EP2118334A1 - Vacuum coating apparatus - Google Patents
Vacuum coating apparatusInfo
- Publication number
- EP2118334A1 EP2118334A1 EP08706380A EP08706380A EP2118334A1 EP 2118334 A1 EP2118334 A1 EP 2118334A1 EP 08706380 A EP08706380 A EP 08706380A EP 08706380 A EP08706380 A EP 08706380A EP 2118334 A1 EP2118334 A1 EP 2118334A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- deposition
- substrates
- chambers
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000001771 vacuum deposition Methods 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims abstract description 152
- 238000000151 deposition Methods 0.000 claims abstract description 59
- 230000008021 deposition Effects 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000012545 processing Methods 0.000 claims abstract description 35
- 238000000576 coating method Methods 0.000 claims abstract description 17
- 239000011248 coating agent Substances 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 13
- 239000010409 thin film Substances 0.000 claims abstract description 12
- 238000012805 post-processing Methods 0.000 claims abstract description 5
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 6
- 238000005240 physical vapour deposition Methods 0.000 claims description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000000376 reactant Substances 0.000 claims description 4
- 238000005137 deposition process Methods 0.000 claims description 3
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 claims description 2
- 125000002524 organometallic group Chemical group 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 36
- 230000008569 process Effects 0.000 description 22
- 230000032258 transport Effects 0.000 description 20
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 19
- 239000011521 glass Substances 0.000 description 12
- 238000012546 transfer Methods 0.000 description 11
- 239000011787 zinc oxide Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 8
- 238000011068 loading method Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012864 cross contamination Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000012777 commercial manufacturing Methods 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000002311 subsequent effect Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/568—Transferring the substrates through a series of coating stations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67207—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to an apparatus for the vacuum proc- essing of substrates, especially large area substrates with sizes of
- CVD zinc oxide
- ZnO zinc oxide
- thin film solar cells e. g. for front and back contact layers in the field of solar cells, espe- cially silicon based solar cells such as thin film solar cells .
- Processing in the sense of this invention includes any chemical, physical or mechanical effect acting on the substrates .
- Substrates in the sense of this invention are components, parts or workpieces to be treated in an inventive vacuum processing apparatus .
- Substrates include, but are not limited to flat, plate shaped parts having rectangular, square or circular shape.
- this invention addresses essentially planar substrates of a size > Im 2 such as thin glass plates.
- Chemical Vapour Deposition is a well known technology allowing the depostion of layers on heated substrates.
- a usually liquid or gaseous precursor material is being fed to a process system where a thermal reaction of said precursor results in deposition of said layer.
- LPCVD is a common term for low pressure CVD.
- DEZ - diethyl zinc is a precursor material for the production of
- TCO or TCO layers are transparent conductive layers .
- a solar cell or photovoltaic cell is a electrical component, capable of transforming light (essentially sun light) directly into electrical energy by means of the photoelectric effect.
- Inline vacuum processing systems are well known in the art.
- US 4,358,472 or EP 0 575 055 show systems of that kind.
- such a system comprises an elongated transport path for substrates in a vacuum environment .
- various processing means may be employed, such as heating, cooling, deposition (PVD, CVD, PECVD,..) , etching or control means - acting on said subtrates.
- PVD heating, cooling, deposition
- CVD chemical vapor deposition
- PECVD PECVD,..
- etching or control means - acting on said subtrates etching or control means - acting on said subtrates.
- valves or gates are being used to separate certain segments from each other. Such valves will allow the passing of substrates from one of said segments to another and will be closed during the processing in a segment.
- Such segments are called process stations or process modules (PM) .
- processing may take place continously or discontinously.
- substrates will pass by the processing means (such as lamps, coolers, deposition sources,..) during processing, in the latter the substrates will be held in a fixed position during processing.
- the transport through the system can take place in many ways such as: rollers, belt drives or linear motor systems (e. g. US 5,170,714).
- the orientation of the substrates may be vertical or horizontal or inclined to a certain degree. In many applications it is advantageous to place the substrates in carriers for the time of the transport .
- the transport path may be linear (one way) or two-fold linear (back and forth on the same way) or in the alternative with a separate return path.
- the arrangement of said forth and return path may be next to each other or in a stacked arrangement one above the other as e. g. shown in US 5,658,114.
- a separate load/unload station may be provided ("load lock"). This way entering/exiting the trans- port path in vacuum may take place without affecting the vacuum conditions in the process chambers.
