 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005038612A1 (de) | 2005-08-16 | 2007-02-22 | Basf Ag | Verfahren zur Herstellung von beidseitig katalysatorbeschichteten Membranen |
US20100038020A1 (en) * | 2005-06-20 | 2010-02-18 | Yoshihiro Hori | Method for manufacturing membrane-electrode assembly |
-
2018
- 2018-11-28 DE DE102018220418.7A patent/DE102018220418A1/de not_active Withdrawn
-
2019
- 2019-11-28 WO PCT/EP2019/082828 patent/WO2020109435A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100038020A1 (en) * | 2005-06-20 | 2010-02-18 | Yoshihiro Hori | Method for manufacturing membrane-electrode assembly |
DE102005038612A1 (de) | 2005-08-16 | 2007-02-22 | Basf Ag | Verfahren zur Herstellung von beidseitig katalysatorbeschichteten Membranen |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112701338A (zh) * | 2020-12-31 | 2021-04-23 | 上谷氢科(深圳)科技有限公司 | 一种健康环保无毒害残留膜电极生产设备及其生产工艺 |
Also Published As
Publication number | Publication date |
---|---|
DE102018220418A1 (de) | 2020-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69527033T2 (de) | Ionenaustauschmembran-Elektrodeneinheit für eine elektrochemische Zelle | |
EP0934606B1 (fr) | Unite electrodes-electrolyte pour une pile a combustible | |
EP1654776A2 (fr) | Unit membrane- lectrode pour des installations lectrochimiques | |
DE102013205284B4 (de) | Elektrodenanordnung mit integrierter Verstärkungsschicht | |
EP3167504A1 (fr) | Unité membrane-électrodes | |
DE112004002665T5 (de) | Haltbares, mit einem Katalysator einer Membranelektrodenanordnung beschichtetes Diffusionsmedium ohne Laminierung an die Membran | |
DE112020001053T5 (de) | Kathodenkatalysatorschicht für eine Brennstoffzelle, und Brennstoffzelle | |
DE10392147T5 (de) | Flüssigbrennstoff-Zelle | |
DE112004001685B4 (de) | Vorrichtung mit einer Membranelektrodenanordnung und Verfahren zum Herstellen einer Membranelektrodenanordnung | |
WO2020109435A1 (fr) | Procédé de fabrication d'un agencement membrane-électrodes | |
WO2017134117A1 (fr) | Membrane, assemblage membrane-électrodes, pile à combustible et procédé de fabrication d'une membrane | |
WO2020030355A1 (fr) | Structure en couches pour une pile à combustible et procédé pour fabriquer une telle structure en couches | |
DE102004024844A1 (de) | Elektrodenpaste zur Herstellung einer Katalysatorschicht für eine elektrochemische Zelle sowie Verfahren zur Herstellung einer Katalysatorschicht | |
WO2022084014A1 (fr) | Ensemble membrane-électrode pour une cellule électrochimique et procédé de fabrication d'un ensemble membrane-électrode | |
DE102008056331B4 (de) | Verfahren zur visuellen Unterscheidung zwischen Partikeln in einer Membranelektrodenanordnung und dazwischen liegenden Poren | |
WO2022129279A1 (fr) | Empilement de piles à combustible et son procédé de production | |
WO2022175020A1 (fr) | Procédé de fabrication de couches catalytiques pour piles à combustible | |
DE102007025207A1 (de) | Gasdiffusionselektrode und diese enthaltende Membran-Elektroden-Einheit für eine Brennstoffzelle | |
WO2022129533A1 (fr) | Ensemble de cellules électrochimiques, véhicule comprenant ledit ensemble et procédé de fabrication de l'ensemble | |
DE102009048448A1 (de) | Verbesserte Elektrodenmorphologie unter Verwendung von Zusatzlösungsmitteln mit hohem Siedepunkt in Elektrodentinten | |
DE102019133095A1 (de) | Verfahren zum Durchführen einer Testmessung an einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug | |
DE112012001206T5 (de) | Brennstoffzellen-System | |
DE102004063457A1 (de) | Membran-Elektrodeneinheit einer Brennstoffzelle | |
DE102022202113A1 (de) | Membranelektrodenanordnung, elektrochemische Zelle und Verfahren zur Herstellung von Membranelektrodenanordnungen | |
DE102020102709A1 (de) | Verfahren zur Herstellung einer Membranelektrodenanordnung, Membranelektrodenanordnung sowie Brennstoffzelle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19812972 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19812972 Country of ref document: EP Kind code of ref document: A1 |