- n substrates can be treated/processed at once, with the processing time of the slowest station (in terms of processing time) determining the throughput of the system.
- TCO layers are used for solar cells and TFT (thin film transistor) applications.
- ITO indium tin oxide
- ZnO zinc oxide
- Solar cells traditionally have been manufactured based on semiconductor wafers .
- the increasing demand for silicon wafers however has increased the demand for so called thin film solar cells based on glass, metal or plastic, where thin layers of silicon, p- or n-doped silicon and TCO layers for the active part are deposited.
- large substrates can be manufactured more economically than wafer, provided that certain homogeneity of layer deposition can be obtained.
- Figure 1 shows a cross section of an inline vacuum processing system according to the invention.
- Figure 2 shows an infrared heater array used in the inventive processing system
- Figure 3 shows a schematic drawing of a reactor / Process module PM according to the invention
- Figure 4 depicts in more detail the gas dosing part of a process module
- Figure 5 shows a hot table 53 with a border element 51.
- Figure 5 b) shows a variant of said border element.
- a method for depositing a thin film on a substrate in an inline vacuum processing system comprises the steps of a) introducing a first substrate into a load-lock chamber; b) lowering the pressure in said chamber; c) transferring said first substrate into a first deposition chamber; d) depositing a layer of a first material at least partially on said first substrate using a first set of coating parameters; e) transferring said first sub- strate into a second, subsequent deposition chamber of said inline system without breaking vacuum ; f) depositing a further layer of said first material at least partially on said first substrate using substantially the same set of paramaters ; g) transferring said first substrate into a load lock chamber; h) removing said first substrate from said system - wherein simultaneously to step f) a second substrate is being treated in said inline vacuum system according to step d) .
- An apparatus for inline vacuum processing of substrates comprises at least one one load-lock chamber, at least two deposition chambers to be operated with essentially the same set of coating parameters; at least one unload-lock chamber and means for transferring, postprocessing and/or handling substrates through and in the various chambers .
- FIG. 1 is showing an embodiment of the present invention with 4 PM (process modules) , although other configurations with at least 2 PMs are economically feasible.
- the substrates preferably glasses, with a thickness in the range between 3 and 4 mm are fed individually into a loading station 1 of the inline system.
- This station allows the safe handing over from e. g. a handling system (robot) to the inline system, e. g. into a carrier.
- a handling system robot
- From the loading station 1 substrates are transported by a conveyor belt system (not shown) into the load lock 2, where the transport is accomplished by rollers.
- the pressure is lowered by means of vacuum pumps (not shown) to a level allowing further transfer of the substrates .
- the substrates are being heated up by an array of infrared heaters 3.
- the transfer pressure and the desired substrate temperature are reached the substrates will wait in the load lock until ongoing processing in the subsequent process modules 4-7 has been finished.
- decontamination cleaning, usually by means of a etching gas
- the substrate in PM 7 will enter load lock out 10, the substrate formerly processed in PM 4 will be positioned in PM 5 and so forth.
- the substrates are being positioned over a hot plate/substrate holder 11-14 still resting on the transport rollers.
- the substrate holders show vertically retractable and extendable pins, which extend through the hot plate. Said pins will move upward and lift the substrate from the transporting roller system.
- the transport rollers 36 (see Figure 3) will then be retracked sideways from the substrate bottom. Then the substrate can be positioned on the substrate holder 11-14 or 35 respectively by lowering the pins.
- 12- 16 pins will be installed to allow a good weight distribution of a substrate having 1100mm x 1300 mm.
- the pins may be made from stainless steel, with a diameter of 6 mm, being guided in bushings inserted in the hot table / substrate holder 11-14.
- the tip of the pins may be provided with a plastic cap (e. g. Selasol) in order to avoid damage of the substrate. Number and mechanical properties of said pins may be adjusted depending on the specifications.
- the pins are being actuated by a common lifting meachnism, like a hydraulic or pneumatic cylinder or a respective motor installed in the bottom of the PM below the hot table.
- the pins are resting on a plate; e. g. made from steel and are being moved up and down by said common lifting mechanism.
- a plate e. g. made from steel and are being moved up and down by said common lifting mechanism.
- permanent magnets may be incorprated in said plate interacting with said pin.
- the latter is for this application made from ferritic steel or shows an iron insert .
- the above mentioned heated substrate holders 11 - 14 may be designed to allow different heating conditions (such as substrate temperature, heat up times and homogeneity of subtrate temperature) in or- der to perform different processes in said process modules 4-7.
- the substrate holder / hot plate 11-14 will advantageously allow the substrate to be contacted over its complete surface to allow good heat transfer.
- a further preferred embodiment of a hot plate is being shown in figure 5.
- the hot plate 53 has an area for the sub- strate 50 to be placed upon.
- the edge region of said bearing area exhibits a shoulder comprising a border element 51. This border element rests in a recess of the hot plate 53.
- the substrate partially overlaps border element 51 allowing heat transfer but has at the same time a region which is not af- fected by the substrate 50.
- a small gab of 0.5 mm is provided between substrate 50 and border element 51, so that no direct contact exists.
- the border element 51 has a shape comparable to a frame to the substrate.
- the border element further comprises a heating element 52 which can be electric heating element incorporated in a pocket .
- the separate heating element 52 allows separate control of temperature at the edge regions of the substrate. It allows compensation of increased heat transfer at the edges (radiation losses) .
- border element 51 and hot plate 53 will be coated and need to be cleaned. Due to the nature of the coating process, border element 51 will be more affected than other regions. Due to reduced size, the border element 51 can be exchanged more easily than the whole hot table 53.
- border element 51 avoids that a continuous coating at the edge region comes into existence .
- the coating process will be conducted with a surplus of deposition gases .
- This unused waste gas has to be evacuated via the vacuum pumps. The waste gas tends to react with regions in the exhaust systems and the pumps itself, gradually coating them and thereby creating need for maintenance.
- the regions of the border element 51 not used for heat transfer to the substrate 50 however will have a getter effect (attracting such unused gases) . Due to the facilitated exchange the border element 51 will allow to reduce the downtime of the whole system.
- the design of the border element 51 can be as displayed in cross section in Figure 5.
- Figure 5 b shows an alternative design with a ridge 54.
- the height of said ridge is chosen to be the same as the thickness of the substrate, but may vary, if necessary.
- An inventive process may start by dosing working gases such as dibo- rane and DEZ to the process chamber through a gas shower system 15- 18.
- a gas shower system 15- 18 Each of the process chambers 4-7 will be equipped with an individual gas shower system, but several or all gas showers 15-18 may be supplied by the same gas dosing and mixing system (not shown in Fig. 1) .
- the deposition of a layer is ac- complished by the mixing of Dietyhl zinc (DEZ) and water in the gas phase in a pressure range between 0.3 mbar and 1.3 mbar. Films are formed preferably on hot surfaces where the growth rate is a function of the temperature and the availability of gas .
- DEZ Dietyhl zinc
- One goal in the deposition of ZnO layers is to enhance their conductivity.
- Diborane (B 2 H 6 ) is added to the reaction mixture forcing a doping of the Transparent Conductive Oxide (TCO) layer.
- the layer can be deposited in n steps with 1/n layer thickness each so that the total thickness is reached after the respective number of PM' s has been passed.
- a further advantage of these PM' s with comparable processing properties all gas showers are supplied by the same gas delivery y
- the substrate After accomplishing all deposition steps the substrate will be transferred to the load lock out 10 through a gate valve 9 on a roller system. There the substrate will be brought to atmospheric pressure while performing a (first) cool down. As soon as the load lock out 10 reached atmospheric pressure the substrates are transferred to the unload unit 19 by a roller system in the load lock 10 and a conveyor belt system on the unload unit 19. Now the substrate is transferred to the return track level by a lifting device 20 within the unloading unit 19.
- the return track may comprise several conveyor belt units 21-26 operating independently and transferring the substrate step by step to the loading table 1. Alternatively a single conveyor may be employed.
- the step by step motion described allows keeping the glass substrates as long as pos- sible in the protected environment of the system and allowing the cool down of the substrates to a transfer temperature.
- This temperature is determined by the maximum temperature allowed by the external handling system which is used to store and transport substrates to and from the equipment.
- the loading stations itself is equipped with a lifting device 27 which allows bringing back the substrate from the return track level to the transport or deposition level where the substrates are finally picked up by the external loading system (not shown) .
- deposition chambers In a preferred embodiment 4 deposition chambers (PM) are used. All hot plates 11-14 are nearly at the same temperature setting between 160 and 200 0 C, perfereably at 180° C.
- the heater array in the load lock in 3 has heated the substrates slightly above said intended deposition temperature of about 175 0 C to compensate for heat losses during transfer. It has also been shown that non uniform heating within the load lock system is beneficial .
- the edge regions of the glass are heated to a temperature about 10° C higher than the center portion. However, this temperature gradient depends on the transfer speed of the glasses to the first hot plate 11.
- Figure 2 shows a typical infrared heater array used in the load lock system. It is splitted into e. g.
- each array's temperature is controlled by an infrared pyrometer measuring the substrates temperature.
- some heater arrays may be bundled and use only a single control pyrometer.
- zone 29 and zone 30 are generating the center temperature of the glass substrate while zone 31 and 30 will generate one part of the edge portions and 28 and 32 the other portion.
- zone 31 and 30 will generate one part of the edge portions and 28 and 32 the other portion.
- a key factor for the deposition is the temperature of the substrate, since it directly influences the film thickness of the layer and therby the homogeneity of the films.
- the substrates are transferred to the first deposition chamber (PM) 2 al- ready heated.
- PM first deposition chamber
- a higher thick- ness of ZnO in the edge region is seen as an advantage for thin film solar cells .
- the degradation of boron doped ZnO layers is normally higher in the edge regions thus lowering the conductance of the thin film contact area over time.
- a heating plate 53 with individually heated border element 51 allows as well an adjusted, uniform temperature / coating profile as well as a non-uniform coating profile with increased layer thickness at edge regions of the substrate.
- a three zone approach has been chosen. Two zones are located on a center plate of the hot plate 53; one zone, representatd by border element 51 is separated from the center plate and controlled thermally independ- ently.
- the temperature of the center zone is about 175 0 C whilst the edge zone is set to 190 0 C. This way the outer edge zone shall compensate or even overcompensate heat losses of the glass substrate to the surrounding area.
- Figure 3 shows a schematic drawing of a reactor / process module where the actual reaction takes place.
- a substrate 35 is placed on the heater table 34 (hot table) .
- the (retractable) transport rollers 36 are shown as well as the gas shower assembly 37, 38.
- the gas shower assembly comprises two parts, a gas dosing part 37 and a gas distribution part 38 respectively.
- the gas dosing part is been displayed in more detail in Fig. 4 and comprises gas pipes with well defined holes where gas may flow into the process chamber (PM) 41. Maintaining a pressure in the PM 41 of about 0.5 mbar and having a flow through the gas dosing part of approximately 1 - 2 standard liter (1000-2000 seem) gas flow results in a pressure in the gas dosing pipes between 5 mbar to 20 mbar.
- the gas dosing pipes are arranged in parallel to each other, supplying the gas mixing room 42 with gas in a homogeneous way. This is done by equally spaced holes in the gas dosing pipes 39, 40.
- the gas distribution part 38 is designed as gas shower plate and is distributing the gas over a well defined hole pattern to the spe- cific areas of the substrate.
- a method for depositing a thin film on a substrate in an inline vacuum processing system comprising the following steps: a) introducing a first substrate into a load-lock chamber, b) lowering the pressure in said chamber c) transferring said first substrate into a first deposition chamber d) depositing a layer of a first material at least partially on said first substrate using a first set of coating parameters e) transferring said first substrate into a second, subsequent deposition chamber of said inline system without breaking vacuum f) depositing a further layer of said first material at least partially on said first substrate using substantially the same set of paramaters g) transferring said first substrate into a load lock chamber h) removing said first substrate from said system and that simultaneously to step f) a second substrate is being treated in said inline vacuum system according to step d)
- - Said depositing comprising one of CVD, PECVD, LPCVD, PVD or re- active PVD.
- Step b) comprising an additional heating step of the substrate
- the material of said substrate is one of polymer, metal or glass.
- - Said substrate has the shape of a plate and lies horizontally during the whole process - Said plate-shaped substrate has a size of at least 1 m 2 and has a thickness between 0.3 mm and 5 cm, preferably between 2 and 5 mm
- TCO film on said substrate is a front-contact electrode for a solar cell
- TCO film on said substrate is a back-contact electrode for a solar cell
- TCO film is zinc oxide or tin oxide
- - Said method may use reactants like water in liquid or gaseous form, organometallic substances, for instance diethylzinc (dez) and diboran as dopant
- An apparatus for the inline vacuum processing of substrates comprising - At least one one load-lock chamber,
- a load-lock chamber including heating means, pumping means for creating and maintaining vacuum conditions, means for substrate transport, as well as means to introduce gases, such as inert and/or working and/or deposition gases; heating means comprising an infrared-ray-module.
- the load-lock chamber including a belt conveyor as a means for transport of the substrate; deposition chambers having means for substrate support during deposition, means for substrate transport, means to introduce the reactants necessary for deposition, vacuum pumps as well as heating means .
- the means for substrate transport in the deposition chamber are internally-cooled retractable wheels or rollers ; the means for substrate support being vertically movable pins adapted to lift the substrate from the rollers
- the unload-lock chamber including means for substrate transport and/or cooling and/or venting
- the load-lock chamber having a substrate-entrance that is fed by a load station provided with transfer means for receiving substrates from at least a worker, a robot or another processing sytem
- the chambers and the load and unload stations being arranged subsequently (like in a chain) in a straight-line so that underneath the chambers, post-processing means, namely back-transport means, moving in opposite direction respectively to the deposi- tion process of the upper chambers, can be placed in order to further cool-down the processed substrates down to ambient temperature conditions eventually including cooling means within the footprints of the deposition, process line.
- the load station having a lift or elevator for lifting the proc- essed substrate from the back-transport means in order to receive the coated substrate at a site where at least a worker or a machine can handle it and stock it apart.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Chemical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US89268907P | 2007-03-02 | 2007-03-02 | |
PCT/CH2008/000080 WO2008106812A1 (en) | 2007-03-02 | 2008-02-29 | Vacuum coating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2118334A1 true EP2118334A1 (en) | 2009-11-18 |
Family
ID=39415075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08706380A Withdrawn EP2118334A1 (en) | 2007-03-02 | 2008-02-29 | Vacuum coating apparatus |
Country Status (8)
Country | Link |
---|---|
US (1) | US20080213477A1 (en) |
EP (1) | EP2118334A1 (en) |
JP (1) | JP5813920B2 (en) |
KR (1) | KR20090116809A (en) |
CN (2) | CN101636522B (en) |
RU (1) | RU2471015C2 (en) |
TW (1) | TWI425114B (en) |
WO (1) | WO2008106812A1 (en) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2031659A1 (en) * | 2007-08-30 | 2009-03-04 | Applied Materials, Inc. | Method for creating a metal backing pin for a semiconductor element, in particular a solar cell |
US7763535B2 (en) * | 2007-08-30 | 2010-07-27 | Applied Materials, Inc. | Method for producing a metal backside contact of a semiconductor component, in particular, a solar cell |
US8912429B2 (en) * | 2008-03-20 | 2014-12-16 | Hanergy Holding Group Ltd. | Interconnect assembly |
US20110197947A1 (en) | 2008-03-20 | 2011-08-18 | Miasole | Wire network for interconnecting photovoltaic cells |
US20100043863A1 (en) | 2008-03-20 | 2010-02-25 | Miasole | Interconnect assembly |
KR101717409B1 (en) * | 2009-03-18 | 2017-03-16 | 에바텍 어드벤스드 테크놀로지스 아크티엔게젤샤프트 | Method of Inline Manufacturing a Solar Cell Panel |
US8582193B2 (en) | 2010-04-30 | 2013-11-12 | View, Inc. | Electrochromic devices |
US10156762B2 (en) | 2009-03-31 | 2018-12-18 | View, Inc. | Counter electrode for electrochromic devices |
US12043890B2 (en) | 2009-03-31 | 2024-07-23 | View, Inc. | Electrochromic devices |
US9664974B2 (en) * | 2009-03-31 | 2017-05-30 | View, Inc. | Fabrication of low defectivity electrochromic devices |
KR101598798B1 (en) * | 2009-09-01 | 2016-03-02 | 주식회사 테스 | Rapid thermal processing apparatus for solar cell |
TWI427184B (en) * | 2009-12-10 | 2014-02-21 | Sun Well Solar Corp | Apparatus for conductive film coating and method for processing substrates therein |
TWI436831B (en) | 2009-12-10 | 2014-05-11 | Orbotech Lt Solar Llc | A showerhead assembly for vacuum processing apparatus |
US8356640B1 (en) | 2010-01-14 | 2013-01-22 | Mia Solé | Apparatuses and methods for fabricating wire current collectors and interconnects for solar cells |
EP2360720A1 (en) * | 2010-02-23 | 2011-08-24 | Saint-Gobain Glass France | Device for positioning at least two objects, assemblies in particular multi-layer body assemblies, assembly for processing, in particular selenization, of objects, method for positioning at least two objects |
US8865259B2 (en) * | 2010-04-26 | 2014-10-21 | Singulus Mocvd Gmbh I.Gr. | Method and system for inline chemical vapor deposition |
US20110262641A1 (en) * | 2010-04-26 | 2011-10-27 | Aventa Systems, Llc | Inline chemical vapor deposition system |
US9169562B2 (en) | 2010-05-25 | 2015-10-27 | Singulus Mocvd Gmbh I. Gr. | Parallel batch chemical vapor deposition system |
US8986451B2 (en) | 2010-05-25 | 2015-03-24 | Singulus Mocvd Gmbh I. Gr. | Linear batch chemical vapor deposition system |
US9869021B2 (en) | 2010-05-25 | 2018-01-16 | Aventa Technologies, Inc. | Showerhead apparatus for a linear batch chemical vapor deposition system |
US9061344B1 (en) | 2010-05-26 | 2015-06-23 | Apollo Precision (Fujian) Limited | Apparatuses and methods for fabricating wire current collectors and interconnects for solar cells |
KR101101943B1 (en) * | 2010-05-31 | 2012-01-02 | 한국철강 주식회사 | Method for heating a substrate of solar cell |
CN101845621A (en) * | 2010-06-07 | 2010-09-29 | 刘忆军 | Large-area flat-plate type plasma reinforced chemical vapor deposition system |
DE102010030006A1 (en) | 2010-06-11 | 2011-12-15 | Von Ardenne Anlagentechnik Gmbh | Vacuum coating system in modular design |
US10026859B2 (en) | 2010-10-04 | 2018-07-17 | Beijing Apollo Ding Rong Solar Technology Co., Ltd. | Small gauge wire solar cell interconnect |
DE102011004441B4 (en) * | 2011-02-21 | 2016-09-01 | Ctf Solar Gmbh | Method and device for coating tempered to transformation temperature glass substrates |
US8951824B1 (en) | 2011-04-08 | 2015-02-10 | Apollo Precision (Fujian) Limited | Adhesives for attaching wire network to photovoltaic cells |
US8459276B2 (en) | 2011-05-24 | 2013-06-11 | Orbotech LT Solar, LLC. | Broken wafer recovery system |
KR20140116120A (en) * | 2012-01-03 | 2014-10-01 | 어플라이드 머티어리얼스, 인코포레이티드 | Advanced platform for passivating crystalline silicon solar cells |
KR20140068588A (en) * | 2012-11-28 | 2014-06-09 | 코닝정밀소재 주식회사 | Method of fabricating zinc oxide thin film |
US11951509B2 (en) | 2013-09-10 | 2024-04-09 | Awi Licensing Llc | System for applying a coating to a workpiece |
US9266141B2 (en) | 2013-09-10 | 2016-02-23 | Awi Licensing Company | System for applying a coating to a workpiece |
KR20150078549A (en) * | 2013-12-31 | 2015-07-08 | 한국과학기술원 | Apparatus for manufacturing integrated thin film solar cell |
US11891327B2 (en) | 2014-05-02 | 2024-02-06 | View, Inc. | Fabrication of low defectivity electrochromic devices |
KR101608341B1 (en) * | 2014-07-25 | 2016-04-01 | (주)나인테크 | The in-line type pecvd system |
WO2016043965A1 (en) * | 2014-09-19 | 2016-03-24 | Applied Materials, Inc. | Parallel plate inline substrate processing tool |
CN107111197A (en) | 2014-11-26 | 2017-08-29 | 唯景公司 | For electrochromic device to electrode |
CN107022751B (en) * | 2016-02-01 | 2019-10-15 | 溧阳天目先导电池材料科技有限公司 | A kind of device and method for gas phase cladding |
EA035003B1 (en) * | 2016-03-16 | 2020-04-16 | Общество С Ограниченной Ответственностью "Изовак Технологии" | Vacuum assembly for applying thin-film coatings and method for applying optical coatings to same |
CN108231957A (en) * | 2017-09-29 | 2018-06-29 | 理想晶延半导体设备(上海)有限公司 | A kind of crystal silicon solar batteries processing method |
CN107527972A (en) * | 2017-09-29 | 2017-12-29 | 理想晶延半导体设备(上海)有限公司 | A kind of crystal silicon solar batteries processing equipment |
WO2019116081A1 (en) * | 2017-12-14 | 2019-06-20 | Arcelormittal | Vacuum deposition facility and method for coating a substrate |
RU182457U1 (en) * | 2017-12-27 | 2018-08-17 | Общество с ограниченной ответственностью "Накопители Энергии Супер Конденсаторы" (ООО "НЭСК") | Installation for vacuum magnetron sputtering of thin films |
RU186847U1 (en) * | 2018-05-31 | 2019-02-06 | Общество с ограниченной ответственностью "Научно - производственное предприятие "Вакуумные ионно - плазменные технологии" (ООО НПП "ВИП-технологии") | PLANETARY WORK TABLE FOR GROUP ION-PLASMA TREATMENT OF PRODUCTS IN VACUUM AIRLOCK SYSTEMS |
CN110835739A (en) * | 2018-08-17 | 2020-02-25 | 中智(泰兴)电力科技有限公司 | 7-cavity vertical PECVD-PVD integrated silicon wafer coating process |
CN110835738A (en) * | 2018-08-17 | 2020-02-25 | 中智(泰兴)电力科技有限公司 | 7-cavity horizontal HWCVD-PVD integrated silicon wafer coating process |
SG11202106434VA (en) * | 2018-12-18 | 2021-07-29 | Intevac Inc | Hybrid system architecture for thin film deposition |
CN113337809A (en) * | 2020-02-14 | 2021-09-03 | 株式会社新柯隆 | Thin film forming apparatus |
RU2739195C1 (en) * | 2020-04-07 | 2020-12-21 | Общество С Ограниченной Ответственностью "Нтц Тонкопленочных Технологий В Энергетике" | Vacuum sputtering plant with pallet laser cleaning system (embodiments) |
CN114023621B (en) * | 2021-10-29 | 2023-07-14 | 德鸿半导体设备(浙江)有限公司 | Substrate processing system and method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1179515A1 (en) * | 1998-12-21 | 2002-02-13 | Cardinal CG Company | Soil-resistant coating for glass surfaces |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4358472A (en) | 1978-06-16 | 1982-11-09 | Optical Coating Laboratory, Inc. | Multi-layer coating method |
US5170714A (en) | 1988-06-13 | 1992-12-15 | Asahi Glass Company, Ltd. | Vacuum processing apparatus and transportation system thereof |
JP2545306B2 (en) * | 1991-03-11 | 1996-10-16 | 誠 小長井 | Method for producing ZnO transparent conductive film |
JPH0665724A (en) | 1992-05-20 | 1994-03-08 | Yoichi Murayama | Device for inline plasma vapor deposition |
DE9407482U1 (en) * | 1994-05-05 | 1994-10-06 | Balzers und Leybold Deutschland Holding AG, 63450 Hanau | Functional device for a vacuum system for the treatment of disc-shaped workpieces |
RU2138094C1 (en) * | 1997-02-04 | 1999-09-20 | Научно-исследовательский институт ядерной физики при Томском политехническом университете | Facility for applying thin-film coatings |
US6176932B1 (en) * | 1998-02-16 | 2001-01-23 | Anelva Corporation | Thin film deposition apparatus |
US6258408B1 (en) * | 1999-07-06 | 2001-07-10 | Arun Madan | Semiconductor vacuum deposition system and method having a reel-to-reel substrate cassette |
US6298685B1 (en) * | 1999-11-03 | 2001-10-09 | Applied Materials, Inc. | Consecutive deposition system |
JP2001155999A (en) * | 1999-11-25 | 2001-06-08 | Kanegafuchi Chem Ind Co Ltd | Method and device for forming semiconductor layers in layer |
FI118474B (en) * | 1999-12-28 | 2007-11-30 | Asm Int | Apparatus for making thin films |
JP2002270600A (en) * | 2001-03-14 | 2002-09-20 | Kanegafuchi Chem Ind Co Ltd | Plasma cvd apparatus, plasma cvd method and thin film solar cell |
US6821348B2 (en) * | 2002-02-14 | 2004-11-23 | 3M Innovative Properties Company | In-line deposition processes for circuit fabrication |
DE10342398B4 (en) * | 2003-09-13 | 2008-05-29 | Schott Ag | Protective layer for a body, and methods of making and using protective layers |
JP4417734B2 (en) * | 2004-01-20 | 2010-02-17 | 株式会社アルバック | In-line vacuum processing equipment |
DE102004020466A1 (en) * | 2004-04-26 | 2005-11-17 | Applied Films Gmbh & Co. Kg | Process for coating substrates in inline systems |
US20060134345A1 (en) * | 2004-12-20 | 2006-06-22 | Micron Technology, Inc. | Systems and methods for depositing material onto microfeature workpieces |
JP4918224B2 (en) * | 2005-01-21 | 2012-04-18 | 昭和シェル石油株式会社 | Transparent conductive film forming apparatus and multilayer transparent conductive film continuous film forming apparatus |
KR101074186B1 (en) * | 2006-04-07 | 2011-10-14 | 어플라이드 머티어리얼스, 인코포레이티드 | Cluster tool for epitaxial film formation |
US20070281082A1 (en) * | 2006-06-02 | 2007-12-06 | Nima Mokhlesi | Flash Heating in Atomic Layer Deposition |
-
2008
- 2008-02-29 CN CN2008800069052A patent/CN101636522B/en active Active
- 2008-02-29 EP EP08706380A patent/EP2118334A1/en not_active Withdrawn
- 2008-02-29 KR KR1020097020095A patent/KR20090116809A/en not_active Application Discontinuation
- 2008-02-29 RU RU2009136423/02A patent/RU2471015C2/en not_active IP Right Cessation
- 2008-02-29 WO PCT/CH2008/000080 patent/WO2008106812A1/en active Application Filing
- 2008-02-29 US US12/040,292 patent/US20080213477A1/en not_active Abandoned
- 2008-02-29 JP JP2009551089A patent/JP5813920B2/en active Active
- 2008-02-29 CN CN201110373816.5A patent/CN102505115B/en active Active
- 2008-03-03 TW TW097107308A patent/TWI425114B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1179515A1 (en) * | 1998-12-21 | 2002-02-13 | Cardinal CG Company | Soil-resistant coating for glass surfaces |
Also Published As
Publication number | Publication date |
---|---|
WO2008106812A1 (en) | 2008-09-12 |
TWI425114B (en) | 2014-02-01 |
CN102505115A (en) | 2012-06-20 |
CN101636522A (en) | 2010-01-27 |
TW200844255A (en) | 2008-11-16 |
JP2010520369A (en) | 2010-06-10 |
US20080213477A1 (en) | 2008-09-04 |
CN101636522B (en) | 2011-11-30 |
CN102505115B (en) | 2014-09-03 |
KR20090116809A (en) | 2009-11-11 |
RU2009136423A (en) | 2011-04-10 |
JP5813920B2 (en) | 2015-11-17 |
RU2471015C2 (en) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080213477A1 (en) | Inline vacuum processing apparatus and method for processing substrates therein | |
TWI559425B (en) | Vertically integrated processing chamber | |
TWI449121B (en) | Substrate support regulating temperature of substrate and uses thereof | |
US20230307568A1 (en) | Coating apparatus, method and system, solar cell, module, and power generation system | |
US8367565B2 (en) | Methods and systems of transferring, docking and processing substrates | |
US8865259B2 (en) | Method and system for inline chemical vapor deposition | |
CN103222041B (en) | For heater and the method for heated substrates | |
US20080187766A1 (en) | System and method for glass sheet semiconductor coating and resultant product | |
US20140165910A1 (en) | Apparatus for large-area atomic layer deposition | |
US20110262641A1 (en) | Inline chemical vapor deposition system | |
US10030307B2 (en) | Apparatus and process for producing thin layers | |
KR101044772B1 (en) | Fast downward-type evaporation system for large-sized CIGS solar cell manufacturing and method thereof | |
EP1976022A2 (en) | Method and device for producing an anti-reflection or passivation layer for solar cells | |
CN1748285B (en) | Chamber for uniform substrate heating | |
KR101651164B1 (en) | Substrate process system, and process module therefor | |
CN204144233U (en) | Base plate supports carrier and the system for the treatment of substrate | |
JP2015137415A (en) | Large-area atomic layer deposition apparatus | |
US20130252367A1 (en) | System and process for forming thin film photovoltaic device | |
CN117438491A (en) | Silicon heterojunction solar cell preparation equipment | |
KR101430747B1 (en) | Apparatus for Processing Substrate Using Plasma | |
KR20170052147A (en) | Substrate processing system, and substrate processing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20091002 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KUHN, HANSJOERG Inventor name: ZIMIN, DMITRY Inventor name: POPPELLER, MARKUS Inventor name: ZINDEL, ARNO Inventor name: KERSCHBAUMER, JOERG |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OERLIKON SOLAR AG, TRUEBBACH |
|
17Q | First examination report despatched |
Effective date: 20130222 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TEL SOLAR AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150227 |